rt2x00: Store queue idx and entry idx in data_ring and data_entry
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
32
33 /*
34  * Ring handler.
35  */
36 struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev,
37                                      const unsigned int queue)
38 {
39         int beacon = test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
40
41         /*
42          * Check if we are requesting a reqular TX ring,
43          * or if we are requesting a Beacon or Atim ring.
44          * For Atim rings, we should check if it is supported.
45          */
46         if (queue < rt2x00dev->hw->queues && rt2x00dev->tx)
47                 return &rt2x00dev->tx[queue];
48
49         if (!rt2x00dev->bcn || !beacon)
50                 return NULL;
51
52         if (queue == IEEE80211_TX_QUEUE_BEACON)
53                 return &rt2x00dev->bcn[0];
54         else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
55                 return &rt2x00dev->bcn[1];
56
57         return NULL;
58 }
59 EXPORT_SYMBOL_GPL(rt2x00lib_get_ring);
60
61 /*
62  * Link tuning handlers
63  */
64 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
65 {
66         rt2x00dev->link.count = 0;
67         rt2x00dev->link.vgc_level = 0;
68
69         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
70
71         /*
72          * The RX and TX percentage should start at 50%
73          * this will assure we will get at least get some
74          * decent value when the link tuner starts.
75          * The value will be dropped and overwritten with
76          * the correct (measured )value anyway during the
77          * first run of the link tuner.
78          */
79         rt2x00dev->link.qual.rx_percentage = 50;
80         rt2x00dev->link.qual.tx_percentage = 50;
81
82         /*
83          * Reset the link tuner.
84          */
85         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
86
87         queue_delayed_work(rt2x00dev->hw->workqueue,
88                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
89 }
90
91 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
92 {
93         cancel_delayed_work_sync(&rt2x00dev->link.work);
94 }
95
96 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
97 {
98         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
99                 return;
100
101         rt2x00lib_stop_link_tuner(rt2x00dev);
102         rt2x00lib_start_link_tuner(rt2x00dev);
103 }
104
105 /*
106  * Radio control handlers.
107  */
108 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
109 {
110         int status;
111
112         /*
113          * Don't enable the radio twice.
114          * And check if the hardware button has been disabled.
115          */
116         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
117             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
118                 return 0;
119
120         /*
121          * Enable radio.
122          */
123         status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
124                                                        STATE_RADIO_ON);
125         if (status)
126                 return status;
127
128         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
129
130         /*
131          * Enable RX.
132          */
133         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
134
135         /*
136          * Start the TX queues.
137          */
138         ieee80211_start_queues(rt2x00dev->hw);
139
140         return 0;
141 }
142
143 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
144 {
145         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
146                 return;
147
148         /*
149          * Stop all scheduled work.
150          */
151         if (work_pending(&rt2x00dev->beacon_work))
152                 cancel_work_sync(&rt2x00dev->beacon_work);
153         if (work_pending(&rt2x00dev->filter_work))
154                 cancel_work_sync(&rt2x00dev->filter_work);
155         if (work_pending(&rt2x00dev->config_work))
156                 cancel_work_sync(&rt2x00dev->config_work);
157
158         /*
159          * Stop the TX queues.
160          */
161         ieee80211_stop_queues(rt2x00dev->hw);
162
163         /*
164          * Disable RX.
165          */
166         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
167
168         /*
169          * Disable radio.
170          */
171         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
172 }
173
174 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
175 {
176         /*
177          * When we are disabling the RX, we should also stop the link tuner.
178          */
179         if (state == STATE_RADIO_RX_OFF)
180                 rt2x00lib_stop_link_tuner(rt2x00dev);
181
182         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
183
184         /*
185          * When we are enabling the RX, we should also start the link tuner.
186          */
187         if (state == STATE_RADIO_RX_ON &&
188             is_interface_present(&rt2x00dev->interface))
189                 rt2x00lib_start_link_tuner(rt2x00dev);
190 }
191
192 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
193 {
194         enum antenna rx = rt2x00dev->link.ant.active.rx;
195         enum antenna tx = rt2x00dev->link.ant.active.tx;
196         int sample_a =
197             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
198         int sample_b =
199             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
200
201         /*
202          * We are done sampling. Now we should evaluate the results.
203          */
204         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
205
206         /*
207          * During the last period we have sampled the RSSI
208          * from both antenna's. It now is time to determine
209          * which antenna demonstrated the best performance.
210          * When we are already on the antenna with the best
211          * performance, then there really is nothing for us
212          * left to do.
213          */
214         if (sample_a == sample_b)
215                 return;
216
217         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) {
218                 if (sample_a > sample_b && rx == ANTENNA_B)
219                         rx = ANTENNA_A;
220                 else if (rx == ANTENNA_A)
221                         rx = ANTENNA_B;
222         }
223
224         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY) {
225                 if (sample_a > sample_b && tx == ANTENNA_B)
226                         tx = ANTENNA_A;
227                 else if (tx == ANTENNA_A)
228                         tx = ANTENNA_B;
229         }
230
231         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
232 }
233
234 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
235 {
236         enum antenna rx = rt2x00dev->link.ant.active.rx;
237         enum antenna tx = rt2x00dev->link.ant.active.tx;
238         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
239         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
240
241         /*
242          * Legacy driver indicates that we should swap antenna's
243          * when the difference in RSSI is greater that 5. This
244          * also should be done when the RSSI was actually better
245          * then the previous sample.
246          * When the difference exceeds the threshold we should
247          * sample the rssi from the other antenna to make a valid
248          * comparison between the 2 antennas.
249          */
250         if ((rssi_curr - rssi_old) > -5 || (rssi_curr - rssi_old) < 5)
251                 return;
252
253         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
254
255         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
256                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
257
258         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
259                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
260
261         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
262 }
263
264 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
265 {
266         /*
267          * Determine if software diversity is enabled for
268          * either the TX or RX antenna (or both).
269          * Always perform this check since within the link
270          * tuner interval the configuration might have changed.
271          */
272         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
273         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
274
275         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
276             rt2x00dev->default_ant.rx != ANTENNA_SW_DIVERSITY)
277                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
278         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
279             rt2x00dev->default_ant.tx != ANTENNA_SW_DIVERSITY)
280                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
281
282         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
283             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
284                 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
285                 return;
286         }
287
288         /*
289          * If we have only sampled the data over the last period
290          * we should now harvest the data. Otherwise just evaluate
291          * the data. The latter should only be performed once
292          * every 2 seconds.
293          */
294         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
295                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
296         else if (rt2x00dev->link.count & 1)
297                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
298 }
299
300 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
301 {
302         int avg_rssi = rssi;
303
304         /*
305          * Update global RSSI
306          */
307         if (link->qual.avg_rssi)
308                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
309         link->qual.avg_rssi = avg_rssi;
310
311         /*
312          * Update antenna RSSI
313          */
314         if (link->ant.rssi_ant)
315                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
316         link->ant.rssi_ant = rssi;
317 }
318
319 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
320 {
321         if (qual->rx_failed || qual->rx_success)
322                 qual->rx_percentage =
323                     (qual->rx_success * 100) /
324                     (qual->rx_failed + qual->rx_success);
325         else
326                 qual->rx_percentage = 50;
327
328         if (qual->tx_failed || qual->tx_success)
329                 qual->tx_percentage =
330                     (qual->tx_success * 100) /
331                     (qual->tx_failed + qual->tx_success);
332         else
333                 qual->tx_percentage = 50;
334
335         qual->rx_success = 0;
336         qual->rx_failed = 0;
337         qual->tx_success = 0;
338         qual->tx_failed = 0;
339 }
340
341 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
342                                            int rssi)
343 {
344         int rssi_percentage = 0;
345         int signal;
346
347         /*
348          * We need a positive value for the RSSI.
349          */
350         if (rssi < 0)
351                 rssi += rt2x00dev->rssi_offset;
352
353         /*
354          * Calculate the different percentages,
355          * which will be used for the signal.
356          */
357         if (rt2x00dev->rssi_offset)
358                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
359
360         /*
361          * Add the individual percentages and use the WEIGHT
362          * defines to calculate the current link signal.
363          */
364         signal = ((WEIGHT_RSSI * rssi_percentage) +
365                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
366                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
367
368         return (signal > 100) ? 100 : signal;
369 }
370
371 static void rt2x00lib_link_tuner(struct work_struct *work)
372 {
373         struct rt2x00_dev *rt2x00dev =
374             container_of(work, struct rt2x00_dev, link.work.work);
375
376         /*
377          * When the radio is shutting down we should
378          * immediately cease all link tuning.
379          */
380         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
381                 return;
382
383         /*
384          * Update statistics.
385          */
386         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
387         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
388             rt2x00dev->link.qual.rx_failed;
389
390         /*
391          * Only perform the link tuning when Link tuning
392          * has been enabled (This could have been disabled from the EEPROM).
393          */
394         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
395                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
396
397         /*
398          * Evaluate antenna setup.
399          */
400         rt2x00lib_evaluate_antenna(rt2x00dev);
401
402         /*
403          * Precalculate a portion of the link signal which is
404          * in based on the tx/rx success/failure counters.
405          */
406         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
407
408         /*
409          * Increase tuner counter, and reschedule the next link tuner run.
410          */
411         rt2x00dev->link.count++;
412         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
413                            LINK_TUNE_INTERVAL);
414 }
415
416 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
417 {
418         struct rt2x00_dev *rt2x00dev =
419             container_of(work, struct rt2x00_dev, filter_work);
420         unsigned int filter = rt2x00dev->interface.filter;
421
422         /*
423          * Since we had stored the filter inside interface.filter,
424          * we should now clear that field. Otherwise the driver will
425          * assume nothing has changed (*total_flags will be compared
426          * to interface.filter to determine if any action is required).
427          */
428         rt2x00dev->interface.filter = 0;
429
430         rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
431                                              filter, &filter, 0, NULL);
432 }
433
434 static void rt2x00lib_configuration_scheduled(struct work_struct *work)
435 {
436         struct rt2x00_dev *rt2x00dev =
437             container_of(work, struct rt2x00_dev, config_work);
438         int preamble = !test_bit(CONFIG_SHORT_PREAMBLE, &rt2x00dev->flags);
439
440         rt2x00mac_erp_ie_changed(rt2x00dev->hw,
441                                  IEEE80211_ERP_CHANGE_PREAMBLE, 0, preamble);
442 }
443
444 /*
445  * Interrupt context handlers.
446  */
447 static void rt2x00lib_beacondone_scheduled(struct work_struct *work)
448 {
449         struct rt2x00_dev *rt2x00dev =
450             container_of(work, struct rt2x00_dev, beacon_work);
451         struct data_ring *ring =
452             rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
453         struct data_entry *entry = rt2x00_get_data_entry(ring);
454         struct sk_buff *skb;
455
456         skb = ieee80211_beacon_get(rt2x00dev->hw,
457                                    rt2x00dev->interface.id,
458                                    &entry->tx_status.control);
459         if (!skb)
460                 return;
461
462         rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
463                                           &entry->tx_status.control);
464
465         dev_kfree_skb(skb);
466 }
467
468 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
469 {
470         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
471                 return;
472
473         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work);
474 }
475 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
476
477 void rt2x00lib_txdone(struct data_entry *entry,
478                       const int status, const int retry)
479 {
480         struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
481         struct ieee80211_tx_status *tx_status = &entry->tx_status;
482         struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats;
483         int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY);
484         int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID ||
485                       status == TX_FAIL_OTHER);
486
487         /*
488          * Update TX statistics.
489          */
490         tx_status->flags = 0;
491         tx_status->ack_signal = 0;
492         tx_status->excessive_retries = (status == TX_FAIL_RETRY);
493         tx_status->retry_count = retry;
494         rt2x00dev->link.qual.tx_success += success;
495         rt2x00dev->link.qual.tx_failed += retry + fail;
496
497         if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) {
498                 if (success)
499                         tx_status->flags |= IEEE80211_TX_STATUS_ACK;
500                 else
501                         stats->dot11ACKFailureCount++;
502         }
503
504         tx_status->queue_length = entry->ring->stats.limit;
505         tx_status->queue_number = tx_status->control.queue;
506
507         if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
508                 if (success)
509                         stats->dot11RTSSuccessCount++;
510                 else
511                         stats->dot11RTSFailureCount++;
512         }
513
514         /*
515          * Send the tx_status to mac80211 & debugfs.
516          * mac80211 will clean up the skb structure.
517          */
518         get_skb_desc(entry->skb)->frame_type = DUMP_FRAME_TXDONE;
519         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
520         ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status);
521         entry->skb = NULL;
522 }
523 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
524
525 void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb,
526                       struct rxdata_entry_desc *desc)
527 {
528         struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
529         struct interface *intf = &rt2x00dev->interface;
530         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
531         struct ieee80211_hw_mode *mode;
532         struct ieee80211_rate *rate;
533         struct ieee80211_hdr *hdr;
534         unsigned int i;
535         int val = 0;
536         u16 fc;
537
538         /*
539          * Update RX statistics.
540          */
541         mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
542         for (i = 0; i < mode->num_rates; i++) {
543                 rate = &mode->rates[i];
544
545                 /*
546                  * When frame was received with an OFDM bitrate,
547                  * the signal is the PLCP value. If it was received with
548                  * a CCK bitrate the signal is the rate in 0.5kbit/s.
549                  */
550                 if (!desc->ofdm)
551                         val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
552                 else
553                         val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);
554
555                 if (val == desc->signal) {
556                         val = rate->val;
557                         break;
558                 }
559         }
560
561         /*
562          * Only update link status if this is a beacon frame carrying our
563          * bssid.
564          */
565         hdr = (struct ieee80211_hdr *) skb->data;
566         if (skb->len >= sizeof(struct ieee80211_hdr *)) {
567                 fc = le16_to_cpu(hdr->frame_control);
568                 if ((intf->type == IEEE80211_IF_TYPE_STA
569                      || intf->type == IEEE80211_IF_TYPE_IBSS)
570                     && is_beacon(fc)
571                     && compare_ether_addr(hdr->addr3, intf->bssid) == 0)
572                         rt2x00lib_update_link_stats(&rt2x00dev->link,
573                                                     desc->rssi);
574         }
575
576         rt2x00dev->link.qual.rx_success++;
577
578         rx_status->rate = val;
579         rx_status->signal =
580             rt2x00lib_calculate_link_signal(rt2x00dev, desc->rssi);
581         rx_status->ssi = desc->rssi;
582         rx_status->flag = desc->flags;
583         rx_status->antenna = rt2x00dev->link.ant.active.rx;
584
585         /*
586          * Send frame to mac80211 & debugfs
587          */
588         get_skb_desc(skb)->frame_type = DUMP_FRAME_RXDONE;
589         rt2x00debug_dump_frame(rt2x00dev, skb);
590         ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status);
591 }
592 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
593
594 /*
595  * TX descriptor initializer
596  */
597 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
598                              struct sk_buff *skb,
599                              struct ieee80211_tx_control *control)
600 {
601         struct txdata_entry_desc desc;
602         struct skb_desc *skbdesc = get_skb_desc(skb);
603         struct ieee80211_hdr *ieee80211hdr = skbdesc->data;
604         __le32 *txd = skbdesc->desc;
605         int tx_rate;
606         int bitrate;
607         int length;
608         int duration;
609         int residual;
610         u16 frame_control;
611         u16 seq_ctrl;
612
613         memset(&desc, 0, sizeof(desc));
614
615         desc.cw_min = skbdesc->ring->tx_params.cw_min;
616         desc.cw_max = skbdesc->ring->tx_params.cw_max;
617         desc.aifs = skbdesc->ring->tx_params.aifs;
618
619         /*
620          * Identify queue
621          */
622         if (control->queue < rt2x00dev->hw->queues)
623                 desc.queue = control->queue;
624         else if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
625                  control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
626                 desc.queue = QUEUE_MGMT;
627         else
628                 desc.queue = QUEUE_OTHER;
629
630         /*
631          * Read required fields from ieee80211 header.
632          */
633         frame_control = le16_to_cpu(ieee80211hdr->frame_control);
634         seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
635
636         tx_rate = control->tx_rate;
637
638         /*
639          * Check whether this frame is to be acked
640          */
641         if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
642                 __set_bit(ENTRY_TXD_ACK, &desc.flags);
643
644         /*
645          * Check if this is a RTS/CTS frame
646          */
647         if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
648                 __set_bit(ENTRY_TXD_BURST, &desc.flags);
649                 if (is_rts_frame(frame_control)) {
650                         __set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags);
651                         __set_bit(ENTRY_TXD_ACK, &desc.flags);
652                 } else
653                         __clear_bit(ENTRY_TXD_ACK, &desc.flags);
654                 if (control->rts_cts_rate)
655                         tx_rate = control->rts_cts_rate;
656         }
657
658         /*
659          * Check for OFDM
660          */
661         if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
662                 __set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags);
663
664         /*
665          * Check if more fragments are pending
666          */
667         if (ieee80211_get_morefrag(ieee80211hdr)) {
668                 __set_bit(ENTRY_TXD_BURST, &desc.flags);
669                 __set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags);
670         }
671
672         /*
673          * Beacons and probe responses require the tsf timestamp
674          * to be inserted into the frame.
675          */
676         if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
677             is_probe_resp(frame_control))
678                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags);
679
680         /*
681          * Determine with what IFS priority this frame should be send.
682          * Set ifs to IFS_SIFS when the this is not the first fragment,
683          * or this fragment came after RTS/CTS.
684          */
685         if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
686             test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags))
687                 desc.ifs = IFS_SIFS;
688         else
689                 desc.ifs = IFS_BACKOFF;
690
691         /*
692          * PLCP setup
693          * Length calculation depends on OFDM/CCK rate.
694          */
695         desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
696         desc.service = 0x04;
697
698         length = skbdesc->data_len + FCS_LEN;
699         if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) {
700                 desc.length_high = (length >> 6) & 0x3f;
701                 desc.length_low = length & 0x3f;
702         } else {
703                 bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
704
705                 /*
706                  * Convert length to microseconds.
707                  */
708                 residual = get_duration_res(length, bitrate);
709                 duration = get_duration(length, bitrate);
710
711                 if (residual != 0) {
712                         duration++;
713
714                         /*
715                          * Check if we need to set the Length Extension
716                          */
717                         if (bitrate == 110 && residual <= 30)
718                                 desc.service |= 0x80;
719                 }
720
721                 desc.length_high = (duration >> 8) & 0xff;
722                 desc.length_low = duration & 0xff;
723
724                 /*
725                  * When preamble is enabled we should set the
726                  * preamble bit for the signal.
727                  */
728                 if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
729                         desc.signal |= 0x08;
730         }
731
732         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, txd, &desc, ieee80211hdr,
733                                            skbdesc->data_len, control);
734
735         /*
736          * Update ring entry.
737          */
738         skbdesc->entry->skb = skb;
739         memcpy(&skbdesc->entry->tx_status.control, control, sizeof(*control));
740
741         /*
742          * The frame has been completely initialized and ready
743          * for sending to the device. The caller will push the
744          * frame to the device, but we are going to push the
745          * frame to debugfs here.
746          */
747         skbdesc->frame_type = DUMP_FRAME_TX;
748         rt2x00debug_dump_frame(rt2x00dev, skb);
749 }
750 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
751
752 /*
753  * Driver initialization handlers.
754  */
755 static void rt2x00lib_channel(struct ieee80211_channel *entry,
756                               const int channel, const int tx_power,
757                               const int value)
758 {
759         entry->chan = channel;
760         if (channel <= 14)
761                 entry->freq = 2407 + (5 * channel);
762         else
763                 entry->freq = 5000 + (5 * channel);
764         entry->val = value;
765         entry->flag =
766             IEEE80211_CHAN_W_IBSS |
767             IEEE80211_CHAN_W_ACTIVE_SCAN |
768             IEEE80211_CHAN_W_SCAN;
769         entry->power_level = tx_power;
770         entry->antenna_max = 0xff;
771 }
772
773 static void rt2x00lib_rate(struct ieee80211_rate *entry,
774                            const int rate, const int mask,
775                            const int plcp, const int flags)
776 {
777         entry->rate = rate;
778         entry->val =
779             DEVICE_SET_RATE_FIELD(rate, RATE) |
780             DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
781             DEVICE_SET_RATE_FIELD(plcp, PLCP);
782         entry->flags = flags;
783         entry->val2 = entry->val;
784         if (entry->flags & IEEE80211_RATE_PREAMBLE2)
785                 entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
786         entry->min_rssi_ack = 0;
787         entry->min_rssi_ack_delta = 0;
788 }
789
790 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
791                                     struct hw_mode_spec *spec)
792 {
793         struct ieee80211_hw *hw = rt2x00dev->hw;
794         struct ieee80211_hw_mode *hwmodes;
795         struct ieee80211_channel *channels;
796         struct ieee80211_rate *rates;
797         unsigned int i;
798         unsigned char tx_power;
799
800         hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
801         if (!hwmodes)
802                 goto exit;
803
804         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
805         if (!channels)
806                 goto exit_free_modes;
807
808         rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
809         if (!rates)
810                 goto exit_free_channels;
811
812         /*
813          * Initialize Rate list.
814          */
815         rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
816                        0x00, IEEE80211_RATE_CCK);
817         rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
818                        0x01, IEEE80211_RATE_CCK_2);
819         rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
820                        0x02, IEEE80211_RATE_CCK_2);
821         rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
822                        0x03, IEEE80211_RATE_CCK_2);
823
824         if (spec->num_rates > 4) {
825                 rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
826                                0x0b, IEEE80211_RATE_OFDM);
827                 rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
828                                0x0f, IEEE80211_RATE_OFDM);
829                 rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
830                                0x0a, IEEE80211_RATE_OFDM);
831                 rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
832                                0x0e, IEEE80211_RATE_OFDM);
833                 rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
834                                0x09, IEEE80211_RATE_OFDM);
835                 rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
836                                0x0d, IEEE80211_RATE_OFDM);
837                 rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
838                                0x08, IEEE80211_RATE_OFDM);
839                 rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
840                                0x0c, IEEE80211_RATE_OFDM);
841         }
842
843         /*
844          * Initialize Channel list.
845          */
846         for (i = 0; i < spec->num_channels; i++) {
847                 if (spec->channels[i].channel <= 14)
848                         tx_power = spec->tx_power_bg[i];
849                 else if (spec->tx_power_a)
850                         tx_power = spec->tx_power_a[i];
851                 else
852                         tx_power = spec->tx_power_default;
853
854                 rt2x00lib_channel(&channels[i],
855                                   spec->channels[i].channel, tx_power, i);
856         }
857
858         /*
859          * Intitialize 802.11b
860          * Rates: CCK.
861          * Channels: OFDM.
862          */
863         if (spec->num_modes > HWMODE_B) {
864                 hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
865                 hwmodes[HWMODE_B].num_channels = 14;
866                 hwmodes[HWMODE_B].num_rates = 4;
867                 hwmodes[HWMODE_B].channels = channels;
868                 hwmodes[HWMODE_B].rates = rates;
869         }
870
871         /*
872          * Intitialize 802.11g
873          * Rates: CCK, OFDM.
874          * Channels: OFDM.
875          */
876         if (spec->num_modes > HWMODE_G) {
877                 hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
878                 hwmodes[HWMODE_G].num_channels = 14;
879                 hwmodes[HWMODE_G].num_rates = spec->num_rates;
880                 hwmodes[HWMODE_G].channels = channels;
881                 hwmodes[HWMODE_G].rates = rates;
882         }
883
884         /*
885          * Intitialize 802.11a
886          * Rates: OFDM.
887          * Channels: OFDM, UNII, HiperLAN2.
888          */
889         if (spec->num_modes > HWMODE_A) {
890                 hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
891                 hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
892                 hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
893                 hwmodes[HWMODE_A].channels = &channels[14];
894                 hwmodes[HWMODE_A].rates = &rates[4];
895         }
896
897         if (spec->num_modes > HWMODE_G &&
898             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
899                 goto exit_free_rates;
900
901         if (spec->num_modes > HWMODE_B &&
902             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
903                 goto exit_free_rates;
904
905         if (spec->num_modes > HWMODE_A &&
906             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
907                 goto exit_free_rates;
908
909         rt2x00dev->hwmodes = hwmodes;
910
911         return 0;
912
913 exit_free_rates:
914         kfree(rates);
915
916 exit_free_channels:
917         kfree(channels);
918
919 exit_free_modes:
920         kfree(hwmodes);
921
922 exit:
923         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
924         return -ENOMEM;
925 }
926
927 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
928 {
929         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
930                 ieee80211_unregister_hw(rt2x00dev->hw);
931
932         if (likely(rt2x00dev->hwmodes)) {
933                 kfree(rt2x00dev->hwmodes->channels);
934                 kfree(rt2x00dev->hwmodes->rates);
935                 kfree(rt2x00dev->hwmodes);
936                 rt2x00dev->hwmodes = NULL;
937         }
938 }
939
940 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
941 {
942         struct hw_mode_spec *spec = &rt2x00dev->spec;
943         int status;
944
945         /*
946          * Initialize HW modes.
947          */
948         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
949         if (status)
950                 return status;
951
952         /*
953          * Register HW.
954          */
955         status = ieee80211_register_hw(rt2x00dev->hw);
956         if (status) {
957                 rt2x00lib_remove_hw(rt2x00dev);
958                 return status;
959         }
960
961         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
962
963         return 0;
964 }
965
966 /*
967  * Initialization/uninitialization handlers.
968  */
969 static int rt2x00lib_alloc_entries(struct data_ring *ring,
970                                    const u16 max_entries, const u16 data_size,
971                                    const u16 desc_size)
972 {
973         struct data_entry *entry;
974         unsigned int i;
975
976         ring->stats.limit = max_entries;
977         ring->data_size = data_size;
978         ring->desc_size = desc_size;
979
980         /*
981          * Allocate all ring entries.
982          */
983         entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL);
984         if (!entry)
985                 return -ENOMEM;
986
987         for (i = 0; i < ring->stats.limit; i++) {
988                 entry[i].flags = 0;
989                 entry[i].ring = ring;
990                 entry[i].skb = NULL;
991                 entry[i].entry_idx = i;
992         }
993
994         ring->entry = entry;
995
996         return 0;
997 }
998
999 static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev)
1000 {
1001         struct data_ring *ring;
1002
1003         /*
1004          * Allocate the RX ring.
1005          */
1006         if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE,
1007                                     rt2x00dev->ops->rxd_size))
1008                 return -ENOMEM;
1009
1010         /*
1011          * First allocate the TX rings.
1012          */
1013         txring_for_each(rt2x00dev, ring) {
1014                 if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE,
1015                                             rt2x00dev->ops->txd_size))
1016                         return -ENOMEM;
1017         }
1018
1019         if (!test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
1020                 return 0;
1021
1022         /*
1023          * Allocate the BEACON ring.
1024          */
1025         if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES,
1026                                     MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size))
1027                 return -ENOMEM;
1028
1029         /*
1030          * Allocate the Atim ring.
1031          */
1032         if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES,
1033                                     DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
1034                 return -ENOMEM;
1035
1036         return 0;
1037 }
1038
1039 static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev)
1040 {
1041         struct data_ring *ring;
1042
1043         ring_for_each(rt2x00dev, ring) {
1044                 kfree(ring->entry);
1045                 ring->entry = NULL;
1046         }
1047 }
1048
1049 void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1050 {
1051         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1052                 return;
1053
1054         /*
1055          * Unregister rfkill.
1056          */
1057         rt2x00rfkill_unregister(rt2x00dev);
1058
1059         /*
1060          * Allow the HW to uninitialize.
1061          */
1062         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1063
1064         /*
1065          * Free allocated ring entries.
1066          */
1067         rt2x00lib_free_ring_entries(rt2x00dev);
1068 }
1069
1070 int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1071 {
1072         int status;
1073
1074         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1075                 return 0;
1076
1077         /*
1078          * Allocate all ring entries.
1079          */
1080         status = rt2x00lib_alloc_ring_entries(rt2x00dev);
1081         if (status) {
1082                 ERROR(rt2x00dev, "Ring entries allocation failed.\n");
1083                 return status;
1084         }
1085
1086         /*
1087          * Initialize the device.
1088          */
1089         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1090         if (status)
1091                 goto exit;
1092
1093         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1094
1095         /*
1096          * Register the rfkill handler.
1097          */
1098         status = rt2x00rfkill_register(rt2x00dev);
1099         if (status)
1100                 goto exit_unitialize;
1101
1102         return 0;
1103
1104 exit_unitialize:
1105         rt2x00lib_uninitialize(rt2x00dev);
1106
1107 exit:
1108         rt2x00lib_free_ring_entries(rt2x00dev);
1109
1110         return status;
1111 }
1112
1113 /*
1114  * driver allocation handlers.
1115  */
1116 static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev)
1117 {
1118         struct data_ring *ring;
1119         unsigned int index;
1120
1121         /*
1122          * We need the following rings:
1123          * RX: 1
1124          * TX: hw->queues
1125          * Beacon: 1 (if required)
1126          * Atim: 1 (if required)
1127          */
1128         rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues +
1129             (2 * test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags));
1130
1131         ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL);
1132         if (!ring) {
1133                 ERROR(rt2x00dev, "Ring allocation failed.\n");
1134                 return -ENOMEM;
1135         }
1136
1137         /*
1138          * Initialize pointers
1139          */
1140         rt2x00dev->rx = ring;
1141         rt2x00dev->tx = &rt2x00dev->rx[1];
1142         if (test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
1143                 rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues];
1144
1145         /*
1146          * Initialize ring parameters.
1147          * cw_min: 2^5 = 32.
1148          * cw_max: 2^10 = 1024.
1149          */
1150         index = 0;
1151         ring_for_each(rt2x00dev, ring) {
1152                 ring->rt2x00dev = rt2x00dev;
1153                 ring->queue_idx = index++;
1154                 ring->tx_params.aifs = 2;
1155                 ring->tx_params.cw_min = 5;
1156                 ring->tx_params.cw_max = 10;
1157         }
1158
1159         return 0;
1160 }
1161
1162 static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev)
1163 {
1164         kfree(rt2x00dev->rx);
1165         rt2x00dev->rx = NULL;
1166         rt2x00dev->tx = NULL;
1167         rt2x00dev->bcn = NULL;
1168 }
1169
1170 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1171 {
1172         int retval = -ENOMEM;
1173
1174         /*
1175          * Let the driver probe the device to detect the capabilities.
1176          */
1177         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1178         if (retval) {
1179                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1180                 goto exit;
1181         }
1182
1183         /*
1184          * Initialize configuration work.
1185          */
1186         INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled);
1187         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1188         INIT_WORK(&rt2x00dev->config_work, rt2x00lib_configuration_scheduled);
1189         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1190
1191         /*
1192          * Reset current working type.
1193          */
1194         rt2x00dev->interface.type = IEEE80211_IF_TYPE_INVALID;
1195
1196         /*
1197          * Allocate ring array.
1198          */
1199         retval = rt2x00lib_alloc_rings(rt2x00dev);
1200         if (retval)
1201                 goto exit;
1202
1203         /*
1204          * Initialize ieee80211 structure.
1205          */
1206         retval = rt2x00lib_probe_hw(rt2x00dev);
1207         if (retval) {
1208                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1209                 goto exit;
1210         }
1211
1212         /*
1213          * Allocatie rfkill.
1214          */
1215         retval = rt2x00rfkill_allocate(rt2x00dev);
1216         if (retval)
1217                 goto exit;
1218
1219         /*
1220          * Open the debugfs entry.
1221          */
1222         rt2x00debug_register(rt2x00dev);
1223
1224         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1225
1226         return 0;
1227
1228 exit:
1229         rt2x00lib_remove_dev(rt2x00dev);
1230
1231         return retval;
1232 }
1233 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1234
1235 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1236 {
1237         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1238
1239         /*
1240          * Disable radio.
1241          */
1242         rt2x00lib_disable_radio(rt2x00dev);
1243
1244         /*
1245          * Uninitialize device.
1246          */
1247         rt2x00lib_uninitialize(rt2x00dev);
1248
1249         /*
1250          * Close debugfs entry.
1251          */
1252         rt2x00debug_deregister(rt2x00dev);
1253
1254         /*
1255          * Free rfkill
1256          */
1257         rt2x00rfkill_free(rt2x00dev);
1258
1259         /*
1260          * Free ieee80211_hw memory.
1261          */
1262         rt2x00lib_remove_hw(rt2x00dev);
1263
1264         /*
1265          * Free firmware image.
1266          */
1267         rt2x00lib_free_firmware(rt2x00dev);
1268
1269         /*
1270          * Free ring structures.
1271          */
1272         rt2x00lib_free_rings(rt2x00dev);
1273 }
1274 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1275
1276 /*
1277  * Device state handlers
1278  */
1279 #ifdef CONFIG_PM
1280 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1281 {
1282         int retval;
1283
1284         NOTICE(rt2x00dev, "Going to sleep.\n");
1285         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1286
1287         /*
1288          * Only continue if mac80211 has open interfaces.
1289          */
1290         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1291                 goto exit;
1292         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1293
1294         /*
1295          * Disable radio and unitialize all items
1296          * that must be recreated on resume.
1297          */
1298         rt2x00mac_stop(rt2x00dev->hw);
1299         rt2x00lib_uninitialize(rt2x00dev);
1300         rt2x00debug_deregister(rt2x00dev);
1301
1302 exit:
1303         /*
1304          * Set device mode to sleep for power management.
1305          */
1306         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1307         if (retval)
1308                 return retval;
1309
1310         return 0;
1311 }
1312 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1313
1314 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1315 {
1316         struct interface *intf = &rt2x00dev->interface;
1317         int retval;
1318
1319         NOTICE(rt2x00dev, "Waking up.\n");
1320         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1321
1322         /*
1323          * Open the debugfs entry.
1324          */
1325         rt2x00debug_register(rt2x00dev);
1326
1327         /*
1328          * Only continue if mac80211 had open interfaces.
1329          */
1330         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1331                 return 0;
1332
1333         /*
1334          * Reinitialize device and all active interfaces.
1335          */
1336         retval = rt2x00mac_start(rt2x00dev->hw);
1337         if (retval)
1338                 goto exit;
1339
1340         /*
1341          * Reconfigure device.
1342          */
1343         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1344         if (!rt2x00dev->hw->conf.radio_enabled)
1345                 rt2x00lib_disable_radio(rt2x00dev);
1346
1347         rt2x00lib_config_mac_addr(rt2x00dev, intf->mac);
1348         rt2x00lib_config_bssid(rt2x00dev, intf->bssid);
1349         rt2x00lib_config_type(rt2x00dev, intf->type);
1350
1351         /*
1352          * It is possible that during that mac80211 has attempted
1353          * to send frames while we were suspending or resuming.
1354          * In that case we have disabled the TX queue and should
1355          * now enable it again
1356          */
1357         ieee80211_start_queues(rt2x00dev->hw);
1358
1359         /*
1360          * When in Master or Ad-hoc mode,
1361          * restart Beacon transmitting by faking a beacondone event.
1362          */
1363         if (intf->type == IEEE80211_IF_TYPE_AP ||
1364             intf->type == IEEE80211_IF_TYPE_IBSS)
1365                 rt2x00lib_beacondone(rt2x00dev);
1366
1367         return 0;
1368
1369 exit:
1370         rt2x00lib_disable_radio(rt2x00dev);
1371         rt2x00lib_uninitialize(rt2x00dev);
1372         rt2x00debug_deregister(rt2x00dev);
1373
1374         return retval;
1375 }
1376 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1377 #endif /* CONFIG_PM */
1378
1379 /*
1380  * rt2x00lib module information.
1381  */
1382 MODULE_AUTHOR(DRV_PROJECT);
1383 MODULE_VERSION(DRV_VERSION);
1384 MODULE_DESCRIPTION("rt2x00 library");
1385 MODULE_LICENSE("GPL");