Merge branch 'topic/lx6464es' into for-linus
[linux-2.6] / arch / arm / nwfpe / single_cpdo.c
1 /*
2     NetWinder Floating Point Emulator
3     (c) Rebel.COM, 1998,1999
4     (c) Philip Blundell, 2001
5
6     Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
7
8     This program is free software; you can redistribute it and/or modify
9     it under the terms of the GNU General Public License as published by
10     the Free Software Foundation; either version 2 of the License, or
11     (at your option) any later version.
12
13     This program is distributed in the hope that it will be useful,
14     but WITHOUT ANY WARRANTY; without even the implied warranty of
15     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16     GNU General Public License for more details.
17
18     You should have received a copy of the GNU General Public License
19     along with this program; if not, write to the Free Software
20     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include "fpa11.h"
24 #include "softfloat.h"
25 #include "fpopcode.h"
26
27 float32 float32_exp(float32 Fm);
28 float32 float32_ln(float32 Fm);
29 float32 float32_sin(float32 rFm);
30 float32 float32_cos(float32 rFm);
31 float32 float32_arcsin(float32 rFm);
32 float32 float32_arctan(float32 rFm);
33 float32 float32_log(float32 rFm);
34 float32 float32_tan(float32 rFm);
35 float32 float32_arccos(float32 rFm);
36 float32 float32_pow(float32 rFn, float32 rFm);
37 float32 float32_pol(float32 rFn, float32 rFm);
38
39 static float32 float32_rsf(struct roundingData *roundData, float32 rFn, float32 rFm)
40 {
41         return float32_sub(roundData, rFm, rFn);
42 }
43
44 static float32 float32_rdv(struct roundingData *roundData, float32 rFn, float32 rFm)
45 {
46         return float32_div(roundData, rFm, rFn);
47 }
48
49 static float32 (*const dyadic_single[16])(struct roundingData *, float32 rFn, float32 rFm) = {
50         [ADF_CODE >> 20] = float32_add,
51         [MUF_CODE >> 20] = float32_mul,
52         [SUF_CODE >> 20] = float32_sub,
53         [RSF_CODE >> 20] = float32_rsf,
54         [DVF_CODE >> 20] = float32_div,
55         [RDF_CODE >> 20] = float32_rdv,
56         [RMF_CODE >> 20] = float32_rem,
57
58         [FML_CODE >> 20] = float32_mul,
59         [FDV_CODE >> 20] = float32_div,
60         [FRD_CODE >> 20] = float32_rdv,
61 };
62
63 static float32 float32_mvf(struct roundingData *roundData, float32 rFm)
64 {
65         return rFm;
66 }
67
68 static float32 float32_mnf(struct roundingData *roundData, float32 rFm)
69 {
70         return rFm ^ 0x80000000;
71 }
72
73 static float32 float32_abs(struct roundingData *roundData, float32 rFm)
74 {
75         return rFm & 0x7fffffff;
76 }
77
78 static float32 (*const monadic_single[16])(struct roundingData*, float32 rFm) = {
79         [MVF_CODE >> 20] = float32_mvf,
80         [MNF_CODE >> 20] = float32_mnf,
81         [ABS_CODE >> 20] = float32_abs,
82         [RND_CODE >> 20] = float32_round_to_int,
83         [URD_CODE >> 20] = float32_round_to_int,
84         [SQT_CODE >> 20] = float32_sqrt,
85         [NRM_CODE >> 20] = float32_mvf,
86 };
87
88 unsigned int SingleCPDO(struct roundingData *roundData, const unsigned int opcode, FPREG * rFd)
89 {
90         FPA11 *fpa11 = GET_FPA11();
91         float32 rFm;
92         unsigned int Fm, opc_mask_shift;
93
94         Fm = getFm(opcode);
95         if (CONSTANT_FM(opcode)) {
96                 rFm = getSingleConstant(Fm);
97         } else if (fpa11->fType[Fm] == typeSingle) {
98                 rFm = fpa11->fpreg[Fm].fSingle;
99         } else {
100                 return 0;
101         }
102
103         opc_mask_shift = (opcode & MASK_ARITHMETIC_OPCODE) >> 20;
104         if (!MONADIC_INSTRUCTION(opcode)) {
105                 unsigned int Fn = getFn(opcode);
106                 float32 rFn;
107
108                 if (fpa11->fType[Fn] == typeSingle &&
109                     dyadic_single[opc_mask_shift]) {
110                         rFn = fpa11->fpreg[Fn].fSingle;
111                         rFd->fSingle = dyadic_single[opc_mask_shift](roundData, rFn, rFm);
112                 } else {
113                         return 0;
114                 }
115         } else {
116                 if (monadic_single[opc_mask_shift]) {
117                         rFd->fSingle = monadic_single[opc_mask_shift](roundData, rFm);
118                 } else {
119                         return 0;
120                 }
121         }
122
123         return 1;
124 }