x86: use ELF section to list CPU vendor specific code
[linux-2.6] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "irq.h"
19 #include "vmx.h"
20 #include "segment_descriptor.h"
21 #include "mmu.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30
31 #include <asm/io.h>
32 #include <asm/desc.h>
33
34 MODULE_AUTHOR("Qumranet");
35 MODULE_LICENSE("GPL");
36
37 static int bypass_guest_pf = 1;
38 module_param(bypass_guest_pf, bool, 0);
39
40 struct vmcs {
41         u32 revision_id;
42         u32 abort;
43         char data[0];
44 };
45
46 struct vcpu_vmx {
47         struct kvm_vcpu       vcpu;
48         int                   launched;
49         u8                    fail;
50         u32                   idt_vectoring_info;
51         struct kvm_msr_entry *guest_msrs;
52         struct kvm_msr_entry *host_msrs;
53         int                   nmsrs;
54         int                   save_nmsrs;
55         int                   msr_offset_efer;
56 #ifdef CONFIG_X86_64
57         int                   msr_offset_kernel_gs_base;
58 #endif
59         struct vmcs          *vmcs;
60         struct {
61                 int           loaded;
62                 u16           fs_sel, gs_sel, ldt_sel;
63                 int           gs_ldt_reload_needed;
64                 int           fs_reload_needed;
65                 int           guest_efer_loaded;
66         } host_state;
67         struct {
68                 struct {
69                         bool pending;
70                         u8 vector;
71                         unsigned rip;
72                 } irq;
73         } rmode;
74 };
75
76 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
77 {
78         return container_of(vcpu, struct vcpu_vmx, vcpu);
79 }
80
81 static int init_rmode_tss(struct kvm *kvm);
82
83 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
84 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
85
86 static struct page *vmx_io_bitmap_a;
87 static struct page *vmx_io_bitmap_b;
88
89 static struct vmcs_config {
90         int size;
91         int order;
92         u32 revision_id;
93         u32 pin_based_exec_ctrl;
94         u32 cpu_based_exec_ctrl;
95         u32 cpu_based_2nd_exec_ctrl;
96         u32 vmexit_ctrl;
97         u32 vmentry_ctrl;
98 } vmcs_config;
99
100 #define VMX_SEGMENT_FIELD(seg)                                  \
101         [VCPU_SREG_##seg] = {                                   \
102                 .selector = GUEST_##seg##_SELECTOR,             \
103                 .base = GUEST_##seg##_BASE,                     \
104                 .limit = GUEST_##seg##_LIMIT,                   \
105                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
106         }
107
108 static struct kvm_vmx_segment_field {
109         unsigned selector;
110         unsigned base;
111         unsigned limit;
112         unsigned ar_bytes;
113 } kvm_vmx_segment_fields[] = {
114         VMX_SEGMENT_FIELD(CS),
115         VMX_SEGMENT_FIELD(DS),
116         VMX_SEGMENT_FIELD(ES),
117         VMX_SEGMENT_FIELD(FS),
118         VMX_SEGMENT_FIELD(GS),
119         VMX_SEGMENT_FIELD(SS),
120         VMX_SEGMENT_FIELD(TR),
121         VMX_SEGMENT_FIELD(LDTR),
122 };
123
124 /*
125  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
126  * away by decrementing the array size.
127  */
128 static const u32 vmx_msr_index[] = {
129 #ifdef CONFIG_X86_64
130         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
131 #endif
132         MSR_EFER, MSR_K6_STAR,
133 };
134 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
135
136 static void load_msrs(struct kvm_msr_entry *e, int n)
137 {
138         int i;
139
140         for (i = 0; i < n; ++i)
141                 wrmsrl(e[i].index, e[i].data);
142 }
143
144 static void save_msrs(struct kvm_msr_entry *e, int n)
145 {
146         int i;
147
148         for (i = 0; i < n; ++i)
149                 rdmsrl(e[i].index, e[i].data);
150 }
151
152 static inline int is_page_fault(u32 intr_info)
153 {
154         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
155                              INTR_INFO_VALID_MASK)) ==
156                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
157 }
158
159 static inline int is_no_device(u32 intr_info)
160 {
161         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
162                              INTR_INFO_VALID_MASK)) ==
163                 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
164 }
165
166 static inline int is_invalid_opcode(u32 intr_info)
167 {
168         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
169                              INTR_INFO_VALID_MASK)) ==
170                 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
171 }
172
173 static inline int is_external_interrupt(u32 intr_info)
174 {
175         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
176                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
177 }
178
179 static inline int cpu_has_vmx_tpr_shadow(void)
180 {
181         return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
182 }
183
184 static inline int vm_need_tpr_shadow(struct kvm *kvm)
185 {
186         return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
187 }
188
189 static inline int cpu_has_secondary_exec_ctrls(void)
190 {
191         return (vmcs_config.cpu_based_exec_ctrl &
192                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
193 }
194
195 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
196 {
197         return (vmcs_config.cpu_based_2nd_exec_ctrl &
198                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
199 }
200
201 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
202 {
203         return ((cpu_has_vmx_virtualize_apic_accesses()) &&
204                 (irqchip_in_kernel(kvm)));
205 }
206
207 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
208 {
209         int i;
210
211         for (i = 0; i < vmx->nmsrs; ++i)
212                 if (vmx->guest_msrs[i].index == msr)
213                         return i;
214         return -1;
215 }
216
217 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
218 {
219         int i;
220
221         i = __find_msr_index(vmx, msr);
222         if (i >= 0)
223                 return &vmx->guest_msrs[i];
224         return NULL;
225 }
226
227 static void vmcs_clear(struct vmcs *vmcs)
228 {
229         u64 phys_addr = __pa(vmcs);
230         u8 error;
231
232         asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
233                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
234                       : "cc", "memory");
235         if (error)
236                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
237                        vmcs, phys_addr);
238 }
239
240 static void __vcpu_clear(void *arg)
241 {
242         struct vcpu_vmx *vmx = arg;
243         int cpu = raw_smp_processor_id();
244
245         if (vmx->vcpu.cpu == cpu)
246                 vmcs_clear(vmx->vmcs);
247         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
248                 per_cpu(current_vmcs, cpu) = NULL;
249         rdtscll(vmx->vcpu.arch.host_tsc);
250 }
251
252 static void vcpu_clear(struct vcpu_vmx *vmx)
253 {
254         if (vmx->vcpu.cpu == -1)
255                 return;
256         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
257         vmx->launched = 0;
258 }
259
260 static unsigned long vmcs_readl(unsigned long field)
261 {
262         unsigned long value;
263
264         asm volatile (ASM_VMX_VMREAD_RDX_RAX
265                       : "=a"(value) : "d"(field) : "cc");
266         return value;
267 }
268
269 static u16 vmcs_read16(unsigned long field)
270 {
271         return vmcs_readl(field);
272 }
273
274 static u32 vmcs_read32(unsigned long field)
275 {
276         return vmcs_readl(field);
277 }
278
279 static u64 vmcs_read64(unsigned long field)
280 {
281 #ifdef CONFIG_X86_64
282         return vmcs_readl(field);
283 #else
284         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
285 #endif
286 }
287
288 static noinline void vmwrite_error(unsigned long field, unsigned long value)
289 {
290         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
291                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
292         dump_stack();
293 }
294
295 static void vmcs_writel(unsigned long field, unsigned long value)
296 {
297         u8 error;
298
299         asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
300                        : "=q"(error) : "a"(value), "d"(field) : "cc");
301         if (unlikely(error))
302                 vmwrite_error(field, value);
303 }
304
305 static void vmcs_write16(unsigned long field, u16 value)
306 {
307         vmcs_writel(field, value);
308 }
309
310 static void vmcs_write32(unsigned long field, u32 value)
311 {
312         vmcs_writel(field, value);
313 }
314
315 static void vmcs_write64(unsigned long field, u64 value)
316 {
317 #ifdef CONFIG_X86_64
318         vmcs_writel(field, value);
319 #else
320         vmcs_writel(field, value);
321         asm volatile ("");
322         vmcs_writel(field+1, value >> 32);
323 #endif
324 }
325
326 static void vmcs_clear_bits(unsigned long field, u32 mask)
327 {
328         vmcs_writel(field, vmcs_readl(field) & ~mask);
329 }
330
331 static void vmcs_set_bits(unsigned long field, u32 mask)
332 {
333         vmcs_writel(field, vmcs_readl(field) | mask);
334 }
335
336 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
337 {
338         u32 eb;
339
340         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
341         if (!vcpu->fpu_active)
342                 eb |= 1u << NM_VECTOR;
343         if (vcpu->guest_debug.enabled)
344                 eb |= 1u << 1;
345         if (vcpu->arch.rmode.active)
346                 eb = ~0;
347         vmcs_write32(EXCEPTION_BITMAP, eb);
348 }
349
350 static void reload_tss(void)
351 {
352         /*
353          * VT restores TR but not its size.  Useless.
354          */
355         struct descriptor_table gdt;
356         struct segment_descriptor *descs;
357
358         get_gdt(&gdt);
359         descs = (void *)gdt.base;
360         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
361         load_TR_desc();
362 }
363
364 static void load_transition_efer(struct vcpu_vmx *vmx)
365 {
366         int efer_offset = vmx->msr_offset_efer;
367         u64 host_efer = vmx->host_msrs[efer_offset].data;
368         u64 guest_efer = vmx->guest_msrs[efer_offset].data;
369         u64 ignore_bits;
370
371         if (efer_offset < 0)
372                 return;
373         /*
374          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
375          * outside long mode
376          */
377         ignore_bits = EFER_NX | EFER_SCE;
378 #ifdef CONFIG_X86_64
379         ignore_bits |= EFER_LMA | EFER_LME;
380         /* SCE is meaningful only in long mode on Intel */
381         if (guest_efer & EFER_LMA)
382                 ignore_bits &= ~(u64)EFER_SCE;
383 #endif
384         if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
385                 return;
386
387         vmx->host_state.guest_efer_loaded = 1;
388         guest_efer &= ~ignore_bits;
389         guest_efer |= host_efer & ignore_bits;
390         wrmsrl(MSR_EFER, guest_efer);
391         vmx->vcpu.stat.efer_reload++;
392 }
393
394 static void reload_host_efer(struct vcpu_vmx *vmx)
395 {
396         if (vmx->host_state.guest_efer_loaded) {
397                 vmx->host_state.guest_efer_loaded = 0;
398                 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
399         }
400 }
401
402 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
403 {
404         struct vcpu_vmx *vmx = to_vmx(vcpu);
405
406         if (vmx->host_state.loaded)
407                 return;
408
409         vmx->host_state.loaded = 1;
410         /*
411          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
412          * allow segment selectors with cpl > 0 or ti == 1.
413          */
414         vmx->host_state.ldt_sel = read_ldt();
415         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
416         vmx->host_state.fs_sel = read_fs();
417         if (!(vmx->host_state.fs_sel & 7)) {
418                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
419                 vmx->host_state.fs_reload_needed = 0;
420         } else {
421                 vmcs_write16(HOST_FS_SELECTOR, 0);
422                 vmx->host_state.fs_reload_needed = 1;
423         }
424         vmx->host_state.gs_sel = read_gs();
425         if (!(vmx->host_state.gs_sel & 7))
426                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
427         else {
428                 vmcs_write16(HOST_GS_SELECTOR, 0);
429                 vmx->host_state.gs_ldt_reload_needed = 1;
430         }
431
432 #ifdef CONFIG_X86_64
433         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
434         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
435 #else
436         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
437         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
438 #endif
439
440 #ifdef CONFIG_X86_64
441         if (is_long_mode(&vmx->vcpu))
442                 save_msrs(vmx->host_msrs +
443                           vmx->msr_offset_kernel_gs_base, 1);
444
445 #endif
446         load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
447         load_transition_efer(vmx);
448 }
449
450 static void vmx_load_host_state(struct vcpu_vmx *vmx)
451 {
452         unsigned long flags;
453
454         if (!vmx->host_state.loaded)
455                 return;
456
457         ++vmx->vcpu.stat.host_state_reload;
458         vmx->host_state.loaded = 0;
459         if (vmx->host_state.fs_reload_needed)
460                 load_fs(vmx->host_state.fs_sel);
461         if (vmx->host_state.gs_ldt_reload_needed) {
462                 load_ldt(vmx->host_state.ldt_sel);
463                 /*
464                  * If we have to reload gs, we must take care to
465                  * preserve our gs base.
466                  */
467                 local_irq_save(flags);
468                 load_gs(vmx->host_state.gs_sel);
469 #ifdef CONFIG_X86_64
470                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
471 #endif
472                 local_irq_restore(flags);
473         }
474         reload_tss();
475         save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
476         load_msrs(vmx->host_msrs, vmx->save_nmsrs);
477         reload_host_efer(vmx);
478 }
479
480 /*
481  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
482  * vcpu mutex is already taken.
483  */
484 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
485 {
486         struct vcpu_vmx *vmx = to_vmx(vcpu);
487         u64 phys_addr = __pa(vmx->vmcs);
488         u64 tsc_this, delta;
489
490         if (vcpu->cpu != cpu) {
491                 vcpu_clear(vmx);
492                 kvm_migrate_apic_timer(vcpu);
493         }
494
495         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
496                 u8 error;
497
498                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
499                 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
500                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
501                               : "cc");
502                 if (error)
503                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
504                                vmx->vmcs, phys_addr);
505         }
506
507         if (vcpu->cpu != cpu) {
508                 struct descriptor_table dt;
509                 unsigned long sysenter_esp;
510
511                 vcpu->cpu = cpu;
512                 /*
513                  * Linux uses per-cpu TSS and GDT, so set these when switching
514                  * processors.
515                  */
516                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
517                 get_gdt(&dt);
518                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
519
520                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
521                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
522
523                 /*
524                  * Make sure the time stamp counter is monotonous.
525                  */
526                 rdtscll(tsc_this);
527                 delta = vcpu->arch.host_tsc - tsc_this;
528                 vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
529         }
530 }
531
532 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
533 {
534         vmx_load_host_state(to_vmx(vcpu));
535 }
536
537 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
538 {
539         if (vcpu->fpu_active)
540                 return;
541         vcpu->fpu_active = 1;
542         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
543         if (vcpu->arch.cr0 & X86_CR0_TS)
544                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
545         update_exception_bitmap(vcpu);
546 }
547
548 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
549 {
550         if (!vcpu->fpu_active)
551                 return;
552         vcpu->fpu_active = 0;
553         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
554         update_exception_bitmap(vcpu);
555 }
556
557 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
558 {
559         vcpu_clear(to_vmx(vcpu));
560 }
561
562 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
563 {
564         return vmcs_readl(GUEST_RFLAGS);
565 }
566
567 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
568 {
569         if (vcpu->arch.rmode.active)
570                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
571         vmcs_writel(GUEST_RFLAGS, rflags);
572 }
573
574 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
575 {
576         unsigned long rip;
577         u32 interruptibility;
578
579         rip = vmcs_readl(GUEST_RIP);
580         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
581         vmcs_writel(GUEST_RIP, rip);
582
583         /*
584          * We emulated an instruction, so temporary interrupt blocking
585          * should be removed, if set.
586          */
587         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
588         if (interruptibility & 3)
589                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
590                              interruptibility & ~3);
591         vcpu->arch.interrupt_window_open = 1;
592 }
593
594 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
595                                 bool has_error_code, u32 error_code)
596 {
597         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
598                      nr | INTR_TYPE_EXCEPTION
599                      | (has_error_code ? INTR_INFO_DELIEVER_CODE_MASK : 0)
600                      | INTR_INFO_VALID_MASK);
601         if (has_error_code)
602                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
603 }
604
605 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
606 {
607         struct vcpu_vmx *vmx = to_vmx(vcpu);
608
609         return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
610 }
611
612 /*
613  * Swap MSR entry in host/guest MSR entry array.
614  */
615 #ifdef CONFIG_X86_64
616 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
617 {
618         struct kvm_msr_entry tmp;
619
620         tmp = vmx->guest_msrs[to];
621         vmx->guest_msrs[to] = vmx->guest_msrs[from];
622         vmx->guest_msrs[from] = tmp;
623         tmp = vmx->host_msrs[to];
624         vmx->host_msrs[to] = vmx->host_msrs[from];
625         vmx->host_msrs[from] = tmp;
626 }
627 #endif
628
629 /*
630  * Set up the vmcs to automatically save and restore system
631  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
632  * mode, as fiddling with msrs is very expensive.
633  */
634 static void setup_msrs(struct vcpu_vmx *vmx)
635 {
636         int save_nmsrs;
637
638         vmx_load_host_state(vmx);
639         save_nmsrs = 0;
640 #ifdef CONFIG_X86_64
641         if (is_long_mode(&vmx->vcpu)) {
642                 int index;
643
644                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
645                 if (index >= 0)
646                         move_msr_up(vmx, index, save_nmsrs++);
647                 index = __find_msr_index(vmx, MSR_LSTAR);
648                 if (index >= 0)
649                         move_msr_up(vmx, index, save_nmsrs++);
650                 index = __find_msr_index(vmx, MSR_CSTAR);
651                 if (index >= 0)
652                         move_msr_up(vmx, index, save_nmsrs++);
653                 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
654                 if (index >= 0)
655                         move_msr_up(vmx, index, save_nmsrs++);
656                 /*
657                  * MSR_K6_STAR is only needed on long mode guests, and only
658                  * if efer.sce is enabled.
659                  */
660                 index = __find_msr_index(vmx, MSR_K6_STAR);
661                 if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
662                         move_msr_up(vmx, index, save_nmsrs++);
663         }
664 #endif
665         vmx->save_nmsrs = save_nmsrs;
666
667 #ifdef CONFIG_X86_64
668         vmx->msr_offset_kernel_gs_base =
669                 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
670 #endif
671         vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
672 }
673
674 /*
675  * reads and returns guest's timestamp counter "register"
676  * guest_tsc = host_tsc + tsc_offset    -- 21.3
677  */
678 static u64 guest_read_tsc(void)
679 {
680         u64 host_tsc, tsc_offset;
681
682         rdtscll(host_tsc);
683         tsc_offset = vmcs_read64(TSC_OFFSET);
684         return host_tsc + tsc_offset;
685 }
686
687 /*
688  * writes 'guest_tsc' into guest's timestamp counter "register"
689  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
690  */
691 static void guest_write_tsc(u64 guest_tsc)
692 {
693         u64 host_tsc;
694
695         rdtscll(host_tsc);
696         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
697 }
698
699 /*
700  * Reads an msr value (of 'msr_index') into 'pdata'.
701  * Returns 0 on success, non-0 otherwise.
702  * Assumes vcpu_load() was already called.
703  */
704 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
705 {
706         u64 data;
707         struct kvm_msr_entry *msr;
708
709         if (!pdata) {
710                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
711                 return -EINVAL;
712         }
713
714         switch (msr_index) {
715 #ifdef CONFIG_X86_64
716         case MSR_FS_BASE:
717                 data = vmcs_readl(GUEST_FS_BASE);
718                 break;
719         case MSR_GS_BASE:
720                 data = vmcs_readl(GUEST_GS_BASE);
721                 break;
722         case MSR_EFER:
723                 return kvm_get_msr_common(vcpu, msr_index, pdata);
724 #endif
725         case MSR_IA32_TIME_STAMP_COUNTER:
726                 data = guest_read_tsc();
727                 break;
728         case MSR_IA32_SYSENTER_CS:
729                 data = vmcs_read32(GUEST_SYSENTER_CS);
730                 break;
731         case MSR_IA32_SYSENTER_EIP:
732                 data = vmcs_readl(GUEST_SYSENTER_EIP);
733                 break;
734         case MSR_IA32_SYSENTER_ESP:
735                 data = vmcs_readl(GUEST_SYSENTER_ESP);
736                 break;
737         default:
738                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
739                 if (msr) {
740                         data = msr->data;
741                         break;
742                 }
743                 return kvm_get_msr_common(vcpu, msr_index, pdata);
744         }
745
746         *pdata = data;
747         return 0;
748 }
749
750 /*
751  * Writes msr value into into the appropriate "register".
752  * Returns 0 on success, non-0 otherwise.
753  * Assumes vcpu_load() was already called.
754  */
755 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
756 {
757         struct vcpu_vmx *vmx = to_vmx(vcpu);
758         struct kvm_msr_entry *msr;
759         int ret = 0;
760
761         switch (msr_index) {
762 #ifdef CONFIG_X86_64
763         case MSR_EFER:
764                 ret = kvm_set_msr_common(vcpu, msr_index, data);
765                 if (vmx->host_state.loaded) {
766                         reload_host_efer(vmx);
767                         load_transition_efer(vmx);
768                 }
769                 break;
770         case MSR_FS_BASE:
771                 vmcs_writel(GUEST_FS_BASE, data);
772                 break;
773         case MSR_GS_BASE:
774                 vmcs_writel(GUEST_GS_BASE, data);
775                 break;
776 #endif
777         case MSR_IA32_SYSENTER_CS:
778                 vmcs_write32(GUEST_SYSENTER_CS, data);
779                 break;
780         case MSR_IA32_SYSENTER_EIP:
781                 vmcs_writel(GUEST_SYSENTER_EIP, data);
782                 break;
783         case MSR_IA32_SYSENTER_ESP:
784                 vmcs_writel(GUEST_SYSENTER_ESP, data);
785                 break;
786         case MSR_IA32_TIME_STAMP_COUNTER:
787                 guest_write_tsc(data);
788                 break;
789         default:
790                 msr = find_msr_entry(vmx, msr_index);
791                 if (msr) {
792                         msr->data = data;
793                         if (vmx->host_state.loaded)
794                                 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
795                         break;
796                 }
797                 ret = kvm_set_msr_common(vcpu, msr_index, data);
798         }
799
800         return ret;
801 }
802
803 /*
804  * Sync the rsp and rip registers into the vcpu structure.  This allows
805  * registers to be accessed by indexing vcpu->arch.regs.
806  */
807 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
808 {
809         vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
810         vcpu->arch.rip = vmcs_readl(GUEST_RIP);
811 }
812
813 /*
814  * Syncs rsp and rip back into the vmcs.  Should be called after possible
815  * modification.
816  */
817 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
818 {
819         vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
820         vmcs_writel(GUEST_RIP, vcpu->arch.rip);
821 }
822
823 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
824 {
825         unsigned long dr7 = 0x400;
826         int old_singlestep;
827
828         old_singlestep = vcpu->guest_debug.singlestep;
829
830         vcpu->guest_debug.enabled = dbg->enabled;
831         if (vcpu->guest_debug.enabled) {
832                 int i;
833
834                 dr7 |= 0x200;  /* exact */
835                 for (i = 0; i < 4; ++i) {
836                         if (!dbg->breakpoints[i].enabled)
837                                 continue;
838                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
839                         dr7 |= 2 << (i*2);    /* global enable */
840                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
841                 }
842
843                 vcpu->guest_debug.singlestep = dbg->singlestep;
844         } else
845                 vcpu->guest_debug.singlestep = 0;
846
847         if (old_singlestep && !vcpu->guest_debug.singlestep) {
848                 unsigned long flags;
849
850                 flags = vmcs_readl(GUEST_RFLAGS);
851                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
852                 vmcs_writel(GUEST_RFLAGS, flags);
853         }
854
855         update_exception_bitmap(vcpu);
856         vmcs_writel(GUEST_DR7, dr7);
857
858         return 0;
859 }
860
861 static int vmx_get_irq(struct kvm_vcpu *vcpu)
862 {
863         struct vcpu_vmx *vmx = to_vmx(vcpu);
864         u32 idtv_info_field;
865
866         idtv_info_field = vmx->idt_vectoring_info;
867         if (idtv_info_field & INTR_INFO_VALID_MASK) {
868                 if (is_external_interrupt(idtv_info_field))
869                         return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
870                 else
871                         printk(KERN_DEBUG "pending exception: not handled yet\n");
872         }
873         return -1;
874 }
875
876 static __init int cpu_has_kvm_support(void)
877 {
878         unsigned long ecx = cpuid_ecx(1);
879         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
880 }
881
882 static __init int vmx_disabled_by_bios(void)
883 {
884         u64 msr;
885
886         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
887         return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
888                        MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
889             == MSR_IA32_FEATURE_CONTROL_LOCKED;
890         /* locked but not enabled */
891 }
892
893 static void hardware_enable(void *garbage)
894 {
895         int cpu = raw_smp_processor_id();
896         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
897         u64 old;
898
899         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
900         if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
901                     MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
902             != (MSR_IA32_FEATURE_CONTROL_LOCKED |
903                 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
904                 /* enable and lock */
905                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
906                        MSR_IA32_FEATURE_CONTROL_LOCKED |
907                        MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
908         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
909         asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
910                       : "memory", "cc");
911 }
912
913 static void hardware_disable(void *garbage)
914 {
915         asm volatile (ASM_VMX_VMXOFF : : : "cc");
916 }
917
918 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
919                                       u32 msr, u32 *result)
920 {
921         u32 vmx_msr_low, vmx_msr_high;
922         u32 ctl = ctl_min | ctl_opt;
923
924         rdmsr(msr, vmx_msr_low, vmx_msr_high);
925
926         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
927         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
928
929         /* Ensure minimum (required) set of control bits are supported. */
930         if (ctl_min & ~ctl)
931                 return -EIO;
932
933         *result = ctl;
934         return 0;
935 }
936
937 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
938 {
939         u32 vmx_msr_low, vmx_msr_high;
940         u32 min, opt;
941         u32 _pin_based_exec_control = 0;
942         u32 _cpu_based_exec_control = 0;
943         u32 _cpu_based_2nd_exec_control = 0;
944         u32 _vmexit_control = 0;
945         u32 _vmentry_control = 0;
946
947         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
948         opt = 0;
949         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
950                                 &_pin_based_exec_control) < 0)
951                 return -EIO;
952
953         min = CPU_BASED_HLT_EXITING |
954 #ifdef CONFIG_X86_64
955               CPU_BASED_CR8_LOAD_EXITING |
956               CPU_BASED_CR8_STORE_EXITING |
957 #endif
958               CPU_BASED_USE_IO_BITMAPS |
959               CPU_BASED_MOV_DR_EXITING |
960               CPU_BASED_USE_TSC_OFFSETING;
961         opt = CPU_BASED_TPR_SHADOW |
962               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
963         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
964                                 &_cpu_based_exec_control) < 0)
965                 return -EIO;
966 #ifdef CONFIG_X86_64
967         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
968                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
969                                            ~CPU_BASED_CR8_STORE_EXITING;
970 #endif
971         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
972                 min = 0;
973                 opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
974                         SECONDARY_EXEC_WBINVD_EXITING;
975                 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
976                                         &_cpu_based_2nd_exec_control) < 0)
977                         return -EIO;
978         }
979 #ifndef CONFIG_X86_64
980         if (!(_cpu_based_2nd_exec_control &
981                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
982                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
983 #endif
984
985         min = 0;
986 #ifdef CONFIG_X86_64
987         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
988 #endif
989         opt = 0;
990         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
991                                 &_vmexit_control) < 0)
992                 return -EIO;
993
994         min = opt = 0;
995         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
996                                 &_vmentry_control) < 0)
997                 return -EIO;
998
999         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1000
1001         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1002         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1003                 return -EIO;
1004
1005 #ifdef CONFIG_X86_64
1006         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1007         if (vmx_msr_high & (1u<<16))
1008                 return -EIO;
1009 #endif
1010
1011         /* Require Write-Back (WB) memory type for VMCS accesses. */
1012         if (((vmx_msr_high >> 18) & 15) != 6)
1013                 return -EIO;
1014
1015         vmcs_conf->size = vmx_msr_high & 0x1fff;
1016         vmcs_conf->order = get_order(vmcs_config.size);
1017         vmcs_conf->revision_id = vmx_msr_low;
1018
1019         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1020         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1021         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1022         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1023         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1024
1025         return 0;
1026 }
1027
1028 static struct vmcs *alloc_vmcs_cpu(int cpu)
1029 {
1030         int node = cpu_to_node(cpu);
1031         struct page *pages;
1032         struct vmcs *vmcs;
1033
1034         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1035         if (!pages)
1036                 return NULL;
1037         vmcs = page_address(pages);
1038         memset(vmcs, 0, vmcs_config.size);
1039         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1040         return vmcs;
1041 }
1042
1043 static struct vmcs *alloc_vmcs(void)
1044 {
1045         return alloc_vmcs_cpu(raw_smp_processor_id());
1046 }
1047
1048 static void free_vmcs(struct vmcs *vmcs)
1049 {
1050         free_pages((unsigned long)vmcs, vmcs_config.order);
1051 }
1052
1053 static void free_kvm_area(void)
1054 {
1055         int cpu;
1056
1057         for_each_online_cpu(cpu)
1058                 free_vmcs(per_cpu(vmxarea, cpu));
1059 }
1060
1061 static __init int alloc_kvm_area(void)
1062 {
1063         int cpu;
1064
1065         for_each_online_cpu(cpu) {
1066                 struct vmcs *vmcs;
1067
1068                 vmcs = alloc_vmcs_cpu(cpu);
1069                 if (!vmcs) {
1070                         free_kvm_area();
1071                         return -ENOMEM;
1072                 }
1073
1074                 per_cpu(vmxarea, cpu) = vmcs;
1075         }
1076         return 0;
1077 }
1078
1079 static __init int hardware_setup(void)
1080 {
1081         if (setup_vmcs_config(&vmcs_config) < 0)
1082                 return -EIO;
1083         return alloc_kvm_area();
1084 }
1085
1086 static __exit void hardware_unsetup(void)
1087 {
1088         free_kvm_area();
1089 }
1090
1091 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1092 {
1093         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1094
1095         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1096                 vmcs_write16(sf->selector, save->selector);
1097                 vmcs_writel(sf->base, save->base);
1098                 vmcs_write32(sf->limit, save->limit);
1099                 vmcs_write32(sf->ar_bytes, save->ar);
1100         } else {
1101                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1102                         << AR_DPL_SHIFT;
1103                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1104         }
1105 }
1106
1107 static void enter_pmode(struct kvm_vcpu *vcpu)
1108 {
1109         unsigned long flags;
1110
1111         vcpu->arch.rmode.active = 0;
1112
1113         vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
1114         vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
1115         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
1116
1117         flags = vmcs_readl(GUEST_RFLAGS);
1118         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1119         flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
1120         vmcs_writel(GUEST_RFLAGS, flags);
1121
1122         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1123                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1124
1125         update_exception_bitmap(vcpu);
1126
1127         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1128         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1129         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1130         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1131
1132         vmcs_write16(GUEST_SS_SELECTOR, 0);
1133         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1134
1135         vmcs_write16(GUEST_CS_SELECTOR,
1136                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1137         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1138 }
1139
1140 static gva_t rmode_tss_base(struct kvm *kvm)
1141 {
1142         if (!kvm->arch.tss_addr) {
1143                 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1144                                  kvm->memslots[0].npages - 3;
1145                 return base_gfn << PAGE_SHIFT;
1146         }
1147         return kvm->arch.tss_addr;
1148 }
1149
1150 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1151 {
1152         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1153
1154         save->selector = vmcs_read16(sf->selector);
1155         save->base = vmcs_readl(sf->base);
1156         save->limit = vmcs_read32(sf->limit);
1157         save->ar = vmcs_read32(sf->ar_bytes);
1158         vmcs_write16(sf->selector, save->base >> 4);
1159         vmcs_write32(sf->base, save->base & 0xfffff);
1160         vmcs_write32(sf->limit, 0xffff);
1161         vmcs_write32(sf->ar_bytes, 0xf3);
1162 }
1163
1164 static void enter_rmode(struct kvm_vcpu *vcpu)
1165 {
1166         unsigned long flags;
1167
1168         vcpu->arch.rmode.active = 1;
1169
1170         vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1171         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1172
1173         vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1174         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1175
1176         vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1177         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1178
1179         flags = vmcs_readl(GUEST_RFLAGS);
1180         vcpu->arch.rmode.save_iopl
1181                 = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1182
1183         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1184
1185         vmcs_writel(GUEST_RFLAGS, flags);
1186         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1187         update_exception_bitmap(vcpu);
1188
1189         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1190         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1191         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1192
1193         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1194         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1195         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1196                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1197         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1198
1199         fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
1200         fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
1201         fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
1202         fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
1203
1204         kvm_mmu_reset_context(vcpu);
1205         init_rmode_tss(vcpu->kvm);
1206 }
1207
1208 #ifdef CONFIG_X86_64
1209
1210 static void enter_lmode(struct kvm_vcpu *vcpu)
1211 {
1212         u32 guest_tr_ar;
1213
1214         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1215         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1216                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1217                        __FUNCTION__);
1218                 vmcs_write32(GUEST_TR_AR_BYTES,
1219                              (guest_tr_ar & ~AR_TYPE_MASK)
1220                              | AR_TYPE_BUSY_64_TSS);
1221         }
1222
1223         vcpu->arch.shadow_efer |= EFER_LMA;
1224
1225         find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1226         vmcs_write32(VM_ENTRY_CONTROLS,
1227                      vmcs_read32(VM_ENTRY_CONTROLS)
1228                      | VM_ENTRY_IA32E_MODE);
1229 }
1230
1231 static void exit_lmode(struct kvm_vcpu *vcpu)
1232 {
1233         vcpu->arch.shadow_efer &= ~EFER_LMA;
1234
1235         vmcs_write32(VM_ENTRY_CONTROLS,
1236                      vmcs_read32(VM_ENTRY_CONTROLS)
1237                      & ~VM_ENTRY_IA32E_MODE);
1238 }
1239
1240 #endif
1241
1242 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1243 {
1244         vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
1245         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1246 }
1247
1248 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1249 {
1250         vmx_fpu_deactivate(vcpu);
1251
1252         if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
1253                 enter_pmode(vcpu);
1254
1255         if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
1256                 enter_rmode(vcpu);
1257
1258 #ifdef CONFIG_X86_64
1259         if (vcpu->arch.shadow_efer & EFER_LME) {
1260                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1261                         enter_lmode(vcpu);
1262                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1263                         exit_lmode(vcpu);
1264         }
1265 #endif
1266
1267         vmcs_writel(CR0_READ_SHADOW, cr0);
1268         vmcs_writel(GUEST_CR0,
1269                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1270         vcpu->arch.cr0 = cr0;
1271
1272         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1273                 vmx_fpu_activate(vcpu);
1274 }
1275
1276 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1277 {
1278         vmcs_writel(GUEST_CR3, cr3);
1279         if (vcpu->arch.cr0 & X86_CR0_PE)
1280                 vmx_fpu_deactivate(vcpu);
1281 }
1282
1283 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1284 {
1285         vmcs_writel(CR4_READ_SHADOW, cr4);
1286         vmcs_writel(GUEST_CR4, cr4 | (vcpu->arch.rmode.active ?
1287                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1288         vcpu->arch.cr4 = cr4;
1289 }
1290
1291 #ifdef CONFIG_X86_64
1292
1293 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1294 {
1295         struct vcpu_vmx *vmx = to_vmx(vcpu);
1296         struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1297
1298         vcpu->arch.shadow_efer = efer;
1299         if (efer & EFER_LMA) {
1300                 vmcs_write32(VM_ENTRY_CONTROLS,
1301                                      vmcs_read32(VM_ENTRY_CONTROLS) |
1302                                      VM_ENTRY_IA32E_MODE);
1303                 msr->data = efer;
1304
1305         } else {
1306                 vmcs_write32(VM_ENTRY_CONTROLS,
1307                                      vmcs_read32(VM_ENTRY_CONTROLS) &
1308                                      ~VM_ENTRY_IA32E_MODE);
1309
1310                 msr->data = efer & ~EFER_LME;
1311         }
1312         setup_msrs(vmx);
1313 }
1314
1315 #endif
1316
1317 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1318 {
1319         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1320
1321         return vmcs_readl(sf->base);
1322 }
1323
1324 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1325                             struct kvm_segment *var, int seg)
1326 {
1327         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1328         u32 ar;
1329
1330         var->base = vmcs_readl(sf->base);
1331         var->limit = vmcs_read32(sf->limit);
1332         var->selector = vmcs_read16(sf->selector);
1333         ar = vmcs_read32(sf->ar_bytes);
1334         if (ar & AR_UNUSABLE_MASK)
1335                 ar = 0;
1336         var->type = ar & 15;
1337         var->s = (ar >> 4) & 1;
1338         var->dpl = (ar >> 5) & 3;
1339         var->present = (ar >> 7) & 1;
1340         var->avl = (ar >> 12) & 1;
1341         var->l = (ar >> 13) & 1;
1342         var->db = (ar >> 14) & 1;
1343         var->g = (ar >> 15) & 1;
1344         var->unusable = (ar >> 16) & 1;
1345 }
1346
1347 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1348 {
1349         u32 ar;
1350
1351         if (var->unusable)
1352                 ar = 1 << 16;
1353         else {
1354                 ar = var->type & 15;
1355                 ar |= (var->s & 1) << 4;
1356                 ar |= (var->dpl & 3) << 5;
1357                 ar |= (var->present & 1) << 7;
1358                 ar |= (var->avl & 1) << 12;
1359                 ar |= (var->l & 1) << 13;
1360                 ar |= (var->db & 1) << 14;
1361                 ar |= (var->g & 1) << 15;
1362         }
1363         if (ar == 0) /* a 0 value means unusable */
1364                 ar = AR_UNUSABLE_MASK;
1365
1366         return ar;
1367 }
1368
1369 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1370                             struct kvm_segment *var, int seg)
1371 {
1372         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1373         u32 ar;
1374
1375         if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
1376                 vcpu->arch.rmode.tr.selector = var->selector;
1377                 vcpu->arch.rmode.tr.base = var->base;
1378                 vcpu->arch.rmode.tr.limit = var->limit;
1379                 vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
1380                 return;
1381         }
1382         vmcs_writel(sf->base, var->base);
1383         vmcs_write32(sf->limit, var->limit);
1384         vmcs_write16(sf->selector, var->selector);
1385         if (vcpu->arch.rmode.active && var->s) {
1386                 /*
1387                  * Hack real-mode segments into vm86 compatibility.
1388                  */
1389                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1390                         vmcs_writel(sf->base, 0xf0000);
1391                 ar = 0xf3;
1392         } else
1393                 ar = vmx_segment_access_rights(var);
1394         vmcs_write32(sf->ar_bytes, ar);
1395 }
1396
1397 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1398 {
1399         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1400
1401         *db = (ar >> 14) & 1;
1402         *l = (ar >> 13) & 1;
1403 }
1404
1405 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1406 {
1407         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1408         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1409 }
1410
1411 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1412 {
1413         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1414         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1415 }
1416
1417 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1418 {
1419         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1420         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1421 }
1422
1423 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1424 {
1425         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1426         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1427 }
1428
1429 static int init_rmode_tss(struct kvm *kvm)
1430 {
1431         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1432         u16 data = 0;
1433         int ret = 0;
1434         int r;
1435
1436         down_read(&kvm->slots_lock);
1437         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1438         if (r < 0)
1439                 goto out;
1440         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1441         r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1442         if (r < 0)
1443                 goto out;
1444         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1445         if (r < 0)
1446                 goto out;
1447         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1448         if (r < 0)
1449                 goto out;
1450         data = ~0;
1451         r = kvm_write_guest_page(kvm, fn, &data,
1452                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1453                                  sizeof(u8));
1454         if (r < 0)
1455                 goto out;
1456
1457         ret = 1;
1458 out:
1459         up_read(&kvm->slots_lock);
1460         return ret;
1461 }
1462
1463 static void seg_setup(int seg)
1464 {
1465         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1466
1467         vmcs_write16(sf->selector, 0);
1468         vmcs_writel(sf->base, 0);
1469         vmcs_write32(sf->limit, 0xffff);
1470         vmcs_write32(sf->ar_bytes, 0x93);
1471 }
1472
1473 static int alloc_apic_access_page(struct kvm *kvm)
1474 {
1475         struct kvm_userspace_memory_region kvm_userspace_mem;
1476         int r = 0;
1477
1478         down_write(&kvm->slots_lock);
1479         if (kvm->arch.apic_access_page)
1480                 goto out;
1481         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1482         kvm_userspace_mem.flags = 0;
1483         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1484         kvm_userspace_mem.memory_size = PAGE_SIZE;
1485         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1486         if (r)
1487                 goto out;
1488
1489         down_read(&current->mm->mmap_sem);
1490         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
1491         up_read(&current->mm->mmap_sem);
1492 out:
1493         up_write(&kvm->slots_lock);
1494         return r;
1495 }
1496
1497 /*
1498  * Sets up the vmcs for emulated real mode.
1499  */
1500 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1501 {
1502         u32 host_sysenter_cs;
1503         u32 junk;
1504         unsigned long a;
1505         struct descriptor_table dt;
1506         int i;
1507         unsigned long kvm_vmx_return;
1508         u32 exec_control;
1509
1510         /* I/O */
1511         vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1512         vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1513
1514         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1515
1516         /* Control */
1517         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1518                 vmcs_config.pin_based_exec_ctrl);
1519
1520         exec_control = vmcs_config.cpu_based_exec_ctrl;
1521         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1522                 exec_control &= ~CPU_BASED_TPR_SHADOW;
1523 #ifdef CONFIG_X86_64
1524                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1525                                 CPU_BASED_CR8_LOAD_EXITING;
1526 #endif
1527         }
1528         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1529
1530         if (cpu_has_secondary_exec_ctrls()) {
1531                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
1532                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1533                         exec_control &=
1534                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1535                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
1536         }
1537
1538         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1539         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1540         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1541
1542         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1543         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1544         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1545
1546         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1547         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1548         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1549         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1550         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1551         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1552 #ifdef CONFIG_X86_64
1553         rdmsrl(MSR_FS_BASE, a);
1554         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1555         rdmsrl(MSR_GS_BASE, a);
1556         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1557 #else
1558         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1559         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1560 #endif
1561
1562         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1563
1564         get_idt(&dt);
1565         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1566
1567         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1568         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1569         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1570         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1571         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1572
1573         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1574         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1575         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1576         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1577         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1578         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1579
1580         for (i = 0; i < NR_VMX_MSR; ++i) {
1581                 u32 index = vmx_msr_index[i];
1582                 u32 data_low, data_high;
1583                 u64 data;
1584                 int j = vmx->nmsrs;
1585
1586                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1587                         continue;
1588                 if (wrmsr_safe(index, data_low, data_high) < 0)
1589                         continue;
1590                 data = data_low | ((u64)data_high << 32);
1591                 vmx->host_msrs[j].index = index;
1592                 vmx->host_msrs[j].reserved = 0;
1593                 vmx->host_msrs[j].data = data;
1594                 vmx->guest_msrs[j] = vmx->host_msrs[j];
1595                 ++vmx->nmsrs;
1596         }
1597
1598         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1599
1600         /* 22.2.1, 20.8.1 */
1601         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1602
1603         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1604         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1605
1606
1607         return 0;
1608 }
1609
1610 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1611 {
1612         struct vcpu_vmx *vmx = to_vmx(vcpu);
1613         u64 msr;
1614         int ret;
1615
1616         if (!init_rmode_tss(vmx->vcpu.kvm)) {
1617                 ret = -ENOMEM;
1618                 goto out;
1619         }
1620
1621         vmx->vcpu.arch.rmode.active = 0;
1622
1623         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1624         set_cr8(&vmx->vcpu, 0);
1625         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1626         if (vmx->vcpu.vcpu_id == 0)
1627                 msr |= MSR_IA32_APICBASE_BSP;
1628         kvm_set_apic_base(&vmx->vcpu, msr);
1629
1630         fx_init(&vmx->vcpu);
1631
1632         /*
1633          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1634          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
1635          */
1636         if (vmx->vcpu.vcpu_id == 0) {
1637                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1638                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1639         } else {
1640                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
1641                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
1642         }
1643         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1644         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1645
1646         seg_setup(VCPU_SREG_DS);
1647         seg_setup(VCPU_SREG_ES);
1648         seg_setup(VCPU_SREG_FS);
1649         seg_setup(VCPU_SREG_GS);
1650         seg_setup(VCPU_SREG_SS);
1651
1652         vmcs_write16(GUEST_TR_SELECTOR, 0);
1653         vmcs_writel(GUEST_TR_BASE, 0);
1654         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1655         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1656
1657         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1658         vmcs_writel(GUEST_LDTR_BASE, 0);
1659         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1660         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1661
1662         vmcs_write32(GUEST_SYSENTER_CS, 0);
1663         vmcs_writel(GUEST_SYSENTER_ESP, 0);
1664         vmcs_writel(GUEST_SYSENTER_EIP, 0);
1665
1666         vmcs_writel(GUEST_RFLAGS, 0x02);
1667         if (vmx->vcpu.vcpu_id == 0)
1668                 vmcs_writel(GUEST_RIP, 0xfff0);
1669         else
1670                 vmcs_writel(GUEST_RIP, 0);
1671         vmcs_writel(GUEST_RSP, 0);
1672
1673         /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
1674         vmcs_writel(GUEST_DR7, 0x400);
1675
1676         vmcs_writel(GUEST_GDTR_BASE, 0);
1677         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1678
1679         vmcs_writel(GUEST_IDTR_BASE, 0);
1680         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1681
1682         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1683         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1684         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1685
1686         guest_write_tsc(0);
1687
1688         /* Special registers */
1689         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1690
1691         setup_msrs(vmx);
1692
1693         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1694
1695         if (cpu_has_vmx_tpr_shadow()) {
1696                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
1697                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
1698                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
1699                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
1700                 vmcs_write32(TPR_THRESHOLD, 0);
1701         }
1702
1703         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1704                 vmcs_write64(APIC_ACCESS_ADDR,
1705                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
1706
1707         vmx->vcpu.arch.cr0 = 0x60000010;
1708         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
1709         vmx_set_cr4(&vmx->vcpu, 0);
1710 #ifdef CONFIG_X86_64
1711         vmx_set_efer(&vmx->vcpu, 0);
1712 #endif
1713         vmx_fpu_activate(&vmx->vcpu);
1714         update_exception_bitmap(&vmx->vcpu);
1715
1716         return 0;
1717
1718 out:
1719         return ret;
1720 }
1721
1722 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1723 {
1724         struct vcpu_vmx *vmx = to_vmx(vcpu);
1725
1726         if (vcpu->arch.rmode.active) {
1727                 vmx->rmode.irq.pending = true;
1728                 vmx->rmode.irq.vector = irq;
1729                 vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
1730                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1731                              irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
1732                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
1733                 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
1734                 return;
1735         }
1736         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1737                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1738 }
1739
1740 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1741 {
1742         int word_index = __ffs(vcpu->arch.irq_summary);
1743         int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
1744         int irq = word_index * BITS_PER_LONG + bit_index;
1745
1746         clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
1747         if (!vcpu->arch.irq_pending[word_index])
1748                 clear_bit(word_index, &vcpu->arch.irq_summary);
1749         vmx_inject_irq(vcpu, irq);
1750 }
1751
1752
1753 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1754                                        struct kvm_run *kvm_run)
1755 {
1756         u32 cpu_based_vm_exec_control;
1757
1758         vcpu->arch.interrupt_window_open =
1759                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1760                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1761
1762         if (vcpu->arch.interrupt_window_open &&
1763             vcpu->arch.irq_summary &&
1764             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1765                 /*
1766                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1767                  */
1768                 kvm_do_inject_irq(vcpu);
1769
1770         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1771         if (!vcpu->arch.interrupt_window_open &&
1772             (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
1773                 /*
1774                  * Interrupts blocked.  Wait for unblock.
1775                  */
1776                 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1777         else
1778                 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1779         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1780 }
1781
1782 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
1783 {
1784         int ret;
1785         struct kvm_userspace_memory_region tss_mem = {
1786                 .slot = 8,
1787                 .guest_phys_addr = addr,
1788                 .memory_size = PAGE_SIZE * 3,
1789                 .flags = 0,
1790         };
1791
1792         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
1793         if (ret)
1794                 return ret;
1795         kvm->arch.tss_addr = addr;
1796         return 0;
1797 }
1798
1799 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1800 {
1801         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1802
1803         set_debugreg(dbg->bp[0], 0);
1804         set_debugreg(dbg->bp[1], 1);
1805         set_debugreg(dbg->bp[2], 2);
1806         set_debugreg(dbg->bp[3], 3);
1807
1808         if (dbg->singlestep) {
1809                 unsigned long flags;
1810
1811                 flags = vmcs_readl(GUEST_RFLAGS);
1812                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1813                 vmcs_writel(GUEST_RFLAGS, flags);
1814         }
1815 }
1816
1817 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1818                                   int vec, u32 err_code)
1819 {
1820         if (!vcpu->arch.rmode.active)
1821                 return 0;
1822
1823         /*
1824          * Instruction with address size override prefix opcode 0x67
1825          * Cause the #SS fault with 0 error code in VM86 mode.
1826          */
1827         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1828                 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
1829                         return 1;
1830         return 0;
1831 }
1832
1833 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1834 {
1835         struct vcpu_vmx *vmx = to_vmx(vcpu);
1836         u32 intr_info, error_code;
1837         unsigned long cr2, rip;
1838         u32 vect_info;
1839         enum emulation_result er;
1840
1841         vect_info = vmx->idt_vectoring_info;
1842         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1843
1844         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1845                                                 !is_page_fault(intr_info))
1846                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1847                        "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1848
1849         if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
1850                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1851                 set_bit(irq, vcpu->arch.irq_pending);
1852                 set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1853         }
1854
1855         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
1856                 return 1;  /* already handled by vmx_vcpu_run() */
1857
1858         if (is_no_device(intr_info)) {
1859                 vmx_fpu_activate(vcpu);
1860                 return 1;
1861         }
1862
1863         if (is_invalid_opcode(intr_info)) {
1864                 er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
1865                 if (er != EMULATE_DONE)
1866                         kvm_queue_exception(vcpu, UD_VECTOR);
1867                 return 1;
1868         }
1869
1870         error_code = 0;
1871         rip = vmcs_readl(GUEST_RIP);
1872         if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1873                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1874         if (is_page_fault(intr_info)) {
1875                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1876                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
1877         }
1878
1879         if (vcpu->arch.rmode.active &&
1880             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1881                                                                 error_code)) {
1882                 if (vcpu->arch.halt_request) {
1883                         vcpu->arch.halt_request = 0;
1884                         return kvm_emulate_halt(vcpu);
1885                 }
1886                 return 1;
1887         }
1888
1889         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
1890             (INTR_TYPE_EXCEPTION | 1)) {
1891                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1892                 return 0;
1893         }
1894         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1895         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1896         kvm_run->ex.error_code = error_code;
1897         return 0;
1898 }
1899
1900 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1901                                      struct kvm_run *kvm_run)
1902 {
1903         ++vcpu->stat.irq_exits;
1904         return 1;
1905 }
1906
1907 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1908 {
1909         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1910         return 0;
1911 }
1912
1913 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1914 {
1915         unsigned long exit_qualification;
1916         int size, down, in, string, rep;
1917         unsigned port;
1918
1919         ++vcpu->stat.io_exits;
1920         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1921         string = (exit_qualification & 16) != 0;
1922
1923         if (string) {
1924                 if (emulate_instruction(vcpu,
1925                                         kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1926                         return 0;
1927                 return 1;
1928         }
1929
1930         size = (exit_qualification & 7) + 1;
1931         in = (exit_qualification & 8) != 0;
1932         down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1933         rep = (exit_qualification & 32) != 0;
1934         port = exit_qualification >> 16;
1935
1936         return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
1937 }
1938
1939 static void
1940 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1941 {
1942         /*
1943          * Patch in the VMCALL instruction:
1944          */
1945         hypercall[0] = 0x0f;
1946         hypercall[1] = 0x01;
1947         hypercall[2] = 0xc1;
1948 }
1949
1950 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1951 {
1952         unsigned long exit_qualification;
1953         int cr;
1954         int reg;
1955
1956         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1957         cr = exit_qualification & 15;
1958         reg = (exit_qualification >> 8) & 15;
1959         switch ((exit_qualification >> 4) & 3) {
1960         case 0: /* mov to cr */
1961                 switch (cr) {
1962                 case 0:
1963                         vcpu_load_rsp_rip(vcpu);
1964                         set_cr0(vcpu, vcpu->arch.regs[reg]);
1965                         skip_emulated_instruction(vcpu);
1966                         return 1;
1967                 case 3:
1968                         vcpu_load_rsp_rip(vcpu);
1969                         set_cr3(vcpu, vcpu->arch.regs[reg]);
1970                         skip_emulated_instruction(vcpu);
1971                         return 1;
1972                 case 4:
1973                         vcpu_load_rsp_rip(vcpu);
1974                         set_cr4(vcpu, vcpu->arch.regs[reg]);
1975                         skip_emulated_instruction(vcpu);
1976                         return 1;
1977                 case 8:
1978                         vcpu_load_rsp_rip(vcpu);
1979                         set_cr8(vcpu, vcpu->arch.regs[reg]);
1980                         skip_emulated_instruction(vcpu);
1981                         if (irqchip_in_kernel(vcpu->kvm))
1982                                 return 1;
1983                         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1984                         return 0;
1985                 };
1986                 break;
1987         case 2: /* clts */
1988                 vcpu_load_rsp_rip(vcpu);
1989                 vmx_fpu_deactivate(vcpu);
1990                 vcpu->arch.cr0 &= ~X86_CR0_TS;
1991                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1992                 vmx_fpu_activate(vcpu);
1993                 skip_emulated_instruction(vcpu);
1994                 return 1;
1995         case 1: /*mov from cr*/
1996                 switch (cr) {
1997                 case 3:
1998                         vcpu_load_rsp_rip(vcpu);
1999                         vcpu->arch.regs[reg] = vcpu->arch.cr3;
2000                         vcpu_put_rsp_rip(vcpu);
2001                         skip_emulated_instruction(vcpu);
2002                         return 1;
2003                 case 8:
2004                         vcpu_load_rsp_rip(vcpu);
2005                         vcpu->arch.regs[reg] = get_cr8(vcpu);
2006                         vcpu_put_rsp_rip(vcpu);
2007                         skip_emulated_instruction(vcpu);
2008                         return 1;
2009                 }
2010                 break;
2011         case 3: /* lmsw */
2012                 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2013
2014                 skip_emulated_instruction(vcpu);
2015                 return 1;
2016         default:
2017                 break;
2018         }
2019         kvm_run->exit_reason = 0;
2020         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2021                (int)(exit_qualification >> 4) & 3, cr);
2022         return 0;
2023 }
2024
2025 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2026 {
2027         unsigned long exit_qualification;
2028         unsigned long val;
2029         int dr, reg;
2030
2031         /*
2032          * FIXME: this code assumes the host is debugging the guest.
2033          *        need to deal with guest debugging itself too.
2034          */
2035         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2036         dr = exit_qualification & 7;
2037         reg = (exit_qualification >> 8) & 15;
2038         vcpu_load_rsp_rip(vcpu);
2039         if (exit_qualification & 16) {
2040                 /* mov from dr */
2041                 switch (dr) {
2042                 case 6:
2043                         val = 0xffff0ff0;
2044                         break;
2045                 case 7:
2046                         val = 0x400;
2047                         break;
2048                 default:
2049                         val = 0;
2050                 }
2051                 vcpu->arch.regs[reg] = val;
2052         } else {
2053                 /* mov to dr */
2054         }
2055         vcpu_put_rsp_rip(vcpu);
2056         skip_emulated_instruction(vcpu);
2057         return 1;
2058 }
2059
2060 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2061 {
2062         kvm_emulate_cpuid(vcpu);
2063         return 1;
2064 }
2065
2066 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2067 {
2068         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2069         u64 data;
2070
2071         if (vmx_get_msr(vcpu, ecx, &data)) {
2072                 kvm_inject_gp(vcpu, 0);
2073                 return 1;
2074         }
2075
2076         /* FIXME: handling of bits 32:63 of rax, rdx */
2077         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
2078         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2079         skip_emulated_instruction(vcpu);
2080         return 1;
2081 }
2082
2083 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2084 {
2085         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
2086         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
2087                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2088
2089         if (vmx_set_msr(vcpu, ecx, data) != 0) {
2090                 kvm_inject_gp(vcpu, 0);
2091                 return 1;
2092         }
2093
2094         skip_emulated_instruction(vcpu);
2095         return 1;
2096 }
2097
2098 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2099                                       struct kvm_run *kvm_run)
2100 {
2101         return 1;
2102 }
2103
2104 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2105                                    struct kvm_run *kvm_run)
2106 {
2107         u32 cpu_based_vm_exec_control;
2108
2109         /* clear pending irq */
2110         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2111         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2112         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2113         /*
2114          * If the user space waits to inject interrupts, exit as soon as
2115          * possible
2116          */
2117         if (kvm_run->request_interrupt_window &&
2118             !vcpu->arch.irq_summary) {
2119                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2120                 ++vcpu->stat.irq_window_exits;
2121                 return 0;
2122         }
2123         return 1;
2124 }
2125
2126 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2127 {
2128         skip_emulated_instruction(vcpu);
2129         return kvm_emulate_halt(vcpu);
2130 }
2131
2132 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2133 {
2134         skip_emulated_instruction(vcpu);
2135         kvm_emulate_hypercall(vcpu);
2136         return 1;
2137 }
2138
2139 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2140 {
2141         skip_emulated_instruction(vcpu);
2142         /* TODO: Add support for VT-d/pass-through device */
2143         return 1;
2144 }
2145
2146 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2147 {
2148         u64 exit_qualification;
2149         enum emulation_result er;
2150         unsigned long offset;
2151
2152         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2153         offset = exit_qualification & 0xffful;
2154
2155         er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2156
2157         if (er !=  EMULATE_DONE) {
2158                 printk(KERN_ERR
2159                        "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2160                        offset);
2161                 return -ENOTSUPP;
2162         }
2163         return 1;
2164 }
2165
2166 /*
2167  * The exit handlers return 1 if the exit was handled fully and guest execution
2168  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
2169  * to be done to userspace and return 0.
2170  */
2171 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2172                                       struct kvm_run *kvm_run) = {
2173         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
2174         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
2175         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
2176         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
2177         [EXIT_REASON_CR_ACCESS]               = handle_cr,
2178         [EXIT_REASON_DR_ACCESS]               = handle_dr,
2179         [EXIT_REASON_CPUID]                   = handle_cpuid,
2180         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
2181         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
2182         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
2183         [EXIT_REASON_HLT]                     = handle_halt,
2184         [EXIT_REASON_VMCALL]                  = handle_vmcall,
2185         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
2186         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
2187         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
2188 };
2189
2190 static const int kvm_vmx_max_exit_handlers =
2191         ARRAY_SIZE(kvm_vmx_exit_handlers);
2192
2193 /*
2194  * The guest has exited.  See if we can fix it or if we need userspace
2195  * assistance.
2196  */
2197 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2198 {
2199         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2200         struct vcpu_vmx *vmx = to_vmx(vcpu);
2201         u32 vectoring_info = vmx->idt_vectoring_info;
2202
2203         if (unlikely(vmx->fail)) {
2204                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2205                 kvm_run->fail_entry.hardware_entry_failure_reason
2206                         = vmcs_read32(VM_INSTRUCTION_ERROR);
2207                 return 0;
2208         }
2209
2210         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2211                                 exit_reason != EXIT_REASON_EXCEPTION_NMI)
2212                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2213                        "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
2214         if (exit_reason < kvm_vmx_max_exit_handlers
2215             && kvm_vmx_exit_handlers[exit_reason])
2216                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2217         else {
2218                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2219                 kvm_run->hw.hardware_exit_reason = exit_reason;
2220         }
2221         return 0;
2222 }
2223
2224 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2225 {
2226 }
2227
2228 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2229 {
2230         int max_irr, tpr;
2231
2232         if (!vm_need_tpr_shadow(vcpu->kvm))
2233                 return;
2234
2235         if (!kvm_lapic_enabled(vcpu) ||
2236             ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2237                 vmcs_write32(TPR_THRESHOLD, 0);
2238                 return;
2239         }
2240
2241         tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2242         vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2243 }
2244
2245 static void enable_irq_window(struct kvm_vcpu *vcpu)
2246 {
2247         u32 cpu_based_vm_exec_control;
2248
2249         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2250         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2251         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2252 }
2253
2254 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2255 {
2256         struct vcpu_vmx *vmx = to_vmx(vcpu);
2257         u32 idtv_info_field, intr_info_field;
2258         int has_ext_irq, interrupt_window_open;
2259         int vector;
2260
2261         update_tpr_threshold(vcpu);
2262
2263         has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2264         intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2265         idtv_info_field = vmx->idt_vectoring_info;
2266         if (intr_info_field & INTR_INFO_VALID_MASK) {
2267                 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2268                         /* TODO: fault when IDT_Vectoring */
2269                         if (printk_ratelimit())
2270                                 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2271                 }
2272                 if (has_ext_irq)
2273                         enable_irq_window(vcpu);
2274                 return;
2275         }
2276         if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2277                 if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
2278                     == INTR_TYPE_EXT_INTR
2279                     && vcpu->arch.rmode.active) {
2280                         u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
2281
2282                         vmx_inject_irq(vcpu, vect);
2283                         if (unlikely(has_ext_irq))
2284                                 enable_irq_window(vcpu);
2285                         return;
2286                 }
2287
2288                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2289                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2290                                 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2291
2292                 if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
2293                         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2294                                 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2295                 if (unlikely(has_ext_irq))
2296                         enable_irq_window(vcpu);
2297                 return;
2298         }
2299         if (!has_ext_irq)
2300                 return;
2301         interrupt_window_open =
2302                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2303                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2304         if (interrupt_window_open) {
2305                 vector = kvm_cpu_get_interrupt(vcpu);
2306                 vmx_inject_irq(vcpu, vector);
2307                 kvm_timer_intr_post(vcpu, vector);
2308         } else
2309                 enable_irq_window(vcpu);
2310 }
2311
2312 /*
2313  * Failure to inject an interrupt should give us the information
2314  * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
2315  * when fetching the interrupt redirection bitmap in the real-mode
2316  * tss, this doesn't happen.  So we do it ourselves.
2317  */
2318 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2319 {
2320         vmx->rmode.irq.pending = 0;
2321         if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
2322                 return;
2323         vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
2324         if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2325                 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2326                 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2327                 return;
2328         }
2329         vmx->idt_vectoring_info =
2330                 VECTORING_INFO_VALID_MASK
2331                 | INTR_TYPE_EXT_INTR
2332                 | vmx->rmode.irq.vector;
2333 }
2334
2335 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2336 {
2337         struct vcpu_vmx *vmx = to_vmx(vcpu);
2338         u32 intr_info;
2339
2340         /*
2341          * Loading guest fpu may have cleared host cr0.ts
2342          */
2343         vmcs_writel(HOST_CR0, read_cr0());
2344
2345         asm(
2346                 /* Store host registers */
2347 #ifdef CONFIG_X86_64
2348                 "push %%rdx; push %%rbp;"
2349                 "push %%rcx \n\t"
2350 #else
2351                 "push %%edx; push %%ebp;"
2352                 "push %%ecx \n\t"
2353 #endif
2354                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2355                 /* Check if vmlaunch of vmresume is needed */
2356                 "cmpl $0, %c[launched](%0) \n\t"
2357                 /* Load guest registers.  Don't clobber flags. */
2358 #ifdef CONFIG_X86_64
2359                 "mov %c[cr2](%0), %%rax \n\t"
2360                 "mov %%rax, %%cr2 \n\t"
2361                 "mov %c[rax](%0), %%rax \n\t"
2362                 "mov %c[rbx](%0), %%rbx \n\t"
2363                 "mov %c[rdx](%0), %%rdx \n\t"
2364                 "mov %c[rsi](%0), %%rsi \n\t"
2365                 "mov %c[rdi](%0), %%rdi \n\t"
2366                 "mov %c[rbp](%0), %%rbp \n\t"
2367                 "mov %c[r8](%0),  %%r8  \n\t"
2368                 "mov %c[r9](%0),  %%r9  \n\t"
2369                 "mov %c[r10](%0), %%r10 \n\t"
2370                 "mov %c[r11](%0), %%r11 \n\t"
2371                 "mov %c[r12](%0), %%r12 \n\t"
2372                 "mov %c[r13](%0), %%r13 \n\t"
2373                 "mov %c[r14](%0), %%r14 \n\t"
2374                 "mov %c[r15](%0), %%r15 \n\t"
2375                 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2376 #else
2377                 "mov %c[cr2](%0), %%eax \n\t"
2378                 "mov %%eax,   %%cr2 \n\t"
2379                 "mov %c[rax](%0), %%eax \n\t"
2380                 "mov %c[rbx](%0), %%ebx \n\t"
2381                 "mov %c[rdx](%0), %%edx \n\t"
2382                 "mov %c[rsi](%0), %%esi \n\t"
2383                 "mov %c[rdi](%0), %%edi \n\t"
2384                 "mov %c[rbp](%0), %%ebp \n\t"
2385                 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2386 #endif
2387                 /* Enter guest mode */
2388                 "jne .Llaunched \n\t"
2389                 ASM_VMX_VMLAUNCH "\n\t"
2390                 "jmp .Lkvm_vmx_return \n\t"
2391                 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2392                 ".Lkvm_vmx_return: "
2393                 /* Save guest registers, load host registers, keep flags */
2394 #ifdef CONFIG_X86_64
2395                 "xchg %0,     (%%rsp) \n\t"
2396                 "mov %%rax, %c[rax](%0) \n\t"
2397                 "mov %%rbx, %c[rbx](%0) \n\t"
2398                 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
2399                 "mov %%rdx, %c[rdx](%0) \n\t"
2400                 "mov %%rsi, %c[rsi](%0) \n\t"
2401                 "mov %%rdi, %c[rdi](%0) \n\t"
2402                 "mov %%rbp, %c[rbp](%0) \n\t"
2403                 "mov %%r8,  %c[r8](%0) \n\t"
2404                 "mov %%r9,  %c[r9](%0) \n\t"
2405                 "mov %%r10, %c[r10](%0) \n\t"
2406                 "mov %%r11, %c[r11](%0) \n\t"
2407                 "mov %%r12, %c[r12](%0) \n\t"
2408                 "mov %%r13, %c[r13](%0) \n\t"
2409                 "mov %%r14, %c[r14](%0) \n\t"
2410                 "mov %%r15, %c[r15](%0) \n\t"
2411                 "mov %%cr2, %%rax   \n\t"
2412                 "mov %%rax, %c[cr2](%0) \n\t"
2413
2414                 "pop  %%rbp; pop  %%rbp; pop  %%rdx \n\t"
2415 #else
2416                 "xchg %0, (%%esp) \n\t"
2417                 "mov %%eax, %c[rax](%0) \n\t"
2418                 "mov %%ebx, %c[rbx](%0) \n\t"
2419                 "pushl (%%esp); popl %c[rcx](%0) \n\t"
2420                 "mov %%edx, %c[rdx](%0) \n\t"
2421                 "mov %%esi, %c[rsi](%0) \n\t"
2422                 "mov %%edi, %c[rdi](%0) \n\t"
2423                 "mov %%ebp, %c[rbp](%0) \n\t"
2424                 "mov %%cr2, %%eax  \n\t"
2425                 "mov %%eax, %c[cr2](%0) \n\t"
2426
2427                 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
2428 #endif
2429                 "setbe %c[fail](%0) \n\t"
2430               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
2431                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
2432                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2433                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
2434                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
2435                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
2436                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
2437                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
2438                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
2439                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
2440 #ifdef CONFIG_X86_64
2441                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
2442                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
2443                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
2444                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
2445                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
2446                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
2447                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
2448                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
2449 #endif
2450                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
2451               : "cc", "memory"
2452 #ifdef CONFIG_X86_64
2453                 , "rbx", "rdi", "rsi"
2454                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2455 #else
2456                 , "ebx", "edi", "rsi"
2457 #endif
2458               );
2459
2460         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2461         if (vmx->rmode.irq.pending)
2462                 fixup_rmode_irq(vmx);
2463
2464         vcpu->arch.interrupt_window_open =
2465                 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2466
2467         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2468         vmx->launched = 1;
2469
2470         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2471
2472         /* We need to handle NMIs before interrupts are enabled */
2473         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2474                 asm("int $2");
2475 }
2476
2477 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2478 {
2479         struct vcpu_vmx *vmx = to_vmx(vcpu);
2480
2481         if (vmx->vmcs) {
2482                 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2483                 free_vmcs(vmx->vmcs);
2484                 vmx->vmcs = NULL;
2485         }
2486 }
2487
2488 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2489 {
2490         struct vcpu_vmx *vmx = to_vmx(vcpu);
2491
2492         vmx_free_vmcs(vcpu);
2493         kfree(vmx->host_msrs);
2494         kfree(vmx->guest_msrs);
2495         kvm_vcpu_uninit(vcpu);
2496         kmem_cache_free(kvm_vcpu_cache, vmx);
2497 }
2498
2499 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2500 {
2501         int err;
2502         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2503         int cpu;
2504
2505         if (!vmx)
2506                 return ERR_PTR(-ENOMEM);
2507
2508         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2509         if (err)
2510                 goto free_vcpu;
2511
2512         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2513         if (!vmx->guest_msrs) {
2514                 err = -ENOMEM;
2515                 goto uninit_vcpu;
2516         }
2517
2518         vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2519         if (!vmx->host_msrs)
2520                 goto free_guest_msrs;
2521
2522         vmx->vmcs = alloc_vmcs();
2523         if (!vmx->vmcs)
2524                 goto free_msrs;
2525
2526         vmcs_clear(vmx->vmcs);
2527
2528         cpu = get_cpu();
2529         vmx_vcpu_load(&vmx->vcpu, cpu);
2530         err = vmx_vcpu_setup(vmx);
2531         vmx_vcpu_put(&vmx->vcpu);
2532         put_cpu();
2533         if (err)
2534                 goto free_vmcs;
2535         if (vm_need_virtualize_apic_accesses(kvm))
2536                 if (alloc_apic_access_page(kvm) != 0)
2537                         goto free_vmcs;
2538
2539         return &vmx->vcpu;
2540
2541 free_vmcs:
2542         free_vmcs(vmx->vmcs);
2543 free_msrs:
2544         kfree(vmx->host_msrs);
2545 free_guest_msrs:
2546         kfree(vmx->guest_msrs);
2547 uninit_vcpu:
2548         kvm_vcpu_uninit(&vmx->vcpu);
2549 free_vcpu:
2550         kmem_cache_free(kvm_vcpu_cache, vmx);
2551         return ERR_PTR(err);
2552 }
2553
2554 static void __init vmx_check_processor_compat(void *rtn)
2555 {
2556         struct vmcs_config vmcs_conf;
2557
2558         *(int *)rtn = 0;
2559         if (setup_vmcs_config(&vmcs_conf) < 0)
2560                 *(int *)rtn = -EIO;
2561         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2562                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2563                                 smp_processor_id());
2564                 *(int *)rtn = -EIO;
2565         }
2566 }
2567
2568 static struct kvm_x86_ops vmx_x86_ops = {
2569         .cpu_has_kvm_support = cpu_has_kvm_support,
2570         .disabled_by_bios = vmx_disabled_by_bios,
2571         .hardware_setup = hardware_setup,
2572         .hardware_unsetup = hardware_unsetup,
2573         .check_processor_compatibility = vmx_check_processor_compat,
2574         .hardware_enable = hardware_enable,
2575         .hardware_disable = hardware_disable,
2576         .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
2577
2578         .vcpu_create = vmx_create_vcpu,
2579         .vcpu_free = vmx_free_vcpu,
2580         .vcpu_reset = vmx_vcpu_reset,
2581
2582         .prepare_guest_switch = vmx_save_host_state,
2583         .vcpu_load = vmx_vcpu_load,
2584         .vcpu_put = vmx_vcpu_put,
2585         .vcpu_decache = vmx_vcpu_decache,
2586
2587         .set_guest_debug = set_guest_debug,
2588         .guest_debug_pre = kvm_guest_debug_pre,
2589         .get_msr = vmx_get_msr,
2590         .set_msr = vmx_set_msr,
2591         .get_segment_base = vmx_get_segment_base,
2592         .get_segment = vmx_get_segment,
2593         .set_segment = vmx_set_segment,
2594         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2595         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2596         .set_cr0 = vmx_set_cr0,
2597         .set_cr3 = vmx_set_cr3,
2598         .set_cr4 = vmx_set_cr4,
2599 #ifdef CONFIG_X86_64
2600         .set_efer = vmx_set_efer,
2601 #endif
2602         .get_idt = vmx_get_idt,
2603         .set_idt = vmx_set_idt,
2604         .get_gdt = vmx_get_gdt,
2605         .set_gdt = vmx_set_gdt,
2606         .cache_regs = vcpu_load_rsp_rip,
2607         .decache_regs = vcpu_put_rsp_rip,
2608         .get_rflags = vmx_get_rflags,
2609         .set_rflags = vmx_set_rflags,
2610
2611         .tlb_flush = vmx_flush_tlb,
2612
2613         .run = vmx_vcpu_run,
2614         .handle_exit = kvm_handle_exit,
2615         .skip_emulated_instruction = skip_emulated_instruction,
2616         .patch_hypercall = vmx_patch_hypercall,
2617         .get_irq = vmx_get_irq,
2618         .set_irq = vmx_inject_irq,
2619         .queue_exception = vmx_queue_exception,
2620         .exception_injected = vmx_exception_injected,
2621         .inject_pending_irq = vmx_intr_assist,
2622         .inject_pending_vectors = do_interrupt_requests,
2623
2624         .set_tss_addr = vmx_set_tss_addr,
2625 };
2626
2627 static int __init vmx_init(void)
2628 {
2629         void *iova;
2630         int r;
2631
2632         vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2633         if (!vmx_io_bitmap_a)
2634                 return -ENOMEM;
2635
2636         vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2637         if (!vmx_io_bitmap_b) {
2638                 r = -ENOMEM;
2639                 goto out;
2640         }
2641
2642         /*
2643          * Allow direct access to the PC debug port (it is often used for I/O
2644          * delays, but the vmexits simply slow things down).
2645          */
2646         iova = kmap(vmx_io_bitmap_a);
2647         memset(iova, 0xff, PAGE_SIZE);
2648         clear_bit(0x80, iova);
2649         kunmap(vmx_io_bitmap_a);
2650
2651         iova = kmap(vmx_io_bitmap_b);
2652         memset(iova, 0xff, PAGE_SIZE);
2653         kunmap(vmx_io_bitmap_b);
2654
2655         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2656         if (r)
2657                 goto out1;
2658
2659         if (bypass_guest_pf)
2660                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
2661
2662         return 0;
2663
2664 out1:
2665         __free_page(vmx_io_bitmap_b);
2666 out:
2667         __free_page(vmx_io_bitmap_a);
2668         return r;
2669 }
2670
2671 static void __exit vmx_exit(void)
2672 {
2673         __free_page(vmx_io_bitmap_b);
2674         __free_page(vmx_io_bitmap_a);
2675
2676         kvm_exit();
2677 }
2678
2679 module_init(vmx_init)
2680 module_exit(vmx_exit)