2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/init.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/mii.h>
41 #include <linux/sockios.h>
42 #include <linux/workqueue.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/firmware.h>
46 #include <linux/log2.h>
47 #include <asm/uaccess.h>
50 #include "cxgb3_ioctl.h"
52 #include "cxgb3_offload.h"
55 #include "cxgb3_ctl_defs.h"
57 #include "firmware_exports.h"
60 MAX_TXQ_ENTRIES = 16384,
61 MAX_CTRL_TXQ_ENTRIES = 1024,
62 MAX_RSPQ_ENTRIES = 16384,
63 MAX_RX_BUFFERS = 16384,
64 MAX_RX_JUMBO_BUFFERS = 16384,
66 MIN_CTRL_TXQ_ENTRIES = 4,
67 MIN_RSPQ_ENTRIES = 32,
71 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
73 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
74 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
75 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
77 #define EEPROM_MAGIC 0x38E2F10C
79 #define CH_DEVICE(devid, idx) \
80 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
82 static const struct pci_device_id cxgb3_pci_tbl[] = {
83 CH_DEVICE(0x20, 0), /* PE9000 */
84 CH_DEVICE(0x21, 1), /* T302E */
85 CH_DEVICE(0x22, 2), /* T310E */
86 CH_DEVICE(0x23, 3), /* T320X */
87 CH_DEVICE(0x24, 1), /* T302X */
88 CH_DEVICE(0x25, 3), /* T320E */
89 CH_DEVICE(0x26, 2), /* T310X */
90 CH_DEVICE(0x30, 2), /* T3B10 */
91 CH_DEVICE(0x31, 3), /* T3B20 */
92 CH_DEVICE(0x32, 1), /* T3B02 */
93 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */
97 MODULE_DESCRIPTION(DRV_DESC);
98 MODULE_AUTHOR("Chelsio Communications");
99 MODULE_LICENSE("Dual BSD/GPL");
100 MODULE_VERSION(DRV_VERSION);
101 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
103 static int dflt_msg_enable = DFLT_MSG_ENABLE;
105 module_param(dflt_msg_enable, int, 0644);
106 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
109 * The driver uses the best interrupt scheme available on a platform in the
110 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which
111 * of these schemes the driver may consider as follows:
113 * msi = 2: choose from among all three options
114 * msi = 1: only consider MSI and pin interrupts
115 * msi = 0: force pin interrupts
119 module_param(msi, int, 0644);
120 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
123 * The driver enables offload as a default.
124 * To disable it, use ofld_disable = 1.
127 static int ofld_disable = 0;
129 module_param(ofld_disable, int, 0644);
130 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
133 * We have work elements that we need to cancel when an interface is taken
134 * down. Normally the work elements would be executed by keventd but that
135 * can deadlock because of linkwatch. If our close method takes the rtnl
136 * lock and linkwatch is ahead of our work elements in keventd, linkwatch
137 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
138 * for our work to complete. Get our own work queue to solve this.
140 static struct workqueue_struct *cxgb3_wq;
143 * link_report - show link status and link speed/duplex
144 * @p: the port whose settings are to be reported
146 * Shows the link status, speed, and duplex of a port.
148 static void link_report(struct net_device *dev)
150 if (!netif_carrier_ok(dev))
151 printk(KERN_INFO "%s: link down\n", dev->name);
153 const char *s = "10Mbps";
154 const struct port_info *p = netdev_priv(dev);
156 switch (p->link_config.speed) {
168 printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s,
169 p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
173 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
175 struct net_device *dev = adap->port[port_id];
176 struct port_info *pi = netdev_priv(dev);
178 if (state == netif_carrier_ok(dev))
182 struct cmac *mac = &pi->mac;
184 netif_carrier_on(dev);
186 /* Clear local faults */
187 t3_xgm_intr_disable(adap, pi->port_id);
188 t3_read_reg(adap, A_XGM_INT_STATUS +
191 A_XGM_INT_CAUSE + pi->mac.offset,
194 t3_set_reg_field(adap,
197 F_XGM_INT, F_XGM_INT);
198 t3_xgm_intr_enable(adap, pi->port_id);
200 t3_mac_enable(mac, MAC_DIRECTION_TX);
202 netif_carrier_off(dev);
208 * t3_os_link_changed - handle link status changes
209 * @adapter: the adapter associated with the link change
210 * @port_id: the port index whose limk status has changed
211 * @link_stat: the new status of the link
212 * @speed: the new speed setting
213 * @duplex: the new duplex setting
214 * @pause: the new flow-control setting
216 * This is the OS-dependent handler for link status changes. The OS
217 * neutral handler takes care of most of the processing for these events,
218 * then calls this handler for any OS-specific processing.
220 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
221 int speed, int duplex, int pause)
223 struct net_device *dev = adapter->port[port_id];
224 struct port_info *pi = netdev_priv(dev);
225 struct cmac *mac = &pi->mac;
227 /* Skip changes from disabled ports. */
228 if (!netif_running(dev))
231 if (link_stat != netif_carrier_ok(dev)) {
233 t3_mac_enable(mac, MAC_DIRECTION_RX);
235 /* Clear local faults */
236 t3_xgm_intr_disable(adapter, pi->port_id);
237 t3_read_reg(adapter, A_XGM_INT_STATUS +
239 t3_write_reg(adapter,
240 A_XGM_INT_CAUSE + pi->mac.offset,
243 t3_set_reg_field(adapter,
244 A_XGM_INT_ENABLE + pi->mac.offset,
245 F_XGM_INT, F_XGM_INT);
246 t3_xgm_intr_enable(adapter, pi->port_id);
248 netif_carrier_on(dev);
250 netif_carrier_off(dev);
252 t3_xgm_intr_disable(adapter, pi->port_id);
253 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
254 t3_set_reg_field(adapter,
255 A_XGM_INT_ENABLE + pi->mac.offset,
259 pi->phy.ops->power_down(&pi->phy, 1);
261 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
262 t3_mac_disable(mac, MAC_DIRECTION_RX);
263 t3_link_start(&pi->phy, mac, &pi->link_config);
271 * t3_os_phymod_changed - handle PHY module changes
272 * @phy: the PHY reporting the module change
273 * @mod_type: new module type
275 * This is the OS-dependent handler for PHY module changes. It is
276 * invoked when a PHY module is removed or inserted for any OS-specific
279 void t3_os_phymod_changed(struct adapter *adap, int port_id)
281 static const char *mod_str[] = {
282 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
285 const struct net_device *dev = adap->port[port_id];
286 const struct port_info *pi = netdev_priv(dev);
288 if (pi->phy.modtype == phy_modtype_none)
289 printk(KERN_INFO "%s: PHY module unplugged\n", dev->name);
291 printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name,
292 mod_str[pi->phy.modtype]);
295 static void cxgb_set_rxmode(struct net_device *dev)
297 struct t3_rx_mode rm;
298 struct port_info *pi = netdev_priv(dev);
300 init_rx_mode(&rm, dev, dev->mc_list);
301 t3_mac_set_rx_mode(&pi->mac, &rm);
305 * link_start - enable a port
306 * @dev: the device to enable
308 * Performs the MAC and PHY actions needed to enable a port.
310 static void link_start(struct net_device *dev)
312 struct t3_rx_mode rm;
313 struct port_info *pi = netdev_priv(dev);
314 struct cmac *mac = &pi->mac;
316 init_rx_mode(&rm, dev, dev->mc_list);
318 t3_mac_set_mtu(mac, dev->mtu);
319 t3_mac_set_address(mac, 0, dev->dev_addr);
320 t3_mac_set_rx_mode(mac, &rm);
321 t3_link_start(&pi->phy, mac, &pi->link_config);
322 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
325 static inline void cxgb_disable_msi(struct adapter *adapter)
327 if (adapter->flags & USING_MSIX) {
328 pci_disable_msix(adapter->pdev);
329 adapter->flags &= ~USING_MSIX;
330 } else if (adapter->flags & USING_MSI) {
331 pci_disable_msi(adapter->pdev);
332 adapter->flags &= ~USING_MSI;
337 * Interrupt handler for asynchronous events used with MSI-X.
339 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
341 t3_slow_intr_handler(cookie);
346 * Name the MSI-X interrupts.
348 static void name_msix_vecs(struct adapter *adap)
350 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
352 snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
353 adap->msix_info[0].desc[n] = 0;
355 for_each_port(adap, j) {
356 struct net_device *d = adap->port[j];
357 const struct port_info *pi = netdev_priv(d);
359 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
360 snprintf(adap->msix_info[msi_idx].desc, n,
361 "%s-%d", d->name, pi->first_qset + i);
362 adap->msix_info[msi_idx].desc[n] = 0;
367 static int request_msix_data_irqs(struct adapter *adap)
369 int i, j, err, qidx = 0;
371 for_each_port(adap, i) {
372 int nqsets = adap2pinfo(adap, i)->nqsets;
374 for (j = 0; j < nqsets; ++j) {
375 err = request_irq(adap->msix_info[qidx + 1].vec,
376 t3_intr_handler(adap,
379 adap->msix_info[qidx + 1].desc,
380 &adap->sge.qs[qidx]);
383 free_irq(adap->msix_info[qidx + 1].vec,
384 &adap->sge.qs[qidx]);
393 static void free_irq_resources(struct adapter *adapter)
395 if (adapter->flags & USING_MSIX) {
398 free_irq(adapter->msix_info[0].vec, adapter);
399 for_each_port(adapter, i)
400 n += adap2pinfo(adapter, i)->nqsets;
402 for (i = 0; i < n; ++i)
403 free_irq(adapter->msix_info[i + 1].vec,
404 &adapter->sge.qs[i]);
406 free_irq(adapter->pdev->irq, adapter);
409 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
414 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
422 static int init_tp_parity(struct adapter *adap)
426 struct cpl_set_tcb_field *greq;
427 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
429 t3_tp_set_offload_mode(adap, 1);
431 for (i = 0; i < 16; i++) {
432 struct cpl_smt_write_req *req;
434 skb = alloc_skb(sizeof(*req), GFP_KERNEL | __GFP_NOFAIL);
435 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
436 memset(req, 0, sizeof(*req));
437 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
438 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
440 t3_mgmt_tx(adap, skb);
443 for (i = 0; i < 2048; i++) {
444 struct cpl_l2t_write_req *req;
446 skb = alloc_skb(sizeof(*req), GFP_KERNEL | __GFP_NOFAIL);
447 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
448 memset(req, 0, sizeof(*req));
449 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
450 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
451 req->params = htonl(V_L2T_W_IDX(i));
452 t3_mgmt_tx(adap, skb);
455 for (i = 0; i < 2048; i++) {
456 struct cpl_rte_write_req *req;
458 skb = alloc_skb(sizeof(*req), GFP_KERNEL | __GFP_NOFAIL);
459 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
460 memset(req, 0, sizeof(*req));
461 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
462 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
463 req->l2t_idx = htonl(V_L2T_W_IDX(i));
464 t3_mgmt_tx(adap, skb);
467 skb = alloc_skb(sizeof(*greq), GFP_KERNEL | __GFP_NOFAIL);
468 greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
469 memset(greq, 0, sizeof(*greq));
470 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
471 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
472 greq->mask = cpu_to_be64(1);
473 t3_mgmt_tx(adap, skb);
475 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
476 t3_tp_set_offload_mode(adap, 0);
481 * setup_rss - configure RSS
484 * Sets up RSS to distribute packets to multiple receive queues. We
485 * configure the RSS CPU lookup table to distribute to the number of HW
486 * receive queues, and the response queue lookup table to narrow that
487 * down to the response queues actually configured for each port.
488 * We always configure the RSS mapping for two ports since the mapping
489 * table has plenty of entries.
491 static void setup_rss(struct adapter *adap)
494 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
495 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
496 u8 cpus[SGE_QSETS + 1];
497 u16 rspq_map[RSS_TABLE_SIZE];
499 for (i = 0; i < SGE_QSETS; ++i)
501 cpus[SGE_QSETS] = 0xff; /* terminator */
503 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
504 rspq_map[i] = i % nq0;
505 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
508 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
509 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
510 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
513 static void init_napi(struct adapter *adap)
517 for (i = 0; i < SGE_QSETS; i++) {
518 struct sge_qset *qs = &adap->sge.qs[i];
521 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
526 * netif_napi_add() can be called only once per napi_struct because it
527 * adds each new napi_struct to a list. Be careful not to call it a
528 * second time, e.g., during EEH recovery, by making a note of it.
530 adap->flags |= NAPI_INIT;
534 * Wait until all NAPI handlers are descheduled. This includes the handlers of
535 * both netdevices representing interfaces and the dummy ones for the extra
538 static void quiesce_rx(struct adapter *adap)
542 for (i = 0; i < SGE_QSETS; i++)
543 if (adap->sge.qs[i].adap)
544 napi_disable(&adap->sge.qs[i].napi);
547 static void enable_all_napi(struct adapter *adap)
550 for (i = 0; i < SGE_QSETS; i++)
551 if (adap->sge.qs[i].adap)
552 napi_enable(&adap->sge.qs[i].napi);
556 * set_qset_lro - Turn a queue set's LRO capability on and off
557 * @dev: the device the qset is attached to
558 * @qset_idx: the queue set index
559 * @val: the LRO switch
561 * Sets LRO on or off for a particular queue set.
562 * the device's features flag is updated to reflect the LRO
563 * capability when all queues belonging to the device are
566 static void set_qset_lro(struct net_device *dev, int qset_idx, int val)
568 struct port_info *pi = netdev_priv(dev);
569 struct adapter *adapter = pi->adapter;
571 adapter->params.sge.qset[qset_idx].lro = !!val;
572 adapter->sge.qs[qset_idx].lro_enabled = !!val;
576 * setup_sge_qsets - configure SGE Tx/Rx/response queues
579 * Determines how many sets of SGE queues to use and initializes them.
580 * We support multiple queue sets per port if we have MSI-X, otherwise
581 * just one queue set per port.
583 static int setup_sge_qsets(struct adapter *adap)
585 int i, j, err, irq_idx = 0, qset_idx = 0;
586 unsigned int ntxq = SGE_TXQ_PER_SET;
588 if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
591 for_each_port(adap, i) {
592 struct net_device *dev = adap->port[i];
593 struct port_info *pi = netdev_priv(dev);
595 pi->qs = &adap->sge.qs[pi->first_qset];
596 for (j = pi->first_qset; j < pi->first_qset + pi->nqsets;
598 set_qset_lro(dev, qset_idx, pi->rx_offload & T3_LRO);
599 err = t3_sge_alloc_qset(adap, qset_idx, 1,
600 (adap->flags & USING_MSIX) ? qset_idx + 1 :
602 &adap->params.sge.qset[qset_idx], ntxq, dev,
603 netdev_get_tx_queue(dev, j));
605 t3_free_sge_resources(adap);
614 static ssize_t attr_show(struct device *d, char *buf,
615 ssize_t(*format) (struct net_device *, char *))
619 /* Synchronize with ioctls that may shut down the device */
621 len = (*format) (to_net_dev(d), buf);
626 static ssize_t attr_store(struct device *d,
627 const char *buf, size_t len,
628 ssize_t(*set) (struct net_device *, unsigned int),
629 unsigned int min_val, unsigned int max_val)
635 if (!capable(CAP_NET_ADMIN))
638 val = simple_strtoul(buf, &endp, 0);
639 if (endp == buf || val < min_val || val > max_val)
643 ret = (*set) (to_net_dev(d), val);
650 #define CXGB3_SHOW(name, val_expr) \
651 static ssize_t format_##name(struct net_device *dev, char *buf) \
653 struct port_info *pi = netdev_priv(dev); \
654 struct adapter *adap = pi->adapter; \
655 return sprintf(buf, "%u\n", val_expr); \
657 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
660 return attr_show(d, buf, format_##name); \
663 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
665 struct port_info *pi = netdev_priv(dev);
666 struct adapter *adap = pi->adapter;
667 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
669 if (adap->flags & FULL_INIT_DONE)
671 if (val && adap->params.rev == 0)
673 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
676 adap->params.mc5.nfilters = val;
680 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
681 const char *buf, size_t len)
683 return attr_store(d, buf, len, set_nfilters, 0, ~0);
686 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
688 struct port_info *pi = netdev_priv(dev);
689 struct adapter *adap = pi->adapter;
691 if (adap->flags & FULL_INIT_DONE)
693 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
696 adap->params.mc5.nservers = val;
700 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
701 const char *buf, size_t len)
703 return attr_store(d, buf, len, set_nservers, 0, ~0);
706 #define CXGB3_ATTR_R(name, val_expr) \
707 CXGB3_SHOW(name, val_expr) \
708 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
710 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
711 CXGB3_SHOW(name, val_expr) \
712 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
714 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
715 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
716 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
718 static struct attribute *cxgb3_attrs[] = {
719 &dev_attr_cam_size.attr,
720 &dev_attr_nfilters.attr,
721 &dev_attr_nservers.attr,
725 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
727 static ssize_t tm_attr_show(struct device *d,
728 char *buf, int sched)
730 struct port_info *pi = netdev_priv(to_net_dev(d));
731 struct adapter *adap = pi->adapter;
732 unsigned int v, addr, bpt, cpt;
735 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
737 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
738 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
741 bpt = (v >> 8) & 0xff;
744 len = sprintf(buf, "disabled\n");
746 v = (adap->params.vpd.cclk * 1000) / cpt;
747 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
753 static ssize_t tm_attr_store(struct device *d,
754 const char *buf, size_t len, int sched)
756 struct port_info *pi = netdev_priv(to_net_dev(d));
757 struct adapter *adap = pi->adapter;
762 if (!capable(CAP_NET_ADMIN))
765 val = simple_strtoul(buf, &endp, 0);
766 if (endp == buf || val > 10000000)
770 ret = t3_config_sched(adap, val, sched);
777 #define TM_ATTR(name, sched) \
778 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
781 return tm_attr_show(d, buf, sched); \
783 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
784 const char *buf, size_t len) \
786 return tm_attr_store(d, buf, len, sched); \
788 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
799 static struct attribute *offload_attrs[] = {
800 &dev_attr_sched0.attr,
801 &dev_attr_sched1.attr,
802 &dev_attr_sched2.attr,
803 &dev_attr_sched3.attr,
804 &dev_attr_sched4.attr,
805 &dev_attr_sched5.attr,
806 &dev_attr_sched6.attr,
807 &dev_attr_sched7.attr,
811 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
814 * Sends an sk_buff to an offload queue driver
815 * after dealing with any active network taps.
817 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
822 ret = t3_offload_tx(tdev, skb);
827 static int write_smt_entry(struct adapter *adapter, int idx)
829 struct cpl_smt_write_req *req;
830 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
835 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
836 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
837 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
838 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */
840 memset(req->src_mac1, 0, sizeof(req->src_mac1));
841 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
843 offload_tx(&adapter->tdev, skb);
847 static int init_smt(struct adapter *adapter)
851 for_each_port(adapter, i)
852 write_smt_entry(adapter, i);
856 static void init_port_mtus(struct adapter *adapter)
858 unsigned int mtus = adapter->port[0]->mtu;
860 if (adapter->port[1])
861 mtus |= adapter->port[1]->mtu << 16;
862 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
865 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
869 struct mngt_pktsched_wr *req;
872 skb = alloc_skb(sizeof(*req), GFP_KERNEL | __GFP_NOFAIL);
873 req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
874 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
875 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
881 ret = t3_mgmt_tx(adap, skb);
886 static int bind_qsets(struct adapter *adap)
890 for_each_port(adap, i) {
891 const struct port_info *pi = adap2pinfo(adap, i);
893 for (j = 0; j < pi->nqsets; ++j) {
894 int ret = send_pktsched_cmd(adap, 1,
895 pi->first_qset + j, -1,
905 #define FW_FNAME "cxgb3/t3fw-%d.%d.%d.bin"
906 #define TPSRAM_NAME "cxgb3/t3%c_psram-%d.%d.%d.bin"
908 static int upgrade_fw(struct adapter *adap)
912 const struct firmware *fw;
913 struct device *dev = &adap->pdev->dev;
915 snprintf(buf, sizeof(buf), FW_FNAME, FW_VERSION_MAJOR,
916 FW_VERSION_MINOR, FW_VERSION_MICRO);
917 ret = request_firmware(&fw, buf, dev);
919 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
923 ret = t3_load_fw(adap, fw->data, fw->size);
924 release_firmware(fw);
927 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
928 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
930 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
931 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
936 static inline char t3rev2char(struct adapter *adapter)
940 switch(adapter->params.rev) {
952 static int update_tpsram(struct adapter *adap)
954 const struct firmware *tpsram;
956 struct device *dev = &adap->pdev->dev;
960 rev = t3rev2char(adap);
964 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev,
965 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
967 ret = request_firmware(&tpsram, buf, dev);
969 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
974 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
978 ret = t3_set_proto_sram(adap, tpsram->data);
981 "successful update of protocol engine "
983 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
985 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
986 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
988 dev_err(dev, "loading protocol SRAM failed\n");
991 release_firmware(tpsram);
997 * cxgb_up - enable the adapter
998 * @adapter: adapter being enabled
1000 * Called when the first port is enabled, this function performs the
1001 * actions necessary to make an adapter operational, such as completing
1002 * the initialization of HW modules, and enabling interrupts.
1004 * Must be called with the rtnl lock held.
1006 static int cxgb_up(struct adapter *adap)
1010 if (!(adap->flags & FULL_INIT_DONE)) {
1011 err = t3_check_fw_version(adap);
1012 if (err == -EINVAL) {
1013 err = upgrade_fw(adap);
1014 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1015 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1016 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1019 err = t3_check_tpsram_version(adap);
1020 if (err == -EINVAL) {
1021 err = update_tpsram(adap);
1022 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1023 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1024 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1028 * Clear interrupts now to catch errors if t3_init_hw fails.
1029 * We clear them again later as initialization may trigger
1030 * conditions that can interrupt.
1032 t3_intr_clear(adap);
1034 err = t3_init_hw(adap, 0);
1038 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1039 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1041 err = setup_sge_qsets(adap);
1046 if (!(adap->flags & NAPI_INIT))
1049 t3_start_sge_timers(adap);
1050 adap->flags |= FULL_INIT_DONE;
1053 t3_intr_clear(adap);
1055 if (adap->flags & USING_MSIX) {
1056 name_msix_vecs(adap);
1057 err = request_irq(adap->msix_info[0].vec,
1058 t3_async_intr_handler, 0,
1059 adap->msix_info[0].desc, adap);
1063 err = request_msix_data_irqs(adap);
1065 free_irq(adap->msix_info[0].vec, adap);
1068 } else if ((err = request_irq(adap->pdev->irq,
1069 t3_intr_handler(adap,
1070 adap->sge.qs[0].rspq.
1072 (adap->flags & USING_MSI) ?
1077 enable_all_napi(adap);
1079 t3_intr_enable(adap);
1081 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1082 is_offload(adap) && init_tp_parity(adap) == 0)
1083 adap->flags |= TP_PARITY_INIT;
1085 if (adap->flags & TP_PARITY_INIT) {
1086 t3_write_reg(adap, A_TP_INT_CAUSE,
1087 F_CMCACHEPERR | F_ARPLUTPERR);
1088 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1091 if (!(adap->flags & QUEUES_BOUND)) {
1092 err = bind_qsets(adap);
1094 CH_ERR(adap, "failed to bind qsets, err %d\n", err);
1095 t3_intr_disable(adap);
1096 free_irq_resources(adap);
1099 adap->flags |= QUEUES_BOUND;
1105 CH_ERR(adap, "request_irq failed, err %d\n", err);
1110 * Release resources when all the ports and offloading have been stopped.
1112 static void cxgb_down(struct adapter *adapter)
1114 t3_sge_stop(adapter);
1115 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */
1116 t3_intr_disable(adapter);
1117 spin_unlock_irq(&adapter->work_lock);
1119 free_irq_resources(adapter);
1120 quiesce_rx(adapter);
1121 flush_workqueue(cxgb3_wq); /* wait for external IRQ handler */
1124 static void schedule_chk_task(struct adapter *adap)
1128 timeo = adap->params.linkpoll_period ?
1129 (HZ * adap->params.linkpoll_period) / 10 :
1130 adap->params.stats_update_period * HZ;
1132 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1135 static int offload_open(struct net_device *dev)
1137 struct port_info *pi = netdev_priv(dev);
1138 struct adapter *adapter = pi->adapter;
1139 struct t3cdev *tdev = dev2t3cdev(dev);
1140 int adap_up = adapter->open_device_map & PORT_MASK;
1143 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1146 if (!adap_up && (err = cxgb_up(adapter)) < 0)
1149 t3_tp_set_offload_mode(adapter, 1);
1150 tdev->lldev = adapter->port[0];
1151 err = cxgb3_offload_activate(adapter);
1155 init_port_mtus(adapter);
1156 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1157 adapter->params.b_wnd,
1158 adapter->params.rev == 0 ?
1159 adapter->port[0]->mtu : 0xffff);
1162 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1163 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1165 /* Call back all registered clients */
1166 cxgb3_add_clients(tdev);
1169 /* restore them in case the offload module has changed them */
1171 t3_tp_set_offload_mode(adapter, 0);
1172 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1173 cxgb3_set_dummy_ops(tdev);
1178 static int offload_close(struct t3cdev *tdev)
1180 struct adapter *adapter = tdev2adap(tdev);
1182 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1185 /* Call back all registered clients */
1186 cxgb3_remove_clients(tdev);
1188 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1190 /* Flush work scheduled while releasing TIDs */
1191 flush_scheduled_work();
1194 cxgb3_set_dummy_ops(tdev);
1195 t3_tp_set_offload_mode(adapter, 0);
1196 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1198 if (!adapter->open_device_map)
1201 cxgb3_offload_deactivate(adapter);
1205 static int cxgb_open(struct net_device *dev)
1207 struct port_info *pi = netdev_priv(dev);
1208 struct adapter *adapter = pi->adapter;
1209 int other_ports = adapter->open_device_map & PORT_MASK;
1212 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1215 set_bit(pi->port_id, &adapter->open_device_map);
1216 if (is_offload(adapter) && !ofld_disable) {
1217 err = offload_open(dev);
1220 "Could not initialize offload capabilities\n");
1223 dev->real_num_tx_queues = pi->nqsets;
1225 t3_port_intr_enable(adapter, pi->port_id);
1226 netif_tx_start_all_queues(dev);
1228 schedule_chk_task(adapter);
1233 static int cxgb_close(struct net_device *dev)
1235 struct port_info *pi = netdev_priv(dev);
1236 struct adapter *adapter = pi->adapter;
1239 if (!adapter->open_device_map)
1242 /* Stop link fault interrupts */
1243 t3_xgm_intr_disable(adapter, pi->port_id);
1244 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1246 t3_port_intr_disable(adapter, pi->port_id);
1247 netif_tx_stop_all_queues(dev);
1248 pi->phy.ops->power_down(&pi->phy, 1);
1249 netif_carrier_off(dev);
1250 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1252 spin_lock_irq(&adapter->work_lock); /* sync with update task */
1253 clear_bit(pi->port_id, &adapter->open_device_map);
1254 spin_unlock_irq(&adapter->work_lock);
1256 if (!(adapter->open_device_map & PORT_MASK))
1257 cancel_delayed_work_sync(&adapter->adap_check_task);
1259 if (!adapter->open_device_map)
1265 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1267 struct port_info *pi = netdev_priv(dev);
1268 struct adapter *adapter = pi->adapter;
1269 struct net_device_stats *ns = &pi->netstats;
1270 const struct mac_stats *pstats;
1272 spin_lock(&adapter->stats_lock);
1273 pstats = t3_mac_update_stats(&pi->mac);
1274 spin_unlock(&adapter->stats_lock);
1276 ns->tx_bytes = pstats->tx_octets;
1277 ns->tx_packets = pstats->tx_frames;
1278 ns->rx_bytes = pstats->rx_octets;
1279 ns->rx_packets = pstats->rx_frames;
1280 ns->multicast = pstats->rx_mcast_frames;
1282 ns->tx_errors = pstats->tx_underrun;
1283 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1284 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1285 pstats->rx_fifo_ovfl;
1287 /* detailed rx_errors */
1288 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1289 ns->rx_over_errors = 0;
1290 ns->rx_crc_errors = pstats->rx_fcs_errs;
1291 ns->rx_frame_errors = pstats->rx_symbol_errs;
1292 ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1293 ns->rx_missed_errors = pstats->rx_cong_drops;
1295 /* detailed tx_errors */
1296 ns->tx_aborted_errors = 0;
1297 ns->tx_carrier_errors = 0;
1298 ns->tx_fifo_errors = pstats->tx_underrun;
1299 ns->tx_heartbeat_errors = 0;
1300 ns->tx_window_errors = 0;
1304 static u32 get_msglevel(struct net_device *dev)
1306 struct port_info *pi = netdev_priv(dev);
1307 struct adapter *adapter = pi->adapter;
1309 return adapter->msg_enable;
1312 static void set_msglevel(struct net_device *dev, u32 val)
1314 struct port_info *pi = netdev_priv(dev);
1315 struct adapter *adapter = pi->adapter;
1317 adapter->msg_enable = val;
1320 static char stats_strings[][ETH_GSTRING_LEN] = {
1323 "TxMulticastFramesOK",
1324 "TxBroadcastFramesOK",
1331 "TxFrames128To255 ",
1332 "TxFrames256To511 ",
1333 "TxFrames512To1023 ",
1334 "TxFrames1024To1518 ",
1335 "TxFrames1519ToMax ",
1339 "RxMulticastFramesOK",
1340 "RxBroadcastFramesOK",
1351 "RxFrames128To255 ",
1352 "RxFrames256To511 ",
1353 "RxFrames512To1023 ",
1354 "RxFrames1024To1518 ",
1355 "RxFrames1519ToMax ",
1368 "CheckTXEnToggled ",
1374 static int get_sset_count(struct net_device *dev, int sset)
1378 return ARRAY_SIZE(stats_strings);
1384 #define T3_REGMAP_SIZE (3 * 1024)
1386 static int get_regs_len(struct net_device *dev)
1388 return T3_REGMAP_SIZE;
1391 static int get_eeprom_len(struct net_device *dev)
1396 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1398 struct port_info *pi = netdev_priv(dev);
1399 struct adapter *adapter = pi->adapter;
1403 spin_lock(&adapter->stats_lock);
1404 t3_get_fw_version(adapter, &fw_vers);
1405 t3_get_tp_version(adapter, &tp_vers);
1406 spin_unlock(&adapter->stats_lock);
1408 strcpy(info->driver, DRV_NAME);
1409 strcpy(info->version, DRV_VERSION);
1410 strcpy(info->bus_info, pci_name(adapter->pdev));
1412 strcpy(info->fw_version, "N/A");
1414 snprintf(info->fw_version, sizeof(info->fw_version),
1415 "%s %u.%u.%u TP %u.%u.%u",
1416 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1417 G_FW_VERSION_MAJOR(fw_vers),
1418 G_FW_VERSION_MINOR(fw_vers),
1419 G_FW_VERSION_MICRO(fw_vers),
1420 G_TP_VERSION_MAJOR(tp_vers),
1421 G_TP_VERSION_MINOR(tp_vers),
1422 G_TP_VERSION_MICRO(tp_vers));
1426 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1428 if (stringset == ETH_SS_STATS)
1429 memcpy(data, stats_strings, sizeof(stats_strings));
1432 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1433 struct port_info *p, int idx)
1436 unsigned long tot = 0;
1438 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1439 tot += adapter->sge.qs[i].port_stats[idx];
1443 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1446 struct port_info *pi = netdev_priv(dev);
1447 struct adapter *adapter = pi->adapter;
1448 const struct mac_stats *s;
1450 spin_lock(&adapter->stats_lock);
1451 s = t3_mac_update_stats(&pi->mac);
1452 spin_unlock(&adapter->stats_lock);
1454 *data++ = s->tx_octets;
1455 *data++ = s->tx_frames;
1456 *data++ = s->tx_mcast_frames;
1457 *data++ = s->tx_bcast_frames;
1458 *data++ = s->tx_pause;
1459 *data++ = s->tx_underrun;
1460 *data++ = s->tx_fifo_urun;
1462 *data++ = s->tx_frames_64;
1463 *data++ = s->tx_frames_65_127;
1464 *data++ = s->tx_frames_128_255;
1465 *data++ = s->tx_frames_256_511;
1466 *data++ = s->tx_frames_512_1023;
1467 *data++ = s->tx_frames_1024_1518;
1468 *data++ = s->tx_frames_1519_max;
1470 *data++ = s->rx_octets;
1471 *data++ = s->rx_frames;
1472 *data++ = s->rx_mcast_frames;
1473 *data++ = s->rx_bcast_frames;
1474 *data++ = s->rx_pause;
1475 *data++ = s->rx_fcs_errs;
1476 *data++ = s->rx_symbol_errs;
1477 *data++ = s->rx_short;
1478 *data++ = s->rx_jabber;
1479 *data++ = s->rx_too_long;
1480 *data++ = s->rx_fifo_ovfl;
1482 *data++ = s->rx_frames_64;
1483 *data++ = s->rx_frames_65_127;
1484 *data++ = s->rx_frames_128_255;
1485 *data++ = s->rx_frames_256_511;
1486 *data++ = s->rx_frames_512_1023;
1487 *data++ = s->rx_frames_1024_1518;
1488 *data++ = s->rx_frames_1519_max;
1490 *data++ = pi->phy.fifo_errors;
1492 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1493 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1494 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1495 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1496 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1500 *data++ = s->rx_cong_drops;
1502 *data++ = s->num_toggled;
1503 *data++ = s->num_resets;
1505 *data++ = s->link_faults;
1508 static inline void reg_block_dump(struct adapter *ap, void *buf,
1509 unsigned int start, unsigned int end)
1511 u32 *p = buf + start;
1513 for (; start <= end; start += sizeof(u32))
1514 *p++ = t3_read_reg(ap, start);
1517 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1520 struct port_info *pi = netdev_priv(dev);
1521 struct adapter *ap = pi->adapter;
1525 * bits 0..9: chip version
1526 * bits 10..15: chip revision
1527 * bit 31: set for PCIe cards
1529 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1532 * We skip the MAC statistics registers because they are clear-on-read.
1533 * Also reading multi-register stats would need to synchronize with the
1534 * periodic mac stats accumulation. Hard to justify the complexity.
1536 memset(buf, 0, T3_REGMAP_SIZE);
1537 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1538 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1539 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1540 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1541 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1542 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1543 XGM_REG(A_XGM_SERDES_STAT3, 1));
1544 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1545 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1548 static int restart_autoneg(struct net_device *dev)
1550 struct port_info *p = netdev_priv(dev);
1552 if (!netif_running(dev))
1554 if (p->link_config.autoneg != AUTONEG_ENABLE)
1556 p->phy.ops->autoneg_restart(&p->phy);
1560 static int cxgb3_phys_id(struct net_device *dev, u32 data)
1562 struct port_info *pi = netdev_priv(dev);
1563 struct adapter *adapter = pi->adapter;
1569 for (i = 0; i < data * 2; i++) {
1570 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1571 (i & 1) ? F_GPIO0_OUT_VAL : 0);
1572 if (msleep_interruptible(500))
1575 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1580 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1582 struct port_info *p = netdev_priv(dev);
1584 cmd->supported = p->link_config.supported;
1585 cmd->advertising = p->link_config.advertising;
1587 if (netif_carrier_ok(dev)) {
1588 cmd->speed = p->link_config.speed;
1589 cmd->duplex = p->link_config.duplex;
1595 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1596 cmd->phy_address = p->phy.addr;
1597 cmd->transceiver = XCVR_EXTERNAL;
1598 cmd->autoneg = p->link_config.autoneg;
1604 static int speed_duplex_to_caps(int speed, int duplex)
1610 if (duplex == DUPLEX_FULL)
1611 cap = SUPPORTED_10baseT_Full;
1613 cap = SUPPORTED_10baseT_Half;
1616 if (duplex == DUPLEX_FULL)
1617 cap = SUPPORTED_100baseT_Full;
1619 cap = SUPPORTED_100baseT_Half;
1622 if (duplex == DUPLEX_FULL)
1623 cap = SUPPORTED_1000baseT_Full;
1625 cap = SUPPORTED_1000baseT_Half;
1628 if (duplex == DUPLEX_FULL)
1629 cap = SUPPORTED_10000baseT_Full;
1634 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1635 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1636 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1637 ADVERTISED_10000baseT_Full)
1639 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1641 struct port_info *p = netdev_priv(dev);
1642 struct link_config *lc = &p->link_config;
1644 if (!(lc->supported & SUPPORTED_Autoneg)) {
1646 * PHY offers a single speed/duplex. See if that's what's
1649 if (cmd->autoneg == AUTONEG_DISABLE) {
1650 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1651 if (lc->supported & cap)
1657 if (cmd->autoneg == AUTONEG_DISABLE) {
1658 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1660 if (!(lc->supported & cap) || cmd->speed == SPEED_1000)
1662 lc->requested_speed = cmd->speed;
1663 lc->requested_duplex = cmd->duplex;
1664 lc->advertising = 0;
1666 cmd->advertising &= ADVERTISED_MASK;
1667 cmd->advertising &= lc->supported;
1668 if (!cmd->advertising)
1670 lc->requested_speed = SPEED_INVALID;
1671 lc->requested_duplex = DUPLEX_INVALID;
1672 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1674 lc->autoneg = cmd->autoneg;
1675 if (netif_running(dev))
1676 t3_link_start(&p->phy, &p->mac, lc);
1680 static void get_pauseparam(struct net_device *dev,
1681 struct ethtool_pauseparam *epause)
1683 struct port_info *p = netdev_priv(dev);
1685 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1686 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1687 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1690 static int set_pauseparam(struct net_device *dev,
1691 struct ethtool_pauseparam *epause)
1693 struct port_info *p = netdev_priv(dev);
1694 struct link_config *lc = &p->link_config;
1696 if (epause->autoneg == AUTONEG_DISABLE)
1697 lc->requested_fc = 0;
1698 else if (lc->supported & SUPPORTED_Autoneg)
1699 lc->requested_fc = PAUSE_AUTONEG;
1703 if (epause->rx_pause)
1704 lc->requested_fc |= PAUSE_RX;
1705 if (epause->tx_pause)
1706 lc->requested_fc |= PAUSE_TX;
1707 if (lc->autoneg == AUTONEG_ENABLE) {
1708 if (netif_running(dev))
1709 t3_link_start(&p->phy, &p->mac, lc);
1711 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1712 if (netif_running(dev))
1713 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1718 static u32 get_rx_csum(struct net_device *dev)
1720 struct port_info *p = netdev_priv(dev);
1722 return p->rx_offload & T3_RX_CSUM;
1725 static int set_rx_csum(struct net_device *dev, u32 data)
1727 struct port_info *p = netdev_priv(dev);
1730 p->rx_offload |= T3_RX_CSUM;
1734 p->rx_offload &= ~(T3_RX_CSUM | T3_LRO);
1735 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++)
1736 set_qset_lro(dev, i, 0);
1741 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1743 struct port_info *pi = netdev_priv(dev);
1744 struct adapter *adapter = pi->adapter;
1745 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1747 e->rx_max_pending = MAX_RX_BUFFERS;
1748 e->rx_mini_max_pending = 0;
1749 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1750 e->tx_max_pending = MAX_TXQ_ENTRIES;
1752 e->rx_pending = q->fl_size;
1753 e->rx_mini_pending = q->rspq_size;
1754 e->rx_jumbo_pending = q->jumbo_size;
1755 e->tx_pending = q->txq_size[0];
1758 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1760 struct port_info *pi = netdev_priv(dev);
1761 struct adapter *adapter = pi->adapter;
1762 struct qset_params *q;
1765 if (e->rx_pending > MAX_RX_BUFFERS ||
1766 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1767 e->tx_pending > MAX_TXQ_ENTRIES ||
1768 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1769 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1770 e->rx_pending < MIN_FL_ENTRIES ||
1771 e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1772 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1775 if (adapter->flags & FULL_INIT_DONE)
1778 q = &adapter->params.sge.qset[pi->first_qset];
1779 for (i = 0; i < pi->nqsets; ++i, ++q) {
1780 q->rspq_size = e->rx_mini_pending;
1781 q->fl_size = e->rx_pending;
1782 q->jumbo_size = e->rx_jumbo_pending;
1783 q->txq_size[0] = e->tx_pending;
1784 q->txq_size[1] = e->tx_pending;
1785 q->txq_size[2] = e->tx_pending;
1790 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1792 struct port_info *pi = netdev_priv(dev);
1793 struct adapter *adapter = pi->adapter;
1794 struct qset_params *qsp = &adapter->params.sge.qset[0];
1795 struct sge_qset *qs = &adapter->sge.qs[0];
1797 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
1800 qsp->coalesce_usecs = c->rx_coalesce_usecs;
1801 t3_update_qset_coalesce(qs, qsp);
1805 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1807 struct port_info *pi = netdev_priv(dev);
1808 struct adapter *adapter = pi->adapter;
1809 struct qset_params *q = adapter->params.sge.qset;
1811 c->rx_coalesce_usecs = q->coalesce_usecs;
1815 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1818 struct port_info *pi = netdev_priv(dev);
1819 struct adapter *adapter = pi->adapter;
1822 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
1826 e->magic = EEPROM_MAGIC;
1827 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
1828 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
1831 memcpy(data, buf + e->offset, e->len);
1836 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
1839 struct port_info *pi = netdev_priv(dev);
1840 struct adapter *adapter = pi->adapter;
1841 u32 aligned_offset, aligned_len;
1846 if (eeprom->magic != EEPROM_MAGIC)
1849 aligned_offset = eeprom->offset & ~3;
1850 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
1852 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
1853 buf = kmalloc(aligned_len, GFP_KERNEL);
1856 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
1857 if (!err && aligned_len > 4)
1858 err = t3_seeprom_read(adapter,
1859 aligned_offset + aligned_len - 4,
1860 (__le32 *) & buf[aligned_len - 4]);
1863 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
1867 err = t3_seeprom_wp(adapter, 0);
1871 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
1872 err = t3_seeprom_write(adapter, aligned_offset, *p);
1873 aligned_offset += 4;
1877 err = t3_seeprom_wp(adapter, 1);
1884 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1888 memset(&wol->sopass, 0, sizeof(wol->sopass));
1891 static const struct ethtool_ops cxgb_ethtool_ops = {
1892 .get_settings = get_settings,
1893 .set_settings = set_settings,
1894 .get_drvinfo = get_drvinfo,
1895 .get_msglevel = get_msglevel,
1896 .set_msglevel = set_msglevel,
1897 .get_ringparam = get_sge_param,
1898 .set_ringparam = set_sge_param,
1899 .get_coalesce = get_coalesce,
1900 .set_coalesce = set_coalesce,
1901 .get_eeprom_len = get_eeprom_len,
1902 .get_eeprom = get_eeprom,
1903 .set_eeprom = set_eeprom,
1904 .get_pauseparam = get_pauseparam,
1905 .set_pauseparam = set_pauseparam,
1906 .get_rx_csum = get_rx_csum,
1907 .set_rx_csum = set_rx_csum,
1908 .set_tx_csum = ethtool_op_set_tx_csum,
1909 .set_sg = ethtool_op_set_sg,
1910 .get_link = ethtool_op_get_link,
1911 .get_strings = get_strings,
1912 .phys_id = cxgb3_phys_id,
1913 .nway_reset = restart_autoneg,
1914 .get_sset_count = get_sset_count,
1915 .get_ethtool_stats = get_stats,
1916 .get_regs_len = get_regs_len,
1917 .get_regs = get_regs,
1919 .set_tso = ethtool_op_set_tso,
1922 static int in_range(int val, int lo, int hi)
1924 return val < 0 || (val <= hi && val >= lo);
1927 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
1929 struct port_info *pi = netdev_priv(dev);
1930 struct adapter *adapter = pi->adapter;
1934 if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
1938 case CHELSIO_SET_QSET_PARAMS:{
1940 struct qset_params *q;
1941 struct ch_qset_params t;
1942 int q1 = pi->first_qset;
1943 int nqsets = pi->nqsets;
1945 if (!capable(CAP_NET_ADMIN))
1947 if (copy_from_user(&t, useraddr, sizeof(t)))
1949 if (t.qset_idx >= SGE_QSETS)
1951 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
1952 !in_range(t.cong_thres, 0, 255) ||
1953 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
1955 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
1957 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
1958 MAX_CTRL_TXQ_ENTRIES) ||
1959 !in_range(t.fl_size[0], MIN_FL_ENTRIES,
1961 || !in_range(t.fl_size[1], MIN_FL_ENTRIES,
1962 MAX_RX_JUMBO_BUFFERS)
1963 || !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
1967 if ((adapter->flags & FULL_INIT_DONE) && t.lro > 0)
1968 for_each_port(adapter, i) {
1969 pi = adap2pinfo(adapter, i);
1970 if (t.qset_idx >= pi->first_qset &&
1971 t.qset_idx < pi->first_qset + pi->nqsets &&
1972 !(pi->rx_offload & T3_RX_CSUM))
1976 if ((adapter->flags & FULL_INIT_DONE) &&
1977 (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
1978 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
1979 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
1980 t.polling >= 0 || t.cong_thres >= 0))
1983 /* Allow setting of any available qset when offload enabled */
1984 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
1986 for_each_port(adapter, i) {
1987 pi = adap2pinfo(adapter, i);
1988 nqsets += pi->first_qset + pi->nqsets;
1992 if (t.qset_idx < q1)
1994 if (t.qset_idx > q1 + nqsets - 1)
1997 q = &adapter->params.sge.qset[t.qset_idx];
1999 if (t.rspq_size >= 0)
2000 q->rspq_size = t.rspq_size;
2001 if (t.fl_size[0] >= 0)
2002 q->fl_size = t.fl_size[0];
2003 if (t.fl_size[1] >= 0)
2004 q->jumbo_size = t.fl_size[1];
2005 if (t.txq_size[0] >= 0)
2006 q->txq_size[0] = t.txq_size[0];
2007 if (t.txq_size[1] >= 0)
2008 q->txq_size[1] = t.txq_size[1];
2009 if (t.txq_size[2] >= 0)
2010 q->txq_size[2] = t.txq_size[2];
2011 if (t.cong_thres >= 0)
2012 q->cong_thres = t.cong_thres;
2013 if (t.intr_lat >= 0) {
2014 struct sge_qset *qs =
2015 &adapter->sge.qs[t.qset_idx];
2017 q->coalesce_usecs = t.intr_lat;
2018 t3_update_qset_coalesce(qs, q);
2020 if (t.polling >= 0) {
2021 if (adapter->flags & USING_MSIX)
2022 q->polling = t.polling;
2024 /* No polling with INTx for T3A */
2025 if (adapter->params.rev == 0 &&
2026 !(adapter->flags & USING_MSI))
2029 for (i = 0; i < SGE_QSETS; i++) {
2030 q = &adapter->params.sge.
2032 q->polling = t.polling;
2037 set_qset_lro(dev, t.qset_idx, t.lro);
2041 case CHELSIO_GET_QSET_PARAMS:{
2042 struct qset_params *q;
2043 struct ch_qset_params t;
2044 int q1 = pi->first_qset;
2045 int nqsets = pi->nqsets;
2048 if (copy_from_user(&t, useraddr, sizeof(t)))
2051 /* Display qsets for all ports when offload enabled */
2052 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2054 for_each_port(adapter, i) {
2055 pi = adap2pinfo(adapter, i);
2056 nqsets = pi->first_qset + pi->nqsets;
2060 if (t.qset_idx >= nqsets)
2063 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2064 t.rspq_size = q->rspq_size;
2065 t.txq_size[0] = q->txq_size[0];
2066 t.txq_size[1] = q->txq_size[1];
2067 t.txq_size[2] = q->txq_size[2];
2068 t.fl_size[0] = q->fl_size;
2069 t.fl_size[1] = q->jumbo_size;
2070 t.polling = q->polling;
2072 t.intr_lat = q->coalesce_usecs;
2073 t.cong_thres = q->cong_thres;
2076 if (adapter->flags & USING_MSIX)
2077 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2079 t.vector = adapter->pdev->irq;
2081 if (copy_to_user(useraddr, &t, sizeof(t)))
2085 case CHELSIO_SET_QSET_NUM:{
2086 struct ch_reg edata;
2087 unsigned int i, first_qset = 0, other_qsets = 0;
2089 if (!capable(CAP_NET_ADMIN))
2091 if (adapter->flags & FULL_INIT_DONE)
2093 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2095 if (edata.val < 1 ||
2096 (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2099 for_each_port(adapter, i)
2100 if (adapter->port[i] && adapter->port[i] != dev)
2101 other_qsets += adap2pinfo(adapter, i)->nqsets;
2103 if (edata.val + other_qsets > SGE_QSETS)
2106 pi->nqsets = edata.val;
2108 for_each_port(adapter, i)
2109 if (adapter->port[i]) {
2110 pi = adap2pinfo(adapter, i);
2111 pi->first_qset = first_qset;
2112 first_qset += pi->nqsets;
2116 case CHELSIO_GET_QSET_NUM:{
2117 struct ch_reg edata;
2119 edata.cmd = CHELSIO_GET_QSET_NUM;
2120 edata.val = pi->nqsets;
2121 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2125 case CHELSIO_LOAD_FW:{
2127 struct ch_mem_range t;
2129 if (!capable(CAP_SYS_RAWIO))
2131 if (copy_from_user(&t, useraddr, sizeof(t)))
2133 /* Check t.len sanity ? */
2134 fw_data = kmalloc(t.len, GFP_KERNEL);
2139 (fw_data, useraddr + sizeof(t), t.len)) {
2144 ret = t3_load_fw(adapter, fw_data, t.len);
2150 case CHELSIO_SETMTUTAB:{
2154 if (!is_offload(adapter))
2156 if (!capable(CAP_NET_ADMIN))
2158 if (offload_running(adapter))
2160 if (copy_from_user(&m, useraddr, sizeof(m)))
2162 if (m.nmtus != NMTUS)
2164 if (m.mtus[0] < 81) /* accommodate SACK */
2167 /* MTUs must be in ascending order */
2168 for (i = 1; i < NMTUS; ++i)
2169 if (m.mtus[i] < m.mtus[i - 1])
2172 memcpy(adapter->params.mtus, m.mtus,
2173 sizeof(adapter->params.mtus));
2176 case CHELSIO_GET_PM:{
2177 struct tp_params *p = &adapter->params.tp;
2178 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2180 if (!is_offload(adapter))
2182 m.tx_pg_sz = p->tx_pg_size;
2183 m.tx_num_pg = p->tx_num_pgs;
2184 m.rx_pg_sz = p->rx_pg_size;
2185 m.rx_num_pg = p->rx_num_pgs;
2186 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2187 if (copy_to_user(useraddr, &m, sizeof(m)))
2191 case CHELSIO_SET_PM:{
2193 struct tp_params *p = &adapter->params.tp;
2195 if (!is_offload(adapter))
2197 if (!capable(CAP_NET_ADMIN))
2199 if (adapter->flags & FULL_INIT_DONE)
2201 if (copy_from_user(&m, useraddr, sizeof(m)))
2203 if (!is_power_of_2(m.rx_pg_sz) ||
2204 !is_power_of_2(m.tx_pg_sz))
2205 return -EINVAL; /* not power of 2 */
2206 if (!(m.rx_pg_sz & 0x14000))
2207 return -EINVAL; /* not 16KB or 64KB */
2208 if (!(m.tx_pg_sz & 0x1554000))
2210 if (m.tx_num_pg == -1)
2211 m.tx_num_pg = p->tx_num_pgs;
2212 if (m.rx_num_pg == -1)
2213 m.rx_num_pg = p->rx_num_pgs;
2214 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2216 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2217 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2219 p->rx_pg_size = m.rx_pg_sz;
2220 p->tx_pg_size = m.tx_pg_sz;
2221 p->rx_num_pgs = m.rx_num_pg;
2222 p->tx_num_pgs = m.tx_num_pg;
2225 case CHELSIO_GET_MEM:{
2226 struct ch_mem_range t;
2230 if (!is_offload(adapter))
2232 if (!(adapter->flags & FULL_INIT_DONE))
2233 return -EIO; /* need the memory controllers */
2234 if (copy_from_user(&t, useraddr, sizeof(t)))
2236 if ((t.addr & 7) || (t.len & 7))
2238 if (t.mem_id == MEM_CM)
2240 else if (t.mem_id == MEM_PMRX)
2241 mem = &adapter->pmrx;
2242 else if (t.mem_id == MEM_PMTX)
2243 mem = &adapter->pmtx;
2249 * bits 0..9: chip version
2250 * bits 10..15: chip revision
2252 t.version = 3 | (adapter->params.rev << 10);
2253 if (copy_to_user(useraddr, &t, sizeof(t)))
2257 * Read 256 bytes at a time as len can be large and we don't
2258 * want to use huge intermediate buffers.
2260 useraddr += sizeof(t); /* advance to start of buffer */
2262 unsigned int chunk =
2263 min_t(unsigned int, t.len, sizeof(buf));
2266 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2270 if (copy_to_user(useraddr, buf, chunk))
2278 case CHELSIO_SET_TRACE_FILTER:{
2280 const struct trace_params *tp;
2282 if (!capable(CAP_NET_ADMIN))
2284 if (!offload_running(adapter))
2286 if (copy_from_user(&t, useraddr, sizeof(t)))
2289 tp = (const struct trace_params *)&t.sip;
2291 t3_config_trace_filter(adapter, tp, 0,
2295 t3_config_trace_filter(adapter, tp, 1,
2306 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2308 struct mii_ioctl_data *data = if_mii(req);
2309 struct port_info *pi = netdev_priv(dev);
2310 struct adapter *adapter = pi->adapter;
2315 data->phy_id = pi->phy.addr;
2319 struct cphy *phy = &pi->phy;
2321 if (!phy->mdio_read)
2323 if (is_10G(adapter)) {
2324 mmd = data->phy_id >> 8;
2327 else if (mmd > MDIO_DEV_VEND2)
2331 phy->mdio_read(adapter, data->phy_id & 0x1f,
2332 mmd, data->reg_num, &val);
2335 phy->mdio_read(adapter, data->phy_id & 0x1f,
2336 0, data->reg_num & 0x1f,
2339 data->val_out = val;
2343 struct cphy *phy = &pi->phy;
2345 if (!capable(CAP_NET_ADMIN))
2347 if (!phy->mdio_write)
2349 if (is_10G(adapter)) {
2350 mmd = data->phy_id >> 8;
2353 else if (mmd > MDIO_DEV_VEND2)
2357 phy->mdio_write(adapter,
2358 data->phy_id & 0x1f, mmd,
2363 phy->mdio_write(adapter,
2364 data->phy_id & 0x1f, 0,
2365 data->reg_num & 0x1f,
2370 return cxgb_extension_ioctl(dev, req->ifr_data);
2377 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2379 struct port_info *pi = netdev_priv(dev);
2380 struct adapter *adapter = pi->adapter;
2383 if (new_mtu < 81) /* accommodate SACK */
2385 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2388 init_port_mtus(adapter);
2389 if (adapter->params.rev == 0 && offload_running(adapter))
2390 t3_load_mtus(adapter, adapter->params.mtus,
2391 adapter->params.a_wnd, adapter->params.b_wnd,
2392 adapter->port[0]->mtu);
2396 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2398 struct port_info *pi = netdev_priv(dev);
2399 struct adapter *adapter = pi->adapter;
2400 struct sockaddr *addr = p;
2402 if (!is_valid_ether_addr(addr->sa_data))
2405 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2406 t3_mac_set_address(&pi->mac, 0, dev->dev_addr);
2407 if (offload_running(adapter))
2408 write_smt_entry(adapter, pi->port_id);
2413 * t3_synchronize_rx - wait for current Rx processing on a port to complete
2414 * @adap: the adapter
2417 * Ensures that current Rx processing on any of the queues associated with
2418 * the given port completes before returning. We do this by acquiring and
2419 * releasing the locks of the response queues associated with the port.
2421 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
2425 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
2426 struct sge_rspq *q = &adap->sge.qs[i].rspq;
2428 spin_lock_irq(&q->lock);
2429 spin_unlock_irq(&q->lock);
2433 static void vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2435 struct port_info *pi = netdev_priv(dev);
2436 struct adapter *adapter = pi->adapter;
2439 if (adapter->params.rev > 0)
2440 t3_set_vlan_accel(adapter, 1 << pi->port_id, grp != NULL);
2442 /* single control for all ports */
2443 unsigned int i, have_vlans = 0;
2444 for_each_port(adapter, i)
2445 have_vlans |= adap2pinfo(adapter, i)->vlan_grp != NULL;
2447 t3_set_vlan_accel(adapter, 1, have_vlans);
2449 t3_synchronize_rx(adapter, pi);
2452 #ifdef CONFIG_NET_POLL_CONTROLLER
2453 static void cxgb_netpoll(struct net_device *dev)
2455 struct port_info *pi = netdev_priv(dev);
2456 struct adapter *adapter = pi->adapter;
2459 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2460 struct sge_qset *qs = &adapter->sge.qs[qidx];
2463 if (adapter->flags & USING_MSIX)
2468 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2474 * Periodic accumulation of MAC statistics.
2476 static void mac_stats_update(struct adapter *adapter)
2480 for_each_port(adapter, i) {
2481 struct net_device *dev = adapter->port[i];
2482 struct port_info *p = netdev_priv(dev);
2484 if (netif_running(dev)) {
2485 spin_lock(&adapter->stats_lock);
2486 t3_mac_update_stats(&p->mac);
2487 spin_unlock(&adapter->stats_lock);
2492 static void check_link_status(struct adapter *adapter)
2496 for_each_port(adapter, i) {
2497 struct net_device *dev = adapter->port[i];
2498 struct port_info *p = netdev_priv(dev);
2501 spin_lock_irq(&adapter->work_lock);
2502 link_fault = p->link_fault;
2503 spin_unlock_irq(&adapter->work_lock);
2506 t3_link_fault(adapter, i);
2510 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2511 t3_xgm_intr_disable(adapter, i);
2512 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2514 t3_link_changed(adapter, i);
2515 t3_xgm_intr_enable(adapter, i);
2520 static void check_t3b2_mac(struct adapter *adapter)
2524 if (!rtnl_trylock()) /* synchronize with ifdown */
2527 for_each_port(adapter, i) {
2528 struct net_device *dev = adapter->port[i];
2529 struct port_info *p = netdev_priv(dev);
2532 if (!netif_running(dev))
2536 if (netif_running(dev) && netif_carrier_ok(dev))
2537 status = t3b2_mac_watchdog_task(&p->mac);
2539 p->mac.stats.num_toggled++;
2540 else if (status == 2) {
2541 struct cmac *mac = &p->mac;
2543 t3_mac_set_mtu(mac, dev->mtu);
2544 t3_mac_set_address(mac, 0, dev->dev_addr);
2545 cxgb_set_rxmode(dev);
2546 t3_link_start(&p->phy, mac, &p->link_config);
2547 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2548 t3_port_intr_enable(adapter, p->port_id);
2549 p->mac.stats.num_resets++;
2556 static void t3_adap_check_task(struct work_struct *work)
2558 struct adapter *adapter = container_of(work, struct adapter,
2559 adap_check_task.work);
2560 const struct adapter_params *p = &adapter->params;
2562 unsigned int v, status, reset;
2564 adapter->check_task_cnt++;
2566 check_link_status(adapter);
2568 /* Accumulate MAC stats if needed */
2569 if (!p->linkpoll_period ||
2570 (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2571 p->stats_update_period) {
2572 mac_stats_update(adapter);
2573 adapter->check_task_cnt = 0;
2576 if (p->rev == T3_REV_B2)
2577 check_t3b2_mac(adapter);
2580 * Scan the XGMAC's to check for various conditions which we want to
2581 * monitor in a periodic polling manner rather than via an interrupt
2582 * condition. This is used for conditions which would otherwise flood
2583 * the system with interrupts and we only really need to know that the
2584 * conditions are "happening" ... For each condition we count the
2585 * detection of the condition and reset it for the next polling loop.
2587 for_each_port(adapter, port) {
2588 struct cmac *mac = &adap2pinfo(adapter, port)->mac;
2591 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2593 if (cause & F_RXFIFO_OVERFLOW) {
2594 mac->stats.rx_fifo_ovfl++;
2595 reset |= F_RXFIFO_OVERFLOW;
2598 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2602 * We do the same as above for FL_EMPTY interrupts.
2604 status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2607 if (status & F_FLEMPTY) {
2608 struct sge_qset *qs = &adapter->sge.qs[0];
2613 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2617 qs->fl[i].empty += (v & 1);
2625 t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2627 /* Schedule the next check update if any port is active. */
2628 spin_lock_irq(&adapter->work_lock);
2629 if (adapter->open_device_map & PORT_MASK)
2630 schedule_chk_task(adapter);
2631 spin_unlock_irq(&adapter->work_lock);
2635 * Processes external (PHY) interrupts in process context.
2637 static void ext_intr_task(struct work_struct *work)
2639 struct adapter *adapter = container_of(work, struct adapter,
2640 ext_intr_handler_task);
2643 /* Disable link fault interrupts */
2644 for_each_port(adapter, i) {
2645 struct net_device *dev = adapter->port[i];
2646 struct port_info *p = netdev_priv(dev);
2648 t3_xgm_intr_disable(adapter, i);
2649 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2652 /* Re-enable link fault interrupts */
2653 t3_phy_intr_handler(adapter);
2655 for_each_port(adapter, i)
2656 t3_xgm_intr_enable(adapter, i);
2658 /* Now reenable external interrupts */
2659 spin_lock_irq(&adapter->work_lock);
2660 if (adapter->slow_intr_mask) {
2661 adapter->slow_intr_mask |= F_T3DBG;
2662 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2663 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2664 adapter->slow_intr_mask);
2666 spin_unlock_irq(&adapter->work_lock);
2670 * Interrupt-context handler for external (PHY) interrupts.
2672 void t3_os_ext_intr_handler(struct adapter *adapter)
2675 * Schedule a task to handle external interrupts as they may be slow
2676 * and we use a mutex to protect MDIO registers. We disable PHY
2677 * interrupts in the meantime and let the task reenable them when
2680 spin_lock(&adapter->work_lock);
2681 if (adapter->slow_intr_mask) {
2682 adapter->slow_intr_mask &= ~F_T3DBG;
2683 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2684 adapter->slow_intr_mask);
2685 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2687 spin_unlock(&adapter->work_lock);
2690 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2692 struct net_device *netdev = adapter->port[port_id];
2693 struct port_info *pi = netdev_priv(netdev);
2695 spin_lock(&adapter->work_lock);
2697 spin_unlock(&adapter->work_lock);
2700 static int t3_adapter_error(struct adapter *adapter, int reset)
2704 if (is_offload(adapter) &&
2705 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2706 cxgb3_err_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2707 offload_close(&adapter->tdev);
2710 /* Stop all ports */
2711 for_each_port(adapter, i) {
2712 struct net_device *netdev = adapter->port[i];
2714 if (netif_running(netdev))
2718 /* Stop SGE timers */
2719 t3_stop_sge_timers(adapter);
2721 adapter->flags &= ~FULL_INIT_DONE;
2724 ret = t3_reset_adapter(adapter);
2726 pci_disable_device(adapter->pdev);
2731 static int t3_reenable_adapter(struct adapter *adapter)
2733 if (pci_enable_device(adapter->pdev)) {
2734 dev_err(&adapter->pdev->dev,
2735 "Cannot re-enable PCI device after reset.\n");
2738 pci_set_master(adapter->pdev);
2739 pci_restore_state(adapter->pdev);
2741 /* Free sge resources */
2742 t3_free_sge_resources(adapter);
2744 if (t3_replay_prep_adapter(adapter))
2752 static void t3_resume_ports(struct adapter *adapter)
2756 /* Restart the ports */
2757 for_each_port(adapter, i) {
2758 struct net_device *netdev = adapter->port[i];
2760 if (netif_running(netdev)) {
2761 if (cxgb_open(netdev)) {
2762 dev_err(&adapter->pdev->dev,
2763 "can't bring device back up"
2770 if (is_offload(adapter) && !ofld_disable)
2771 cxgb3_err_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2775 * processes a fatal error.
2776 * Bring the ports down, reset the chip, bring the ports back up.
2778 static void fatal_error_task(struct work_struct *work)
2780 struct adapter *adapter = container_of(work, struct adapter,
2781 fatal_error_handler_task);
2785 err = t3_adapter_error(adapter, 1);
2787 err = t3_reenable_adapter(adapter);
2789 t3_resume_ports(adapter);
2791 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2795 void t3_fatal_err(struct adapter *adapter)
2797 unsigned int fw_status[4];
2799 if (adapter->flags & FULL_INIT_DONE) {
2800 t3_sge_stop(adapter);
2801 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2802 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2803 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2804 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2806 spin_lock(&adapter->work_lock);
2807 t3_intr_disable(adapter);
2808 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2809 spin_unlock(&adapter->work_lock);
2811 CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2812 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2813 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2814 fw_status[0], fw_status[1],
2815 fw_status[2], fw_status[3]);
2819 * t3_io_error_detected - called when PCI error is detected
2820 * @pdev: Pointer to PCI device
2821 * @state: The current pci connection state
2823 * This function is called after a PCI bus error affecting
2824 * this device has been detected.
2826 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
2827 pci_channel_state_t state)
2829 struct adapter *adapter = pci_get_drvdata(pdev);
2832 if (state == pci_channel_io_perm_failure)
2833 return PCI_ERS_RESULT_DISCONNECT;
2835 ret = t3_adapter_error(adapter, 0);
2837 /* Request a slot reset. */
2838 return PCI_ERS_RESULT_NEED_RESET;
2842 * t3_io_slot_reset - called after the pci bus has been reset.
2843 * @pdev: Pointer to PCI device
2845 * Restart the card from scratch, as if from a cold-boot.
2847 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
2849 struct adapter *adapter = pci_get_drvdata(pdev);
2851 if (!t3_reenable_adapter(adapter))
2852 return PCI_ERS_RESULT_RECOVERED;
2854 return PCI_ERS_RESULT_DISCONNECT;
2858 * t3_io_resume - called when traffic can start flowing again.
2859 * @pdev: Pointer to PCI device
2861 * This callback is called when the error recovery driver tells us that
2862 * its OK to resume normal operation.
2864 static void t3_io_resume(struct pci_dev *pdev)
2866 struct adapter *adapter = pci_get_drvdata(pdev);
2868 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
2869 t3_read_reg(adapter, A_PCIE_PEX_ERR));
2871 t3_resume_ports(adapter);
2874 static struct pci_error_handlers t3_err_handler = {
2875 .error_detected = t3_io_error_detected,
2876 .slot_reset = t3_io_slot_reset,
2877 .resume = t3_io_resume,
2881 * Set the number of qsets based on the number of CPUs and the number of ports,
2882 * not to exceed the number of available qsets, assuming there are enough qsets
2885 static void set_nqsets(struct adapter *adap)
2888 int num_cpus = num_online_cpus();
2889 int hwports = adap->params.nports;
2890 int nqsets = adap->msix_nvectors - 1;
2892 if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
2894 (hwports * nqsets > SGE_QSETS ||
2895 num_cpus >= nqsets / hwports))
2897 if (nqsets > num_cpus)
2899 if (nqsets < 1 || hwports == 4)
2904 for_each_port(adap, i) {
2905 struct port_info *pi = adap2pinfo(adap, i);
2908 pi->nqsets = nqsets;
2909 j = pi->first_qset + nqsets;
2911 dev_info(&adap->pdev->dev,
2912 "Port %d using %d queue sets.\n", i, nqsets);
2916 static int __devinit cxgb_enable_msix(struct adapter *adap)
2918 struct msix_entry entries[SGE_QSETS + 1];
2922 vectors = ARRAY_SIZE(entries);
2923 for (i = 0; i < vectors; ++i)
2924 entries[i].entry = i;
2926 while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0)
2930 pci_disable_msix(adap->pdev);
2932 if (!err && vectors < (adap->params.nports + 1)) {
2933 pci_disable_msix(adap->pdev);
2938 for (i = 0; i < vectors; ++i)
2939 adap->msix_info[i].vec = entries[i].vector;
2940 adap->msix_nvectors = vectors;
2946 static void __devinit print_port_info(struct adapter *adap,
2947 const struct adapter_info *ai)
2949 static const char *pci_variant[] = {
2950 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
2957 snprintf(buf, sizeof(buf), "%s x%d",
2958 pci_variant[adap->params.pci.variant],
2959 adap->params.pci.width);
2961 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
2962 pci_variant[adap->params.pci.variant],
2963 adap->params.pci.speed, adap->params.pci.width);
2965 for_each_port(adap, i) {
2966 struct net_device *dev = adap->port[i];
2967 const struct port_info *pi = netdev_priv(dev);
2969 if (!test_bit(i, &adap->registered_device_map))
2971 printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n",
2972 dev->name, ai->desc, pi->phy.desc,
2973 is_offload(adap) ? "R" : "", adap->params.rev, buf,
2974 (adap->flags & USING_MSIX) ? " MSI-X" :
2975 (adap->flags & USING_MSI) ? " MSI" : "");
2976 if (adap->name == dev->name && adap->params.vpd.mclk)
2978 "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
2979 adap->name, t3_mc7_size(&adap->cm) >> 20,
2980 t3_mc7_size(&adap->pmtx) >> 20,
2981 t3_mc7_size(&adap->pmrx) >> 20,
2982 adap->params.vpd.sn);
2986 static const struct net_device_ops cxgb_netdev_ops = {
2987 .ndo_open = cxgb_open,
2988 .ndo_stop = cxgb_close,
2989 .ndo_start_xmit = t3_eth_xmit,
2990 .ndo_get_stats = cxgb_get_stats,
2991 .ndo_validate_addr = eth_validate_addr,
2992 .ndo_set_multicast_list = cxgb_set_rxmode,
2993 .ndo_do_ioctl = cxgb_ioctl,
2994 .ndo_change_mtu = cxgb_change_mtu,
2995 .ndo_set_mac_address = cxgb_set_mac_addr,
2996 .ndo_vlan_rx_register = vlan_rx_register,
2997 #ifdef CONFIG_NET_POLL_CONTROLLER
2998 .ndo_poll_controller = cxgb_netpoll,
3002 static int __devinit init_one(struct pci_dev *pdev,
3003 const struct pci_device_id *ent)
3005 static int version_printed;
3007 int i, err, pci_using_dac = 0;
3008 resource_size_t mmio_start, mmio_len;
3009 const struct adapter_info *ai;
3010 struct adapter *adapter = NULL;
3011 struct port_info *pi;
3013 if (!version_printed) {
3014 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3019 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3021 printk(KERN_ERR DRV_NAME
3022 ": cannot initialize work queue\n");
3027 err = pci_request_regions(pdev, DRV_NAME);
3029 /* Just info, some other driver may have claimed the device. */
3030 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3034 err = pci_enable_device(pdev);
3036 dev_err(&pdev->dev, "cannot enable PCI device\n");
3037 goto out_release_regions;
3040 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3042 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3044 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3045 "coherent allocations\n");
3046 goto out_disable_device;
3048 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3049 dev_err(&pdev->dev, "no usable DMA configuration\n");
3050 goto out_disable_device;
3053 pci_set_master(pdev);
3054 pci_save_state(pdev);
3056 mmio_start = pci_resource_start(pdev, 0);
3057 mmio_len = pci_resource_len(pdev, 0);
3058 ai = t3_get_adapter_info(ent->driver_data);
3060 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3063 goto out_disable_device;
3066 adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3067 if (!adapter->regs) {
3068 dev_err(&pdev->dev, "cannot map device registers\n");
3070 goto out_free_adapter;
3073 adapter->pdev = pdev;
3074 adapter->name = pci_name(pdev);
3075 adapter->msg_enable = dflt_msg_enable;
3076 adapter->mmio_len = mmio_len;
3078 mutex_init(&adapter->mdio_lock);
3079 spin_lock_init(&adapter->work_lock);
3080 spin_lock_init(&adapter->stats_lock);
3082 INIT_LIST_HEAD(&adapter->adapter_list);
3083 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3084 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3085 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3087 for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3088 struct net_device *netdev;
3090 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3096 SET_NETDEV_DEV(netdev, &pdev->dev);
3098 adapter->port[i] = netdev;
3099 pi = netdev_priv(netdev);
3100 pi->adapter = adapter;
3101 pi->rx_offload = T3_RX_CSUM | T3_LRO;
3103 netif_carrier_off(netdev);
3104 netif_tx_stop_all_queues(netdev);
3105 netdev->irq = pdev->irq;
3106 netdev->mem_start = mmio_start;
3107 netdev->mem_end = mmio_start + mmio_len - 1;
3108 netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3109 netdev->features |= NETIF_F_LLTX;
3110 netdev->features |= NETIF_F_GRO;
3112 netdev->features |= NETIF_F_HIGHDMA;
3114 netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3115 netdev->netdev_ops = &cxgb_netdev_ops;
3116 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3119 pci_set_drvdata(pdev, adapter);
3120 if (t3_prep_adapter(adapter, ai, 1) < 0) {
3126 * The card is now ready to go. If any errors occur during device
3127 * registration we do not fail the whole card but rather proceed only
3128 * with the ports we manage to register successfully. However we must
3129 * register at least one net device.
3131 for_each_port(adapter, i) {
3132 err = register_netdev(adapter->port[i]);
3134 dev_warn(&pdev->dev,
3135 "cannot register net device %s, skipping\n",
3136 adapter->port[i]->name);
3139 * Change the name we use for messages to the name of
3140 * the first successfully registered interface.
3142 if (!adapter->registered_device_map)
3143 adapter->name = adapter->port[i]->name;
3145 __set_bit(i, &adapter->registered_device_map);
3148 if (!adapter->registered_device_map) {
3149 dev_err(&pdev->dev, "could not register any net devices\n");
3153 /* Driver's ready. Reflect it on LEDs */
3154 t3_led_ready(adapter);
3156 if (is_offload(adapter)) {
3157 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3158 cxgb3_adapter_ofld(adapter);
3161 /* See what interrupts we'll be using */
3162 if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3163 adapter->flags |= USING_MSIX;
3164 else if (msi > 0 && pci_enable_msi(pdev) == 0)
3165 adapter->flags |= USING_MSI;
3167 set_nqsets(adapter);
3169 err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3172 print_port_info(adapter, ai);
3176 iounmap(adapter->regs);
3177 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3178 if (adapter->port[i])
3179 free_netdev(adapter->port[i]);
3185 pci_disable_device(pdev);
3186 out_release_regions:
3187 pci_release_regions(pdev);
3188 pci_set_drvdata(pdev, NULL);
3192 static void __devexit remove_one(struct pci_dev *pdev)
3194 struct adapter *adapter = pci_get_drvdata(pdev);
3199 t3_sge_stop(adapter);
3200 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3203 if (is_offload(adapter)) {
3204 cxgb3_adapter_unofld(adapter);
3205 if (test_bit(OFFLOAD_DEVMAP_BIT,
3206 &adapter->open_device_map))
3207 offload_close(&adapter->tdev);
3210 for_each_port(adapter, i)
3211 if (test_bit(i, &adapter->registered_device_map))
3212 unregister_netdev(adapter->port[i]);
3214 t3_stop_sge_timers(adapter);
3215 t3_free_sge_resources(adapter);
3216 cxgb_disable_msi(adapter);
3218 for_each_port(adapter, i)
3219 if (adapter->port[i])
3220 free_netdev(adapter->port[i]);
3222 iounmap(adapter->regs);
3224 pci_release_regions(pdev);
3225 pci_disable_device(pdev);
3226 pci_set_drvdata(pdev, NULL);
3230 static struct pci_driver driver = {
3232 .id_table = cxgb3_pci_tbl,
3234 .remove = __devexit_p(remove_one),
3235 .err_handler = &t3_err_handler,
3238 static int __init cxgb3_init_module(void)
3242 cxgb3_offload_init();
3244 ret = pci_register_driver(&driver);
3248 static void __exit cxgb3_cleanup_module(void)
3250 pci_unregister_driver(&driver);
3252 destroy_workqueue(cxgb3_wq);
3255 module_init(cxgb3_init_module);
3256 module_exit(cxgb3_cleanup_module);