Merge branch 'linus' into x86/tracehook
[linux-2.6] / drivers / media / video / cx88 / cx88-core.c
1 /*
2  *
3  * device driver for Conexant 2388x based TV cards
4  * driver core
5  *
6  * (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]
7  *
8  * (c) 2005-2006 Mauro Carvalho Chehab <mchehab@infradead.org>
9  *     - Multituner support
10  *     - video_ioctl2 conversion
11  *     - PAL/M fixes
12  *
13  *  This program is free software; you can redistribute it and/or modify
14  *  it under the terms of the GNU General Public License as published by
15  *  the Free Software Foundation; either version 2 of the License, or
16  *  (at your option) any later version.
17  *
18  *  This program is distributed in the hope that it will be useful,
19  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
20  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  *  GNU General Public License for more details.
22  *
23  *  You should have received a copy of the GNU General Public License
24  *  along with this program; if not, write to the Free Software
25  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  */
27
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/kmod.h>
34 #include <linux/sound.h>
35 #include <linux/interrupt.h>
36 #include <linux/pci.h>
37 #include <linux/delay.h>
38 #include <linux/videodev2.h>
39 #include <linux/mutex.h>
40
41 #include "cx88.h"
42 #include <media/v4l2-common.h>
43 #include <media/v4l2-ioctl.h>
44
45 MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards");
46 MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]");
47 MODULE_LICENSE("GPL");
48
49 /* ------------------------------------------------------------------ */
50
51 static unsigned int core_debug;
52 module_param(core_debug,int,0644);
53 MODULE_PARM_DESC(core_debug,"enable debug messages [core]");
54
55 static unsigned int nicam;
56 module_param(nicam,int,0644);
57 MODULE_PARM_DESC(nicam,"tv audio is nicam");
58
59 static unsigned int nocomb;
60 module_param(nocomb,int,0644);
61 MODULE_PARM_DESC(nocomb,"disable comb filter");
62
63 #define dprintk(level,fmt, arg...)      if (core_debug >= level)        \
64         printk(KERN_DEBUG "%s: " fmt, core->name , ## arg)
65
66 static unsigned int cx88_devcount;
67 static LIST_HEAD(cx88_devlist);
68 static DEFINE_MUTEX(devlist);
69
70 #define NO_SYNC_LINE (-1U)
71
72 /* @lpi: lines per IRQ, or 0 to not generate irqs. Note: IRQ to be
73          generated _after_ lpi lines are transferred. */
74 static __le32* cx88_risc_field(__le32 *rp, struct scatterlist *sglist,
75                             unsigned int offset, u32 sync_line,
76                             unsigned int bpl, unsigned int padding,
77                             unsigned int lines, unsigned int lpi)
78 {
79         struct scatterlist *sg;
80         unsigned int line,todo,sol;
81
82         /* sync instruction */
83         if (sync_line != NO_SYNC_LINE)
84                 *(rp++) = cpu_to_le32(RISC_RESYNC | sync_line);
85
86         /* scan lines */
87         sg = sglist;
88         for (line = 0; line < lines; line++) {
89                 while (offset && offset >= sg_dma_len(sg)) {
90                         offset -= sg_dma_len(sg);
91                         sg++;
92                 }
93                 if (lpi && line>0 && !(line % lpi))
94                         sol = RISC_SOL | RISC_IRQ1 | RISC_CNT_INC;
95                 else
96                         sol = RISC_SOL;
97                 if (bpl <= sg_dma_len(sg)-offset) {
98                         /* fits into current chunk */
99                         *(rp++)=cpu_to_le32(RISC_WRITE|sol|RISC_EOL|bpl);
100                         *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
101                         offset+=bpl;
102                 } else {
103                         /* scanline needs to be split */
104                         todo = bpl;
105                         *(rp++)=cpu_to_le32(RISC_WRITE|sol|
106                                             (sg_dma_len(sg)-offset));
107                         *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
108                         todo -= (sg_dma_len(sg)-offset);
109                         offset = 0;
110                         sg++;
111                         while (todo > sg_dma_len(sg)) {
112                                 *(rp++)=cpu_to_le32(RISC_WRITE|
113                                                     sg_dma_len(sg));
114                                 *(rp++)=cpu_to_le32(sg_dma_address(sg));
115                                 todo -= sg_dma_len(sg);
116                                 sg++;
117                         }
118                         *(rp++)=cpu_to_le32(RISC_WRITE|RISC_EOL|todo);
119                         *(rp++)=cpu_to_le32(sg_dma_address(sg));
120                         offset += todo;
121                 }
122                 offset += padding;
123         }
124
125         return rp;
126 }
127
128 int cx88_risc_buffer(struct pci_dev *pci, struct btcx_riscmem *risc,
129                      struct scatterlist *sglist,
130                      unsigned int top_offset, unsigned int bottom_offset,
131                      unsigned int bpl, unsigned int padding, unsigned int lines)
132 {
133         u32 instructions,fields;
134         __le32 *rp;
135         int rc;
136
137         fields = 0;
138         if (UNSET != top_offset)
139                 fields++;
140         if (UNSET != bottom_offset)
141                 fields++;
142
143         /* estimate risc mem: worst case is one write per page border +
144            one write per scan line + syncs + jump (all 2 dwords).  Padding
145            can cause next bpl to start close to a page border.  First DMA
146            region may be smaller than PAGE_SIZE */
147         instructions  = fields * (1 + ((bpl + padding) * lines) / PAGE_SIZE + lines);
148         instructions += 2;
149         if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
150                 return rc;
151
152         /* write risc instructions */
153         rp = risc->cpu;
154         if (UNSET != top_offset)
155                 rp = cx88_risc_field(rp, sglist, top_offset, 0,
156                                      bpl, padding, lines, 0);
157         if (UNSET != bottom_offset)
158                 rp = cx88_risc_field(rp, sglist, bottom_offset, 0x200,
159                                      bpl, padding, lines, 0);
160
161         /* save pointer to jmp instruction address */
162         risc->jmp = rp;
163         BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
164         return 0;
165 }
166
167 int cx88_risc_databuffer(struct pci_dev *pci, struct btcx_riscmem *risc,
168                          struct scatterlist *sglist, unsigned int bpl,
169                          unsigned int lines, unsigned int lpi)
170 {
171         u32 instructions;
172         __le32 *rp;
173         int rc;
174
175         /* estimate risc mem: worst case is one write per page border +
176            one write per scan line + syncs + jump (all 2 dwords).  Here
177            there is no padding and no sync.  First DMA region may be smaller
178            than PAGE_SIZE */
179         instructions  = 1 + (bpl * lines) / PAGE_SIZE + lines;
180         instructions += 1;
181         if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
182                 return rc;
183
184         /* write risc instructions */
185         rp = risc->cpu;
186         rp = cx88_risc_field(rp, sglist, 0, NO_SYNC_LINE, bpl, 0, lines, lpi);
187
188         /* save pointer to jmp instruction address */
189         risc->jmp = rp;
190         BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
191         return 0;
192 }
193
194 int cx88_risc_stopper(struct pci_dev *pci, struct btcx_riscmem *risc,
195                       u32 reg, u32 mask, u32 value)
196 {
197         __le32 *rp;
198         int rc;
199
200         if ((rc = btcx_riscmem_alloc(pci, risc, 4*16)) < 0)
201                 return rc;
202
203         /* write risc instructions */
204         rp = risc->cpu;
205         *(rp++) = cpu_to_le32(RISC_WRITECR  | RISC_IRQ2 | RISC_IMM);
206         *(rp++) = cpu_to_le32(reg);
207         *(rp++) = cpu_to_le32(value);
208         *(rp++) = cpu_to_le32(mask);
209         *(rp++) = cpu_to_le32(RISC_JUMP);
210         *(rp++) = cpu_to_le32(risc->dma);
211         return 0;
212 }
213
214 void
215 cx88_free_buffer(struct videobuf_queue *q, struct cx88_buffer *buf)
216 {
217         struct videobuf_dmabuf *dma=videobuf_to_dma(&buf->vb);
218
219         BUG_ON(in_interrupt());
220         videobuf_waiton(&buf->vb,0,0);
221         videobuf_dma_unmap(q, dma);
222         videobuf_dma_free(dma);
223         btcx_riscmem_free(to_pci_dev(q->dev), &buf->risc);
224         buf->vb.state = VIDEOBUF_NEEDS_INIT;
225 }
226
227 /* ------------------------------------------------------------------ */
228 /* our SRAM memory layout                                             */
229
230 /* we are going to put all thr risc programs into host memory, so we
231  * can use the whole SDRAM for the DMA fifos.  To simplify things, we
232  * use a static memory layout.  That surely will waste memory in case
233  * we don't use all DMA channels at the same time (which will be the
234  * case most of the time).  But that still gives us enougth FIFO space
235  * to be able to deal with insane long pci latencies ...
236  *
237  * FIFO space allocations:
238  *    channel  21    (y video)  - 10.0k
239  *    channel  22    (u video)  -  2.0k
240  *    channel  23    (v video)  -  2.0k
241  *    channel  24    (vbi)      -  4.0k
242  *    channels 25+26 (audio)    -  4.0k
243  *    channel  28    (mpeg)     -  4.0k
244  *    TOTAL                     = 29.0k
245  *
246  * Every channel has 160 bytes control data (64 bytes instruction
247  * queue and 6 CDT entries), which is close to 2k total.
248  *
249  * Address layout:
250  *    0x0000 - 0x03ff    CMDs / reserved
251  *    0x0400 - 0x0bff    instruction queues + CDs
252  *    0x0c00 -           FIFOs
253  */
254
255 struct sram_channel cx88_sram_channels[] = {
256         [SRAM_CH21] = {
257                 .name       = "video y / packed",
258                 .cmds_start = 0x180040,
259                 .ctrl_start = 0x180400,
260                 .cdt        = 0x180400 + 64,
261                 .fifo_start = 0x180c00,
262                 .fifo_size  = 0x002800,
263                 .ptr1_reg   = MO_DMA21_PTR1,
264                 .ptr2_reg   = MO_DMA21_PTR2,
265                 .cnt1_reg   = MO_DMA21_CNT1,
266                 .cnt2_reg   = MO_DMA21_CNT2,
267         },
268         [SRAM_CH22] = {
269                 .name       = "video u",
270                 .cmds_start = 0x180080,
271                 .ctrl_start = 0x1804a0,
272                 .cdt        = 0x1804a0 + 64,
273                 .fifo_start = 0x183400,
274                 .fifo_size  = 0x000800,
275                 .ptr1_reg   = MO_DMA22_PTR1,
276                 .ptr2_reg   = MO_DMA22_PTR2,
277                 .cnt1_reg   = MO_DMA22_CNT1,
278                 .cnt2_reg   = MO_DMA22_CNT2,
279         },
280         [SRAM_CH23] = {
281                 .name       = "video v",
282                 .cmds_start = 0x1800c0,
283                 .ctrl_start = 0x180540,
284                 .cdt        = 0x180540 + 64,
285                 .fifo_start = 0x183c00,
286                 .fifo_size  = 0x000800,
287                 .ptr1_reg   = MO_DMA23_PTR1,
288                 .ptr2_reg   = MO_DMA23_PTR2,
289                 .cnt1_reg   = MO_DMA23_CNT1,
290                 .cnt2_reg   = MO_DMA23_CNT2,
291         },
292         [SRAM_CH24] = {
293                 .name       = "vbi",
294                 .cmds_start = 0x180100,
295                 .ctrl_start = 0x1805e0,
296                 .cdt        = 0x1805e0 + 64,
297                 .fifo_start = 0x184400,
298                 .fifo_size  = 0x001000,
299                 .ptr1_reg   = MO_DMA24_PTR1,
300                 .ptr2_reg   = MO_DMA24_PTR2,
301                 .cnt1_reg   = MO_DMA24_CNT1,
302                 .cnt2_reg   = MO_DMA24_CNT2,
303         },
304         [SRAM_CH25] = {
305                 .name       = "audio from",
306                 .cmds_start = 0x180140,
307                 .ctrl_start = 0x180680,
308                 .cdt        = 0x180680 + 64,
309                 .fifo_start = 0x185400,
310                 .fifo_size  = 0x001000,
311                 .ptr1_reg   = MO_DMA25_PTR1,
312                 .ptr2_reg   = MO_DMA25_PTR2,
313                 .cnt1_reg   = MO_DMA25_CNT1,
314                 .cnt2_reg   = MO_DMA25_CNT2,
315         },
316         [SRAM_CH26] = {
317                 .name       = "audio to",
318                 .cmds_start = 0x180180,
319                 .ctrl_start = 0x180720,
320                 .cdt        = 0x180680 + 64,  /* same as audio IN */
321                 .fifo_start = 0x185400,       /* same as audio IN */
322                 .fifo_size  = 0x001000,       /* same as audio IN */
323                 .ptr1_reg   = MO_DMA26_PTR1,
324                 .ptr2_reg   = MO_DMA26_PTR2,
325                 .cnt1_reg   = MO_DMA26_CNT1,
326                 .cnt2_reg   = MO_DMA26_CNT2,
327         },
328         [SRAM_CH28] = {
329                 .name       = "mpeg",
330                 .cmds_start = 0x180200,
331                 .ctrl_start = 0x1807C0,
332                 .cdt        = 0x1807C0 + 64,
333                 .fifo_start = 0x186400,
334                 .fifo_size  = 0x001000,
335                 .ptr1_reg   = MO_DMA28_PTR1,
336                 .ptr2_reg   = MO_DMA28_PTR2,
337                 .cnt1_reg   = MO_DMA28_CNT1,
338                 .cnt2_reg   = MO_DMA28_CNT2,
339         },
340 };
341
342 int cx88_sram_channel_setup(struct cx88_core *core,
343                             struct sram_channel *ch,
344                             unsigned int bpl, u32 risc)
345 {
346         unsigned int i,lines;
347         u32 cdt;
348
349         bpl   = (bpl + 7) & ~7; /* alignment */
350         cdt   = ch->cdt;
351         lines = ch->fifo_size / bpl;
352         if (lines > 6)
353                 lines = 6;
354         BUG_ON(lines < 2);
355
356         /* write CDT */
357         for (i = 0; i < lines; i++)
358                 cx_write(cdt + 16*i, ch->fifo_start + bpl*i);
359
360         /* write CMDS */
361         cx_write(ch->cmds_start +  0, risc);
362         cx_write(ch->cmds_start +  4, cdt);
363         cx_write(ch->cmds_start +  8, (lines*16) >> 3);
364         cx_write(ch->cmds_start + 12, ch->ctrl_start);
365         cx_write(ch->cmds_start + 16, 64 >> 2);
366         for (i = 20; i < 64; i += 4)
367                 cx_write(ch->cmds_start + i, 0);
368
369         /* fill registers */
370         cx_write(ch->ptr1_reg, ch->fifo_start);
371         cx_write(ch->ptr2_reg, cdt);
372         cx_write(ch->cnt1_reg, (bpl >> 3) -1);
373         cx_write(ch->cnt2_reg, (lines*16) >> 3);
374
375         dprintk(2,"sram setup %s: bpl=%d lines=%d\n", ch->name, bpl, lines);
376         return 0;
377 }
378
379 /* ------------------------------------------------------------------ */
380 /* debug helper code                                                  */
381
382 static int cx88_risc_decode(u32 risc)
383 {
384         static char *instr[16] = {
385                 [ RISC_SYNC    >> 28 ] = "sync",
386                 [ RISC_WRITE   >> 28 ] = "write",
387                 [ RISC_WRITEC  >> 28 ] = "writec",
388                 [ RISC_READ    >> 28 ] = "read",
389                 [ RISC_READC   >> 28 ] = "readc",
390                 [ RISC_JUMP    >> 28 ] = "jump",
391                 [ RISC_SKIP    >> 28 ] = "skip",
392                 [ RISC_WRITERM >> 28 ] = "writerm",
393                 [ RISC_WRITECM >> 28 ] = "writecm",
394                 [ RISC_WRITECR >> 28 ] = "writecr",
395         };
396         static int incr[16] = {
397                 [ RISC_WRITE   >> 28 ] = 2,
398                 [ RISC_JUMP    >> 28 ] = 2,
399                 [ RISC_WRITERM >> 28 ] = 3,
400                 [ RISC_WRITECM >> 28 ] = 3,
401                 [ RISC_WRITECR >> 28 ] = 4,
402         };
403         static char *bits[] = {
404                 "12",   "13",   "14",   "resync",
405                 "cnt0", "cnt1", "18",   "19",
406                 "20",   "21",   "22",   "23",
407                 "irq1", "irq2", "eol",  "sol",
408         };
409         int i;
410
411         printk("0x%08x [ %s", risc,
412                instr[risc >> 28] ? instr[risc >> 28] : "INVALID");
413         for (i = ARRAY_SIZE(bits)-1; i >= 0; i--)
414                 if (risc & (1 << (i + 12)))
415                         printk(" %s",bits[i]);
416         printk(" count=%d ]\n", risc & 0xfff);
417         return incr[risc >> 28] ? incr[risc >> 28] : 1;
418 }
419
420
421 void cx88_sram_channel_dump(struct cx88_core *core,
422                             struct sram_channel *ch)
423 {
424         static char *name[] = {
425                 "initial risc",
426                 "cdt base",
427                 "cdt size",
428                 "iq base",
429                 "iq size",
430                 "risc pc",
431                 "iq wr ptr",
432                 "iq rd ptr",
433                 "cdt current",
434                 "pci target",
435                 "line / byte",
436         };
437         u32 risc;
438         unsigned int i,j,n;
439
440         printk("%s: %s - dma channel status dump\n",
441                core->name,ch->name);
442         for (i = 0; i < ARRAY_SIZE(name); i++)
443                 printk("%s:   cmds: %-12s: 0x%08x\n",
444                        core->name,name[i],
445                        cx_read(ch->cmds_start + 4*i));
446         for (n = 1, i = 0; i < 4; i++) {
447                 risc = cx_read(ch->cmds_start + 4 * (i+11));
448                 printk("%s:   risc%d: ", core->name, i);
449                 if (--n)
450                         printk("0x%08x [ arg #%d ]\n", risc, n);
451                 else
452                         n = cx88_risc_decode(risc);
453         }
454         for (i = 0; i < 16; i += n) {
455                 risc = cx_read(ch->ctrl_start + 4 * i);
456                 printk("%s:   iq %x: ", core->name, i);
457                 n = cx88_risc_decode(risc);
458                 for (j = 1; j < n; j++) {
459                         risc = cx_read(ch->ctrl_start + 4 * (i+j));
460                         printk("%s:   iq %x: 0x%08x [ arg #%d ]\n",
461                                core->name, i+j, risc, j);
462                 }
463         }
464
465         printk("%s: fifo: 0x%08x -> 0x%x\n",
466                core->name, ch->fifo_start, ch->fifo_start+ch->fifo_size);
467         printk("%s: ctrl: 0x%08x -> 0x%x\n",
468                core->name, ch->ctrl_start, ch->ctrl_start+6*16);
469         printk("%s:   ptr1_reg: 0x%08x\n",
470                core->name,cx_read(ch->ptr1_reg));
471         printk("%s:   ptr2_reg: 0x%08x\n",
472                core->name,cx_read(ch->ptr2_reg));
473         printk("%s:   cnt1_reg: 0x%08x\n",
474                core->name,cx_read(ch->cnt1_reg));
475         printk("%s:   cnt2_reg: 0x%08x\n",
476                core->name,cx_read(ch->cnt2_reg));
477 }
478
479 static char *cx88_pci_irqs[32] = {
480         "vid", "aud", "ts", "vip", "hst", "5", "6", "tm1",
481         "src_dma", "dst_dma", "risc_rd_err", "risc_wr_err",
482         "brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err",
483         "i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1"
484 };
485
486 void cx88_print_irqbits(char *name, char *tag, char **strings,
487                         int len, u32 bits, u32 mask)
488 {
489         unsigned int i;
490
491         printk(KERN_DEBUG "%s: %s [0x%x]", name, tag, bits);
492         for (i = 0; i < len; i++) {
493                 if (!(bits & (1 << i)))
494                         continue;
495                 if (strings[i])
496                         printk(" %s", strings[i]);
497                 else
498                         printk(" %d", i);
499                 if (!(mask & (1 << i)))
500                         continue;
501                 printk("*");
502         }
503         printk("\n");
504 }
505
506 /* ------------------------------------------------------------------ */
507
508 int cx88_core_irq(struct cx88_core *core, u32 status)
509 {
510         int handled = 0;
511
512         if (status & PCI_INT_IR_SMPINT) {
513                 cx88_ir_irq(core);
514                 handled++;
515         }
516         if (!handled)
517                 cx88_print_irqbits(core->name, "irq pci",
518                                    cx88_pci_irqs, ARRAY_SIZE(cx88_pci_irqs),
519                                    status, core->pci_irqmask);
520         return handled;
521 }
522
523 void cx88_wakeup(struct cx88_core *core,
524                  struct cx88_dmaqueue *q, u32 count)
525 {
526         struct cx88_buffer *buf;
527         int bc;
528
529         for (bc = 0;; bc++) {
530                 if (list_empty(&q->active))
531                         break;
532                 buf = list_entry(q->active.next,
533                                  struct cx88_buffer, vb.queue);
534                 /* count comes from the hw and is is 16bit wide --
535                  * this trick handles wrap-arounds correctly for
536                  * up to 32767 buffers in flight... */
537                 if ((s16) (count - buf->count) < 0)
538                         break;
539                 do_gettimeofday(&buf->vb.ts);
540                 dprintk(2,"[%p/%d] wakeup reg=%d buf=%d\n",buf,buf->vb.i,
541                         count, buf->count);
542                 buf->vb.state = VIDEOBUF_DONE;
543                 list_del(&buf->vb.queue);
544                 wake_up(&buf->vb.done);
545         }
546         if (list_empty(&q->active)) {
547                 del_timer(&q->timeout);
548         } else {
549                 mod_timer(&q->timeout, jiffies+BUFFER_TIMEOUT);
550         }
551         if (bc != 1)
552                 printk("%s: %d buffers handled (should be 1)\n",__func__,bc);
553 }
554
555 void cx88_shutdown(struct cx88_core *core)
556 {
557         /* disable RISC controller + IRQs */
558         cx_write(MO_DEV_CNTRL2, 0);
559
560         /* stop dma transfers */
561         cx_write(MO_VID_DMACNTRL, 0x0);
562         cx_write(MO_AUD_DMACNTRL, 0x0);
563         cx_write(MO_TS_DMACNTRL, 0x0);
564         cx_write(MO_VIP_DMACNTRL, 0x0);
565         cx_write(MO_GPHST_DMACNTRL, 0x0);
566
567         /* stop interrupts */
568         cx_write(MO_PCI_INTMSK, 0x0);
569         cx_write(MO_VID_INTMSK, 0x0);
570         cx_write(MO_AUD_INTMSK, 0x0);
571         cx_write(MO_TS_INTMSK, 0x0);
572         cx_write(MO_VIP_INTMSK, 0x0);
573         cx_write(MO_GPHST_INTMSK, 0x0);
574
575         /* stop capturing */
576         cx_write(VID_CAPTURE_CONTROL, 0);
577 }
578
579 int cx88_reset(struct cx88_core *core)
580 {
581         dprintk(1,"%s\n",__func__);
582         cx88_shutdown(core);
583
584         /* clear irq status */
585         cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
586         cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
587         cx_write(MO_INT1_STAT,   0xFFFFFFFF); // Clear RISC int
588
589         /* wait a bit */
590         msleep(100);
591
592         /* init sram */
593         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH21], 720*4, 0);
594         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH22], 128, 0);
595         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH23], 128, 0);
596         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH24], 128, 0);
597         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], 128, 0);
598         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], 128, 0);
599         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH28], 188*4, 0);
600
601         /* misc init ... */
602         cx_write(MO_INPUT_FORMAT, ((1 << 13) |   // agc enable
603                                    (1 << 12) |   // agc gain
604                                    (1 << 11) |   // adaptibe agc
605                                    (0 << 10) |   // chroma agc
606                                    (0 <<  9) |   // ckillen
607                                    (7)));
608
609         /* setup image format */
610         cx_andor(MO_COLOR_CTRL, 0x4000, 0x4000);
611
612         /* setup FIFO Threshholds */
613         cx_write(MO_PDMA_STHRSH,   0x0807);
614         cx_write(MO_PDMA_DTHRSH,   0x0807);
615
616         /* fixes flashing of image */
617         cx_write(MO_AGC_SYNC_TIP1, 0x0380000F);
618         cx_write(MO_AGC_BACK_VBI,  0x00E00555);
619
620         cx_write(MO_VID_INTSTAT,   0xFFFFFFFF); // Clear PIV int
621         cx_write(MO_PCI_INTSTAT,   0xFFFFFFFF); // Clear PCI int
622         cx_write(MO_INT1_STAT,     0xFFFFFFFF); // Clear RISC int
623
624         /* Reset on-board parts */
625         cx_write(MO_SRST_IO, 0);
626         msleep(10);
627         cx_write(MO_SRST_IO, 1);
628
629         return 0;
630 }
631
632 /* ------------------------------------------------------------------ */
633
634 static unsigned int inline norm_swidth(v4l2_std_id norm)
635 {
636         return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 754 : 922;
637 }
638
639 static unsigned int inline norm_hdelay(v4l2_std_id norm)
640 {
641         return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 135 : 186;
642 }
643
644 static unsigned int inline norm_vdelay(v4l2_std_id norm)
645 {
646         return (norm & V4L2_STD_625_50) ? 0x24 : 0x18;
647 }
648
649 static unsigned int inline norm_fsc8(v4l2_std_id norm)
650 {
651         if (norm & V4L2_STD_PAL_M)
652                 return 28604892;      // 3.575611 MHz
653
654         if (norm & (V4L2_STD_PAL_Nc))
655                 return 28656448;      // 3.582056 MHz
656
657         if (norm & V4L2_STD_NTSC) // All NTSC/M and variants
658                 return 28636360;      // 3.57954545 MHz +/- 10 Hz
659
660         /* SECAM have also different sub carrier for chroma,
661            but step_db and step_dr, at cx88_set_tvnorm already handles that.
662
663            The same FSC applies to PAL/BGDKIH, PAL/60, NTSC/4.43 and PAL/N
664          */
665
666         return 35468950;      // 4.43361875 MHz +/- 5 Hz
667 }
668
669 static unsigned int inline norm_htotal(v4l2_std_id norm)
670 {
671
672         unsigned int fsc4=norm_fsc8(norm)/2;
673
674         /* returns 4*FSC / vtotal / frames per seconds */
675         return (norm & V4L2_STD_625_50) ?
676                                 ((fsc4+312)/625+12)/25 :
677                                 ((fsc4+262)/525*1001+15000)/30000;
678 }
679
680 static unsigned int inline norm_vbipack(v4l2_std_id norm)
681 {
682         return (norm & V4L2_STD_625_50) ? 511 : 400;
683 }
684
685 int cx88_set_scale(struct cx88_core *core, unsigned int width, unsigned int height,
686                    enum v4l2_field field)
687 {
688         unsigned int swidth  = norm_swidth(core->tvnorm);
689         unsigned int sheight = norm_maxh(core->tvnorm);
690         u32 value;
691
692         dprintk(1,"set_scale: %dx%d [%s%s,%s]\n", width, height,
693                 V4L2_FIELD_HAS_TOP(field)    ? "T" : "",
694                 V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "",
695                 v4l2_norm_to_name(core->tvnorm));
696         if (!V4L2_FIELD_HAS_BOTH(field))
697                 height *= 2;
698
699         // recalc H delay and scale registers
700         value = (width * norm_hdelay(core->tvnorm)) / swidth;
701         value &= 0x3fe;
702         cx_write(MO_HDELAY_EVEN,  value);
703         cx_write(MO_HDELAY_ODD,   value);
704         dprintk(1,"set_scale: hdelay  0x%04x (width %d)\n", value,swidth);
705
706         value = (swidth * 4096 / width) - 4096;
707         cx_write(MO_HSCALE_EVEN,  value);
708         cx_write(MO_HSCALE_ODD,   value);
709         dprintk(1,"set_scale: hscale  0x%04x\n", value);
710
711         cx_write(MO_HACTIVE_EVEN, width);
712         cx_write(MO_HACTIVE_ODD,  width);
713         dprintk(1,"set_scale: hactive 0x%04x\n", width);
714
715         // recalc V scale Register (delay is constant)
716         cx_write(MO_VDELAY_EVEN, norm_vdelay(core->tvnorm));
717         cx_write(MO_VDELAY_ODD,  norm_vdelay(core->tvnorm));
718         dprintk(1,"set_scale: vdelay  0x%04x\n", norm_vdelay(core->tvnorm));
719
720         value = (0x10000 - (sheight * 512 / height - 512)) & 0x1fff;
721         cx_write(MO_VSCALE_EVEN,  value);
722         cx_write(MO_VSCALE_ODD,   value);
723         dprintk(1,"set_scale: vscale  0x%04x\n", value);
724
725         cx_write(MO_VACTIVE_EVEN, sheight);
726         cx_write(MO_VACTIVE_ODD,  sheight);
727         dprintk(1,"set_scale: vactive 0x%04x\n", sheight);
728
729         // setup filters
730         value = 0;
731         value |= (1 << 19);        // CFILT (default)
732         if (core->tvnorm & V4L2_STD_SECAM) {
733                 value |= (1 << 15);
734                 value |= (1 << 16);
735         }
736         if (INPUT(core->input).type == CX88_VMUX_SVIDEO)
737                 value |= (1 << 13) | (1 << 5);
738         if (V4L2_FIELD_INTERLACED == field)
739                 value |= (1 << 3); // VINT (interlaced vertical scaling)
740         if (width < 385)
741                 value |= (1 << 0); // 3-tap interpolation
742         if (width < 193)
743                 value |= (1 << 1); // 5-tap interpolation
744         if (nocomb)
745                 value |= (3 << 5); // disable comb filter
746
747         cx_write(MO_FILTER_EVEN,  value);
748         cx_write(MO_FILTER_ODD,   value);
749         dprintk(1,"set_scale: filter  0x%04x\n", value);
750
751         return 0;
752 }
753
754 static const u32 xtal = 28636363;
755
756 static int set_pll(struct cx88_core *core, int prescale, u32 ofreq)
757 {
758         static u32 pre[] = { 0, 0, 0, 3, 2, 1 };
759         u64 pll;
760         u32 reg;
761         int i;
762
763         if (prescale < 2)
764                 prescale = 2;
765         if (prescale > 5)
766                 prescale = 5;
767
768         pll = ofreq * 8 * prescale * (u64)(1 << 20);
769         do_div(pll,xtal);
770         reg = (pll & 0x3ffffff) | (pre[prescale] << 26);
771         if (((reg >> 20) & 0x3f) < 14) {
772                 printk("%s/0: pll out of range\n",core->name);
773                 return -1;
774         }
775
776         dprintk(1,"set_pll:    MO_PLL_REG       0x%08x [old=0x%08x,freq=%d]\n",
777                 reg, cx_read(MO_PLL_REG), ofreq);
778         cx_write(MO_PLL_REG, reg);
779         for (i = 0; i < 100; i++) {
780                 reg = cx_read(MO_DEVICE_STATUS);
781                 if (reg & (1<<2)) {
782                         dprintk(1,"pll locked [pre=%d,ofreq=%d]\n",
783                                 prescale,ofreq);
784                         return 0;
785                 }
786                 dprintk(1,"pll not locked yet, waiting ...\n");
787                 msleep(10);
788         }
789         dprintk(1,"pll NOT locked [pre=%d,ofreq=%d]\n",prescale,ofreq);
790         return -1;
791 }
792
793 int cx88_start_audio_dma(struct cx88_core *core)
794 {
795         /* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */
796         int bpl = cx88_sram_channels[SRAM_CH25].fifo_size/4;
797
798         /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
799         if (cx_read(MO_AUD_DMACNTRL) & 0x10)
800                 return 0;
801
802         /* setup fifo + format */
803         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], bpl, 0);
804         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], bpl, 0);
805
806         cx_write(MO_AUDD_LNGTH, bpl); /* fifo bpl size */
807         cx_write(MO_AUDR_LNGTH, bpl); /* fifo bpl size */
808
809         /* start dma */
810         cx_write(MO_AUD_DMACNTRL, 0x0003); /* Up and Down fifo enable */
811
812         return 0;
813 }
814
815 int cx88_stop_audio_dma(struct cx88_core *core)
816 {
817         /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
818         if (cx_read(MO_AUD_DMACNTRL) & 0x10)
819                 return 0;
820
821         /* stop dma */
822         cx_write(MO_AUD_DMACNTRL, 0x0000);
823
824         return 0;
825 }
826
827 static int set_tvaudio(struct cx88_core *core)
828 {
829         v4l2_std_id norm = core->tvnorm;
830
831         if (CX88_VMUX_TELEVISION != INPUT(core->input).type)
832                 return 0;
833
834         if (V4L2_STD_PAL_BG & norm) {
835                 core->tvaudio = WW_BG;
836
837         } else if (V4L2_STD_PAL_DK & norm) {
838                 core->tvaudio = WW_DK;
839
840         } else if (V4L2_STD_PAL_I & norm) {
841                 core->tvaudio = WW_I;
842
843         } else if (V4L2_STD_SECAM_L & norm) {
844                 core->tvaudio = WW_L;
845
846         } else if (V4L2_STD_SECAM_DK & norm) {
847                 core->tvaudio = WW_DK;
848
849         } else if ((V4L2_STD_NTSC_M & norm) ||
850                    (V4L2_STD_PAL_M  & norm)) {
851                 core->tvaudio = WW_BTSC;
852
853         } else if (V4L2_STD_NTSC_M_JP & norm) {
854                 core->tvaudio = WW_EIAJ;
855
856         } else {
857                 printk("%s/0: tvaudio support needs work for this tv norm [%s], sorry\n",
858                        core->name, v4l2_norm_to_name(core->tvnorm));
859                 core->tvaudio = 0;
860                 return 0;
861         }
862
863         cx_andor(MO_AFECFG_IO, 0x1f, 0x0);
864         cx88_set_tvaudio(core);
865         /* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */
866
867 /*
868    This should be needed only on cx88-alsa. It seems that some cx88 chips have
869    bugs and does require DMA enabled for it to work.
870  */
871         cx88_start_audio_dma(core);
872         return 0;
873 }
874
875
876
877 int cx88_set_tvnorm(struct cx88_core *core, v4l2_std_id norm)
878 {
879         u32 fsc8;
880         u32 adc_clock;
881         u32 vdec_clock;
882         u32 step_db,step_dr;
883         u64 tmp64;
884         u32 bdelay,agcdelay,htotal;
885         u32 cxiformat, cxoformat;
886
887         core->tvnorm = norm;
888         fsc8       = norm_fsc8(norm);
889         adc_clock  = xtal;
890         vdec_clock = fsc8;
891         step_db    = fsc8;
892         step_dr    = fsc8;
893
894         if (norm & V4L2_STD_NTSC_M_JP) {
895                 cxiformat = VideoFormatNTSCJapan;
896                 cxoformat = 0x181f0008;
897         } else if (norm & V4L2_STD_NTSC_443) {
898                 cxiformat = VideoFormatNTSC443;
899                 cxoformat = 0x181f0008;
900         } else if (norm & V4L2_STD_PAL_M) {
901                 cxiformat = VideoFormatPALM;
902                 cxoformat = 0x1c1f0008;
903         } else if (norm & V4L2_STD_PAL_N) {
904                 cxiformat = VideoFormatPALN;
905                 cxoformat = 0x1c1f0008;
906         } else if (norm & V4L2_STD_PAL_Nc) {
907                 cxiformat = VideoFormatPALNC;
908                 cxoformat = 0x1c1f0008;
909         } else if (norm & V4L2_STD_PAL_60) {
910                 cxiformat = VideoFormatPAL60;
911                 cxoformat = 0x181f0008;
912         } else if (norm & V4L2_STD_NTSC) {
913                 cxiformat = VideoFormatNTSC;
914                 cxoformat = 0x181f0008;
915         } else if (norm & V4L2_STD_SECAM) {
916                 step_db = 4250000 * 8;
917                 step_dr = 4406250 * 8;
918
919                 cxiformat = VideoFormatSECAM;
920                 cxoformat = 0x181f0008;
921         } else { /* PAL */
922                 cxiformat = VideoFormatPAL;
923                 cxoformat = 0x181f0008;
924         }
925
926         dprintk(1,"set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n",
927                 v4l2_norm_to_name(core->tvnorm), fsc8, adc_clock, vdec_clock,
928                 step_db, step_dr);
929         set_pll(core,2,vdec_clock);
930
931         dprintk(1,"set_tvnorm: MO_INPUT_FORMAT  0x%08x [old=0x%08x]\n",
932                 cxiformat, cx_read(MO_INPUT_FORMAT) & 0x0f);
933         /* Chroma AGC must be disabled if SECAM is used, we enable it
934            by default on PAL and NTSC */
935         cx_andor(MO_INPUT_FORMAT, 0x40f,
936                  norm & V4L2_STD_SECAM ? cxiformat : cxiformat | 0x400);
937
938         // FIXME: as-is from DScaler
939         dprintk(1,"set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n",
940                 cxoformat, cx_read(MO_OUTPUT_FORMAT));
941         cx_write(MO_OUTPUT_FORMAT, cxoformat);
942
943         // MO_SCONV_REG = adc clock / video dec clock * 2^17
944         tmp64  = adc_clock * (u64)(1 << 17);
945         do_div(tmp64, vdec_clock);
946         dprintk(1,"set_tvnorm: MO_SCONV_REG     0x%08x [old=0x%08x]\n",
947                 (u32)tmp64, cx_read(MO_SCONV_REG));
948         cx_write(MO_SCONV_REG, (u32)tmp64);
949
950         // MO_SUB_STEP = 8 * fsc / video dec clock * 2^22
951         tmp64  = step_db * (u64)(1 << 22);
952         do_div(tmp64, vdec_clock);
953         dprintk(1,"set_tvnorm: MO_SUB_STEP      0x%08x [old=0x%08x]\n",
954                 (u32)tmp64, cx_read(MO_SUB_STEP));
955         cx_write(MO_SUB_STEP, (u32)tmp64);
956
957         // MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22
958         tmp64  = step_dr * (u64)(1 << 22);
959         do_div(tmp64, vdec_clock);
960         dprintk(1,"set_tvnorm: MO_SUB_STEP_DR   0x%08x [old=0x%08x]\n",
961                 (u32)tmp64, cx_read(MO_SUB_STEP_DR));
962         cx_write(MO_SUB_STEP_DR, (u32)tmp64);
963
964         // bdelay + agcdelay
965         bdelay   = vdec_clock * 65 / 20000000 + 21;
966         agcdelay = vdec_clock * 68 / 20000000 + 15;
967         dprintk(1,"set_tvnorm: MO_AGC_BURST     0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n",
968                 (bdelay << 8) | agcdelay, cx_read(MO_AGC_BURST), bdelay, agcdelay);
969         cx_write(MO_AGC_BURST, (bdelay << 8) | agcdelay);
970
971         // htotal
972         tmp64 = norm_htotal(norm) * (u64)vdec_clock;
973         do_div(tmp64, fsc8);
974         htotal = (u32)tmp64 | (HLNotchFilter4xFsc << 11);
975         dprintk(1,"set_tvnorm: MO_HTOTAL        0x%08x [old=0x%08x,htotal=%d]\n",
976                 htotal, cx_read(MO_HTOTAL), (u32)tmp64);
977         cx_write(MO_HTOTAL, htotal);
978
979         // vbi stuff, set vbi offset to 10 (for 20 Clk*2 pixels), this makes
980         // the effective vbi offset ~244 samples, the same as the Bt8x8
981         cx_write(MO_VBI_PACKET, (10<<11) | norm_vbipack(norm));
982
983         // this is needed as well to set all tvnorm parameter
984         cx88_set_scale(core, 320, 240, V4L2_FIELD_INTERLACED);
985
986         // audio
987         set_tvaudio(core);
988
989         // tell i2c chips
990         cx88_call_i2c_clients(core,VIDIOC_S_STD,&norm);
991
992         // done
993         return 0;
994 }
995
996 /* ------------------------------------------------------------------ */
997
998 struct video_device *cx88_vdev_init(struct cx88_core *core,
999                                     struct pci_dev *pci,
1000                                     struct video_device *template,
1001                                     char *type)
1002 {
1003         struct video_device *vfd;
1004
1005         vfd = video_device_alloc();
1006         if (NULL == vfd)
1007                 return NULL;
1008         *vfd = *template;
1009         vfd->minor   = -1;
1010         vfd->parent  = &pci->dev;
1011         vfd->release = video_device_release;
1012         snprintf(vfd->name, sizeof(vfd->name), "%s %s (%s)",
1013                  core->name, type, core->board.name);
1014         return vfd;
1015 }
1016
1017 struct cx88_core* cx88_core_get(struct pci_dev *pci)
1018 {
1019         struct cx88_core *core;
1020
1021         mutex_lock(&devlist);
1022         list_for_each_entry(core, &cx88_devlist, devlist) {
1023                 if (pci->bus->number != core->pci_bus)
1024                         continue;
1025                 if (PCI_SLOT(pci->devfn) != core->pci_slot)
1026                         continue;
1027
1028                 if (0 != cx88_get_resources(core, pci)) {
1029                         mutex_unlock(&devlist);
1030                         return NULL;
1031                 }
1032                 atomic_inc(&core->refcount);
1033                 mutex_unlock(&devlist);
1034                 return core;
1035         }
1036
1037         core = cx88_core_create(pci, cx88_devcount);
1038         if (NULL != core) {
1039                 cx88_devcount++;
1040                 list_add_tail(&core->devlist, &cx88_devlist);
1041         }
1042
1043         mutex_unlock(&devlist);
1044         return core;
1045 }
1046
1047 void cx88_core_put(struct cx88_core *core, struct pci_dev *pci)
1048 {
1049         release_mem_region(pci_resource_start(pci,0),
1050                            pci_resource_len(pci,0));
1051
1052         if (!atomic_dec_and_test(&core->refcount))
1053                 return;
1054
1055         mutex_lock(&devlist);
1056         cx88_ir_fini(core);
1057         if (0 == core->i2c_rc)
1058                 i2c_del_adapter(&core->i2c_adap);
1059         list_del(&core->devlist);
1060         iounmap(core->lmmio);
1061         cx88_devcount--;
1062         mutex_unlock(&devlist);
1063         kfree(core);
1064 }
1065
1066 /* ------------------------------------------------------------------ */
1067
1068 EXPORT_SYMBOL(cx88_print_irqbits);
1069
1070 EXPORT_SYMBOL(cx88_core_irq);
1071 EXPORT_SYMBOL(cx88_wakeup);
1072 EXPORT_SYMBOL(cx88_reset);
1073 EXPORT_SYMBOL(cx88_shutdown);
1074
1075 EXPORT_SYMBOL(cx88_risc_buffer);
1076 EXPORT_SYMBOL(cx88_risc_databuffer);
1077 EXPORT_SYMBOL(cx88_risc_stopper);
1078 EXPORT_SYMBOL(cx88_free_buffer);
1079
1080 EXPORT_SYMBOL(cx88_sram_channels);
1081 EXPORT_SYMBOL(cx88_sram_channel_setup);
1082 EXPORT_SYMBOL(cx88_sram_channel_dump);
1083
1084 EXPORT_SYMBOL(cx88_set_tvnorm);
1085 EXPORT_SYMBOL(cx88_set_scale);
1086
1087 EXPORT_SYMBOL(cx88_vdev_init);
1088 EXPORT_SYMBOL(cx88_core_get);
1089 EXPORT_SYMBOL(cx88_core_put);
1090
1091 EXPORT_SYMBOL(cx88_ir_start);
1092 EXPORT_SYMBOL(cx88_ir_stop);
1093
1094 /*
1095  * Local variables:
1096  * c-basic-offset: 8
1097  * End:
1098  * kate: eol "unix"; indent-width 3; remove-trailing-space on; replace-trailing-space-save on; tab-width 8; replace-tabs off; space-indent off; mixed-indent off
1099  */