5 * Block allocation handling routines for the OSTA-UDF(tm) filesystem.
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
13 * (C) 1999-2001 Ben Fennema
14 * (C) 1999 Stelias Computing Inc
18 * 02/24/99 blf Created.
24 #include <linux/quotaops.h>
25 #include <linux/buffer_head.h>
26 #include <linux/bitops.h>
31 #define udf_clear_bit(nr, addr) ext2_clear_bit(nr, addr)
32 #define udf_set_bit(nr, addr) ext2_set_bit(nr, addr)
33 #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr)
34 #define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size)
35 #define udf_find_next_one_bit(addr, size, offset) \
36 find_next_one_bit(addr, size, offset)
38 #define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x)
39 #define leNUM_to_cpup(x, y) xleNUM_to_cpup(x, y)
40 #define xleNUM_to_cpup(x, y) (le ## x ## _to_cpup(y))
41 #define uintBPL_t uint(BITS_PER_LONG)
42 #define uint(x) xuint(x)
43 #define xuint(x) __le ## x
45 static inline int find_next_one_bit(void *addr, int size, int offset)
47 uintBPL_t *p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG);
48 int result = offset & ~(BITS_PER_LONG - 1);
54 offset &= (BITS_PER_LONG - 1);
56 tmp = leBPL_to_cpup(p++);
57 tmp &= ~0UL << offset;
58 if (size < BITS_PER_LONG)
62 size -= BITS_PER_LONG;
63 result += BITS_PER_LONG;
65 while (size & ~(BITS_PER_LONG - 1)) {
66 tmp = leBPL_to_cpup(p++);
69 result += BITS_PER_LONG;
70 size -= BITS_PER_LONG;
74 tmp = leBPL_to_cpup(p);
76 tmp &= ~0UL >> (BITS_PER_LONG - size);
78 return result + ffz(~tmp);
81 #define find_first_one_bit(addr, size)\
82 find_next_one_bit((addr), (size), 0)
84 static int read_block_bitmap(struct super_block *sb,
85 struct udf_bitmap *bitmap, unsigned int block,
86 unsigned long bitmap_nr)
88 struct buffer_head *bh = NULL;
90 struct kernel_lb_addr loc;
92 loc.logicalBlockNum = bitmap->s_extPosition;
93 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
95 bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block));
99 bitmap->s_block_bitmap[bitmap_nr] = bh;
103 static int __load_block_bitmap(struct super_block *sb,
104 struct udf_bitmap *bitmap,
105 unsigned int block_group)
108 int nr_groups = bitmap->s_nr_groups;
110 if (block_group >= nr_groups) {
111 udf_debug("block_group (%d) > nr_groups (%d)\n", block_group,
115 if (bitmap->s_block_bitmap[block_group]) {
118 retval = read_block_bitmap(sb, bitmap, block_group,
126 static inline int load_block_bitmap(struct super_block *sb,
127 struct udf_bitmap *bitmap,
128 unsigned int block_group)
132 slot = __load_block_bitmap(sb, bitmap, block_group);
137 if (!bitmap->s_block_bitmap[slot])
143 static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
145 struct udf_sb_info *sbi = UDF_SB(sb);
146 struct logicalVolIntegrityDesc *lvid;
151 lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
152 le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
153 udf_updated_lvid(sb);
156 static void udf_bitmap_free_blocks(struct super_block *sb,
158 struct udf_bitmap *bitmap,
159 struct kernel_lb_addr *bloc,
163 struct udf_sb_info *sbi = UDF_SB(sb);
164 struct buffer_head *bh = NULL;
165 struct udf_part_map *partmap;
167 unsigned long block_group;
171 unsigned long overflow;
173 mutex_lock(&sbi->s_alloc_mutex);
174 partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
175 if (bloc->logicalBlockNum < 0 ||
176 (bloc->logicalBlockNum + count) >
177 partmap->s_partition_len) {
178 udf_debug("%d < %d || %d + %d > %d\n",
179 bloc->logicalBlockNum, 0, bloc->logicalBlockNum,
180 count, partmap->s_partition_len);
184 block = bloc->logicalBlockNum + offset +
185 (sizeof(struct spaceBitmapDesc) << 3);
189 block_group = block >> (sb->s_blocksize_bits + 3);
190 bit = block % (sb->s_blocksize << 3);
193 * Check to see if we are freeing blocks across a group boundary.
195 if (bit + count > (sb->s_blocksize << 3)) {
196 overflow = bit + count - (sb->s_blocksize << 3);
199 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
203 bh = bitmap->s_block_bitmap[bitmap_nr];
204 for (i = 0; i < count; i++) {
205 if (udf_set_bit(bit + i, bh->b_data)) {
206 udf_debug("bit %ld already set\n", bit + i);
207 udf_debug("byte=%2x\n",
208 ((char *)bh->b_data)[(bit + i) >> 3]);
211 vfs_dq_free_block(inode, 1);
212 udf_add_free_space(sb, sbi->s_partition, 1);
215 mark_buffer_dirty(bh);
223 mutex_unlock(&sbi->s_alloc_mutex);
226 static int udf_bitmap_prealloc_blocks(struct super_block *sb,
228 struct udf_bitmap *bitmap,
229 uint16_t partition, uint32_t first_block,
230 uint32_t block_count)
232 struct udf_sb_info *sbi = UDF_SB(sb);
234 int bit, block, block_group, group_start;
235 int nr_groups, bitmap_nr;
236 struct buffer_head *bh;
239 mutex_lock(&sbi->s_alloc_mutex);
240 part_len = sbi->s_partmaps[partition].s_partition_len;
241 if (first_block < 0 || first_block >= part_len)
244 if (first_block + block_count > part_len)
245 block_count = part_len - first_block;
248 nr_groups = udf_compute_nr_groups(sb, partition);
249 block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
250 block_group = block >> (sb->s_blocksize_bits + 3);
251 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
253 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
256 bh = bitmap->s_block_bitmap[bitmap_nr];
258 bit = block % (sb->s_blocksize << 3);
260 while (bit < (sb->s_blocksize << 3) && block_count > 0) {
261 if (!udf_test_bit(bit, bh->b_data))
263 else if (vfs_dq_prealloc_block(inode, 1))
265 else if (!udf_clear_bit(bit, bh->b_data)) {
266 udf_debug("bit already cleared for block %d\n", bit);
267 vfs_dq_free_block(inode, 1);
275 mark_buffer_dirty(bh);
276 } while (block_count > 0);
279 udf_add_free_space(sb, partition, -alloc_count);
280 mutex_unlock(&sbi->s_alloc_mutex);
284 static int udf_bitmap_new_block(struct super_block *sb,
286 struct udf_bitmap *bitmap, uint16_t partition,
287 uint32_t goal, int *err)
289 struct udf_sb_info *sbi = UDF_SB(sb);
290 int newbit, bit = 0, block, block_group, group_start;
291 int end_goal, nr_groups, bitmap_nr, i;
292 struct buffer_head *bh = NULL;
297 mutex_lock(&sbi->s_alloc_mutex);
300 if (goal < 0 || goal >= sbi->s_partmaps[partition].s_partition_len)
303 nr_groups = bitmap->s_nr_groups;
304 block = goal + (sizeof(struct spaceBitmapDesc) << 3);
305 block_group = block >> (sb->s_blocksize_bits + 3);
306 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
308 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
311 bh = bitmap->s_block_bitmap[bitmap_nr];
312 ptr = memscan((char *)bh->b_data + group_start, 0xFF,
313 sb->s_blocksize - group_start);
315 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
316 bit = block % (sb->s_blocksize << 3);
317 if (udf_test_bit(bit, bh->b_data))
320 end_goal = (bit + 63) & ~63;
321 bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
325 ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
326 sb->s_blocksize - ((bit + 7) >> 3));
327 newbit = (ptr - ((char *)bh->b_data)) << 3;
328 if (newbit < sb->s_blocksize << 3) {
333 newbit = udf_find_next_one_bit(bh->b_data,
334 sb->s_blocksize << 3, bit);
335 if (newbit < sb->s_blocksize << 3) {
341 for (i = 0; i < (nr_groups * 2); i++) {
343 if (block_group >= nr_groups)
345 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
347 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
350 bh = bitmap->s_block_bitmap[bitmap_nr];
352 ptr = memscan((char *)bh->b_data + group_start, 0xFF,
353 sb->s_blocksize - group_start);
354 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
355 bit = (ptr - ((char *)bh->b_data)) << 3;
359 bit = udf_find_next_one_bit((char *)bh->b_data,
360 sb->s_blocksize << 3,
362 if (bit < sb->s_blocksize << 3)
366 if (i >= (nr_groups * 2)) {
367 mutex_unlock(&sbi->s_alloc_mutex);
370 if (bit < sb->s_blocksize << 3)
373 bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
375 if (bit >= sb->s_blocksize << 3) {
376 mutex_unlock(&sbi->s_alloc_mutex);
382 while (i < 7 && bit > (group_start << 3) &&
383 udf_test_bit(bit - 1, bh->b_data)) {
391 * Check quota for allocation of this block.
393 if (inode && vfs_dq_alloc_block(inode, 1)) {
394 mutex_unlock(&sbi->s_alloc_mutex);
399 newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
400 (sizeof(struct spaceBitmapDesc) << 3);
402 if (!udf_clear_bit(bit, bh->b_data)) {
403 udf_debug("bit already cleared for block %d\n", bit);
407 mark_buffer_dirty(bh);
409 udf_add_free_space(sb, partition, -1);
410 mutex_unlock(&sbi->s_alloc_mutex);
416 mutex_unlock(&sbi->s_alloc_mutex);
420 static void udf_table_free_blocks(struct super_block *sb,
423 struct kernel_lb_addr *bloc,
427 struct udf_sb_info *sbi = UDF_SB(sb);
428 struct udf_part_map *partmap;
431 struct kernel_lb_addr eloc;
432 struct extent_position oepos, epos;
435 struct udf_inode_info *iinfo;
437 mutex_lock(&sbi->s_alloc_mutex);
438 partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
439 if (bloc->logicalBlockNum < 0 ||
440 (bloc->logicalBlockNum + count) >
441 partmap->s_partition_len) {
442 udf_debug("%d < %d || %d + %d > %d\n",
443 bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
444 partmap->s_partition_len);
448 iinfo = UDF_I(table);
449 /* We do this up front - There are some error conditions that
450 could occure, but.. oh well */
452 vfs_dq_free_block(inode, count);
453 udf_add_free_space(sb, sbi->s_partition, count);
455 start = bloc->logicalBlockNum + offset;
456 end = bloc->logicalBlockNum + offset + count - 1;
458 epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
460 epos.block = oepos.block = iinfo->i_location;
461 epos.bh = oepos.bh = NULL;
464 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
465 if (((eloc.logicalBlockNum +
466 (elen >> sb->s_blocksize_bits)) == start)) {
467 if ((0x3FFFFFFF - elen) <
468 (count << sb->s_blocksize_bits)) {
469 uint32_t tmp = ((0x3FFFFFFF - elen) >>
470 sb->s_blocksize_bits);
473 elen = (etype << 30) |
474 (0x40000000 - sb->s_blocksize);
476 elen = (etype << 30) |
478 (count << sb->s_blocksize_bits));
482 udf_write_aext(table, &oepos, &eloc, elen, 1);
483 } else if (eloc.logicalBlockNum == (end + 1)) {
484 if ((0x3FFFFFFF - elen) <
485 (count << sb->s_blocksize_bits)) {
486 uint32_t tmp = ((0x3FFFFFFF - elen) >>
487 sb->s_blocksize_bits);
490 eloc.logicalBlockNum -= tmp;
491 elen = (etype << 30) |
492 (0x40000000 - sb->s_blocksize);
494 eloc.logicalBlockNum = start;
495 elen = (etype << 30) |
497 (count << sb->s_blocksize_bits));
501 udf_write_aext(table, &oepos, &eloc, elen, 1);
504 if (epos.bh != oepos.bh) {
506 oepos.block = epos.block;
512 oepos.offset = epos.offset;
518 * NOTE: we CANNOT use udf_add_aext here, as it can try to
519 * allocate a new block, and since we hold the super block
520 * lock already very bad things would happen :)
522 * We copy the behavior of udf_add_aext, but instead of
523 * trying to allocate a new block close to the existing one,
524 * we just steal a block from the extent we are trying to add.
526 * It would be nice if the blocks were close together, but it
531 struct short_ad *sad = NULL;
532 struct long_ad *lad = NULL;
533 struct allocExtDesc *aed;
535 eloc.logicalBlockNum = start;
536 elen = EXT_RECORDED_ALLOCATED |
537 (count << sb->s_blocksize_bits);
539 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
540 adsize = sizeof(struct short_ad);
541 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
542 adsize = sizeof(struct long_ad);
549 if (epos.offset + (2 * adsize) > sb->s_blocksize) {
556 /* Steal a block from the extent being free'd */
557 epos.block.logicalBlockNum = eloc.logicalBlockNum;
558 eloc.logicalBlockNum++;
559 elen -= sb->s_blocksize;
561 epos.bh = udf_tread(sb,
562 udf_get_lb_pblock(sb, &epos.block, 0));
567 aed = (struct allocExtDesc *)(epos.bh->b_data);
568 aed->previousAllocExtLocation =
569 cpu_to_le32(oepos.block.logicalBlockNum);
570 if (epos.offset + adsize > sb->s_blocksize) {
571 loffset = epos.offset;
572 aed->lengthAllocDescs = cpu_to_le32(adsize);
573 sptr = iinfo->i_ext.i_data + epos.offset
575 dptr = epos.bh->b_data +
576 sizeof(struct allocExtDesc);
577 memcpy(dptr, sptr, adsize);
578 epos.offset = sizeof(struct allocExtDesc) +
581 loffset = epos.offset + adsize;
582 aed->lengthAllocDescs = cpu_to_le32(0);
584 sptr = oepos.bh->b_data + epos.offset;
585 aed = (struct allocExtDesc *)
587 le32_add_cpu(&aed->lengthAllocDescs,
590 sptr = iinfo->i_ext.i_data +
592 iinfo->i_lenAlloc += adsize;
593 mark_inode_dirty(table);
595 epos.offset = sizeof(struct allocExtDesc);
597 if (sbi->s_udfrev >= 0x0200)
598 udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
599 3, 1, epos.block.logicalBlockNum,
602 udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
603 2, 1, epos.block.logicalBlockNum,
606 switch (iinfo->i_alloc_type) {
607 case ICBTAG_FLAG_AD_SHORT:
608 sad = (struct short_ad *)sptr;
609 sad->extLength = cpu_to_le32(
610 EXT_NEXT_EXTENT_ALLOCDECS |
613 cpu_to_le32(epos.block.logicalBlockNum);
615 case ICBTAG_FLAG_AD_LONG:
616 lad = (struct long_ad *)sptr;
617 lad->extLength = cpu_to_le32(
618 EXT_NEXT_EXTENT_ALLOCDECS |
621 cpu_to_lelb(epos.block);
625 udf_update_tag(oepos.bh->b_data, loffset);
626 mark_buffer_dirty(oepos.bh);
628 mark_inode_dirty(table);
632 /* It's possible that stealing the block emptied the extent */
634 udf_write_aext(table, &epos, &eloc, elen, 1);
637 iinfo->i_lenAlloc += adsize;
638 mark_inode_dirty(table);
640 aed = (struct allocExtDesc *)epos.bh->b_data;
641 le32_add_cpu(&aed->lengthAllocDescs, adsize);
642 udf_update_tag(epos.bh->b_data, epos.offset);
643 mark_buffer_dirty(epos.bh);
652 mutex_unlock(&sbi->s_alloc_mutex);
656 static int udf_table_prealloc_blocks(struct super_block *sb,
658 struct inode *table, uint16_t partition,
659 uint32_t first_block, uint32_t block_count)
661 struct udf_sb_info *sbi = UDF_SB(sb);
663 uint32_t elen, adsize;
664 struct kernel_lb_addr eloc;
665 struct extent_position epos;
667 struct udf_inode_info *iinfo;
669 if (first_block < 0 ||
670 first_block >= sbi->s_partmaps[partition].s_partition_len)
673 iinfo = UDF_I(table);
674 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
675 adsize = sizeof(struct short_ad);
676 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
677 adsize = sizeof(struct long_ad);
681 mutex_lock(&sbi->s_alloc_mutex);
682 epos.offset = sizeof(struct unallocSpaceEntry);
683 epos.block = iinfo->i_location;
685 eloc.logicalBlockNum = 0xFFFFFFFF;
687 while (first_block != eloc.logicalBlockNum &&
688 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
689 udf_debug("eloc=%d, elen=%d, first_block=%d\n",
690 eloc.logicalBlockNum, elen, first_block);
691 ; /* empty loop body */
694 if (first_block == eloc.logicalBlockNum) {
695 epos.offset -= adsize;
697 alloc_count = (elen >> sb->s_blocksize_bits);
698 if (inode && vfs_dq_prealloc_block(inode,
699 alloc_count > block_count ? block_count : alloc_count))
701 else if (alloc_count > block_count) {
702 alloc_count = block_count;
703 eloc.logicalBlockNum += alloc_count;
704 elen -= (alloc_count << sb->s_blocksize_bits);
705 udf_write_aext(table, &epos, &eloc,
706 (etype << 30) | elen, 1);
708 udf_delete_aext(table, epos, eloc,
709 (etype << 30) | elen);
717 udf_add_free_space(sb, partition, -alloc_count);
718 mutex_unlock(&sbi->s_alloc_mutex);
722 static int udf_table_new_block(struct super_block *sb,
724 struct inode *table, uint16_t partition,
725 uint32_t goal, int *err)
727 struct udf_sb_info *sbi = UDF_SB(sb);
728 uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
729 uint32_t newblock = 0, adsize;
730 uint32_t elen, goal_elen = 0;
731 struct kernel_lb_addr eloc, uninitialized_var(goal_eloc);
732 struct extent_position epos, goal_epos;
734 struct udf_inode_info *iinfo = UDF_I(table);
738 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
739 adsize = sizeof(struct short_ad);
740 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
741 adsize = sizeof(struct long_ad);
745 mutex_lock(&sbi->s_alloc_mutex);
746 if (goal < 0 || goal >= sbi->s_partmaps[partition].s_partition_len)
749 /* We search for the closest matching block to goal. If we find
750 a exact hit, we stop. Otherwise we keep going till we run out
751 of extents. We store the buffer_head, bloc, and extoffset
752 of the current closest match and use that when we are done.
754 epos.offset = sizeof(struct unallocSpaceEntry);
755 epos.block = iinfo->i_location;
756 epos.bh = goal_epos.bh = NULL;
759 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
760 if (goal >= eloc.logicalBlockNum) {
761 if (goal < eloc.logicalBlockNum +
762 (elen >> sb->s_blocksize_bits))
765 nspread = goal - eloc.logicalBlockNum -
766 (elen >> sb->s_blocksize_bits);
768 nspread = eloc.logicalBlockNum - goal;
771 if (nspread < spread) {
773 if (goal_epos.bh != epos.bh) {
774 brelse(goal_epos.bh);
775 goal_epos.bh = epos.bh;
776 get_bh(goal_epos.bh);
778 goal_epos.block = epos.block;
779 goal_epos.offset = epos.offset - adsize;
781 goal_elen = (etype << 30) | elen;
787 if (spread == 0xFFFFFFFF) {
788 brelse(goal_epos.bh);
789 mutex_unlock(&sbi->s_alloc_mutex);
793 /* Only allocate blocks from the beginning of the extent.
794 That way, we only delete (empty) extents, never have to insert an
795 extent because of splitting */
796 /* This works, but very poorly.... */
798 newblock = goal_eloc.logicalBlockNum;
799 goal_eloc.logicalBlockNum++;
800 goal_elen -= sb->s_blocksize;
802 if (inode && vfs_dq_alloc_block(inode, 1)) {
803 brelse(goal_epos.bh);
804 mutex_unlock(&sbi->s_alloc_mutex);
810 udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
812 udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
813 brelse(goal_epos.bh);
815 udf_add_free_space(sb, partition, -1);
817 mutex_unlock(&sbi->s_alloc_mutex);
822 void udf_free_blocks(struct super_block *sb, struct inode *inode,
823 struct kernel_lb_addr *bloc, uint32_t offset,
826 uint16_t partition = bloc->partitionReferenceNum;
827 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
829 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
830 udf_bitmap_free_blocks(sb, inode, map->s_uspace.s_bitmap,
831 bloc, offset, count);
832 } else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
833 udf_table_free_blocks(sb, inode, map->s_uspace.s_table,
834 bloc, offset, count);
835 } else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
836 udf_bitmap_free_blocks(sb, inode, map->s_fspace.s_bitmap,
837 bloc, offset, count);
838 } else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
839 udf_table_free_blocks(sb, inode, map->s_fspace.s_table,
840 bloc, offset, count);
844 inline int udf_prealloc_blocks(struct super_block *sb,
846 uint16_t partition, uint32_t first_block,
847 uint32_t block_count)
849 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
851 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
852 return udf_bitmap_prealloc_blocks(sb, inode,
853 map->s_uspace.s_bitmap,
854 partition, first_block,
856 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
857 return udf_table_prealloc_blocks(sb, inode,
858 map->s_uspace.s_table,
859 partition, first_block,
861 else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
862 return udf_bitmap_prealloc_blocks(sb, inode,
863 map->s_fspace.s_bitmap,
864 partition, first_block,
866 else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
867 return udf_table_prealloc_blocks(sb, inode,
868 map->s_fspace.s_table,
869 partition, first_block,
875 inline int udf_new_block(struct super_block *sb,
877 uint16_t partition, uint32_t goal, int *err)
879 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
881 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
882 return udf_bitmap_new_block(sb, inode,
883 map->s_uspace.s_bitmap,
884 partition, goal, err);
885 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
886 return udf_table_new_block(sb, inode,
887 map->s_uspace.s_table,
888 partition, goal, err);
889 else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
890 return udf_bitmap_new_block(sb, inode,
891 map->s_fspace.s_bitmap,
892 partition, goal, err);
893 else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
894 return udf_table_new_block(sb, inode,
895 map->s_fspace.s_table,
896 partition, goal, err);