1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
3 Written/copyright 1999-2001 by Donald Becker.
4 Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6 Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL. License for under other terms may be
14 available. Contact the original author for details.
16 The original author may be reached as becker@scyld.com, or at
17 Scyld Computing Corporation
18 410 Severn Ave., Suite 210
21 Support information and updates available at
22 http://www.scyld.com/network/netsemi.html
25 Linux kernel modifications:
29 - Bug fixes and better intr performance (Tjeerd)
31 - Now reads correct MAC address from eeprom
33 - Eliminate redundant priv->tx_full flag
34 - Call netif_start_queue from dev->tx_timeout
35 - wmb() in start_tx() to flush data
37 - Clean up PCI enable (davej)
39 - Merge Donald Becker's natsemi.c version 1.07
43 * ethtool support (jgarzik)
44 * Proper initialization of the card (which sometimes
45 fails to occur and leaves the card in a non-functional
48 * Some documented register settings to optimize some
49 of the 100Mbit autodetection circuitry in rev C cards. (uzi)
51 * Polling of the PHY intr for stuff like link state
52 change and auto- negotiation to finally work properly. (uzi)
54 * One-liner removal of a duplicate declaration of
57 Version 1.0.7: (Manfred Spraul)
60 * full reset added into tx_timeout
61 * correct multicast hash generation (both big and little endian)
62 [copied from a natsemi driver version
63 from Myrio Corporation, Greg Smith]
66 version 1.0.8 (Tim Hockin <thockin@sun.com>)
68 * Wake on lan support (Erik Gilling)
69 * MXDMA fixes for serverworks
72 version 1.0.9 (Manfred Spraul)
73 * Main change: fix lack of synchronize
74 netif_close/netif_suspend against a last interrupt
76 * do not enable superflous interrupts (e.g. the
77 drivers relies on TxDone - TxIntr not needed)
78 * wait that the hardware has really stopped in close
80 * workaround for the (at least) gcc-2.95.1 compiler
81 problem. Also simplifies the code a bit.
82 * disable_irq() in tx_timeout - needed to protect
83 against rx interrupts.
84 * stop the nic before switching into silent rx mode
85 for wol (required according to docu).
88 * use long for ee_addr (various)
89 * print pointers properly (DaveM)
90 * include asm/irq.h (?)
93 * check and reset if PHY errors appear (Adrian Sun)
94 * WoL cleanup (Tim Hockin)
95 * Magic number cleanup (Tim Hockin)
96 * Don't reload EEPROM on every reset (Tim Hockin)
97 * Save and restore EEPROM state across reset (Tim Hockin)
98 * MDIO Cleanup (Tim Hockin)
99 * Reformat register offsets/bits (jgarzik)
102 * ETHTOOL_* further support (Tim Hockin)
105 * ETHTOOL_[G]EEPROM support (Tim Hockin)
108 * crc cleanup (Matt Domsch <Matt_Domsch@dell.com>)
111 * Cleanup some messages and autoneg in ethtool (Tim Hockin)
114 * Get rid of cable_magic flag
115 * use new (National provided) solution for cable magic issue
118 * call netdev_rx() for RxErrors (Manfred Spraul)
119 * formatting and cleanups
120 * change options and full_duplex arrays to be zero
122 * enable only the WoL and PHY interrupts in wol mode
125 * only do cable_magic on 83815 and early 83816 (Tim Hockin)
126 * create a function for rx refill (Manfred Spraul)
127 * combine drain_ring and init_ring (Manfred Spraul)
128 * oom handling (Manfred Spraul)
129 * hands_off instead of playing with netif_device_{de,a}ttach
131 * be sure to write the MAC back to the chip (Manfred Spraul)
132 * lengthen EEPROM timeout, and always warn about timeouts
134 * comments update (Manfred)
135 * do the right thing on a phy-reset (Manfred and Tim)
138 * big endian support with CFG:BEM instead of cpu_to_le32
141 #include <linux/module.h>
142 #include <linux/kernel.h>
143 #include <linux/string.h>
144 #include <linux/timer.h>
145 #include <linux/errno.h>
146 #include <linux/ioport.h>
147 #include <linux/slab.h>
148 #include <linux/interrupt.h>
149 #include <linux/pci.h>
150 #include <linux/netdevice.h>
151 #include <linux/etherdevice.h>
152 #include <linux/skbuff.h>
153 #include <linux/init.h>
154 #include <linux/spinlock.h>
155 #include <linux/ethtool.h>
156 #include <linux/delay.h>
157 #include <linux/rtnetlink.h>
158 #include <linux/mii.h>
159 #include <linux/crc32.h>
160 #include <linux/bitops.h>
161 #include <linux/prefetch.h>
162 #include <asm/processor.h> /* Processor type for cache alignment. */
165 #include <asm/uaccess.h>
167 #define DRV_NAME "natsemi"
168 #define DRV_VERSION "1.07+LK1.0.17"
169 #define DRV_RELDATE "Sep 27, 2002"
173 /* Updated to recommendations in pci-skeleton v2.03. */
175 /* The user-configurable values.
176 These may be modified when a driver module is loaded.*/
178 #define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \
183 static int debug = -1;
187 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
188 This chip uses a 512 element hash table based on the Ethernet CRC. */
189 static const int multicast_filter_limit = 100;
191 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
192 Setting to > 1518 effectively disables this feature. */
193 static int rx_copybreak;
195 /* Used to pass the media type, etc.
196 Both 'options[]' and 'full_duplex[]' should exist for driver
198 The media type is usually passed in 'options[]'.
200 #define MAX_UNITS 8 /* More are supported, limit only on options */
201 static int options[MAX_UNITS];
202 static int full_duplex[MAX_UNITS];
204 /* Operational parameters that are set at compile time. */
206 /* Keep the ring sizes a power of two for compile efficiency.
207 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
208 Making the Tx ring too large decreases the effectiveness of channel
209 bonding and packet priority.
210 There are no ill effects from too-large receive rings. */
211 #define TX_RING_SIZE 16
212 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */
213 #define RX_RING_SIZE 32
215 /* Operational parameters that usually are not changed. */
216 /* Time in jiffies before concluding the transmitter is hung. */
217 #define TX_TIMEOUT (2*HZ)
219 #define NATSEMI_HW_TIMEOUT 400
220 #define NATSEMI_TIMER_FREQ 3*HZ
221 #define NATSEMI_PG0_NREGS 64
222 #define NATSEMI_RFDR_NREGS 8
223 #define NATSEMI_PG1_NREGS 4
224 #define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
226 #define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */
227 #define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32))
230 * The nic writes 32-bit values, even if the upper bytes of
231 * a 32-bit value are beyond the end of the buffer.
233 #define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */
234 #define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */
235 #define NATSEMI_LONGPKT 1518 /* limit for normal packets */
236 #define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */
238 /* These identify the driver base version and may not be removed. */
239 static const char version[] __devinitdata =
240 KERN_INFO DRV_NAME " dp8381x driver, version "
241 DRV_VERSION ", " DRV_RELDATE "\n"
242 KERN_INFO " originally by Donald Becker <becker@scyld.com>\n"
243 KERN_INFO " http://www.scyld.com/network/natsemi.html\n"
244 KERN_INFO " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
246 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
247 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
248 MODULE_LICENSE("GPL");
250 module_param(mtu, int, 0);
251 module_param(debug, int, 0);
252 module_param(rx_copybreak, int, 0);
253 module_param_array(options, int, NULL, 0);
254 module_param_array(full_duplex, int, NULL, 0);
255 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
256 MODULE_PARM_DESC(debug, "DP8381x default debug level");
257 MODULE_PARM_DESC(rx_copybreak,
258 "DP8381x copy breakpoint for copy-only-tiny-frames");
259 MODULE_PARM_DESC(options,
260 "DP8381x: Bits 0-3: media type, bit 17: full duplex");
261 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
266 I. Board Compatibility
268 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
269 It also works with other chips in in the DP83810 series.
271 II. Board-specific settings
273 This driver requires the PCI interrupt line to be valid.
274 It honors the EEPROM-set values.
276 III. Driver operation
280 This driver uses two statically allocated fixed-size descriptor lists
281 formed into rings by a branch from the final descriptor to the beginning of
282 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
283 The NatSemi design uses a 'next descriptor' pointer that the driver forms
286 IIIb/c. Transmit/Receive Structure
288 This driver uses a zero-copy receive and transmit scheme.
289 The driver allocates full frame size skbuffs for the Rx ring buffers at
290 open() time and passes the skb->data field to the chip as receive data
291 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
292 a fresh skbuff is allocated and the frame is copied to the new skbuff.
293 When the incoming frame is larger, the skbuff is passed directly up the
294 protocol stack. Buffers consumed this way are replaced by newly allocated
295 skbuffs in a later phase of receives.
297 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
298 using a full-sized skbuff for small frames vs. the copying costs of larger
299 frames. New boards are typically used in generously configured machines
300 and the underfilled buffers have negligible impact compared to the benefit of
301 a single allocation size, so the default value of zero results in never
302 copying packets. When copying is done, the cost is usually mitigated by using
303 a combined copy/checksum routine. Copying also preloads the cache, which is
304 most useful with small frames.
306 A subtle aspect of the operation is that unaligned buffers are not permitted
307 by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't
308 longword aligned for further processing. On copies frames are put into the
309 skbuff at an offset of "+2", 16-byte aligning the IP header.
311 IIId. Synchronization
313 Most operations are synchronized on the np->lock irq spinlock, except the
314 performance critical codepaths:
316 The rx process only runs in the interrupt handler. Access from outside
317 the interrupt handler is only permitted after disable_irq().
319 The rx process usually runs under the netif_tx_lock. If np->intr_tx_reap
320 is set, then access is permitted under spin_lock_irq(&np->lock).
322 Thus configuration functions that want to access everything must call
323 disable_irq(dev->irq);
324 netif_tx_lock_bh(dev);
325 spin_lock_irq(&np->lock);
329 NatSemi PCI network controllers are very uncommon.
333 http://www.scyld.com/expert/100mbps.html
334 http://www.scyld.com/expert/NWay.html
335 Datasheet is available from:
336 http://www.national.com/pf/DP/DP83815.html
346 * Support for fibre connections on Am79C874:
347 * This phy needs a special setup when connected to a fibre cable.
348 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
350 #define PHYID_AM79C874 0x0022561b
353 MII_MCTRL = 0x15, /* mode control register */
354 MII_FX_SEL = 0x0001, /* 100BASE-FX (fiber) */
355 MII_EN_SCRM = 0x0004, /* enable scrambler (tp) */
359 /* array of board data directly indexed by pci_tbl[x].driver_data */
360 static const struct {
363 unsigned int eeprom_size;
364 } natsemi_pci_info[] __devinitdata = {
365 { "NatSemi DP8381[56]", 0, 24 },
368 static const struct pci_device_id natsemi_pci_tbl[] __devinitdata = {
369 { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
370 { } /* terminate list */
372 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
374 /* Offsets to the device registers.
375 Unlike software-only systems, device drivers interact with complex hardware.
376 It's not useful to define symbolic names for every register bit in the
379 enum register_offsets {
387 IntrHoldoff = 0x1C, /* DP83816 only */
414 /* These are from the spec, around page 78... on a separate table.
415 * The meaning of these registers depend on the value of PGSEL. */
422 /* the values for the 'magic' registers above (PGSEL=1) */
423 #define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */
424 #define TSTDAT_VAL 0x0
425 #define DSPCFG_VAL 0x5040
426 #define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */
427 #define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */
428 #define DSPCFG_COEF 0x1000 /* see coefficient (in TSTDAT) bit in DSPCFG */
429 #define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */
431 /* misc PCI space registers */
432 enum pci_register_offsets {
446 enum ChipConfig_bits {
450 CfgAnegEnable = 0x2000,
452 CfgAnegFull = 0x8000,
453 CfgAnegDone = 0x8000000,
454 CfgFullDuplex = 0x20000000,
455 CfgSpeed100 = 0x40000000,
456 CfgLink = 0x80000000,
462 EE_ChipSelect = 0x08,
469 enum PCIBusCfg_bits {
473 /* Bits in the interrupt status/mask registers. */
474 enum IntrStatus_bits {
478 IntrRxEarly = 0x0008,
480 IntrRxOverrun = 0x0020,
485 IntrTxUnderrun = 0x0400,
490 IntrHighBits = 0x8000,
491 RxStatusFIFOOver = 0x10000,
492 IntrPCIErr = 0xf00000,
493 RxResetDone = 0x1000000,
494 TxResetDone = 0x2000000,
495 IntrAbnormalSummary = 0xCD20,
499 * Default Interrupts:
500 * Rx OK, Rx Packet Error, Rx Overrun,
501 * Tx OK, Tx Packet Error, Tx Underrun,
502 * MIB Service, Phy Interrupt, High Bits,
503 * Rx Status FIFO overrun,
504 * Received Target Abort, Received Master Abort,
505 * Signalled System Error, Received Parity Error
507 #define DEFAULT_INTR 0x00f1cd65
512 TxMxdmaMask = 0x700000,
514 TxMxdma_4 = 0x100000,
515 TxMxdma_8 = 0x200000,
516 TxMxdma_16 = 0x300000,
517 TxMxdma_32 = 0x400000,
518 TxMxdma_64 = 0x500000,
519 TxMxdma_128 = 0x600000,
520 TxMxdma_256 = 0x700000,
521 TxCollRetry = 0x800000,
522 TxAutoPad = 0x10000000,
523 TxMacLoop = 0x20000000,
524 TxHeartIgn = 0x40000000,
525 TxCarrierIgn = 0x80000000
530 * - 256 byte DMA burst length
531 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
532 * - 64 bytes initial drain threshold (i.e. begin actual transmission
533 * when 64 byte are in the fifo)
534 * - on tx underruns, increase drain threshold by 64.
535 * - at most use a drain threshold of 1472 bytes: The sum of the fill
536 * threshold and the drain threshold must be less than 2016 bytes.
539 #define TX_FLTH_VAL ((512/32) << 8)
540 #define TX_DRTH_VAL_START (64/32)
541 #define TX_DRTH_VAL_INC 2
542 #define TX_DRTH_VAL_LIMIT (1472/32)
546 RxMxdmaMask = 0x700000,
548 RxMxdma_4 = 0x100000,
549 RxMxdma_8 = 0x200000,
550 RxMxdma_16 = 0x300000,
551 RxMxdma_32 = 0x400000,
552 RxMxdma_64 = 0x500000,
553 RxMxdma_128 = 0x600000,
554 RxMxdma_256 = 0x700000,
555 RxAcceptLong = 0x8000000,
556 RxAcceptTx = 0x10000000,
557 RxAcceptRunt = 0x40000000,
558 RxAcceptErr = 0x80000000
560 #define RX_DRTH_VAL (128/8)
578 WakeMagicSecure = 0x400,
579 SecureHack = 0x100000,
581 WokeUnicast = 0x800000,
582 WokeMulticast = 0x1000000,
583 WokeBroadcast = 0x2000000,
585 WokePMatch0 = 0x8000000,
586 WokePMatch1 = 0x10000000,
587 WokePMatch2 = 0x20000000,
588 WokePMatch3 = 0x40000000,
589 WokeMagic = 0x80000000,
590 WakeOptsSummary = 0x7ff
593 enum RxFilterAddr_bits {
594 RFCRAddressMask = 0x3ff,
595 AcceptMulticast = 0x00200000,
596 AcceptMyPhys = 0x08000000,
597 AcceptAllPhys = 0x10000000,
598 AcceptAllMulticast = 0x20000000,
599 AcceptBroadcast = 0x40000000,
600 RxFilterEnable = 0x80000000
603 enum StatsCtrl_bits {
610 enum MIntrCtrl_bits {
618 #define PHY_ADDR_NONE 32
619 #define PHY_ADDR_INTERNAL 1
621 /* values we might find in the silicon revision register */
622 #define SRR_DP83815_C 0x0302
623 #define SRR_DP83815_D 0x0403
624 #define SRR_DP83816_A4 0x0504
625 #define SRR_DP83816_A5 0x0505
627 /* The Rx and Tx buffer descriptors. */
628 /* Note that using only 32 bit fields simplifies conversion to big-endian
637 /* Bits in network_desc.status */
638 enum desc_status_bits {
639 DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
640 DescNoCRC=0x10000000, DescPktOK=0x08000000,
643 DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
644 DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
645 DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
646 DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
648 DescRxAbort=0x04000000, DescRxOver=0x02000000,
649 DescRxDest=0x01800000, DescRxLong=0x00400000,
650 DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
651 DescRxCRC=0x00080000, DescRxAlign=0x00040000,
652 DescRxLoop=0x00020000, DesRxColl=0x00010000,
655 struct netdev_private {
656 /* Descriptor rings first for alignment */
658 struct netdev_desc *rx_ring;
659 struct netdev_desc *tx_ring;
660 /* The addresses of receive-in-place skbuffs */
661 struct sk_buff *rx_skbuff[RX_RING_SIZE];
662 dma_addr_t rx_dma[RX_RING_SIZE];
663 /* address of a sent-in-place packet/buffer, for later free() */
664 struct sk_buff *tx_skbuff[TX_RING_SIZE];
665 dma_addr_t tx_dma[TX_RING_SIZE];
666 struct net_device_stats stats;
667 /* Media monitoring timer */
668 struct timer_list timer;
669 /* Frequently used values: keep some adjacent for cache effect */
670 struct pci_dev *pci_dev;
671 struct netdev_desc *rx_head_desc;
672 /* Producer/consumer ring indices */
673 unsigned int cur_rx, dirty_rx;
674 unsigned int cur_tx, dirty_tx;
675 /* Based on MTU+slack. */
676 unsigned int rx_buf_sz;
678 /* Interrupt status */
680 /* Do not touch the nic registers */
682 /* external phy that is used: only valid if dev->if_port != PORT_TP */
684 int phy_addr_external;
685 unsigned int full_duplex;
689 /* FIFO and PCI burst thresholds */
690 u32 tx_config, rx_config;
691 /* original contents of ClkRun register */
693 /* silicon revision */
695 /* expected DSPCFG value */
697 /* parms saved in ethtool format */
698 u16 speed; /* The forced speed, 10Mb, 100Mb, gigabit */
699 u8 duplex; /* Duplex, half or full */
700 u8 autoneg; /* Autonegotiation enabled */
701 /* MII transceiver section */
710 static void move_int_phy(struct net_device *dev, int addr);
711 static int eeprom_read(void __iomem *ioaddr, int location);
712 static int mdio_read(struct net_device *dev, int reg);
713 static void mdio_write(struct net_device *dev, int reg, u16 data);
714 static void init_phy_fixup(struct net_device *dev);
715 static int miiport_read(struct net_device *dev, int phy_id, int reg);
716 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
717 static int find_mii(struct net_device *dev);
718 static void natsemi_reset(struct net_device *dev);
719 static void natsemi_reload_eeprom(struct net_device *dev);
720 static void natsemi_stop_rxtx(struct net_device *dev);
721 static int netdev_open(struct net_device *dev);
722 static void do_cable_magic(struct net_device *dev);
723 static void undo_cable_magic(struct net_device *dev);
724 static void check_link(struct net_device *dev);
725 static void netdev_timer(unsigned long data);
726 static void dump_ring(struct net_device *dev);
727 static void tx_timeout(struct net_device *dev);
728 static int alloc_ring(struct net_device *dev);
729 static void refill_rx(struct net_device *dev);
730 static void init_ring(struct net_device *dev);
731 static void drain_tx(struct net_device *dev);
732 static void drain_ring(struct net_device *dev);
733 static void free_ring(struct net_device *dev);
734 static void reinit_ring(struct net_device *dev);
735 static void init_registers(struct net_device *dev);
736 static int start_tx(struct sk_buff *skb, struct net_device *dev);
737 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *regs);
738 static void netdev_error(struct net_device *dev, int intr_status);
739 static int natsemi_poll(struct net_device *dev, int *budget);
740 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
741 static void netdev_tx_done(struct net_device *dev);
742 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
743 #ifdef CONFIG_NET_POLL_CONTROLLER
744 static void natsemi_poll_controller(struct net_device *dev);
746 static void __set_rx_mode(struct net_device *dev);
747 static void set_rx_mode(struct net_device *dev);
748 static void __get_stats(struct net_device *dev);
749 static struct net_device_stats *get_stats(struct net_device *dev);
750 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
751 static int netdev_set_wol(struct net_device *dev, u32 newval);
752 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
753 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
754 static int netdev_get_sopass(struct net_device *dev, u8 *data);
755 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
756 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
757 static void enable_wol_mode(struct net_device *dev, int enable_intr);
758 static int netdev_close(struct net_device *dev);
759 static int netdev_get_regs(struct net_device *dev, u8 *buf);
760 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
761 static struct ethtool_ops ethtool_ops;
763 static inline void __iomem *ns_ioaddr(struct net_device *dev)
765 return (void __iomem *) dev->base_addr;
768 static inline void natsemi_irq_enable(struct net_device *dev)
770 writel(1, ns_ioaddr(dev) + IntrEnable);
771 readl(ns_ioaddr(dev) + IntrEnable);
774 static inline void natsemi_irq_disable(struct net_device *dev)
776 writel(0, ns_ioaddr(dev) + IntrEnable);
777 readl(ns_ioaddr(dev) + IntrEnable);
780 static void move_int_phy(struct net_device *dev, int addr)
782 struct netdev_private *np = netdev_priv(dev);
783 void __iomem *ioaddr = ns_ioaddr(dev);
787 * The internal phy is visible on the external mii bus. Therefore we must
788 * move it away before we can send commands to an external phy.
789 * There are two addresses we must avoid:
790 * - the address on the external phy that is used for transmission.
791 * - the address that we want to access. User space can access phys
792 * on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independant from the
793 * phy that is used for transmission.
798 if (target == np->phy_addr_external)
800 writew(target, ioaddr + PhyCtrl);
801 readw(ioaddr + PhyCtrl);
805 static void __devinit natsemi_init_media (struct net_device *dev)
807 struct netdev_private *np = netdev_priv(dev);
810 netif_carrier_off(dev);
812 /* get the initial settings from hardware */
813 tmp = mdio_read(dev, MII_BMCR);
814 np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10;
815 np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF;
816 np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
817 np->advertising= mdio_read(dev, MII_ADVERTISE);
819 if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL
820 && netif_msg_probe(np)) {
821 printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
823 pci_name(np->pci_dev),
824 (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
825 "enabled, advertise" : "disabled, force",
827 (ADVERTISE_100FULL|ADVERTISE_100HALF))?
830 (ADVERTISE_100FULL|ADVERTISE_10FULL))?
833 if (netif_msg_probe(np))
835 "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
836 pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
841 static int __devinit natsemi_probe1 (struct pci_dev *pdev,
842 const struct pci_device_id *ent)
844 struct net_device *dev;
845 struct netdev_private *np;
846 int i, option, irq, chip_idx = ent->driver_data;
847 static int find_cnt = -1;
848 unsigned long iostart, iosize;
849 void __iomem *ioaddr;
850 const int pcibar = 1; /* PCI base address register */
854 /* when built into the kernel, we only print version if device is found */
856 static int printed_version;
857 if (!printed_version++)
861 i = pci_enable_device(pdev);
864 /* natsemi has a non-standard PM control register
865 * in PCI config space. Some boards apparently need
866 * to be brought to D0 in this manner.
868 pci_read_config_dword(pdev, PCIPM, &tmp);
869 if (tmp & PCI_PM_CTRL_STATE_MASK) {
870 /* D0 state, disable PME assertion */
871 u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
872 pci_write_config_dword(pdev, PCIPM, newtmp);
876 iostart = pci_resource_start(pdev, pcibar);
877 iosize = pci_resource_len(pdev, pcibar);
880 pci_set_master(pdev);
882 dev = alloc_etherdev(sizeof (struct netdev_private));
885 SET_MODULE_OWNER(dev);
886 SET_NETDEV_DEV(dev, &pdev->dev);
888 i = pci_request_regions(pdev, DRV_NAME);
890 goto err_pci_request_regions;
892 ioaddr = ioremap(iostart, iosize);
898 /* Work around the dropped serial bit. */
899 prev_eedata = eeprom_read(ioaddr, 6);
900 for (i = 0; i < 3; i++) {
901 int eedata = eeprom_read(ioaddr, i + 7);
902 dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
903 dev->dev_addr[i*2+1] = eedata >> 7;
904 prev_eedata = eedata;
907 dev->base_addr = (unsigned long __force) ioaddr;
910 np = netdev_priv(dev);
913 pci_set_drvdata(pdev, dev);
915 spin_lock_init(&np->lock);
916 np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
919 np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
922 * - If the nic was configured to use an external phy and if find_mii
923 * finds a phy: use external port, first phy that replies.
924 * - Otherwise: internal port.
925 * Note that the phy address for the internal phy doesn't matter:
926 * The address would be used to access a phy over the mii bus, but
927 * the internal phy is accessed through mapped registers.
929 if (readl(ioaddr + ChipConfig) & CfgExtPhy)
930 dev->if_port = PORT_MII;
932 dev->if_port = PORT_TP;
933 /* Reset the chip to erase previous misconfiguration. */
934 natsemi_reload_eeprom(dev);
937 if (dev->if_port != PORT_TP) {
938 np->phy_addr_external = find_mii(dev);
939 if (np->phy_addr_external == PHY_ADDR_NONE) {
940 dev->if_port = PORT_TP;
941 np->phy_addr_external = PHY_ADDR_INTERNAL;
944 np->phy_addr_external = PHY_ADDR_INTERNAL;
947 option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
949 option = dev->mem_start;
951 /* The lower four bits are the media type. */
957 "natsemi %s: ignoring user supplied media type %d",
958 pci_name(np->pci_dev), option & 15);
960 if (find_cnt < MAX_UNITS && full_duplex[find_cnt])
963 /* The chip-specific entries in the device structure. */
964 dev->open = &netdev_open;
965 dev->hard_start_xmit = &start_tx;
966 dev->stop = &netdev_close;
967 dev->get_stats = &get_stats;
968 dev->set_multicast_list = &set_rx_mode;
969 dev->change_mtu = &natsemi_change_mtu;
970 dev->do_ioctl = &netdev_ioctl;
971 dev->tx_timeout = &tx_timeout;
972 dev->watchdog_timeo = TX_TIMEOUT;
973 dev->poll = natsemi_poll;
976 #ifdef CONFIG_NET_POLL_CONTROLLER
977 dev->poll_controller = &natsemi_poll_controller;
979 SET_ETHTOOL_OPS(dev, ðtool_ops);
984 natsemi_init_media(dev);
986 /* save the silicon revision for later querying */
987 np->srr = readl(ioaddr + SiliconRev);
988 if (netif_msg_hw(np))
989 printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
990 pci_name(np->pci_dev), np->srr);
992 i = register_netdev(dev);
994 goto err_register_netdev;
996 if (netif_msg_drv(np)) {
997 printk(KERN_INFO "natsemi %s: %s at %#08lx (%s), ",
998 dev->name, natsemi_pci_info[chip_idx].name, iostart,
999 pci_name(np->pci_dev));
1000 for (i = 0; i < ETH_ALEN-1; i++)
1001 printk("%02x:", dev->dev_addr[i]);
1002 printk("%02x, IRQ %d", dev->dev_addr[i], irq);
1003 if (dev->if_port == PORT_TP)
1004 printk(", port TP.\n");
1006 printk(", port MII, phy ad %d.\n", np->phy_addr_external);
1010 err_register_netdev:
1014 pci_release_regions(pdev);
1015 pci_set_drvdata(pdev, NULL);
1017 err_pci_request_regions:
1023 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
1024 The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
1026 /* Delay between EEPROM clock transitions.
1027 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
1028 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that
1029 made udelay() unreliable.
1030 The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
1033 #define eeprom_delay(ee_addr) readl(ee_addr)
1035 #define EE_Write0 (EE_ChipSelect)
1036 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
1038 /* The EEPROM commands include the alway-set leading bit. */
1040 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1043 static int eeprom_read(void __iomem *addr, int location)
1047 void __iomem *ee_addr = addr + EECtrl;
1048 int read_cmd = location | EE_ReadCmd;
1050 writel(EE_Write0, ee_addr);
1052 /* Shift the read command bits out. */
1053 for (i = 10; i >= 0; i--) {
1054 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1055 writel(dataval, ee_addr);
1056 eeprom_delay(ee_addr);
1057 writel(dataval | EE_ShiftClk, ee_addr);
1058 eeprom_delay(ee_addr);
1060 writel(EE_ChipSelect, ee_addr);
1061 eeprom_delay(ee_addr);
1063 for (i = 0; i < 16; i++) {
1064 writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1065 eeprom_delay(ee_addr);
1066 retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1067 writel(EE_ChipSelect, ee_addr);
1068 eeprom_delay(ee_addr);
1071 /* Terminate the EEPROM access. */
1072 writel(EE_Write0, ee_addr);
1077 /* MII transceiver control section.
1078 * The 83815 series has an internal transceiver, and we present the
1079 * internal management registers as if they were MII connected.
1080 * External Phy registers are referenced through the MII interface.
1083 /* clock transitions >= 20ns (25MHz)
1084 * One readl should be good to PCI @ 100MHz
1086 #define mii_delay(ioaddr) readl(ioaddr + EECtrl)
1088 static int mii_getbit (struct net_device *dev)
1091 void __iomem *ioaddr = ns_ioaddr(dev);
1093 writel(MII_ShiftClk, ioaddr + EECtrl);
1094 data = readl(ioaddr + EECtrl);
1095 writel(0, ioaddr + EECtrl);
1097 return (data & MII_Data)? 1 : 0;
1100 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1103 void __iomem *ioaddr = ns_ioaddr(dev);
1105 for (i = (1 << (len-1)); i; i >>= 1)
1107 u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1108 writel(mdio_val, ioaddr + EECtrl);
1110 writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1113 writel(0, ioaddr + EECtrl);
1117 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1124 mii_send_bits (dev, 0xffffffff, 32);
1125 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1126 /* ST,OP = 0110'b for read operation */
1127 cmd = (0x06 << 10) | (phy_id << 5) | reg;
1128 mii_send_bits (dev, cmd, 14);
1130 if (mii_getbit (dev))
1133 for (i = 0; i < 16; i++) {
1135 retval |= mii_getbit (dev);
1142 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1147 mii_send_bits (dev, 0xffffffff, 32);
1148 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1149 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1150 cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1151 mii_send_bits (dev, cmd, 32);
1156 static int mdio_read(struct net_device *dev, int reg)
1158 struct netdev_private *np = netdev_priv(dev);
1159 void __iomem *ioaddr = ns_ioaddr(dev);
1161 /* The 83815 series has two ports:
1162 * - an internal transceiver
1163 * - an external mii bus
1165 if (dev->if_port == PORT_TP)
1166 return readw(ioaddr+BasicControl+(reg<<2));
1168 return miiport_read(dev, np->phy_addr_external, reg);
1171 static void mdio_write(struct net_device *dev, int reg, u16 data)
1173 struct netdev_private *np = netdev_priv(dev);
1174 void __iomem *ioaddr = ns_ioaddr(dev);
1176 /* The 83815 series has an internal transceiver; handle separately */
1177 if (dev->if_port == PORT_TP)
1178 writew(data, ioaddr+BasicControl+(reg<<2));
1180 miiport_write(dev, np->phy_addr_external, reg, data);
1183 static void init_phy_fixup(struct net_device *dev)
1185 struct netdev_private *np = netdev_priv(dev);
1186 void __iomem *ioaddr = ns_ioaddr(dev);
1191 /* restore stuff lost when power was out */
1192 tmp = mdio_read(dev, MII_BMCR);
1193 if (np->autoneg == AUTONEG_ENABLE) {
1194 /* renegotiate if something changed */
1195 if ((tmp & BMCR_ANENABLE) == 0
1196 || np->advertising != mdio_read(dev, MII_ADVERTISE))
1198 /* turn on autonegotiation and force negotiation */
1199 tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1200 mdio_write(dev, MII_ADVERTISE, np->advertising);
1203 /* turn off auto negotiation, set speed and duplexity */
1204 tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1205 if (np->speed == SPEED_100)
1206 tmp |= BMCR_SPEED100;
1207 if (np->duplex == DUPLEX_FULL)
1208 tmp |= BMCR_FULLDPLX;
1210 * Note: there is no good way to inform the link partner
1211 * that our capabilities changed. The user has to unplug
1212 * and replug the network cable after some changes, e.g.
1213 * after switching from 10HD, autoneg off to 100 HD,
1217 mdio_write(dev, MII_BMCR, tmp);
1218 readl(ioaddr + ChipConfig);
1221 /* find out what phy this is */
1222 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1223 + mdio_read(dev, MII_PHYSID2);
1225 /* handle external phys here */
1227 case PHYID_AM79C874:
1228 /* phy specific configuration for fibre/tp operation */
1229 tmp = mdio_read(dev, MII_MCTRL);
1230 tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1231 if (dev->if_port == PORT_FIBRE)
1235 mdio_write(dev, MII_MCTRL, tmp);
1240 cfg = readl(ioaddr + ChipConfig);
1241 if (cfg & CfgExtPhy)
1244 /* On page 78 of the spec, they recommend some settings for "optimum
1245 performance" to be done in sequence. These settings optimize some
1246 of the 100Mbit autodetection circuitry. They say we only want to
1247 do this for rev C of the chip, but engineers at NSC (Bradley
1248 Kennedy) recommends always setting them. If you don't, you get
1249 errors on some autonegotiations that make the device unusable.
1251 It seems that the DSP needs a few usec to reinitialize after
1252 the start of the phy. Just retry writing these values until they
1255 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1258 writew(1, ioaddr + PGSEL);
1259 writew(PMDCSR_VAL, ioaddr + PMDCSR);
1260 writew(TSTDAT_VAL, ioaddr + TSTDAT);
1261 np->dspcfg = (np->srr <= SRR_DP83815_C)?
1262 DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1263 writew(np->dspcfg, ioaddr + DSPCFG);
1264 writew(SDCFG_VAL, ioaddr + SDCFG);
1265 writew(0, ioaddr + PGSEL);
1266 readl(ioaddr + ChipConfig);
1269 writew(1, ioaddr + PGSEL);
1270 dspcfg = readw(ioaddr + DSPCFG);
1271 writew(0, ioaddr + PGSEL);
1272 if (np->dspcfg == dspcfg)
1276 if (netif_msg_link(np)) {
1277 if (i==NATSEMI_HW_TIMEOUT) {
1279 "%s: DSPCFG mismatch after retrying for %d usec.\n",
1283 "%s: DSPCFG accepted after %d usec.\n",
1288 * Enable PHY Specific event based interrupts. Link state change
1289 * and Auto-Negotiation Completion are among the affected.
1290 * Read the intr status to clear it (needed for wake events).
1292 readw(ioaddr + MIntrStatus);
1293 writew(MICRIntEn, ioaddr + MIntrCtrl);
1296 static int switch_port_external(struct net_device *dev)
1298 struct netdev_private *np = netdev_priv(dev);
1299 void __iomem *ioaddr = ns_ioaddr(dev);
1302 cfg = readl(ioaddr + ChipConfig);
1303 if (cfg & CfgExtPhy)
1306 if (netif_msg_link(np)) {
1307 printk(KERN_INFO "%s: switching to external transceiver.\n",
1311 /* 1) switch back to external phy */
1312 writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1313 readl(ioaddr + ChipConfig);
1316 /* 2) reset the external phy: */
1317 /* resetting the external PHY has been known to cause a hub supplying
1318 * power over Ethernet to kill the power. We don't want to kill
1319 * power to this computer, so we avoid resetting the phy.
1322 /* 3) reinit the phy fixup, it got lost during power down. */
1323 move_int_phy(dev, np->phy_addr_external);
1324 init_phy_fixup(dev);
1329 static int switch_port_internal(struct net_device *dev)
1331 struct netdev_private *np = netdev_priv(dev);
1332 void __iomem *ioaddr = ns_ioaddr(dev);
1337 cfg = readl(ioaddr + ChipConfig);
1338 if (!(cfg &CfgExtPhy))
1341 if (netif_msg_link(np)) {
1342 printk(KERN_INFO "%s: switching to internal transceiver.\n",
1345 /* 1) switch back to internal phy: */
1346 cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1347 writel(cfg, ioaddr + ChipConfig);
1348 readl(ioaddr + ChipConfig);
1351 /* 2) reset the internal phy: */
1352 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1353 writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1354 readl(ioaddr + ChipConfig);
1356 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1357 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1358 if (!(bmcr & BMCR_RESET))
1362 if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1364 "%s: phy reset did not complete in %d usec.\n",
1367 /* 3) reinit the phy fixup, it got lost during power down. */
1368 init_phy_fixup(dev);
1373 /* Scan for a PHY on the external mii bus.
1374 * There are two tricky points:
1375 * - Do not scan while the internal phy is enabled. The internal phy will
1376 * crash: e.g. reads from the DSPCFG register will return odd values and
1377 * the nasty random phy reset code will reset the nic every few seconds.
1378 * - The internal phy must be moved around, an external phy could
1379 * have the same address as the internal phy.
1381 static int find_mii(struct net_device *dev)
1383 struct netdev_private *np = netdev_priv(dev);
1388 /* Switch to external phy */
1389 did_switch = switch_port_external(dev);
1391 /* Scan the possible phy addresses:
1393 * PHY address 0 means that the phy is in isolate mode. Not yet
1394 * supported due to lack of test hardware. User space should
1395 * handle it through ethtool.
1397 for (i = 1; i <= 31; i++) {
1398 move_int_phy(dev, i);
1399 tmp = miiport_read(dev, i, MII_BMSR);
1400 if (tmp != 0xffff && tmp != 0x0000) {
1401 /* found something! */
1402 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1403 + mdio_read(dev, MII_PHYSID2);
1404 if (netif_msg_probe(np)) {
1405 printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1406 pci_name(np->pci_dev), np->mii, i);
1411 /* And switch back to internal phy: */
1413 switch_port_internal(dev);
1417 /* CFG bits [13:16] [18:23] */
1418 #define CFG_RESET_SAVE 0xfde000
1419 /* WCSR bits [0:4] [9:10] */
1420 #define WCSR_RESET_SAVE 0x61f
1421 /* RFCR bits [20] [22] [27:31] */
1422 #define RFCR_RESET_SAVE 0xf8500000;
1424 static void natsemi_reset(struct net_device *dev)
1432 struct netdev_private *np = netdev_priv(dev);
1433 void __iomem *ioaddr = ns_ioaddr(dev);
1436 * Resetting the chip causes some registers to be lost.
1437 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1438 * we save the state that would have been loaded from EEPROM
1439 * on a normal power-up (see the spec EEPROM map). This assumes
1440 * whoever calls this will follow up with init_registers() eventually.
1444 cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1446 wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1448 rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1450 for (i = 0; i < 3; i++) {
1451 writel(i*2, ioaddr + RxFilterAddr);
1452 pmatch[i] = readw(ioaddr + RxFilterData);
1455 for (i = 0; i < 3; i++) {
1456 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1457 sopass[i] = readw(ioaddr + RxFilterData);
1460 /* now whack the chip */
1461 writel(ChipReset, ioaddr + ChipCmd);
1462 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1463 if (!(readl(ioaddr + ChipCmd) & ChipReset))
1467 if (i==NATSEMI_HW_TIMEOUT) {
1468 printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1470 } else if (netif_msg_hw(np)) {
1471 printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1476 cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1477 /* turn on external phy if it was selected */
1478 if (dev->if_port == PORT_TP)
1479 cfg &= ~(CfgExtPhy | CfgPhyDis);
1481 cfg |= (CfgExtPhy | CfgPhyDis);
1482 writel(cfg, ioaddr + ChipConfig);
1484 wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1485 writel(wcsr, ioaddr + WOLCmd);
1487 rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1488 /* restore PMATCH */
1489 for (i = 0; i < 3; i++) {
1490 writel(i*2, ioaddr + RxFilterAddr);
1491 writew(pmatch[i], ioaddr + RxFilterData);
1493 for (i = 0; i < 3; i++) {
1494 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1495 writew(sopass[i], ioaddr + RxFilterData);
1498 writel(rfcr, ioaddr + RxFilterAddr);
1501 static void reset_rx(struct net_device *dev)
1504 struct netdev_private *np = netdev_priv(dev);
1505 void __iomem *ioaddr = ns_ioaddr(dev);
1507 np->intr_status &= ~RxResetDone;
1509 writel(RxReset, ioaddr + ChipCmd);
1511 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1512 np->intr_status |= readl(ioaddr + IntrStatus);
1513 if (np->intr_status & RxResetDone)
1517 if (i==NATSEMI_HW_TIMEOUT) {
1518 printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1520 } else if (netif_msg_hw(np)) {
1521 printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1526 static void natsemi_reload_eeprom(struct net_device *dev)
1528 struct netdev_private *np = netdev_priv(dev);
1529 void __iomem *ioaddr = ns_ioaddr(dev);
1532 writel(EepromReload, ioaddr + PCIBusCfg);
1533 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1535 if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1538 if (i==NATSEMI_HW_TIMEOUT) {
1539 printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1540 pci_name(np->pci_dev), i*50);
1541 } else if (netif_msg_hw(np)) {
1542 printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1543 pci_name(np->pci_dev), i*50);
1547 static void natsemi_stop_rxtx(struct net_device *dev)
1549 void __iomem * ioaddr = ns_ioaddr(dev);
1550 struct netdev_private *np = netdev_priv(dev);
1553 writel(RxOff | TxOff, ioaddr + ChipCmd);
1554 for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1555 if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1559 if (i==NATSEMI_HW_TIMEOUT) {
1560 printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1562 } else if (netif_msg_hw(np)) {
1563 printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1568 static int netdev_open(struct net_device *dev)
1570 struct netdev_private *np = netdev_priv(dev);
1571 void __iomem * ioaddr = ns_ioaddr(dev);
1574 /* Reset the chip, just in case. */
1577 i = request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev);
1580 if (netif_msg_ifup(np))
1581 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1582 dev->name, dev->irq);
1583 i = alloc_ring(dev);
1585 free_irq(dev->irq, dev);
1589 spin_lock_irq(&np->lock);
1590 init_registers(dev);
1591 /* now set the MAC address according to dev->dev_addr */
1592 for (i = 0; i < 3; i++) {
1593 u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1595 writel(i*2, ioaddr + RxFilterAddr);
1596 writew(mac, ioaddr + RxFilterData);
1598 writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1599 spin_unlock_irq(&np->lock);
1601 netif_start_queue(dev);
1603 if (netif_msg_ifup(np))
1604 printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1605 dev->name, (int)readl(ioaddr + ChipCmd));
1607 /* Set the timer to check for link beat. */
1608 init_timer(&np->timer);
1609 np->timer.expires = jiffies + NATSEMI_TIMER_FREQ;
1610 np->timer.data = (unsigned long)dev;
1611 np->timer.function = &netdev_timer; /* timer handler */
1612 add_timer(&np->timer);
1617 static void do_cable_magic(struct net_device *dev)
1619 struct netdev_private *np = netdev_priv(dev);
1620 void __iomem *ioaddr = ns_ioaddr(dev);
1622 if (dev->if_port != PORT_TP)
1625 if (np->srr >= SRR_DP83816_A5)
1629 * 100 MBit links with short cables can trip an issue with the chip.
1630 * The problem manifests as lots of CRC errors and/or flickering
1631 * activity LED while idle. This process is based on instructions
1632 * from engineers at National.
1634 if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1637 writew(1, ioaddr + PGSEL);
1639 * coefficient visibility should already be enabled via
1642 data = readw(ioaddr + TSTDAT) & 0xff;
1644 * the value must be negative, and within certain values
1645 * (these values all come from National)
1647 if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1648 struct netdev_private *np = netdev_priv(dev);
1650 /* the bug has been triggered - fix the coefficient */
1651 writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1652 /* lock the value */
1653 data = readw(ioaddr + DSPCFG);
1654 np->dspcfg = data | DSPCFG_LOCK;
1655 writew(np->dspcfg, ioaddr + DSPCFG);
1657 writew(0, ioaddr + PGSEL);
1661 static void undo_cable_magic(struct net_device *dev)
1664 struct netdev_private *np = netdev_priv(dev);
1665 void __iomem * ioaddr = ns_ioaddr(dev);
1667 if (dev->if_port != PORT_TP)
1670 if (np->srr >= SRR_DP83816_A5)
1673 writew(1, ioaddr + PGSEL);
1674 /* make sure the lock bit is clear */
1675 data = readw(ioaddr + DSPCFG);
1676 np->dspcfg = data & ~DSPCFG_LOCK;
1677 writew(np->dspcfg, ioaddr + DSPCFG);
1678 writew(0, ioaddr + PGSEL);
1681 static void check_link(struct net_device *dev)
1683 struct netdev_private *np = netdev_priv(dev);
1684 void __iomem * ioaddr = ns_ioaddr(dev);
1688 /* The link status field is latched: it remains low after a temporary
1689 * link failure until it's read. We need the current link status,
1692 mdio_read(dev, MII_BMSR);
1693 bmsr = mdio_read(dev, MII_BMSR);
1695 if (!(bmsr & BMSR_LSTATUS)) {
1696 if (netif_carrier_ok(dev)) {
1697 if (netif_msg_link(np))
1698 printk(KERN_NOTICE "%s: link down.\n",
1700 netif_carrier_off(dev);
1701 undo_cable_magic(dev);
1705 if (!netif_carrier_ok(dev)) {
1706 if (netif_msg_link(np))
1707 printk(KERN_NOTICE "%s: link up.\n", dev->name);
1708 netif_carrier_on(dev);
1709 do_cable_magic(dev);
1712 duplex = np->full_duplex;
1714 if (bmsr & BMSR_ANEGCOMPLETE) {
1715 int tmp = mii_nway_result(
1716 np->advertising & mdio_read(dev, MII_LPA));
1717 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1719 } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1723 /* if duplex is set then bit 28 must be set, too */
1724 if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1725 if (netif_msg_link(np))
1727 "%s: Setting %s-duplex based on negotiated "
1728 "link capability.\n", dev->name,
1729 duplex ? "full" : "half");
1731 np->rx_config |= RxAcceptTx;
1732 np->tx_config |= TxCarrierIgn | TxHeartIgn;
1734 np->rx_config &= ~RxAcceptTx;
1735 np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1737 writel(np->tx_config, ioaddr + TxConfig);
1738 writel(np->rx_config, ioaddr + RxConfig);
1742 static void init_registers(struct net_device *dev)
1744 struct netdev_private *np = netdev_priv(dev);
1745 void __iomem * ioaddr = ns_ioaddr(dev);
1747 init_phy_fixup(dev);
1749 /* clear any interrupts that are pending, such as wake events */
1750 readl(ioaddr + IntrStatus);
1752 writel(np->ring_dma, ioaddr + RxRingPtr);
1753 writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1754 ioaddr + TxRingPtr);
1756 /* Initialize other registers.
1757 * Configure the PCI bus bursts and FIFO thresholds.
1758 * Configure for standard, in-spec Ethernet.
1759 * Start with half-duplex. check_link will update
1760 * to the correct settings.
1763 /* DRTH: 2: start tx if 64 bytes are in the fifo
1764 * FLTH: 0x10: refill with next packet if 512 bytes are free
1765 * MXDMA: 0: up to 256 byte bursts.
1766 * MXDMA must be <= FLTH
1770 np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1771 TX_FLTH_VAL | TX_DRTH_VAL_START;
1772 writel(np->tx_config, ioaddr + TxConfig);
1774 /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1775 * MXDMA 0: up to 256 byte bursts
1777 np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1778 /* if receive ring now has bigger buffers than normal, enable jumbo */
1779 if (np->rx_buf_sz > NATSEMI_LONGPKT)
1780 np->rx_config |= RxAcceptLong;
1782 writel(np->rx_config, ioaddr + RxConfig);
1785 * The PME bit is initialized from the EEPROM contents.
1786 * PCI cards probably have PME disabled, but motherboard
1787 * implementations may have PME set to enable WakeOnLan.
1788 * With PME set the chip will scan incoming packets but
1789 * nothing will be written to memory. */
1790 np->SavedClkRun = readl(ioaddr + ClkRun);
1791 writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1792 if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1793 printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1794 dev->name, readl(ioaddr + WOLCmd));
1800 /* Enable interrupts by setting the interrupt mask. */
1801 writel(DEFAULT_INTR, ioaddr + IntrMask);
1802 writel(1, ioaddr + IntrEnable);
1804 writel(RxOn | TxOn, ioaddr + ChipCmd);
1805 writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1811 * 1) check for link changes. Usually they are handled by the MII interrupt
1812 * but it doesn't hurt to check twice.
1813 * 2) check for sudden death of the NIC:
1814 * It seems that a reference set for this chip went out with incorrect info,
1815 * and there exist boards that aren't quite right. An unexpected voltage
1816 * drop can cause the PHY to get itself in a weird state (basically reset).
1817 * NOTE: this only seems to affect revC chips.
1818 * 3) check of death of the RX path due to OOM
1820 static void netdev_timer(unsigned long data)
1822 struct net_device *dev = (struct net_device *)data;
1823 struct netdev_private *np = netdev_priv(dev);
1824 void __iomem * ioaddr = ns_ioaddr(dev);
1825 int next_tick = 5*HZ;
1827 if (netif_msg_timer(np)) {
1828 /* DO NOT read the IntrStatus register,
1829 * a read clears any pending interrupts.
1831 printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1835 if (dev->if_port == PORT_TP) {
1838 spin_lock_irq(&np->lock);
1839 /* check for a nasty random phy-reset - use dspcfg as a flag */
1840 writew(1, ioaddr+PGSEL);
1841 dspcfg = readw(ioaddr+DSPCFG);
1842 writew(0, ioaddr+PGSEL);
1843 if (dspcfg != np->dspcfg) {
1844 if (!netif_queue_stopped(dev)) {
1845 spin_unlock_irq(&np->lock);
1846 if (netif_msg_hw(np))
1847 printk(KERN_NOTICE "%s: possible phy reset: "
1848 "re-initializing\n", dev->name);
1849 disable_irq(dev->irq);
1850 spin_lock_irq(&np->lock);
1851 natsemi_stop_rxtx(dev);
1854 init_registers(dev);
1855 spin_unlock_irq(&np->lock);
1856 enable_irq(dev->irq);
1860 spin_unlock_irq(&np->lock);
1863 /* init_registers() calls check_link() for the above case */
1865 spin_unlock_irq(&np->lock);
1868 spin_lock_irq(&np->lock);
1870 spin_unlock_irq(&np->lock);
1873 disable_irq(dev->irq);
1876 enable_irq(dev->irq);
1878 writel(RxOn, ioaddr + ChipCmd);
1883 mod_timer(&np->timer, jiffies + next_tick);
1886 static void dump_ring(struct net_device *dev)
1888 struct netdev_private *np = netdev_priv(dev);
1890 if (netif_msg_pktdata(np)) {
1892 printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring);
1893 for (i = 0; i < TX_RING_SIZE; i++) {
1894 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1895 i, np->tx_ring[i].next_desc,
1896 np->tx_ring[i].cmd_status,
1897 np->tx_ring[i].addr);
1899 printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring);
1900 for (i = 0; i < RX_RING_SIZE; i++) {
1901 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1902 i, np->rx_ring[i].next_desc,
1903 np->rx_ring[i].cmd_status,
1904 np->rx_ring[i].addr);
1909 static void tx_timeout(struct net_device *dev)
1911 struct netdev_private *np = netdev_priv(dev);
1912 void __iomem * ioaddr = ns_ioaddr(dev);
1914 disable_irq(dev->irq);
1915 spin_lock_irq(&np->lock);
1916 if (!np->hands_off) {
1917 if (netif_msg_tx_err(np))
1919 "%s: Transmit timed out, status %#08x,"
1921 dev->name, readl(ioaddr + IntrStatus));
1926 init_registers(dev);
1929 "%s: tx_timeout while in hands_off state?\n",
1932 spin_unlock_irq(&np->lock);
1933 enable_irq(dev->irq);
1935 dev->trans_start = jiffies;
1936 np->stats.tx_errors++;
1937 netif_wake_queue(dev);
1940 static int alloc_ring(struct net_device *dev)
1942 struct netdev_private *np = netdev_priv(dev);
1943 np->rx_ring = pci_alloc_consistent(np->pci_dev,
1944 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1948 np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1952 static void refill_rx(struct net_device *dev)
1954 struct netdev_private *np = netdev_priv(dev);
1956 /* Refill the Rx ring buffers. */
1957 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1958 struct sk_buff *skb;
1959 int entry = np->dirty_rx % RX_RING_SIZE;
1960 if (np->rx_skbuff[entry] == NULL) {
1961 unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1962 skb = dev_alloc_skb(buflen);
1963 np->rx_skbuff[entry] = skb;
1965 break; /* Better luck next round. */
1966 skb->dev = dev; /* Mark as being used by this device. */
1967 np->rx_dma[entry] = pci_map_single(np->pci_dev,
1968 skb->data, buflen, PCI_DMA_FROMDEVICE);
1969 np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1971 np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1973 if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1974 if (netif_msg_rx_err(np))
1975 printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1980 static void set_bufsize(struct net_device *dev)
1982 struct netdev_private *np = netdev_priv(dev);
1983 if (dev->mtu <= ETH_DATA_LEN)
1984 np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1986 np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1989 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1990 static void init_ring(struct net_device *dev)
1992 struct netdev_private *np = netdev_priv(dev);
1996 np->dirty_tx = np->cur_tx = 0;
1997 for (i = 0; i < TX_RING_SIZE; i++) {
1998 np->tx_skbuff[i] = NULL;
1999 np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
2000 +sizeof(struct netdev_desc)
2001 *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
2002 np->tx_ring[i].cmd_status = 0;
2007 np->cur_rx = RX_RING_SIZE;
2011 np->rx_head_desc = &np->rx_ring[0];
2013 /* Please be carefull before changing this loop - at least gcc-2.95.1
2014 * miscompiles it otherwise.
2016 /* Initialize all Rx descriptors. */
2017 for (i = 0; i < RX_RING_SIZE; i++) {
2018 np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
2019 +sizeof(struct netdev_desc)
2020 *((i+1)%RX_RING_SIZE));
2021 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2022 np->rx_skbuff[i] = NULL;
2028 static void drain_tx(struct net_device *dev)
2030 struct netdev_private *np = netdev_priv(dev);
2033 for (i = 0; i < TX_RING_SIZE; i++) {
2034 if (np->tx_skbuff[i]) {
2035 pci_unmap_single(np->pci_dev,
2036 np->tx_dma[i], np->tx_skbuff[i]->len,
2038 dev_kfree_skb(np->tx_skbuff[i]);
2039 np->stats.tx_dropped++;
2041 np->tx_skbuff[i] = NULL;
2045 static void drain_rx(struct net_device *dev)
2047 struct netdev_private *np = netdev_priv(dev);
2048 unsigned int buflen = np->rx_buf_sz;
2051 /* Free all the skbuffs in the Rx queue. */
2052 for (i = 0; i < RX_RING_SIZE; i++) {
2053 np->rx_ring[i].cmd_status = 0;
2054 np->rx_ring[i].addr = 0xBADF00D0; /* An invalid address. */
2055 if (np->rx_skbuff[i]) {
2056 pci_unmap_single(np->pci_dev,
2057 np->rx_dma[i], buflen,
2058 PCI_DMA_FROMDEVICE);
2059 dev_kfree_skb(np->rx_skbuff[i]);
2061 np->rx_skbuff[i] = NULL;
2065 static void drain_ring(struct net_device *dev)
2071 static void free_ring(struct net_device *dev)
2073 struct netdev_private *np = netdev_priv(dev);
2074 pci_free_consistent(np->pci_dev,
2075 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2076 np->rx_ring, np->ring_dma);
2079 static void reinit_rx(struct net_device *dev)
2081 struct netdev_private *np = netdev_priv(dev);
2086 np->cur_rx = RX_RING_SIZE;
2087 np->rx_head_desc = &np->rx_ring[0];
2088 /* Initialize all Rx descriptors. */
2089 for (i = 0; i < RX_RING_SIZE; i++)
2090 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2095 static void reinit_ring(struct net_device *dev)
2097 struct netdev_private *np = netdev_priv(dev);
2102 np->dirty_tx = np->cur_tx = 0;
2103 for (i=0;i<TX_RING_SIZE;i++)
2104 np->tx_ring[i].cmd_status = 0;
2109 static int start_tx(struct sk_buff *skb, struct net_device *dev)
2111 struct netdev_private *np = netdev_priv(dev);
2112 void __iomem * ioaddr = ns_ioaddr(dev);
2115 /* Note: Ordering is important here, set the field with the
2116 "ownership" bit last, and only then increment cur_tx. */
2118 /* Calculate the next Tx descriptor entry. */
2119 entry = np->cur_tx % TX_RING_SIZE;
2121 np->tx_skbuff[entry] = skb;
2122 np->tx_dma[entry] = pci_map_single(np->pci_dev,
2123 skb->data,skb->len, PCI_DMA_TODEVICE);
2125 np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2127 spin_lock_irq(&np->lock);
2129 if (!np->hands_off) {
2130 np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2131 /* StrongARM: Explicitly cache flush np->tx_ring and
2132 * skb->data,skb->len. */
2135 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2136 netdev_tx_done(dev);
2137 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2138 netif_stop_queue(dev);
2140 /* Wake the potentially-idle transmit channel. */
2141 writel(TxOn, ioaddr + ChipCmd);
2143 dev_kfree_skb_irq(skb);
2144 np->stats.tx_dropped++;
2146 spin_unlock_irq(&np->lock);
2148 dev->trans_start = jiffies;
2150 if (netif_msg_tx_queued(np)) {
2151 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2152 dev->name, np->cur_tx, entry);
2157 static void netdev_tx_done(struct net_device *dev)
2159 struct netdev_private *np = netdev_priv(dev);
2161 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2162 int entry = np->dirty_tx % TX_RING_SIZE;
2163 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2165 if (netif_msg_tx_done(np))
2167 "%s: tx frame #%d finished, status %#08x.\n",
2168 dev->name, np->dirty_tx,
2169 le32_to_cpu(np->tx_ring[entry].cmd_status));
2170 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2171 np->stats.tx_packets++;
2172 np->stats.tx_bytes += np->tx_skbuff[entry]->len;
2173 } else { /* Various Tx errors */
2175 le32_to_cpu(np->tx_ring[entry].cmd_status);
2176 if (tx_status & (DescTxAbort|DescTxExcColl))
2177 np->stats.tx_aborted_errors++;
2178 if (tx_status & DescTxFIFO)
2179 np->stats.tx_fifo_errors++;
2180 if (tx_status & DescTxCarrier)
2181 np->stats.tx_carrier_errors++;
2182 if (tx_status & DescTxOOWCol)
2183 np->stats.tx_window_errors++;
2184 np->stats.tx_errors++;
2186 pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2187 np->tx_skbuff[entry]->len,
2189 /* Free the original skb. */
2190 dev_kfree_skb_irq(np->tx_skbuff[entry]);
2191 np->tx_skbuff[entry] = NULL;
2193 if (netif_queue_stopped(dev)
2194 && np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2195 /* The ring is no longer full, wake queue. */
2196 netif_wake_queue(dev);
2200 /* The interrupt handler doesn't actually handle interrupts itself, it
2201 * schedules a NAPI poll if there is anything to do. */
2202 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *rgs)
2204 struct net_device *dev = dev_instance;
2205 struct netdev_private *np = netdev_priv(dev);
2206 void __iomem * ioaddr = ns_ioaddr(dev);
2211 /* Reading automatically acknowledges. */
2212 np->intr_status = readl(ioaddr + IntrStatus);
2214 if (netif_msg_intr(np))
2216 "%s: Interrupt, status %#08x, mask %#08x.\n",
2217 dev->name, np->intr_status,
2218 readl(ioaddr + IntrMask));
2220 if (!np->intr_status)
2223 prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2225 if (netif_rx_schedule_prep(dev)) {
2226 /* Disable interrupts and register for poll */
2227 natsemi_irq_disable(dev);
2228 __netif_rx_schedule(dev);
2233 /* This is the NAPI poll routine. As well as the standard RX handling
2234 * it also handles all other interrupts that the chip might raise.
2236 static int natsemi_poll(struct net_device *dev, int *budget)
2238 struct netdev_private *np = netdev_priv(dev);
2239 void __iomem * ioaddr = ns_ioaddr(dev);
2241 int work_to_do = min(*budget, dev->quota);
2245 if (np->intr_status &
2246 (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2247 spin_lock(&np->lock);
2248 netdev_tx_done(dev);
2249 spin_unlock(&np->lock);
2252 /* Abnormal error summary/uncommon events handlers. */
2253 if (np->intr_status & IntrAbnormalSummary)
2254 netdev_error(dev, np->intr_status);
2256 if (np->intr_status &
2257 (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2258 IntrRxErr | IntrRxOverrun)) {
2259 netdev_rx(dev, &work_done, work_to_do);
2262 *budget -= work_done;
2263 dev->quota -= work_done;
2265 if (work_done >= work_to_do)
2268 np->intr_status = readl(ioaddr + IntrStatus);
2269 } while (np->intr_status);
2271 netif_rx_complete(dev);
2273 /* Reenable interrupts providing nothing is trying to shut
2275 spin_lock(&np->lock);
2276 if (!np->hands_off && netif_running(dev))
2277 natsemi_irq_enable(dev);
2278 spin_unlock(&np->lock);
2283 /* This routine is logically part of the interrupt handler, but separated
2284 for clarity and better register allocation. */
2285 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2287 struct netdev_private *np = netdev_priv(dev);
2288 int entry = np->cur_rx % RX_RING_SIZE;
2289 int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2290 s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2291 unsigned int buflen = np->rx_buf_sz;
2292 void __iomem * ioaddr = ns_ioaddr(dev);
2294 /* If the driver owns the next entry it's a new packet. Send it up. */
2295 while (desc_status < 0) { /* e.g. & DescOwn */
2297 if (netif_msg_rx_status(np))
2299 " netdev_rx() entry %d status was %#08x.\n",
2300 entry, desc_status);
2304 if (*work_done >= work_to_do)
2309 pkt_len = (desc_status & DescSizeMask) - 4;
2310 if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2311 if (desc_status & DescMore) {
2312 if (netif_msg_rx_err(np))
2314 "%s: Oversized(?) Ethernet "
2315 "frame spanned multiple "
2316 "buffers, entry %#08x "
2317 "status %#08x.\n", dev->name,
2318 np->cur_rx, desc_status);
2319 np->stats.rx_length_errors++;
2321 /* The RX state machine has probably
2322 * locked up beneath us. Follow the
2323 * reset procedure documented in
2326 spin_lock_irq(&np->lock);
2329 writel(np->ring_dma, ioaddr + RxRingPtr);
2331 spin_unlock_irq(&np->lock);
2333 /* We'll enable RX on exit from this
2338 /* There was an error. */
2339 np->stats.rx_errors++;
2340 if (desc_status & (DescRxAbort|DescRxOver))
2341 np->stats.rx_over_errors++;
2342 if (desc_status & (DescRxLong|DescRxRunt))
2343 np->stats.rx_length_errors++;
2344 if (desc_status & (DescRxInvalid|DescRxAlign))
2345 np->stats.rx_frame_errors++;
2346 if (desc_status & DescRxCRC)
2347 np->stats.rx_crc_errors++;
2349 } else if (pkt_len > np->rx_buf_sz) {
2350 /* if this is the tail of a double buffer
2351 * packet, we've already counted the error
2352 * on the first part. Ignore the second half.
2355 struct sk_buff *skb;
2356 /* Omit CRC size. */
2357 /* Check if the packet is long enough to accept
2358 * without copying to a minimally-sized skbuff. */
2359 if (pkt_len < rx_copybreak
2360 && (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) {
2362 /* 16 byte align the IP header */
2363 skb_reserve(skb, RX_OFFSET);
2364 pci_dma_sync_single_for_cpu(np->pci_dev,
2367 PCI_DMA_FROMDEVICE);
2368 eth_copy_and_sum(skb,
2369 np->rx_skbuff[entry]->data, pkt_len, 0);
2370 skb_put(skb, pkt_len);
2371 pci_dma_sync_single_for_device(np->pci_dev,
2374 PCI_DMA_FROMDEVICE);
2376 pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2377 buflen, PCI_DMA_FROMDEVICE);
2378 skb_put(skb = np->rx_skbuff[entry], pkt_len);
2379 np->rx_skbuff[entry] = NULL;
2381 skb->protocol = eth_type_trans(skb, dev);
2382 netif_receive_skb(skb);
2383 dev->last_rx = jiffies;
2384 np->stats.rx_packets++;
2385 np->stats.rx_bytes += pkt_len;
2387 entry = (++np->cur_rx) % RX_RING_SIZE;
2388 np->rx_head_desc = &np->rx_ring[entry];
2389 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2393 /* Restart Rx engine if stopped. */
2395 mod_timer(&np->timer, jiffies + 1);
2397 writel(RxOn, ioaddr + ChipCmd);
2400 static void netdev_error(struct net_device *dev, int intr_status)
2402 struct netdev_private *np = netdev_priv(dev);
2403 void __iomem * ioaddr = ns_ioaddr(dev);
2405 spin_lock(&np->lock);
2406 if (intr_status & LinkChange) {
2407 u16 lpa = mdio_read(dev, MII_LPA);
2408 if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE
2409 && netif_msg_link(np)) {
2411 "%s: Autonegotiation advertising"
2412 " %#04x partner %#04x.\n", dev->name,
2413 np->advertising, lpa);
2416 /* read MII int status to clear the flag */
2417 readw(ioaddr + MIntrStatus);
2420 if (intr_status & StatsMax) {
2423 if (intr_status & IntrTxUnderrun) {
2424 if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2425 np->tx_config += TX_DRTH_VAL_INC;
2426 if (netif_msg_tx_err(np))
2428 "%s: increased tx threshold, txcfg %#08x.\n",
2429 dev->name, np->tx_config);
2431 if (netif_msg_tx_err(np))
2433 "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2434 dev->name, np->tx_config);
2436 writel(np->tx_config, ioaddr + TxConfig);
2438 if (intr_status & WOLPkt && netif_msg_wol(np)) {
2439 int wol_status = readl(ioaddr + WOLCmd);
2440 printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2441 dev->name, wol_status);
2443 if (intr_status & RxStatusFIFOOver) {
2444 if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2445 printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2448 np->stats.rx_fifo_errors++;
2450 /* Hmmmmm, it's not clear how to recover from PCI faults. */
2451 if (intr_status & IntrPCIErr) {
2452 printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2453 intr_status & IntrPCIErr);
2454 np->stats.tx_fifo_errors++;
2455 np->stats.rx_fifo_errors++;
2457 spin_unlock(&np->lock);
2460 static void __get_stats(struct net_device *dev)
2462 void __iomem * ioaddr = ns_ioaddr(dev);
2463 struct netdev_private *np = netdev_priv(dev);
2465 /* The chip only need report frame silently dropped. */
2466 np->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2467 np->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2470 static struct net_device_stats *get_stats(struct net_device *dev)
2472 struct netdev_private *np = netdev_priv(dev);
2474 /* The chip only need report frame silently dropped. */
2475 spin_lock_irq(&np->lock);
2476 if (netif_running(dev) && !np->hands_off)
2478 spin_unlock_irq(&np->lock);
2483 #ifdef CONFIG_NET_POLL_CONTROLLER
2484 static void natsemi_poll_controller(struct net_device *dev)
2486 disable_irq(dev->irq);
2487 intr_handler(dev->irq, dev, NULL);
2488 enable_irq(dev->irq);
2492 #define HASH_TABLE 0x200
2493 static void __set_rx_mode(struct net_device *dev)
2495 void __iomem * ioaddr = ns_ioaddr(dev);
2496 struct netdev_private *np = netdev_priv(dev);
2497 u8 mc_filter[64]; /* Multicast hash filter */
2500 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2501 /* Unconditionally log net taps. */
2502 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n",
2504 rx_mode = RxFilterEnable | AcceptBroadcast
2505 | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2506 } else if ((dev->mc_count > multicast_filter_limit)
2507 || (dev->flags & IFF_ALLMULTI)) {
2508 rx_mode = RxFilterEnable | AcceptBroadcast
2509 | AcceptAllMulticast | AcceptMyPhys;
2511 struct dev_mc_list *mclist;
2513 memset(mc_filter, 0, sizeof(mc_filter));
2514 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
2515 i++, mclist = mclist->next) {
2516 int i = (ether_crc(ETH_ALEN, mclist->dmi_addr) >> 23) & 0x1ff;
2517 mc_filter[i/8] |= (1 << (i & 0x07));
2519 rx_mode = RxFilterEnable | AcceptBroadcast
2520 | AcceptMulticast | AcceptMyPhys;
2521 for (i = 0; i < 64; i += 2) {
2522 writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2523 writel((mc_filter[i + 1] << 8) + mc_filter[i],
2524 ioaddr + RxFilterData);
2527 writel(rx_mode, ioaddr + RxFilterAddr);
2528 np->cur_rx_mode = rx_mode;
2531 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2533 if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2538 /* synchronized against open : rtnl_lock() held by caller */
2539 if (netif_running(dev)) {
2540 struct netdev_private *np = netdev_priv(dev);
2541 void __iomem * ioaddr = ns_ioaddr(dev);
2543 disable_irq(dev->irq);
2544 spin_lock(&np->lock);
2546 natsemi_stop_rxtx(dev);
2547 /* drain rx queue */
2549 /* change buffers */
2552 writel(np->ring_dma, ioaddr + RxRingPtr);
2553 /* restart engines */
2554 writel(RxOn | TxOn, ioaddr + ChipCmd);
2555 spin_unlock(&np->lock);
2556 enable_irq(dev->irq);
2561 static void set_rx_mode(struct net_device *dev)
2563 struct netdev_private *np = netdev_priv(dev);
2564 spin_lock_irq(&np->lock);
2567 spin_unlock_irq(&np->lock);
2570 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2572 struct netdev_private *np = netdev_priv(dev);
2573 strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
2574 strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
2575 strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN);
2578 static int get_regs_len(struct net_device *dev)
2580 return NATSEMI_REGS_SIZE;
2583 static int get_eeprom_len(struct net_device *dev)
2585 struct netdev_private *np = netdev_priv(dev);
2586 return np->eeprom_size;
2589 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2591 struct netdev_private *np = netdev_priv(dev);
2592 spin_lock_irq(&np->lock);
2593 netdev_get_ecmd(dev, ecmd);
2594 spin_unlock_irq(&np->lock);
2598 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2600 struct netdev_private *np = netdev_priv(dev);
2602 spin_lock_irq(&np->lock);
2603 res = netdev_set_ecmd(dev, ecmd);
2604 spin_unlock_irq(&np->lock);
2608 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2610 struct netdev_private *np = netdev_priv(dev);
2611 spin_lock_irq(&np->lock);
2612 netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2613 netdev_get_sopass(dev, wol->sopass);
2614 spin_unlock_irq(&np->lock);
2617 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2619 struct netdev_private *np = netdev_priv(dev);
2621 spin_lock_irq(&np->lock);
2622 netdev_set_wol(dev, wol->wolopts);
2623 res = netdev_set_sopass(dev, wol->sopass);
2624 spin_unlock_irq(&np->lock);
2628 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2630 struct netdev_private *np = netdev_priv(dev);
2631 regs->version = NATSEMI_REGS_VER;
2632 spin_lock_irq(&np->lock);
2633 netdev_get_regs(dev, buf);
2634 spin_unlock_irq(&np->lock);
2637 static u32 get_msglevel(struct net_device *dev)
2639 struct netdev_private *np = netdev_priv(dev);
2640 return np->msg_enable;
2643 static void set_msglevel(struct net_device *dev, u32 val)
2645 struct netdev_private *np = netdev_priv(dev);
2646 np->msg_enable = val;
2649 static int nway_reset(struct net_device *dev)
2653 /* if autoneg is off, it's an error */
2654 tmp = mdio_read(dev, MII_BMCR);
2655 if (tmp & BMCR_ANENABLE) {
2656 tmp |= (BMCR_ANRESTART);
2657 mdio_write(dev, MII_BMCR, tmp);
2663 static u32 get_link(struct net_device *dev)
2665 /* LSTATUS is latched low until a read - so read twice */
2666 mdio_read(dev, MII_BMSR);
2667 return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2670 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2672 struct netdev_private *np = netdev_priv(dev);
2676 eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2680 eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2681 spin_lock_irq(&np->lock);
2682 res = netdev_get_eeprom(dev, eebuf);
2683 spin_unlock_irq(&np->lock);
2685 memcpy(data, eebuf+eeprom->offset, eeprom->len);
2690 static struct ethtool_ops ethtool_ops = {
2691 .get_drvinfo = get_drvinfo,
2692 .get_regs_len = get_regs_len,
2693 .get_eeprom_len = get_eeprom_len,
2694 .get_settings = get_settings,
2695 .set_settings = set_settings,
2698 .get_regs = get_regs,
2699 .get_msglevel = get_msglevel,
2700 .set_msglevel = set_msglevel,
2701 .nway_reset = nway_reset,
2702 .get_link = get_link,
2703 .get_eeprom = get_eeprom,
2706 static int netdev_set_wol(struct net_device *dev, u32 newval)
2708 struct netdev_private *np = netdev_priv(dev);
2709 void __iomem * ioaddr = ns_ioaddr(dev);
2710 u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2712 /* translate to bitmasks this chip understands */
2713 if (newval & WAKE_PHY)
2715 if (newval & WAKE_UCAST)
2716 data |= WakeUnicast;
2717 if (newval & WAKE_MCAST)
2718 data |= WakeMulticast;
2719 if (newval & WAKE_BCAST)
2720 data |= WakeBroadcast;
2721 if (newval & WAKE_ARP)
2723 if (newval & WAKE_MAGIC)
2725 if (np->srr >= SRR_DP83815_D) {
2726 if (newval & WAKE_MAGICSECURE) {
2727 data |= WakeMagicSecure;
2731 writel(data, ioaddr + WOLCmd);
2736 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2738 struct netdev_private *np = netdev_priv(dev);
2739 void __iomem * ioaddr = ns_ioaddr(dev);
2740 u32 regval = readl(ioaddr + WOLCmd);
2742 *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2743 | WAKE_ARP | WAKE_MAGIC);
2745 if (np->srr >= SRR_DP83815_D) {
2746 /* SOPASS works on revD and higher */
2747 *supported |= WAKE_MAGICSECURE;
2751 /* translate from chip bitmasks */
2752 if (regval & WakePhy)
2754 if (regval & WakeUnicast)
2756 if (regval & WakeMulticast)
2758 if (regval & WakeBroadcast)
2760 if (regval & WakeArp)
2762 if (regval & WakeMagic)
2764 if (regval & WakeMagicSecure) {
2765 /* this can be on in revC, but it's broken */
2766 *cur |= WAKE_MAGICSECURE;
2772 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2774 struct netdev_private *np = netdev_priv(dev);
2775 void __iomem * ioaddr = ns_ioaddr(dev);
2776 u16 *sval = (u16 *)newval;
2779 if (np->srr < SRR_DP83815_D) {
2783 /* enable writing to these registers by disabling the RX filter */
2784 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2785 addr &= ~RxFilterEnable;
2786 writel(addr, ioaddr + RxFilterAddr);
2788 /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2789 writel(addr | 0xa, ioaddr + RxFilterAddr);
2790 writew(sval[0], ioaddr + RxFilterData);
2792 writel(addr | 0xc, ioaddr + RxFilterAddr);
2793 writew(sval[1], ioaddr + RxFilterData);
2795 writel(addr | 0xe, ioaddr + RxFilterAddr);
2796 writew(sval[2], ioaddr + RxFilterData);
2798 /* re-enable the RX filter */
2799 writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2804 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2806 struct netdev_private *np = netdev_priv(dev);
2807 void __iomem * ioaddr = ns_ioaddr(dev);
2808 u16 *sval = (u16 *)data;
2811 if (np->srr < SRR_DP83815_D) {
2812 sval[0] = sval[1] = sval[2] = 0;
2816 /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2817 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2819 writel(addr | 0xa, ioaddr + RxFilterAddr);
2820 sval[0] = readw(ioaddr + RxFilterData);
2822 writel(addr | 0xc, ioaddr + RxFilterAddr);
2823 sval[1] = readw(ioaddr + RxFilterData);
2825 writel(addr | 0xe, ioaddr + RxFilterAddr);
2826 sval[2] = readw(ioaddr + RxFilterData);
2828 writel(addr, ioaddr + RxFilterAddr);
2833 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2835 struct netdev_private *np = netdev_priv(dev);
2838 ecmd->port = dev->if_port;
2839 ecmd->speed = np->speed;
2840 ecmd->duplex = np->duplex;
2841 ecmd->autoneg = np->autoneg;
2842 ecmd->advertising = 0;
2843 if (np->advertising & ADVERTISE_10HALF)
2844 ecmd->advertising |= ADVERTISED_10baseT_Half;
2845 if (np->advertising & ADVERTISE_10FULL)
2846 ecmd->advertising |= ADVERTISED_10baseT_Full;
2847 if (np->advertising & ADVERTISE_100HALF)
2848 ecmd->advertising |= ADVERTISED_100baseT_Half;
2849 if (np->advertising & ADVERTISE_100FULL)
2850 ecmd->advertising |= ADVERTISED_100baseT_Full;
2851 ecmd->supported = (SUPPORTED_Autoneg |
2852 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2853 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2854 SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2855 ecmd->phy_address = np->phy_addr_external;
2857 * We intentionally report the phy address of the external
2858 * phy, even if the internal phy is used. This is necessary
2859 * to work around a deficiency of the ethtool interface:
2860 * It's only possible to query the settings of the active
2862 * # ethtool -s ethX port mii
2863 * actually sends an ioctl to switch to port mii with the
2864 * settings that are used for the current active port.
2865 * If we would report a different phy address in this
2867 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2868 * would unintentionally change the phy address.
2870 * Fortunately the phy address doesn't matter with the
2874 /* set information based on active port type */
2875 switch (ecmd->port) {
2878 ecmd->advertising |= ADVERTISED_TP;
2879 ecmd->transceiver = XCVR_INTERNAL;
2882 ecmd->advertising |= ADVERTISED_MII;
2883 ecmd->transceiver = XCVR_EXTERNAL;
2886 ecmd->advertising |= ADVERTISED_FIBRE;
2887 ecmd->transceiver = XCVR_EXTERNAL;
2891 /* if autonegotiation is on, try to return the active speed/duplex */
2892 if (ecmd->autoneg == AUTONEG_ENABLE) {
2893 ecmd->advertising |= ADVERTISED_Autoneg;
2894 tmp = mii_nway_result(
2895 np->advertising & mdio_read(dev, MII_LPA));
2896 if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2897 ecmd->speed = SPEED_100;
2899 ecmd->speed = SPEED_10;
2900 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2901 ecmd->duplex = DUPLEX_FULL;
2903 ecmd->duplex = DUPLEX_HALF;
2906 /* ignore maxtxpkt, maxrxpkt for now */
2911 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2913 struct netdev_private *np = netdev_priv(dev);
2915 if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2917 if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2919 if (ecmd->autoneg == AUTONEG_ENABLE) {
2920 if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2921 ADVERTISED_10baseT_Full |
2922 ADVERTISED_100baseT_Half |
2923 ADVERTISED_100baseT_Full)) == 0) {
2926 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2927 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2929 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2936 * maxtxpkt, maxrxpkt: ignored for now.
2939 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2940 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2941 * selects based on ecmd->port.
2943 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2944 * phys that are connected to the mii bus. It's used to apply fibre
2948 /* WHEW! now lets bang some bits */
2950 /* save the parms */
2951 dev->if_port = ecmd->port;
2952 np->autoneg = ecmd->autoneg;
2953 np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2954 if (np->autoneg == AUTONEG_ENABLE) {
2955 /* advertise only what has been requested */
2956 np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2957 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2958 np->advertising |= ADVERTISE_10HALF;
2959 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2960 np->advertising |= ADVERTISE_10FULL;
2961 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2962 np->advertising |= ADVERTISE_100HALF;
2963 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2964 np->advertising |= ADVERTISE_100FULL;
2966 np->speed = ecmd->speed;
2967 np->duplex = ecmd->duplex;
2968 /* user overriding the initial full duplex parm? */
2969 if (np->duplex == DUPLEX_HALF)
2970 np->full_duplex = 0;
2973 /* get the right phy enabled */
2974 if (ecmd->port == PORT_TP)
2975 switch_port_internal(dev);
2977 switch_port_external(dev);
2979 /* set parms and see how this affected our link status */
2980 init_phy_fixup(dev);
2985 static int netdev_get_regs(struct net_device *dev, u8 *buf)
2990 u32 *rbuf = (u32 *)buf;
2991 void __iomem * ioaddr = ns_ioaddr(dev);
2993 /* read non-mii page 0 of registers */
2994 for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2995 rbuf[i] = readl(ioaddr + i*4);
2998 /* read current mii registers */
2999 for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
3000 rbuf[i] = mdio_read(dev, i & 0x1f);
3002 /* read only the 'magic' registers from page 1 */
3003 writew(1, ioaddr + PGSEL);
3004 rbuf[i++] = readw(ioaddr + PMDCSR);
3005 rbuf[i++] = readw(ioaddr + TSTDAT);
3006 rbuf[i++] = readw(ioaddr + DSPCFG);
3007 rbuf[i++] = readw(ioaddr + SDCFG);
3008 writew(0, ioaddr + PGSEL);
3010 /* read RFCR indexed registers */
3011 rfcr = readl(ioaddr + RxFilterAddr);
3012 for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3013 writel(j*2, ioaddr + RxFilterAddr);
3014 rbuf[i++] = readw(ioaddr + RxFilterData);
3016 writel(rfcr, ioaddr + RxFilterAddr);
3018 /* the interrupt status is clear-on-read - see if we missed any */
3019 if (rbuf[4] & rbuf[5]) {
3021 "%s: shoot, we dropped an interrupt (%#08x)\n",
3022 dev->name, rbuf[4] & rbuf[5]);
3028 #define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3029 | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \
3030 | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \
3031 | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \
3032 | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \
3033 | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \
3034 | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \
3035 | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3037 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3040 u16 *ebuf = (u16 *)buf;
3041 void __iomem * ioaddr = ns_ioaddr(dev);
3042 struct netdev_private *np = netdev_priv(dev);
3044 /* eeprom_read reads 16 bits, and indexes by 16 bits */
3045 for (i = 0; i < np->eeprom_size/2; i++) {
3046 ebuf[i] = eeprom_read(ioaddr, i);
3047 /* The EEPROM itself stores data bit-swapped, but eeprom_read
3048 * reads it back "sanely". So we swap it back here in order to
3049 * present it to userland as it is stored. */
3050 ebuf[i] = SWAP_BITS(ebuf[i]);
3055 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3057 struct mii_ioctl_data *data = if_mii(rq);
3058 struct netdev_private *np = netdev_priv(dev);
3061 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
3062 case SIOCDEVPRIVATE: /* for binary compat, remove in 2.5 */
3063 data->phy_id = np->phy_addr_external;
3066 case SIOCGMIIREG: /* Read MII PHY register. */
3067 case SIOCDEVPRIVATE+1: /* for binary compat, remove in 2.5 */
3068 /* The phy_id is not enough to uniquely identify
3069 * the intended target. Therefore the command is sent to
3070 * the given mii on the current port.
3072 if (dev->if_port == PORT_TP) {
3073 if ((data->phy_id & 0x1f) == np->phy_addr_external)
3074 data->val_out = mdio_read(dev,
3075 data->reg_num & 0x1f);
3079 move_int_phy(dev, data->phy_id & 0x1f);
3080 data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3081 data->reg_num & 0x1f);
3085 case SIOCSMIIREG: /* Write MII PHY register. */
3086 case SIOCDEVPRIVATE+2: /* for binary compat, remove in 2.5 */
3087 if (!capable(CAP_NET_ADMIN))
3089 if (dev->if_port == PORT_TP) {
3090 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3091 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3092 np->advertising = data->val_in;
3093 mdio_write(dev, data->reg_num & 0x1f,
3097 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3098 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3099 np->advertising = data->val_in;
3101 move_int_phy(dev, data->phy_id & 0x1f);
3102 miiport_write(dev, data->phy_id & 0x1f,
3103 data->reg_num & 0x1f,
3112 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3114 void __iomem * ioaddr = ns_ioaddr(dev);
3115 struct netdev_private *np = netdev_priv(dev);
3117 if (netif_msg_wol(np))
3118 printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3121 /* For WOL we must restart the rx process in silent mode.
3122 * Write NULL to the RxRingPtr. Only possible if
3123 * rx process is stopped
3125 writel(0, ioaddr + RxRingPtr);
3127 /* read WoL status to clear */
3128 readl(ioaddr + WOLCmd);
3130 /* PME on, clear status */
3131 writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3133 /* and restart the rx process */
3134 writel(RxOn, ioaddr + ChipCmd);
3137 /* enable the WOL interrupt.
3138 * Could be used to send a netlink message.
3140 writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3141 writel(1, ioaddr + IntrEnable);
3145 static int netdev_close(struct net_device *dev)
3147 void __iomem * ioaddr = ns_ioaddr(dev);
3148 struct netdev_private *np = netdev_priv(dev);
3150 if (netif_msg_ifdown(np))
3152 "%s: Shutting down ethercard, status was %#04x.\n",
3153 dev->name, (int)readl(ioaddr + ChipCmd));
3154 if (netif_msg_pktdata(np))
3156 "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
3157 dev->name, np->cur_tx, np->dirty_tx,
3158 np->cur_rx, np->dirty_rx);
3161 * FIXME: what if someone tries to close a device
3162 * that is suspended?
3163 * Should we reenable the nic to switch to
3164 * the final WOL settings?
3167 del_timer_sync(&np->timer);
3168 disable_irq(dev->irq);
3169 spin_lock_irq(&np->lock);
3170 natsemi_irq_disable(dev);
3172 spin_unlock_irq(&np->lock);
3173 enable_irq(dev->irq);
3175 free_irq(dev->irq, dev);
3177 /* Interrupt disabled, interrupt handler released,
3178 * queue stopped, timer deleted, rtnl_lock held
3179 * All async codepaths that access the driver are disabled.
3181 spin_lock_irq(&np->lock);
3183 readl(ioaddr + IntrMask);
3184 readw(ioaddr + MIntrStatus);
3187 writel(StatsFreeze, ioaddr + StatsCtrl);
3189 /* Stop the chip's Tx and Rx processes. */
3190 natsemi_stop_rxtx(dev);
3193 spin_unlock_irq(&np->lock);
3195 /* clear the carrier last - an interrupt could reenable it otherwise */
3196 netif_carrier_off(dev);
3197 netif_stop_queue(dev);
3204 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3206 /* restart the NIC in WOL mode.
3207 * The nic must be stopped for this.
3209 enable_wol_mode(dev, 0);
3211 /* Restore PME enable bit unmolested */
3212 writel(np->SavedClkRun, ioaddr + ClkRun);
3219 static void __devexit natsemi_remove1 (struct pci_dev *pdev)
3221 struct net_device *dev = pci_get_drvdata(pdev);
3222 void __iomem * ioaddr = ns_ioaddr(dev);
3224 unregister_netdev (dev);
3225 pci_release_regions (pdev);
3228 pci_set_drvdata(pdev, NULL);
3234 * The ns83815 chip doesn't have explicit RxStop bits.
3235 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3236 * of the nic, thus this function must be very careful:
3238 * suspend/resume synchronization:
3240 * netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3241 * start_tx, tx_timeout
3243 * No function accesses the hardware without checking np->hands_off.
3244 * the check occurs under spin_lock_irq(&np->lock);
3246 * * netdev_ioctl: noncritical access.
3247 * * netdev_open: cannot happen due to the device_detach
3248 * * netdev_close: doesn't hurt.
3249 * * netdev_timer: timer stopped by natsemi_suspend.
3250 * * intr_handler: doesn't acquire the spinlock. suspend calls
3251 * disable_irq() to enforce synchronization.
3252 * * natsemi_poll: checks before reenabling interrupts. suspend
3253 * sets hands_off, disables interrupts and then waits with
3254 * netif_poll_disable().
3256 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3259 static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3261 struct net_device *dev = pci_get_drvdata (pdev);
3262 struct netdev_private *np = netdev_priv(dev);
3263 void __iomem * ioaddr = ns_ioaddr(dev);
3266 if (netif_running (dev)) {
3267 del_timer_sync(&np->timer);
3269 disable_irq(dev->irq);
3270 spin_lock_irq(&np->lock);
3272 writel(0, ioaddr + IntrEnable);
3274 natsemi_stop_rxtx(dev);
3275 netif_stop_queue(dev);
3277 spin_unlock_irq(&np->lock);
3278 enable_irq(dev->irq);
3280 netif_poll_disable(dev);
3282 /* Update the error counts. */
3285 /* pci_power_off(pdev, -1); */
3288 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3289 /* Restore PME enable bit */
3291 /* restart the NIC in WOL mode.
3292 * The nic must be stopped for this.
3293 * FIXME: use the WOL interrupt
3295 enable_wol_mode(dev, 0);
3297 /* Restore PME enable bit unmolested */
3298 writel(np->SavedClkRun, ioaddr + ClkRun);
3302 netif_device_detach(dev);
3308 static int natsemi_resume (struct pci_dev *pdev)
3310 struct net_device *dev = pci_get_drvdata (pdev);
3311 struct netdev_private *np = netdev_priv(dev);
3314 if (netif_device_present(dev))
3316 if (netif_running(dev)) {
3317 BUG_ON(!np->hands_off);
3318 pci_enable_device(pdev);
3319 /* pci_power_on(pdev); */
3323 disable_irq(dev->irq);
3324 spin_lock_irq(&np->lock);
3326 init_registers(dev);
3327 netif_device_attach(dev);
3328 spin_unlock_irq(&np->lock);
3329 enable_irq(dev->irq);
3331 mod_timer(&np->timer, jiffies + 1*HZ);
3333 netif_device_attach(dev);
3334 netif_poll_enable(dev);
3340 #endif /* CONFIG_PM */
3342 static struct pci_driver natsemi_driver = {
3344 .id_table = natsemi_pci_tbl,
3345 .probe = natsemi_probe1,
3346 .remove = __devexit_p(natsemi_remove1),
3348 .suspend = natsemi_suspend,
3349 .resume = natsemi_resume,
3353 static int __init natsemi_init_mod (void)
3355 /* when a module, this is printed whether or not devices are found in probe */
3360 return pci_module_init (&natsemi_driver);
3363 static void __exit natsemi_exit_mod (void)
3365 pci_unregister_driver (&natsemi_driver);
3368 module_init(natsemi_init_mod);
3369 module_exit(natsemi_exit_mod);