Merge branch 'for-2.6.30' into for-2.6.31
[linux-2.6] / fs / xfs / xfs_mount.c
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
47
48 STATIC void     xfs_unmountfs_wait(xfs_mount_t *);
49
50
51 #ifdef HAVE_PERCPU_SB
52 STATIC void     xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
53                                                 int);
54 STATIC void     xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
55                                                 int);
56 STATIC int      xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
57                                                 int64_t, int);
58 STATIC void     xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
59
60 #else
61
62 #define xfs_icsb_balance_counter(mp, a, b)              do { } while (0)
63 #define xfs_icsb_balance_counter_locked(mp, a, b)       do { } while (0)
64 #define xfs_icsb_modify_counters(mp, a, b, c)           do { } while (0)
65
66 #endif
67
68 static const struct {
69         short offset;
70         short type;     /* 0 = integer
71                          * 1 = binary / string (no translation)
72                          */
73 } xfs_sb_info[] = {
74     { offsetof(xfs_sb_t, sb_magicnum),   0 },
75     { offsetof(xfs_sb_t, sb_blocksize),  0 },
76     { offsetof(xfs_sb_t, sb_dblocks),    0 },
77     { offsetof(xfs_sb_t, sb_rblocks),    0 },
78     { offsetof(xfs_sb_t, sb_rextents),   0 },
79     { offsetof(xfs_sb_t, sb_uuid),       1 },
80     { offsetof(xfs_sb_t, sb_logstart),   0 },
81     { offsetof(xfs_sb_t, sb_rootino),    0 },
82     { offsetof(xfs_sb_t, sb_rbmino),     0 },
83     { offsetof(xfs_sb_t, sb_rsumino),    0 },
84     { offsetof(xfs_sb_t, sb_rextsize),   0 },
85     { offsetof(xfs_sb_t, sb_agblocks),   0 },
86     { offsetof(xfs_sb_t, sb_agcount),    0 },
87     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
88     { offsetof(xfs_sb_t, sb_logblocks),  0 },
89     { offsetof(xfs_sb_t, sb_versionnum), 0 },
90     { offsetof(xfs_sb_t, sb_sectsize),   0 },
91     { offsetof(xfs_sb_t, sb_inodesize),  0 },
92     { offsetof(xfs_sb_t, sb_inopblock),  0 },
93     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
94     { offsetof(xfs_sb_t, sb_blocklog),   0 },
95     { offsetof(xfs_sb_t, sb_sectlog),    0 },
96     { offsetof(xfs_sb_t, sb_inodelog),   0 },
97     { offsetof(xfs_sb_t, sb_inopblog),   0 },
98     { offsetof(xfs_sb_t, sb_agblklog),   0 },
99     { offsetof(xfs_sb_t, sb_rextslog),   0 },
100     { offsetof(xfs_sb_t, sb_inprogress), 0 },
101     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
102     { offsetof(xfs_sb_t, sb_icount),     0 },
103     { offsetof(xfs_sb_t, sb_ifree),      0 },
104     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
105     { offsetof(xfs_sb_t, sb_frextents),  0 },
106     { offsetof(xfs_sb_t, sb_uquotino),   0 },
107     { offsetof(xfs_sb_t, sb_gquotino),   0 },
108     { offsetof(xfs_sb_t, sb_qflags),     0 },
109     { offsetof(xfs_sb_t, sb_flags),      0 },
110     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
111     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
112     { offsetof(xfs_sb_t, sb_unit),       0 },
113     { offsetof(xfs_sb_t, sb_width),      0 },
114     { offsetof(xfs_sb_t, sb_dirblklog),  0 },
115     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
116     { offsetof(xfs_sb_t, sb_logsectsize),0 },
117     { offsetof(xfs_sb_t, sb_logsunit),   0 },
118     { offsetof(xfs_sb_t, sb_features2),  0 },
119     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
120     { sizeof(xfs_sb_t),                  0 }
121 };
122
123 static DEFINE_MUTEX(xfs_uuid_table_mutex);
124 static int xfs_uuid_table_size;
125 static uuid_t *xfs_uuid_table;
126
127 /*
128  * See if the UUID is unique among mounted XFS filesystems.
129  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
130  */
131 STATIC int
132 xfs_uuid_mount(
133         struct xfs_mount        *mp)
134 {
135         uuid_t                  *uuid = &mp->m_sb.sb_uuid;
136         int                     hole, i;
137
138         if (mp->m_flags & XFS_MOUNT_NOUUID)
139                 return 0;
140
141         if (uuid_is_nil(uuid)) {
142                 cmn_err(CE_WARN,
143                         "XFS: Filesystem %s has nil UUID - can't mount",
144                         mp->m_fsname);
145                 return XFS_ERROR(EINVAL);
146         }
147
148         mutex_lock(&xfs_uuid_table_mutex);
149         for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
150                 if (uuid_is_nil(&xfs_uuid_table[i])) {
151                         hole = i;
152                         continue;
153                 }
154                 if (uuid_equal(uuid, &xfs_uuid_table[i]))
155                         goto out_duplicate;
156         }
157
158         if (hole < 0) {
159                 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
160                         (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
161                         xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
162                         KM_SLEEP);
163                 hole = xfs_uuid_table_size++;
164         }
165         xfs_uuid_table[hole] = *uuid;
166         mutex_unlock(&xfs_uuid_table_mutex);
167
168         return 0;
169
170  out_duplicate:
171         mutex_unlock(&xfs_uuid_table_mutex);
172         cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount",
173                          mp->m_fsname);
174         return XFS_ERROR(EINVAL);
175 }
176
177 STATIC void
178 xfs_uuid_unmount(
179         struct xfs_mount        *mp)
180 {
181         uuid_t                  *uuid = &mp->m_sb.sb_uuid;
182         int                     i;
183
184         if (mp->m_flags & XFS_MOUNT_NOUUID)
185                 return;
186
187         mutex_lock(&xfs_uuid_table_mutex);
188         for (i = 0; i < xfs_uuid_table_size; i++) {
189                 if (uuid_is_nil(&xfs_uuid_table[i]))
190                         continue;
191                 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
192                         continue;
193                 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
194                 break;
195         }
196         ASSERT(i < xfs_uuid_table_size);
197         mutex_unlock(&xfs_uuid_table_mutex);
198 }
199
200
201 /*
202  * Free up the resources associated with a mount structure.  Assume that
203  * the structure was initially zeroed, so we can tell which fields got
204  * initialized.
205  */
206 STATIC void
207 xfs_free_perag(
208         xfs_mount_t     *mp)
209 {
210         if (mp->m_perag) {
211                 int     agno;
212
213                 for (agno = 0; agno < mp->m_maxagi; agno++)
214                         if (mp->m_perag[agno].pagb_list)
215                                 kmem_free(mp->m_perag[agno].pagb_list);
216                 kmem_free(mp->m_perag);
217         }
218 }
219
220 /*
221  * Check size of device based on the (data/realtime) block count.
222  * Note: this check is used by the growfs code as well as mount.
223  */
224 int
225 xfs_sb_validate_fsb_count(
226         xfs_sb_t        *sbp,
227         __uint64_t      nblocks)
228 {
229         ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
230         ASSERT(sbp->sb_blocklog >= BBSHIFT);
231
232 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
233         if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
234                 return E2BIG;
235 #else                  /* Limited by UINT_MAX of sectors */
236         if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
237                 return E2BIG;
238 #endif
239         return 0;
240 }
241
242 /*
243  * Check the validity of the SB found.
244  */
245 STATIC int
246 xfs_mount_validate_sb(
247         xfs_mount_t     *mp,
248         xfs_sb_t        *sbp,
249         int             flags)
250 {
251         /*
252          * If the log device and data device have the
253          * same device number, the log is internal.
254          * Consequently, the sb_logstart should be non-zero.  If
255          * we have a zero sb_logstart in this case, we may be trying to mount
256          * a volume filesystem in a non-volume manner.
257          */
258         if (sbp->sb_magicnum != XFS_SB_MAGIC) {
259                 xfs_fs_mount_cmn_err(flags, "bad magic number");
260                 return XFS_ERROR(EWRONGFS);
261         }
262
263         if (!xfs_sb_good_version(sbp)) {
264                 xfs_fs_mount_cmn_err(flags, "bad version");
265                 return XFS_ERROR(EWRONGFS);
266         }
267
268         if (unlikely(
269             sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
270                 xfs_fs_mount_cmn_err(flags,
271                         "filesystem is marked as having an external log; "
272                         "specify logdev on the\nmount command line.");
273                 return XFS_ERROR(EINVAL);
274         }
275
276         if (unlikely(
277             sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
278                 xfs_fs_mount_cmn_err(flags,
279                         "filesystem is marked as having an internal log; "
280                         "do not specify logdev on\nthe mount command line.");
281                 return XFS_ERROR(EINVAL);
282         }
283
284         /*
285          * More sanity checking. These were stolen directly from
286          * xfs_repair.
287          */
288         if (unlikely(
289             sbp->sb_agcount <= 0                                        ||
290             sbp->sb_sectsize < XFS_MIN_SECTORSIZE                       ||
291             sbp->sb_sectsize > XFS_MAX_SECTORSIZE                       ||
292             sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG                    ||
293             sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG                    ||
294             sbp->sb_blocksize < XFS_MIN_BLOCKSIZE                       ||
295             sbp->sb_blocksize > XFS_MAX_BLOCKSIZE                       ||
296             sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG                    ||
297             sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG                    ||
298             sbp->sb_inodesize < XFS_DINODE_MIN_SIZE                     ||
299             sbp->sb_inodesize > XFS_DINODE_MAX_SIZE                     ||
300             sbp->sb_inodelog < XFS_DINODE_MIN_LOG                       ||
301             sbp->sb_inodelog > XFS_DINODE_MAX_LOG                       ||
302             (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)   ||
303             (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)  ||
304             (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)  ||
305             (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
306                 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
307                 return XFS_ERROR(EFSCORRUPTED);
308         }
309
310         /*
311          * Sanity check AG count, size fields against data size field
312          */
313         if (unlikely(
314             sbp->sb_dblocks == 0 ||
315             sbp->sb_dblocks >
316              (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
317             sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
318                               sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
319                 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
320                 return XFS_ERROR(EFSCORRUPTED);
321         }
322
323         /*
324          * Until this is fixed only page-sized or smaller data blocks work.
325          */
326         if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
327                 xfs_fs_mount_cmn_err(flags,
328                         "file system with blocksize %d bytes",
329                         sbp->sb_blocksize);
330                 xfs_fs_mount_cmn_err(flags,
331                         "only pagesize (%ld) or less will currently work.",
332                         PAGE_SIZE);
333                 return XFS_ERROR(ENOSYS);
334         }
335
336         /*
337          * Currently only very few inode sizes are supported.
338          */
339         switch (sbp->sb_inodesize) {
340         case 256:
341         case 512:
342         case 1024:
343         case 2048:
344                 break;
345         default:
346                 xfs_fs_mount_cmn_err(flags,
347                         "inode size of %d bytes not supported",
348                         sbp->sb_inodesize);
349                 return XFS_ERROR(ENOSYS);
350         }
351
352         if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
353             xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
354                 xfs_fs_mount_cmn_err(flags,
355                         "file system too large to be mounted on this system.");
356                 return XFS_ERROR(E2BIG);
357         }
358
359         if (unlikely(sbp->sb_inprogress)) {
360                 xfs_fs_mount_cmn_err(flags, "file system busy");
361                 return XFS_ERROR(EFSCORRUPTED);
362         }
363
364         /*
365          * Version 1 directory format has never worked on Linux.
366          */
367         if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
368                 xfs_fs_mount_cmn_err(flags,
369                         "file system using version 1 directory format");
370                 return XFS_ERROR(ENOSYS);
371         }
372
373         return 0;
374 }
375
376 STATIC void
377 xfs_initialize_perag_icache(
378         xfs_perag_t     *pag)
379 {
380         if (!pag->pag_ici_init) {
381                 rwlock_init(&pag->pag_ici_lock);
382                 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
383                 pag->pag_ici_init = 1;
384         }
385 }
386
387 xfs_agnumber_t
388 xfs_initialize_perag(
389         xfs_mount_t     *mp,
390         xfs_agnumber_t  agcount)
391 {
392         xfs_agnumber_t  index, max_metadata;
393         xfs_perag_t     *pag;
394         xfs_agino_t     agino;
395         xfs_ino_t       ino;
396         xfs_sb_t        *sbp = &mp->m_sb;
397         xfs_ino_t       max_inum = XFS_MAXINUMBER_32;
398
399         /* Check to see if the filesystem can overflow 32 bit inodes */
400         agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
401         ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
402
403         /* Clear the mount flag if no inode can overflow 32 bits
404          * on this filesystem, or if specifically requested..
405          */
406         if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
407                 mp->m_flags |= XFS_MOUNT_32BITINODES;
408         } else {
409                 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
410         }
411
412         /* If we can overflow then setup the ag headers accordingly */
413         if (mp->m_flags & XFS_MOUNT_32BITINODES) {
414                 /* Calculate how much should be reserved for inodes to
415                  * meet the max inode percentage.
416                  */
417                 if (mp->m_maxicount) {
418                         __uint64_t      icount;
419
420                         icount = sbp->sb_dblocks * sbp->sb_imax_pct;
421                         do_div(icount, 100);
422                         icount += sbp->sb_agblocks - 1;
423                         do_div(icount, sbp->sb_agblocks);
424                         max_metadata = icount;
425                 } else {
426                         max_metadata = agcount;
427                 }
428                 for (index = 0; index < agcount; index++) {
429                         ino = XFS_AGINO_TO_INO(mp, index, agino);
430                         if (ino > max_inum) {
431                                 index++;
432                                 break;
433                         }
434
435                         /* This ag is preferred for inodes */
436                         pag = &mp->m_perag[index];
437                         pag->pagi_inodeok = 1;
438                         if (index < max_metadata)
439                                 pag->pagf_metadata = 1;
440                         xfs_initialize_perag_icache(pag);
441                 }
442         } else {
443                 /* Setup default behavior for smaller filesystems */
444                 for (index = 0; index < agcount; index++) {
445                         pag = &mp->m_perag[index];
446                         pag->pagi_inodeok = 1;
447                         xfs_initialize_perag_icache(pag);
448                 }
449         }
450         return index;
451 }
452
453 void
454 xfs_sb_from_disk(
455         xfs_sb_t        *to,
456         xfs_dsb_t       *from)
457 {
458         to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
459         to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
460         to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
461         to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
462         to->sb_rextents = be64_to_cpu(from->sb_rextents);
463         memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
464         to->sb_logstart = be64_to_cpu(from->sb_logstart);
465         to->sb_rootino = be64_to_cpu(from->sb_rootino);
466         to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
467         to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
468         to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
469         to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
470         to->sb_agcount = be32_to_cpu(from->sb_agcount);
471         to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
472         to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
473         to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
474         to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
475         to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
476         to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
477         memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
478         to->sb_blocklog = from->sb_blocklog;
479         to->sb_sectlog = from->sb_sectlog;
480         to->sb_inodelog = from->sb_inodelog;
481         to->sb_inopblog = from->sb_inopblog;
482         to->sb_agblklog = from->sb_agblklog;
483         to->sb_rextslog = from->sb_rextslog;
484         to->sb_inprogress = from->sb_inprogress;
485         to->sb_imax_pct = from->sb_imax_pct;
486         to->sb_icount = be64_to_cpu(from->sb_icount);
487         to->sb_ifree = be64_to_cpu(from->sb_ifree);
488         to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
489         to->sb_frextents = be64_to_cpu(from->sb_frextents);
490         to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
491         to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
492         to->sb_qflags = be16_to_cpu(from->sb_qflags);
493         to->sb_flags = from->sb_flags;
494         to->sb_shared_vn = from->sb_shared_vn;
495         to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
496         to->sb_unit = be32_to_cpu(from->sb_unit);
497         to->sb_width = be32_to_cpu(from->sb_width);
498         to->sb_dirblklog = from->sb_dirblklog;
499         to->sb_logsectlog = from->sb_logsectlog;
500         to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
501         to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
502         to->sb_features2 = be32_to_cpu(from->sb_features2);
503         to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
504 }
505
506 /*
507  * Copy in core superblock to ondisk one.
508  *
509  * The fields argument is mask of superblock fields to copy.
510  */
511 void
512 xfs_sb_to_disk(
513         xfs_dsb_t       *to,
514         xfs_sb_t        *from,
515         __int64_t       fields)
516 {
517         xfs_caddr_t     to_ptr = (xfs_caddr_t)to;
518         xfs_caddr_t     from_ptr = (xfs_caddr_t)from;
519         xfs_sb_field_t  f;
520         int             first;
521         int             size;
522
523         ASSERT(fields);
524         if (!fields)
525                 return;
526
527         while (fields) {
528                 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
529                 first = xfs_sb_info[f].offset;
530                 size = xfs_sb_info[f + 1].offset - first;
531
532                 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
533
534                 if (size == 1 || xfs_sb_info[f].type == 1) {
535                         memcpy(to_ptr + first, from_ptr + first, size);
536                 } else {
537                         switch (size) {
538                         case 2:
539                                 *(__be16 *)(to_ptr + first) =
540                                         cpu_to_be16(*(__u16 *)(from_ptr + first));
541                                 break;
542                         case 4:
543                                 *(__be32 *)(to_ptr + first) =
544                                         cpu_to_be32(*(__u32 *)(from_ptr + first));
545                                 break;
546                         case 8:
547                                 *(__be64 *)(to_ptr + first) =
548                                         cpu_to_be64(*(__u64 *)(from_ptr + first));
549                                 break;
550                         default:
551                                 ASSERT(0);
552                         }
553                 }
554
555                 fields &= ~(1LL << f);
556         }
557 }
558
559 /*
560  * xfs_readsb
561  *
562  * Does the initial read of the superblock.
563  */
564 int
565 xfs_readsb(xfs_mount_t *mp, int flags)
566 {
567         unsigned int    sector_size;
568         unsigned int    extra_flags;
569         xfs_buf_t       *bp;
570         int             error;
571
572         ASSERT(mp->m_sb_bp == NULL);
573         ASSERT(mp->m_ddev_targp != NULL);
574
575         /*
576          * Allocate a (locked) buffer to hold the superblock.
577          * This will be kept around at all times to optimize
578          * access to the superblock.
579          */
580         sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
581         extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
582
583         bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
584                                 BTOBB(sector_size), extra_flags);
585         if (!bp || XFS_BUF_ISERROR(bp)) {
586                 xfs_fs_mount_cmn_err(flags, "SB read failed");
587                 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
588                 goto fail;
589         }
590         ASSERT(XFS_BUF_ISBUSY(bp));
591         ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
592
593         /*
594          * Initialize the mount structure from the superblock.
595          * But first do some basic consistency checking.
596          */
597         xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
598
599         error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
600         if (error) {
601                 xfs_fs_mount_cmn_err(flags, "SB validate failed");
602                 goto fail;
603         }
604
605         /*
606          * We must be able to do sector-sized and sector-aligned IO.
607          */
608         if (sector_size > mp->m_sb.sb_sectsize) {
609                 xfs_fs_mount_cmn_err(flags,
610                         "device supports only %u byte sectors (not %u)",
611                         sector_size, mp->m_sb.sb_sectsize);
612                 error = ENOSYS;
613                 goto fail;
614         }
615
616         /*
617          * If device sector size is smaller than the superblock size,
618          * re-read the superblock so the buffer is correctly sized.
619          */
620         if (sector_size < mp->m_sb.sb_sectsize) {
621                 XFS_BUF_UNMANAGE(bp);
622                 xfs_buf_relse(bp);
623                 sector_size = mp->m_sb.sb_sectsize;
624                 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
625                                         BTOBB(sector_size), extra_flags);
626                 if (!bp || XFS_BUF_ISERROR(bp)) {
627                         xfs_fs_mount_cmn_err(flags, "SB re-read failed");
628                         error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
629                         goto fail;
630                 }
631                 ASSERT(XFS_BUF_ISBUSY(bp));
632                 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
633         }
634
635         /* Initialize per-cpu counters */
636         xfs_icsb_reinit_counters(mp);
637
638         mp->m_sb_bp = bp;
639         xfs_buf_relse(bp);
640         ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
641         return 0;
642
643  fail:
644         if (bp) {
645                 XFS_BUF_UNMANAGE(bp);
646                 xfs_buf_relse(bp);
647         }
648         return error;
649 }
650
651
652 /*
653  * xfs_mount_common
654  *
655  * Mount initialization code establishing various mount
656  * fields from the superblock associated with the given
657  * mount structure
658  */
659 STATIC void
660 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
661 {
662         mp->m_agfrotor = mp->m_agirotor = 0;
663         spin_lock_init(&mp->m_agirotor_lock);
664         mp->m_maxagi = mp->m_sb.sb_agcount;
665         mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
666         mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
667         mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
668         mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
669         mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
670         mp->m_blockmask = sbp->sb_blocksize - 1;
671         mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
672         mp->m_blockwmask = mp->m_blockwsize - 1;
673
674         mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
675         mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
676         mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
677         mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
678
679         mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
680         mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
681         mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
682         mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
683
684         mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
685         mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
686         mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
687         mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
688
689         mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
690         mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
691                                         sbp->sb_inopblock);
692         mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
693 }
694
695 /*
696  * xfs_initialize_perag_data
697  *
698  * Read in each per-ag structure so we can count up the number of
699  * allocated inodes, free inodes and used filesystem blocks as this
700  * information is no longer persistent in the superblock. Once we have
701  * this information, write it into the in-core superblock structure.
702  */
703 STATIC int
704 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
705 {
706         xfs_agnumber_t  index;
707         xfs_perag_t     *pag;
708         xfs_sb_t        *sbp = &mp->m_sb;
709         uint64_t        ifree = 0;
710         uint64_t        ialloc = 0;
711         uint64_t        bfree = 0;
712         uint64_t        bfreelst = 0;
713         uint64_t        btree = 0;
714         int             error;
715
716         for (index = 0; index < agcount; index++) {
717                 /*
718                  * read the agf, then the agi. This gets us
719                  * all the information we need and populates the
720                  * per-ag structures for us.
721                  */
722                 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
723                 if (error)
724                         return error;
725
726                 error = xfs_ialloc_pagi_init(mp, NULL, index);
727                 if (error)
728                         return error;
729                 pag = &mp->m_perag[index];
730                 ifree += pag->pagi_freecount;
731                 ialloc += pag->pagi_count;
732                 bfree += pag->pagf_freeblks;
733                 bfreelst += pag->pagf_flcount;
734                 btree += pag->pagf_btreeblks;
735         }
736         /*
737          * Overwrite incore superblock counters with just-read data
738          */
739         spin_lock(&mp->m_sb_lock);
740         sbp->sb_ifree = ifree;
741         sbp->sb_icount = ialloc;
742         sbp->sb_fdblocks = bfree + bfreelst + btree;
743         spin_unlock(&mp->m_sb_lock);
744
745         /* Fixup the per-cpu counters as well. */
746         xfs_icsb_reinit_counters(mp);
747
748         return 0;
749 }
750
751 /*
752  * Update alignment values based on mount options and sb values
753  */
754 STATIC int
755 xfs_update_alignment(xfs_mount_t *mp)
756 {
757         xfs_sb_t        *sbp = &(mp->m_sb);
758
759         if (mp->m_dalign) {
760                 /*
761                  * If stripe unit and stripe width are not multiples
762                  * of the fs blocksize turn off alignment.
763                  */
764                 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
765                     (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
766                         if (mp->m_flags & XFS_MOUNT_RETERR) {
767                                 cmn_err(CE_WARN,
768                                         "XFS: alignment check 1 failed");
769                                 return XFS_ERROR(EINVAL);
770                         }
771                         mp->m_dalign = mp->m_swidth = 0;
772                 } else {
773                         /*
774                          * Convert the stripe unit and width to FSBs.
775                          */
776                         mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
777                         if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
778                                 if (mp->m_flags & XFS_MOUNT_RETERR) {
779                                         return XFS_ERROR(EINVAL);
780                                 }
781                                 xfs_fs_cmn_err(CE_WARN, mp,
782 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
783                                         mp->m_dalign, mp->m_swidth,
784                                         sbp->sb_agblocks);
785
786                                 mp->m_dalign = 0;
787                                 mp->m_swidth = 0;
788                         } else if (mp->m_dalign) {
789                                 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
790                         } else {
791                                 if (mp->m_flags & XFS_MOUNT_RETERR) {
792                                         xfs_fs_cmn_err(CE_WARN, mp,
793 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
794                                                 mp->m_dalign,
795                                                 mp->m_blockmask +1);
796                                         return XFS_ERROR(EINVAL);
797                                 }
798                                 mp->m_swidth = 0;
799                         }
800                 }
801
802                 /*
803                  * Update superblock with new values
804                  * and log changes
805                  */
806                 if (xfs_sb_version_hasdalign(sbp)) {
807                         if (sbp->sb_unit != mp->m_dalign) {
808                                 sbp->sb_unit = mp->m_dalign;
809                                 mp->m_update_flags |= XFS_SB_UNIT;
810                         }
811                         if (sbp->sb_width != mp->m_swidth) {
812                                 sbp->sb_width = mp->m_swidth;
813                                 mp->m_update_flags |= XFS_SB_WIDTH;
814                         }
815                 }
816         } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
817                     xfs_sb_version_hasdalign(&mp->m_sb)) {
818                         mp->m_dalign = sbp->sb_unit;
819                         mp->m_swidth = sbp->sb_width;
820         }
821
822         return 0;
823 }
824
825 /*
826  * Set the maximum inode count for this filesystem
827  */
828 STATIC void
829 xfs_set_maxicount(xfs_mount_t *mp)
830 {
831         xfs_sb_t        *sbp = &(mp->m_sb);
832         __uint64_t      icount;
833
834         if (sbp->sb_imax_pct) {
835                 /*
836                  * Make sure the maximum inode count is a multiple
837                  * of the units we allocate inodes in.
838                  */
839                 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
840                 do_div(icount, 100);
841                 do_div(icount, mp->m_ialloc_blks);
842                 mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
843                                    sbp->sb_inopblog;
844         } else {
845                 mp->m_maxicount = 0;
846         }
847 }
848
849 /*
850  * Set the default minimum read and write sizes unless
851  * already specified in a mount option.
852  * We use smaller I/O sizes when the file system
853  * is being used for NFS service (wsync mount option).
854  */
855 STATIC void
856 xfs_set_rw_sizes(xfs_mount_t *mp)
857 {
858         xfs_sb_t        *sbp = &(mp->m_sb);
859         int             readio_log, writeio_log;
860
861         if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
862                 if (mp->m_flags & XFS_MOUNT_WSYNC) {
863                         readio_log = XFS_WSYNC_READIO_LOG;
864                         writeio_log = XFS_WSYNC_WRITEIO_LOG;
865                 } else {
866                         readio_log = XFS_READIO_LOG_LARGE;
867                         writeio_log = XFS_WRITEIO_LOG_LARGE;
868                 }
869         } else {
870                 readio_log = mp->m_readio_log;
871                 writeio_log = mp->m_writeio_log;
872         }
873
874         if (sbp->sb_blocklog > readio_log) {
875                 mp->m_readio_log = sbp->sb_blocklog;
876         } else {
877                 mp->m_readio_log = readio_log;
878         }
879         mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
880         if (sbp->sb_blocklog > writeio_log) {
881                 mp->m_writeio_log = sbp->sb_blocklog;
882         } else {
883                 mp->m_writeio_log = writeio_log;
884         }
885         mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
886 }
887
888 /*
889  * Set whether we're using inode alignment.
890  */
891 STATIC void
892 xfs_set_inoalignment(xfs_mount_t *mp)
893 {
894         if (xfs_sb_version_hasalign(&mp->m_sb) &&
895             mp->m_sb.sb_inoalignmt >=
896             XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
897                 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
898         else
899                 mp->m_inoalign_mask = 0;
900         /*
901          * If we are using stripe alignment, check whether
902          * the stripe unit is a multiple of the inode alignment
903          */
904         if (mp->m_dalign && mp->m_inoalign_mask &&
905             !(mp->m_dalign & mp->m_inoalign_mask))
906                 mp->m_sinoalign = mp->m_dalign;
907         else
908                 mp->m_sinoalign = 0;
909 }
910
911 /*
912  * Check that the data (and log if separate) are an ok size.
913  */
914 STATIC int
915 xfs_check_sizes(xfs_mount_t *mp)
916 {
917         xfs_buf_t       *bp;
918         xfs_daddr_t     d;
919         int             error;
920
921         d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
922         if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
923                 cmn_err(CE_WARN, "XFS: size check 1 failed");
924                 return XFS_ERROR(E2BIG);
925         }
926         error = xfs_read_buf(mp, mp->m_ddev_targp,
927                              d - XFS_FSS_TO_BB(mp, 1),
928                              XFS_FSS_TO_BB(mp, 1), 0, &bp);
929         if (!error) {
930                 xfs_buf_relse(bp);
931         } else {
932                 cmn_err(CE_WARN, "XFS: size check 2 failed");
933                 if (error == ENOSPC)
934                         error = XFS_ERROR(E2BIG);
935                 return error;
936         }
937
938         if (mp->m_logdev_targp != mp->m_ddev_targp) {
939                 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
940                 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
941                         cmn_err(CE_WARN, "XFS: size check 3 failed");
942                         return XFS_ERROR(E2BIG);
943                 }
944                 error = xfs_read_buf(mp, mp->m_logdev_targp,
945                                      d - XFS_FSB_TO_BB(mp, 1),
946                                      XFS_FSB_TO_BB(mp, 1), 0, &bp);
947                 if (!error) {
948                         xfs_buf_relse(bp);
949                 } else {
950                         cmn_err(CE_WARN, "XFS: size check 3 failed");
951                         if (error == ENOSPC)
952                                 error = XFS_ERROR(E2BIG);
953                         return error;
954                 }
955         }
956         return 0;
957 }
958
959 /*
960  * This function does the following on an initial mount of a file system:
961  *      - reads the superblock from disk and init the mount struct
962  *      - if we're a 32-bit kernel, do a size check on the superblock
963  *              so we don't mount terabyte filesystems
964  *      - init mount struct realtime fields
965  *      - allocate inode hash table for fs
966  *      - init directory manager
967  *      - perform recovery and init the log manager
968  */
969 int
970 xfs_mountfs(
971         xfs_mount_t     *mp)
972 {
973         xfs_sb_t        *sbp = &(mp->m_sb);
974         xfs_inode_t     *rip;
975         __uint64_t      resblks;
976         uint            quotamount, quotaflags;
977         int             error = 0;
978
979         xfs_mount_common(mp, sbp);
980
981         /*
982          * Check for a mismatched features2 values.  Older kernels
983          * read & wrote into the wrong sb offset for sb_features2
984          * on some platforms due to xfs_sb_t not being 64bit size aligned
985          * when sb_features2 was added, which made older superblock
986          * reading/writing routines swap it as a 64-bit value.
987          *
988          * For backwards compatibility, we make both slots equal.
989          *
990          * If we detect a mismatched field, we OR the set bits into the
991          * existing features2 field in case it has already been modified; we
992          * don't want to lose any features.  We then update the bad location
993          * with the ORed value so that older kernels will see any features2
994          * flags, and mark the two fields as needing updates once the
995          * transaction subsystem is online.
996          */
997         if (xfs_sb_has_mismatched_features2(sbp)) {
998                 cmn_err(CE_WARN,
999                         "XFS: correcting sb_features alignment problem");
1000                 sbp->sb_features2 |= sbp->sb_bad_features2;
1001                 sbp->sb_bad_features2 = sbp->sb_features2;
1002                 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1003
1004                 /*
1005                  * Re-check for ATTR2 in case it was found in bad_features2
1006                  * slot.
1007                  */
1008                 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1009                    !(mp->m_flags & XFS_MOUNT_NOATTR2))
1010                         mp->m_flags |= XFS_MOUNT_ATTR2;
1011         }
1012
1013         if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1014            (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1015                 xfs_sb_version_removeattr2(&mp->m_sb);
1016                 mp->m_update_flags |= XFS_SB_FEATURES2;
1017
1018                 /* update sb_versionnum for the clearing of the morebits */
1019                 if (!sbp->sb_features2)
1020                         mp->m_update_flags |= XFS_SB_VERSIONNUM;
1021         }
1022
1023         /*
1024          * Check if sb_agblocks is aligned at stripe boundary
1025          * If sb_agblocks is NOT aligned turn off m_dalign since
1026          * allocator alignment is within an ag, therefore ag has
1027          * to be aligned at stripe boundary.
1028          */
1029         error = xfs_update_alignment(mp);
1030         if (error)
1031                 goto out;
1032
1033         xfs_alloc_compute_maxlevels(mp);
1034         xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1035         xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1036         xfs_ialloc_compute_maxlevels(mp);
1037
1038         xfs_set_maxicount(mp);
1039
1040         mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1041
1042         error = xfs_uuid_mount(mp);
1043         if (error)
1044                 goto out;
1045
1046         /*
1047          * Set the minimum read and write sizes
1048          */
1049         xfs_set_rw_sizes(mp);
1050
1051         /*
1052          * Set the inode cluster size.
1053          * This may still be overridden by the file system
1054          * block size if it is larger than the chosen cluster size.
1055          */
1056         mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1057
1058         /*
1059          * Set inode alignment fields
1060          */
1061         xfs_set_inoalignment(mp);
1062
1063         /*
1064          * Check that the data (and log if separate) are an ok size.
1065          */
1066         error = xfs_check_sizes(mp);
1067         if (error)
1068                 goto out_remove_uuid;
1069
1070         /*
1071          * Initialize realtime fields in the mount structure
1072          */
1073         error = xfs_rtmount_init(mp);
1074         if (error) {
1075                 cmn_err(CE_WARN, "XFS: RT mount failed");
1076                 goto out_remove_uuid;
1077         }
1078
1079         /*
1080          *  Copies the low order bits of the timestamp and the randomly
1081          *  set "sequence" number out of a UUID.
1082          */
1083         uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1084
1085         mp->m_dmevmask = 0;     /* not persistent; set after each mount */
1086
1087         xfs_dir_mount(mp);
1088
1089         /*
1090          * Initialize the attribute manager's entries.
1091          */
1092         mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1093
1094         /*
1095          * Initialize the precomputed transaction reservations values.
1096          */
1097         xfs_trans_init(mp);
1098
1099         /*
1100          * Allocate and initialize the per-ag data.
1101          */
1102         init_rwsem(&mp->m_peraglock);
1103         mp->m_perag = kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t),
1104                                   KM_MAYFAIL);
1105         if (!mp->m_perag)
1106                 goto out_remove_uuid;
1107
1108         mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount);
1109
1110         if (!sbp->sb_logblocks) {
1111                 cmn_err(CE_WARN, "XFS: no log defined");
1112                 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1113                 error = XFS_ERROR(EFSCORRUPTED);
1114                 goto out_free_perag;
1115         }
1116
1117         /*
1118          * log's mount-time initialization. Perform 1st part recovery if needed
1119          */
1120         error = xfs_log_mount(mp, mp->m_logdev_targp,
1121                               XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1122                               XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1123         if (error) {
1124                 cmn_err(CE_WARN, "XFS: log mount failed");
1125                 goto out_free_perag;
1126         }
1127
1128         /*
1129          * Now the log is mounted, we know if it was an unclean shutdown or
1130          * not. If it was, with the first phase of recovery has completed, we
1131          * have consistent AG blocks on disk. We have not recovered EFIs yet,
1132          * but they are recovered transactionally in the second recovery phase
1133          * later.
1134          *
1135          * Hence we can safely re-initialise incore superblock counters from
1136          * the per-ag data. These may not be correct if the filesystem was not
1137          * cleanly unmounted, so we need to wait for recovery to finish before
1138          * doing this.
1139          *
1140          * If the filesystem was cleanly unmounted, then we can trust the
1141          * values in the superblock to be correct and we don't need to do
1142          * anything here.
1143          *
1144          * If we are currently making the filesystem, the initialisation will
1145          * fail as the perag data is in an undefined state.
1146          */
1147         if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1148             !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1149              !mp->m_sb.sb_inprogress) {
1150                 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1151                 if (error)
1152                         goto out_free_perag;
1153         }
1154
1155         /*
1156          * Get and sanity-check the root inode.
1157          * Save the pointer to it in the mount structure.
1158          */
1159         error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1160         if (error) {
1161                 cmn_err(CE_WARN, "XFS: failed to read root inode");
1162                 goto out_log_dealloc;
1163         }
1164
1165         ASSERT(rip != NULL);
1166
1167         if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1168                 cmn_err(CE_WARN, "XFS: corrupted root inode");
1169                 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1170                         XFS_BUFTARG_NAME(mp->m_ddev_targp),
1171                         (unsigned long long)rip->i_ino);
1172                 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1173                 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1174                                  mp);
1175                 error = XFS_ERROR(EFSCORRUPTED);
1176                 goto out_rele_rip;
1177         }
1178         mp->m_rootip = rip;     /* save it */
1179
1180         xfs_iunlock(rip, XFS_ILOCK_EXCL);
1181
1182         /*
1183          * Initialize realtime inode pointers in the mount structure
1184          */
1185         error = xfs_rtmount_inodes(mp);
1186         if (error) {
1187                 /*
1188                  * Free up the root inode.
1189                  */
1190                 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1191                 goto out_rele_rip;
1192         }
1193
1194         /*
1195          * If this is a read-only mount defer the superblock updates until
1196          * the next remount into writeable mode.  Otherwise we would never
1197          * perform the update e.g. for the root filesystem.
1198          */
1199         if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1200                 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1201                 if (error) {
1202                         cmn_err(CE_WARN, "XFS: failed to write sb changes");
1203                         goto out_rtunmount;
1204                 }
1205         }
1206
1207         /*
1208          * Initialise the XFS quota management subsystem for this mount
1209          */
1210         error = XFS_QM_INIT(mp, &quotamount, &quotaflags);
1211         if (error)
1212                 goto out_rtunmount;
1213
1214         /*
1215          * Finish recovering the file system.  This part needed to be
1216          * delayed until after the root and real-time bitmap inodes
1217          * were consistently read in.
1218          */
1219         error = xfs_log_mount_finish(mp);
1220         if (error) {
1221                 cmn_err(CE_WARN, "XFS: log mount finish failed");
1222                 goto out_rtunmount;
1223         }
1224
1225         /*
1226          * Complete the quota initialisation, post-log-replay component.
1227          */
1228         error = XFS_QM_MOUNT(mp, quotamount, quotaflags);
1229         if (error)
1230                 goto out_rtunmount;
1231
1232         /*
1233          * Now we are mounted, reserve a small amount of unused space for
1234          * privileged transactions. This is needed so that transaction
1235          * space required for critical operations can dip into this pool
1236          * when at ENOSPC. This is needed for operations like create with
1237          * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1238          * are not allowed to use this reserved space.
1239          *
1240          * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1241          * This may drive us straight to ENOSPC on mount, but that implies
1242          * we were already there on the last unmount. Warn if this occurs.
1243          */
1244         resblks = mp->m_sb.sb_dblocks;
1245         do_div(resblks, 20);
1246         resblks = min_t(__uint64_t, resblks, 1024);
1247         error = xfs_reserve_blocks(mp, &resblks, NULL);
1248         if (error)
1249                 cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. "
1250                                 "Continuing without a reserve pool.");
1251
1252         return 0;
1253
1254  out_rtunmount:
1255         xfs_rtunmount_inodes(mp);
1256  out_rele_rip:
1257         IRELE(rip);
1258  out_log_dealloc:
1259         xfs_log_unmount(mp);
1260  out_free_perag:
1261         xfs_free_perag(mp);
1262  out_remove_uuid:
1263         xfs_uuid_unmount(mp);
1264  out:
1265         return error;
1266 }
1267
1268 /*
1269  * This flushes out the inodes,dquots and the superblock, unmounts the
1270  * log and makes sure that incore structures are freed.
1271  */
1272 void
1273 xfs_unmountfs(
1274         struct xfs_mount        *mp)
1275 {
1276         __uint64_t              resblks;
1277         int                     error;
1278
1279         /*
1280          * Release dquot that rootinode, rbmino and rsumino might be holding,
1281          * and release the quota inodes.
1282          */
1283         XFS_QM_UNMOUNT(mp);
1284
1285         xfs_rtunmount_inodes(mp);
1286         IRELE(mp->m_rootip);
1287
1288         /*
1289          * We can potentially deadlock here if we have an inode cluster
1290          * that has been freed has its buffer still pinned in memory because
1291          * the transaction is still sitting in a iclog. The stale inodes
1292          * on that buffer will have their flush locks held until the
1293          * transaction hits the disk and the callbacks run. the inode
1294          * flush takes the flush lock unconditionally and with nothing to
1295          * push out the iclog we will never get that unlocked. hence we
1296          * need to force the log first.
1297          */
1298         xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1299         xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_ASYNC);
1300
1301         XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING);
1302
1303         if (mp->m_quotainfo)
1304                 XFS_QM_DONE(mp);
1305
1306         /*
1307          * Flush out the log synchronously so that we know for sure
1308          * that nothing is pinned.  This is important because bflush()
1309          * will skip pinned buffers.
1310          */
1311         xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1312
1313         xfs_binval(mp->m_ddev_targp);
1314         if (mp->m_rtdev_targp) {
1315                 xfs_binval(mp->m_rtdev_targp);
1316         }
1317
1318         /*
1319          * Unreserve any blocks we have so that when we unmount we don't account
1320          * the reserved free space as used. This is really only necessary for
1321          * lazy superblock counting because it trusts the incore superblock
1322          * counters to be absolutely correct on clean unmount.
1323          *
1324          * We don't bother correcting this elsewhere for lazy superblock
1325          * counting because on mount of an unclean filesystem we reconstruct the
1326          * correct counter value and this is irrelevant.
1327          *
1328          * For non-lazy counter filesystems, this doesn't matter at all because
1329          * we only every apply deltas to the superblock and hence the incore
1330          * value does not matter....
1331          */
1332         resblks = 0;
1333         error = xfs_reserve_blocks(mp, &resblks, NULL);
1334         if (error)
1335                 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1336                                 "Freespace may not be correct on next mount.");
1337
1338         error = xfs_log_sbcount(mp, 1);
1339         if (error)
1340                 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1341                                 "Freespace may not be correct on next mount.");
1342         xfs_unmountfs_writesb(mp);
1343         xfs_unmountfs_wait(mp);                 /* wait for async bufs */
1344         xfs_log_unmount_write(mp);
1345         xfs_log_unmount(mp);
1346         xfs_uuid_unmount(mp);
1347
1348 #if defined(DEBUG)
1349         xfs_errortag_clearall(mp, 0);
1350 #endif
1351         xfs_free_perag(mp);
1352 }
1353
1354 STATIC void
1355 xfs_unmountfs_wait(xfs_mount_t *mp)
1356 {
1357         if (mp->m_logdev_targp != mp->m_ddev_targp)
1358                 xfs_wait_buftarg(mp->m_logdev_targp);
1359         if (mp->m_rtdev_targp)
1360                 xfs_wait_buftarg(mp->m_rtdev_targp);
1361         xfs_wait_buftarg(mp->m_ddev_targp);
1362 }
1363
1364 int
1365 xfs_fs_writable(xfs_mount_t *mp)
1366 {
1367         return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1368                 (mp->m_flags & XFS_MOUNT_RDONLY));
1369 }
1370
1371 /*
1372  * xfs_log_sbcount
1373  *
1374  * Called either periodically to keep the on disk superblock values
1375  * roughly up to date or from unmount to make sure the values are
1376  * correct on a clean unmount.
1377  *
1378  * Note this code can be called during the process of freezing, so
1379  * we may need to use the transaction allocator which does not not
1380  * block when the transaction subsystem is in its frozen state.
1381  */
1382 int
1383 xfs_log_sbcount(
1384         xfs_mount_t     *mp,
1385         uint            sync)
1386 {
1387         xfs_trans_t     *tp;
1388         int             error;
1389
1390         if (!xfs_fs_writable(mp))
1391                 return 0;
1392
1393         xfs_icsb_sync_counters(mp, 0);
1394
1395         /*
1396          * we don't need to do this if we are updating the superblock
1397          * counters on every modification.
1398          */
1399         if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1400                 return 0;
1401
1402         tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
1403         error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1404                                         XFS_DEFAULT_LOG_COUNT);
1405         if (error) {
1406                 xfs_trans_cancel(tp, 0);
1407                 return error;
1408         }
1409
1410         xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1411         if (sync)
1412                 xfs_trans_set_sync(tp);
1413         error = xfs_trans_commit(tp, 0);
1414         return error;
1415 }
1416
1417 int
1418 xfs_unmountfs_writesb(xfs_mount_t *mp)
1419 {
1420         xfs_buf_t       *sbp;
1421         int             error = 0;
1422
1423         /*
1424          * skip superblock write if fs is read-only, or
1425          * if we are doing a forced umount.
1426          */
1427         if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1428                 XFS_FORCED_SHUTDOWN(mp))) {
1429
1430                 sbp = xfs_getsb(mp, 0);
1431
1432                 XFS_BUF_UNDONE(sbp);
1433                 XFS_BUF_UNREAD(sbp);
1434                 XFS_BUF_UNDELAYWRITE(sbp);
1435                 XFS_BUF_WRITE(sbp);
1436                 XFS_BUF_UNASYNC(sbp);
1437                 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1438                 xfsbdstrat(mp, sbp);
1439                 error = xfs_iowait(sbp);
1440                 if (error)
1441                         xfs_ioerror_alert("xfs_unmountfs_writesb",
1442                                           mp, sbp, XFS_BUF_ADDR(sbp));
1443                 xfs_buf_relse(sbp);
1444         }
1445         return error;
1446 }
1447
1448 /*
1449  * xfs_mod_sb() can be used to copy arbitrary changes to the
1450  * in-core superblock into the superblock buffer to be logged.
1451  * It does not provide the higher level of locking that is
1452  * needed to protect the in-core superblock from concurrent
1453  * access.
1454  */
1455 void
1456 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1457 {
1458         xfs_buf_t       *bp;
1459         int             first;
1460         int             last;
1461         xfs_mount_t     *mp;
1462         xfs_sb_field_t  f;
1463
1464         ASSERT(fields);
1465         if (!fields)
1466                 return;
1467         mp = tp->t_mountp;
1468         bp = xfs_trans_getsb(tp, mp, 0);
1469         first = sizeof(xfs_sb_t);
1470         last = 0;
1471
1472         /* translate/copy */
1473
1474         xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1475
1476         /* find modified range */
1477
1478         f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1479         ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1480         first = xfs_sb_info[f].offset;
1481
1482         f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1483         ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1484         last = xfs_sb_info[f + 1].offset - 1;
1485
1486         xfs_trans_log_buf(tp, bp, first, last);
1487 }
1488
1489
1490 /*
1491  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1492  * a delta to a specified field in the in-core superblock.  Simply
1493  * switch on the field indicated and apply the delta to that field.
1494  * Fields are not allowed to dip below zero, so if the delta would
1495  * do this do not apply it and return EINVAL.
1496  *
1497  * The m_sb_lock must be held when this routine is called.
1498  */
1499 int
1500 xfs_mod_incore_sb_unlocked(
1501         xfs_mount_t     *mp,
1502         xfs_sb_field_t  field,
1503         int64_t         delta,
1504         int             rsvd)
1505 {
1506         int             scounter;       /* short counter for 32 bit fields */
1507         long long       lcounter;       /* long counter for 64 bit fields */
1508         long long       res_used, rem;
1509
1510         /*
1511          * With the in-core superblock spin lock held, switch
1512          * on the indicated field.  Apply the delta to the
1513          * proper field.  If the fields value would dip below
1514          * 0, then do not apply the delta and return EINVAL.
1515          */
1516         switch (field) {
1517         case XFS_SBS_ICOUNT:
1518                 lcounter = (long long)mp->m_sb.sb_icount;
1519                 lcounter += delta;
1520                 if (lcounter < 0) {
1521                         ASSERT(0);
1522                         return XFS_ERROR(EINVAL);
1523                 }
1524                 mp->m_sb.sb_icount = lcounter;
1525                 return 0;
1526         case XFS_SBS_IFREE:
1527                 lcounter = (long long)mp->m_sb.sb_ifree;
1528                 lcounter += delta;
1529                 if (lcounter < 0) {
1530                         ASSERT(0);
1531                         return XFS_ERROR(EINVAL);
1532                 }
1533                 mp->m_sb.sb_ifree = lcounter;
1534                 return 0;
1535         case XFS_SBS_FDBLOCKS:
1536                 lcounter = (long long)
1537                         mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1538                 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1539
1540                 if (delta > 0) {                /* Putting blocks back */
1541                         if (res_used > delta) {
1542                                 mp->m_resblks_avail += delta;
1543                         } else {
1544                                 rem = delta - res_used;
1545                                 mp->m_resblks_avail = mp->m_resblks;
1546                                 lcounter += rem;
1547                         }
1548                 } else {                                /* Taking blocks away */
1549
1550                         lcounter += delta;
1551
1552                 /*
1553                  * If were out of blocks, use any available reserved blocks if
1554                  * were allowed to.
1555                  */
1556
1557                         if (lcounter < 0) {
1558                                 if (rsvd) {
1559                                         lcounter = (long long)mp->m_resblks_avail + delta;
1560                                         if (lcounter < 0) {
1561                                                 return XFS_ERROR(ENOSPC);
1562                                         }
1563                                         mp->m_resblks_avail = lcounter;
1564                                         return 0;
1565                                 } else {        /* not reserved */
1566                                         return XFS_ERROR(ENOSPC);
1567                                 }
1568                         }
1569                 }
1570
1571                 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1572                 return 0;
1573         case XFS_SBS_FREXTENTS:
1574                 lcounter = (long long)mp->m_sb.sb_frextents;
1575                 lcounter += delta;
1576                 if (lcounter < 0) {
1577                         return XFS_ERROR(ENOSPC);
1578                 }
1579                 mp->m_sb.sb_frextents = lcounter;
1580                 return 0;
1581         case XFS_SBS_DBLOCKS:
1582                 lcounter = (long long)mp->m_sb.sb_dblocks;
1583                 lcounter += delta;
1584                 if (lcounter < 0) {
1585                         ASSERT(0);
1586                         return XFS_ERROR(EINVAL);
1587                 }
1588                 mp->m_sb.sb_dblocks = lcounter;
1589                 return 0;
1590         case XFS_SBS_AGCOUNT:
1591                 scounter = mp->m_sb.sb_agcount;
1592                 scounter += delta;
1593                 if (scounter < 0) {
1594                         ASSERT(0);
1595                         return XFS_ERROR(EINVAL);
1596                 }
1597                 mp->m_sb.sb_agcount = scounter;
1598                 return 0;
1599         case XFS_SBS_IMAX_PCT:
1600                 scounter = mp->m_sb.sb_imax_pct;
1601                 scounter += delta;
1602                 if (scounter < 0) {
1603                         ASSERT(0);
1604                         return XFS_ERROR(EINVAL);
1605                 }
1606                 mp->m_sb.sb_imax_pct = scounter;
1607                 return 0;
1608         case XFS_SBS_REXTSIZE:
1609                 scounter = mp->m_sb.sb_rextsize;
1610                 scounter += delta;
1611                 if (scounter < 0) {
1612                         ASSERT(0);
1613                         return XFS_ERROR(EINVAL);
1614                 }
1615                 mp->m_sb.sb_rextsize = scounter;
1616                 return 0;
1617         case XFS_SBS_RBMBLOCKS:
1618                 scounter = mp->m_sb.sb_rbmblocks;
1619                 scounter += delta;
1620                 if (scounter < 0) {
1621                         ASSERT(0);
1622                         return XFS_ERROR(EINVAL);
1623                 }
1624                 mp->m_sb.sb_rbmblocks = scounter;
1625                 return 0;
1626         case XFS_SBS_RBLOCKS:
1627                 lcounter = (long long)mp->m_sb.sb_rblocks;
1628                 lcounter += delta;
1629                 if (lcounter < 0) {
1630                         ASSERT(0);
1631                         return XFS_ERROR(EINVAL);
1632                 }
1633                 mp->m_sb.sb_rblocks = lcounter;
1634                 return 0;
1635         case XFS_SBS_REXTENTS:
1636                 lcounter = (long long)mp->m_sb.sb_rextents;
1637                 lcounter += delta;
1638                 if (lcounter < 0) {
1639                         ASSERT(0);
1640                         return XFS_ERROR(EINVAL);
1641                 }
1642                 mp->m_sb.sb_rextents = lcounter;
1643                 return 0;
1644         case XFS_SBS_REXTSLOG:
1645                 scounter = mp->m_sb.sb_rextslog;
1646                 scounter += delta;
1647                 if (scounter < 0) {
1648                         ASSERT(0);
1649                         return XFS_ERROR(EINVAL);
1650                 }
1651                 mp->m_sb.sb_rextslog = scounter;
1652                 return 0;
1653         default:
1654                 ASSERT(0);
1655                 return XFS_ERROR(EINVAL);
1656         }
1657 }
1658
1659 /*
1660  * xfs_mod_incore_sb() is used to change a field in the in-core
1661  * superblock structure by the specified delta.  This modification
1662  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1663  * routine to do the work.
1664  */
1665 int
1666 xfs_mod_incore_sb(
1667         xfs_mount_t     *mp,
1668         xfs_sb_field_t  field,
1669         int64_t         delta,
1670         int             rsvd)
1671 {
1672         int     status;
1673
1674         /* check for per-cpu counters */
1675         switch (field) {
1676 #ifdef HAVE_PERCPU_SB
1677         case XFS_SBS_ICOUNT:
1678         case XFS_SBS_IFREE:
1679         case XFS_SBS_FDBLOCKS:
1680                 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1681                         status = xfs_icsb_modify_counters(mp, field,
1682                                                         delta, rsvd);
1683                         break;
1684                 }
1685                 /* FALLTHROUGH */
1686 #endif
1687         default:
1688                 spin_lock(&mp->m_sb_lock);
1689                 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1690                 spin_unlock(&mp->m_sb_lock);
1691                 break;
1692         }
1693
1694         return status;
1695 }
1696
1697 /*
1698  * xfs_mod_incore_sb_batch() is used to change more than one field
1699  * in the in-core superblock structure at a time.  This modification
1700  * is protected by a lock internal to this module.  The fields and
1701  * changes to those fields are specified in the array of xfs_mod_sb
1702  * structures passed in.
1703  *
1704  * Either all of the specified deltas will be applied or none of
1705  * them will.  If any modified field dips below 0, then all modifications
1706  * will be backed out and EINVAL will be returned.
1707  */
1708 int
1709 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1710 {
1711         int             status=0;
1712         xfs_mod_sb_t    *msbp;
1713
1714         /*
1715          * Loop through the array of mod structures and apply each
1716          * individually.  If any fail, then back out all those
1717          * which have already been applied.  Do all of this within
1718          * the scope of the m_sb_lock so that all of the changes will
1719          * be atomic.
1720          */
1721         spin_lock(&mp->m_sb_lock);
1722         msbp = &msb[0];
1723         for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1724                 /*
1725                  * Apply the delta at index n.  If it fails, break
1726                  * from the loop so we'll fall into the undo loop
1727                  * below.
1728                  */
1729                 switch (msbp->msb_field) {
1730 #ifdef HAVE_PERCPU_SB
1731                 case XFS_SBS_ICOUNT:
1732                 case XFS_SBS_IFREE:
1733                 case XFS_SBS_FDBLOCKS:
1734                         if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1735                                 spin_unlock(&mp->m_sb_lock);
1736                                 status = xfs_icsb_modify_counters(mp,
1737                                                         msbp->msb_field,
1738                                                         msbp->msb_delta, rsvd);
1739                                 spin_lock(&mp->m_sb_lock);
1740                                 break;
1741                         }
1742                         /* FALLTHROUGH */
1743 #endif
1744                 default:
1745                         status = xfs_mod_incore_sb_unlocked(mp,
1746                                                 msbp->msb_field,
1747                                                 msbp->msb_delta, rsvd);
1748                         break;
1749                 }
1750
1751                 if (status != 0) {
1752                         break;
1753                 }
1754         }
1755
1756         /*
1757          * If we didn't complete the loop above, then back out
1758          * any changes made to the superblock.  If you add code
1759          * between the loop above and here, make sure that you
1760          * preserve the value of status. Loop back until
1761          * we step below the beginning of the array.  Make sure
1762          * we don't touch anything back there.
1763          */
1764         if (status != 0) {
1765                 msbp--;
1766                 while (msbp >= msb) {
1767                         switch (msbp->msb_field) {
1768 #ifdef HAVE_PERCPU_SB
1769                         case XFS_SBS_ICOUNT:
1770                         case XFS_SBS_IFREE:
1771                         case XFS_SBS_FDBLOCKS:
1772                                 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1773                                         spin_unlock(&mp->m_sb_lock);
1774                                         status = xfs_icsb_modify_counters(mp,
1775                                                         msbp->msb_field,
1776                                                         -(msbp->msb_delta),
1777                                                         rsvd);
1778                                         spin_lock(&mp->m_sb_lock);
1779                                         break;
1780                                 }
1781                                 /* FALLTHROUGH */
1782 #endif
1783                         default:
1784                                 status = xfs_mod_incore_sb_unlocked(mp,
1785                                                         msbp->msb_field,
1786                                                         -(msbp->msb_delta),
1787                                                         rsvd);
1788                                 break;
1789                         }
1790                         ASSERT(status == 0);
1791                         msbp--;
1792                 }
1793         }
1794         spin_unlock(&mp->m_sb_lock);
1795         return status;
1796 }
1797
1798 /*
1799  * xfs_getsb() is called to obtain the buffer for the superblock.
1800  * The buffer is returned locked and read in from disk.
1801  * The buffer should be released with a call to xfs_brelse().
1802  *
1803  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1804  * the superblock buffer if it can be locked without sleeping.
1805  * If it can't then we'll return NULL.
1806  */
1807 xfs_buf_t *
1808 xfs_getsb(
1809         xfs_mount_t     *mp,
1810         int             flags)
1811 {
1812         xfs_buf_t       *bp;
1813
1814         ASSERT(mp->m_sb_bp != NULL);
1815         bp = mp->m_sb_bp;
1816         if (flags & XFS_BUF_TRYLOCK) {
1817                 if (!XFS_BUF_CPSEMA(bp)) {
1818                         return NULL;
1819                 }
1820         } else {
1821                 XFS_BUF_PSEMA(bp, PRIBIO);
1822         }
1823         XFS_BUF_HOLD(bp);
1824         ASSERT(XFS_BUF_ISDONE(bp));
1825         return bp;
1826 }
1827
1828 /*
1829  * Used to free the superblock along various error paths.
1830  */
1831 void
1832 xfs_freesb(
1833         xfs_mount_t     *mp)
1834 {
1835         xfs_buf_t       *bp;
1836
1837         /*
1838          * Use xfs_getsb() so that the buffer will be locked
1839          * when we call xfs_buf_relse().
1840          */
1841         bp = xfs_getsb(mp, 0);
1842         XFS_BUF_UNMANAGE(bp);
1843         xfs_buf_relse(bp);
1844         mp->m_sb_bp = NULL;
1845 }
1846
1847 /*
1848  * Used to log changes to the superblock unit and width fields which could
1849  * be altered by the mount options, as well as any potential sb_features2
1850  * fixup. Only the first superblock is updated.
1851  */
1852 int
1853 xfs_mount_log_sb(
1854         xfs_mount_t     *mp,
1855         __int64_t       fields)
1856 {
1857         xfs_trans_t     *tp;
1858         int             error;
1859
1860         ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1861                          XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1862                          XFS_SB_VERSIONNUM));
1863
1864         tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1865         error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1866                                 XFS_DEFAULT_LOG_COUNT);
1867         if (error) {
1868                 xfs_trans_cancel(tp, 0);
1869                 return error;
1870         }
1871         xfs_mod_sb(tp, fields);
1872         error = xfs_trans_commit(tp, 0);
1873         return error;
1874 }
1875
1876
1877 #ifdef HAVE_PERCPU_SB
1878 /*
1879  * Per-cpu incore superblock counters
1880  *
1881  * Simple concept, difficult implementation
1882  *
1883  * Basically, replace the incore superblock counters with a distributed per cpu
1884  * counter for contended fields (e.g.  free block count).
1885  *
1886  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1887  * hence needs to be accurately read when we are running low on space. Hence
1888  * there is a method to enable and disable the per-cpu counters based on how
1889  * much "stuff" is available in them.
1890  *
1891  * Basically, a counter is enabled if there is enough free resource to justify
1892  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1893  * ENOSPC), then we disable the counters to synchronise all callers and
1894  * re-distribute the available resources.
1895  *
1896  * If, once we redistributed the available resources, we still get a failure,
1897  * we disable the per-cpu counter and go through the slow path.
1898  *
1899  * The slow path is the current xfs_mod_incore_sb() function.  This means that
1900  * when we disable a per-cpu counter, we need to drain its resources back to
1901  * the global superblock. We do this after disabling the counter to prevent
1902  * more threads from queueing up on the counter.
1903  *
1904  * Essentially, this means that we still need a lock in the fast path to enable
1905  * synchronisation between the global counters and the per-cpu counters. This
1906  * is not a problem because the lock will be local to a CPU almost all the time
1907  * and have little contention except when we get to ENOSPC conditions.
1908  *
1909  * Basically, this lock becomes a barrier that enables us to lock out the fast
1910  * path while we do things like enabling and disabling counters and
1911  * synchronising the counters.
1912  *
1913  * Locking rules:
1914  *
1915  *      1. m_sb_lock before picking up per-cpu locks
1916  *      2. per-cpu locks always picked up via for_each_online_cpu() order
1917  *      3. accurate counter sync requires m_sb_lock + per cpu locks
1918  *      4. modifying per-cpu counters requires holding per-cpu lock
1919  *      5. modifying global counters requires holding m_sb_lock
1920  *      6. enabling or disabling a counter requires holding the m_sb_lock 
1921  *         and _none_ of the per-cpu locks.
1922  *
1923  * Disabled counters are only ever re-enabled by a balance operation
1924  * that results in more free resources per CPU than a given threshold.
1925  * To ensure counters don't remain disabled, they are rebalanced when
1926  * the global resource goes above a higher threshold (i.e. some hysteresis
1927  * is present to prevent thrashing).
1928  */
1929
1930 #ifdef CONFIG_HOTPLUG_CPU
1931 /*
1932  * hot-plug CPU notifier support.
1933  *
1934  * We need a notifier per filesystem as we need to be able to identify
1935  * the filesystem to balance the counters out. This is achieved by
1936  * having a notifier block embedded in the xfs_mount_t and doing pointer
1937  * magic to get the mount pointer from the notifier block address.
1938  */
1939 STATIC int
1940 xfs_icsb_cpu_notify(
1941         struct notifier_block *nfb,
1942         unsigned long action,
1943         void *hcpu)
1944 {
1945         xfs_icsb_cnts_t *cntp;
1946         xfs_mount_t     *mp;
1947
1948         mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1949         cntp = (xfs_icsb_cnts_t *)
1950                         per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1951         switch (action) {
1952         case CPU_UP_PREPARE:
1953         case CPU_UP_PREPARE_FROZEN:
1954                 /* Easy Case - initialize the area and locks, and
1955                  * then rebalance when online does everything else for us. */
1956                 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1957                 break;
1958         case CPU_ONLINE:
1959         case CPU_ONLINE_FROZEN:
1960                 xfs_icsb_lock(mp);
1961                 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1962                 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1963                 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1964                 xfs_icsb_unlock(mp);
1965                 break;
1966         case CPU_DEAD:
1967         case CPU_DEAD_FROZEN:
1968                 /* Disable all the counters, then fold the dead cpu's
1969                  * count into the total on the global superblock and
1970                  * re-enable the counters. */
1971                 xfs_icsb_lock(mp);
1972                 spin_lock(&mp->m_sb_lock);
1973                 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1974                 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1975                 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1976
1977                 mp->m_sb.sb_icount += cntp->icsb_icount;
1978                 mp->m_sb.sb_ifree += cntp->icsb_ifree;
1979                 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1980
1981                 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1982
1983                 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1984                 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1985                 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1986                 spin_unlock(&mp->m_sb_lock);
1987                 xfs_icsb_unlock(mp);
1988                 break;
1989         }
1990
1991         return NOTIFY_OK;
1992 }
1993 #endif /* CONFIG_HOTPLUG_CPU */
1994
1995 int
1996 xfs_icsb_init_counters(
1997         xfs_mount_t     *mp)
1998 {
1999         xfs_icsb_cnts_t *cntp;
2000         int             i;
2001
2002         mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2003         if (mp->m_sb_cnts == NULL)
2004                 return -ENOMEM;
2005
2006 #ifdef CONFIG_HOTPLUG_CPU
2007         mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2008         mp->m_icsb_notifier.priority = 0;
2009         register_hotcpu_notifier(&mp->m_icsb_notifier);
2010 #endif /* CONFIG_HOTPLUG_CPU */
2011
2012         for_each_online_cpu(i) {
2013                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2014                 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2015         }
2016
2017         mutex_init(&mp->m_icsb_mutex);
2018
2019         /*
2020          * start with all counters disabled so that the
2021          * initial balance kicks us off correctly
2022          */
2023         mp->m_icsb_counters = -1;
2024         return 0;
2025 }
2026
2027 void
2028 xfs_icsb_reinit_counters(
2029         xfs_mount_t     *mp)
2030 {
2031         xfs_icsb_lock(mp);
2032         /*
2033          * start with all counters disabled so that the
2034          * initial balance kicks us off correctly
2035          */
2036         mp->m_icsb_counters = -1;
2037         xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2038         xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2039         xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2040         xfs_icsb_unlock(mp);
2041 }
2042
2043 void
2044 xfs_icsb_destroy_counters(
2045         xfs_mount_t     *mp)
2046 {
2047         if (mp->m_sb_cnts) {
2048                 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2049                 free_percpu(mp->m_sb_cnts);
2050         }
2051         mutex_destroy(&mp->m_icsb_mutex);
2052 }
2053
2054 STATIC_INLINE void
2055 xfs_icsb_lock_cntr(
2056         xfs_icsb_cnts_t *icsbp)
2057 {
2058         while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2059                 ndelay(1000);
2060         }
2061 }
2062
2063 STATIC_INLINE void
2064 xfs_icsb_unlock_cntr(
2065         xfs_icsb_cnts_t *icsbp)
2066 {
2067         clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2068 }
2069
2070
2071 STATIC_INLINE void
2072 xfs_icsb_lock_all_counters(
2073         xfs_mount_t     *mp)
2074 {
2075         xfs_icsb_cnts_t *cntp;
2076         int             i;
2077
2078         for_each_online_cpu(i) {
2079                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2080                 xfs_icsb_lock_cntr(cntp);
2081         }
2082 }
2083
2084 STATIC_INLINE void
2085 xfs_icsb_unlock_all_counters(
2086         xfs_mount_t     *mp)
2087 {
2088         xfs_icsb_cnts_t *cntp;
2089         int             i;
2090
2091         for_each_online_cpu(i) {
2092                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2093                 xfs_icsb_unlock_cntr(cntp);
2094         }
2095 }
2096
2097 STATIC void
2098 xfs_icsb_count(
2099         xfs_mount_t     *mp,
2100         xfs_icsb_cnts_t *cnt,
2101         int             flags)
2102 {
2103         xfs_icsb_cnts_t *cntp;
2104         int             i;
2105
2106         memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2107
2108         if (!(flags & XFS_ICSB_LAZY_COUNT))
2109                 xfs_icsb_lock_all_counters(mp);
2110
2111         for_each_online_cpu(i) {
2112                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2113                 cnt->icsb_icount += cntp->icsb_icount;
2114                 cnt->icsb_ifree += cntp->icsb_ifree;
2115                 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2116         }
2117
2118         if (!(flags & XFS_ICSB_LAZY_COUNT))
2119                 xfs_icsb_unlock_all_counters(mp);
2120 }
2121
2122 STATIC int
2123 xfs_icsb_counter_disabled(
2124         xfs_mount_t     *mp,
2125         xfs_sb_field_t  field)
2126 {
2127         ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2128         return test_bit(field, &mp->m_icsb_counters);
2129 }
2130
2131 STATIC void
2132 xfs_icsb_disable_counter(
2133         xfs_mount_t     *mp,
2134         xfs_sb_field_t  field)
2135 {
2136         xfs_icsb_cnts_t cnt;
2137
2138         ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2139
2140         /*
2141          * If we are already disabled, then there is nothing to do
2142          * here. We check before locking all the counters to avoid
2143          * the expensive lock operation when being called in the
2144          * slow path and the counter is already disabled. This is
2145          * safe because the only time we set or clear this state is under
2146          * the m_icsb_mutex.
2147          */
2148         if (xfs_icsb_counter_disabled(mp, field))
2149                 return;
2150
2151         xfs_icsb_lock_all_counters(mp);
2152         if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2153                 /* drain back to superblock */
2154
2155                 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2156                 switch(field) {
2157                 case XFS_SBS_ICOUNT:
2158                         mp->m_sb.sb_icount = cnt.icsb_icount;
2159                         break;
2160                 case XFS_SBS_IFREE:
2161                         mp->m_sb.sb_ifree = cnt.icsb_ifree;
2162                         break;
2163                 case XFS_SBS_FDBLOCKS:
2164                         mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2165                         break;
2166                 default:
2167                         BUG();
2168                 }
2169         }
2170
2171         xfs_icsb_unlock_all_counters(mp);
2172 }
2173
2174 STATIC void
2175 xfs_icsb_enable_counter(
2176         xfs_mount_t     *mp,
2177         xfs_sb_field_t  field,
2178         uint64_t        count,
2179         uint64_t        resid)
2180 {
2181         xfs_icsb_cnts_t *cntp;
2182         int             i;
2183
2184         ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2185
2186         xfs_icsb_lock_all_counters(mp);
2187         for_each_online_cpu(i) {
2188                 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2189                 switch (field) {
2190                 case XFS_SBS_ICOUNT:
2191                         cntp->icsb_icount = count + resid;
2192                         break;
2193                 case XFS_SBS_IFREE:
2194                         cntp->icsb_ifree = count + resid;
2195                         break;
2196                 case XFS_SBS_FDBLOCKS:
2197                         cntp->icsb_fdblocks = count + resid;
2198                         break;
2199                 default:
2200                         BUG();
2201                         break;
2202                 }
2203                 resid = 0;
2204         }
2205         clear_bit(field, &mp->m_icsb_counters);
2206         xfs_icsb_unlock_all_counters(mp);
2207 }
2208
2209 void
2210 xfs_icsb_sync_counters_locked(
2211         xfs_mount_t     *mp,
2212         int             flags)
2213 {
2214         xfs_icsb_cnts_t cnt;
2215
2216         xfs_icsb_count(mp, &cnt, flags);
2217
2218         if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2219                 mp->m_sb.sb_icount = cnt.icsb_icount;
2220         if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2221                 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2222         if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2223                 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2224 }
2225
2226 /*
2227  * Accurate update of per-cpu counters to incore superblock
2228  */
2229 void
2230 xfs_icsb_sync_counters(
2231         xfs_mount_t     *mp,
2232         int             flags)
2233 {
2234         spin_lock(&mp->m_sb_lock);
2235         xfs_icsb_sync_counters_locked(mp, flags);
2236         spin_unlock(&mp->m_sb_lock);
2237 }
2238
2239 /*
2240  * Balance and enable/disable counters as necessary.
2241  *
2242  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2243  * chosen to be the same number as single on disk allocation chunk per CPU, and
2244  * free blocks is something far enough zero that we aren't going thrash when we
2245  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2246  * prevent looping endlessly when xfs_alloc_space asks for more than will
2247  * be distributed to a single CPU but each CPU has enough blocks to be
2248  * reenabled.
2249  *
2250  * Note that we can be called when counters are already disabled.
2251  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2252  * prevent locking every per-cpu counter needlessly.
2253  */
2254
2255 #define XFS_ICSB_INO_CNTR_REENABLE      (uint64_t)64
2256 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2257                 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2258 STATIC void
2259 xfs_icsb_balance_counter_locked(
2260         xfs_mount_t     *mp,
2261         xfs_sb_field_t  field,
2262         int             min_per_cpu)
2263 {
2264         uint64_t        count, resid;
2265         int             weight = num_online_cpus();
2266         uint64_t        min = (uint64_t)min_per_cpu;
2267
2268         /* disable counter and sync counter */
2269         xfs_icsb_disable_counter(mp, field);
2270
2271         /* update counters  - first CPU gets residual*/
2272         switch (field) {
2273         case XFS_SBS_ICOUNT:
2274                 count = mp->m_sb.sb_icount;
2275                 resid = do_div(count, weight);
2276                 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2277                         return;
2278                 break;
2279         case XFS_SBS_IFREE:
2280                 count = mp->m_sb.sb_ifree;
2281                 resid = do_div(count, weight);
2282                 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2283                         return;
2284                 break;
2285         case XFS_SBS_FDBLOCKS:
2286                 count = mp->m_sb.sb_fdblocks;
2287                 resid = do_div(count, weight);
2288                 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2289                         return;
2290                 break;
2291         default:
2292                 BUG();
2293                 count = resid = 0;      /* quiet, gcc */
2294                 break;
2295         }
2296
2297         xfs_icsb_enable_counter(mp, field, count, resid);
2298 }
2299
2300 STATIC void
2301 xfs_icsb_balance_counter(
2302         xfs_mount_t     *mp,
2303         xfs_sb_field_t  fields,
2304         int             min_per_cpu)
2305 {
2306         spin_lock(&mp->m_sb_lock);
2307         xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2308         spin_unlock(&mp->m_sb_lock);
2309 }
2310
2311 STATIC int
2312 xfs_icsb_modify_counters(
2313         xfs_mount_t     *mp,
2314         xfs_sb_field_t  field,
2315         int64_t         delta,
2316         int             rsvd)
2317 {
2318         xfs_icsb_cnts_t *icsbp;
2319         long long       lcounter;       /* long counter for 64 bit fields */
2320         int             cpu, ret = 0;
2321
2322         might_sleep();
2323 again:
2324         cpu = get_cpu();
2325         icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
2326
2327         /*
2328          * if the counter is disabled, go to slow path
2329          */
2330         if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2331                 goto slow_path;
2332         xfs_icsb_lock_cntr(icsbp);
2333         if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2334                 xfs_icsb_unlock_cntr(icsbp);
2335                 goto slow_path;
2336         }
2337
2338         switch (field) {
2339         case XFS_SBS_ICOUNT:
2340                 lcounter = icsbp->icsb_icount;
2341                 lcounter += delta;
2342                 if (unlikely(lcounter < 0))
2343                         goto balance_counter;
2344                 icsbp->icsb_icount = lcounter;
2345                 break;
2346
2347         case XFS_SBS_IFREE:
2348                 lcounter = icsbp->icsb_ifree;
2349                 lcounter += delta;
2350                 if (unlikely(lcounter < 0))
2351                         goto balance_counter;
2352                 icsbp->icsb_ifree = lcounter;
2353                 break;
2354
2355         case XFS_SBS_FDBLOCKS:
2356                 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2357
2358                 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2359                 lcounter += delta;
2360                 if (unlikely(lcounter < 0))
2361                         goto balance_counter;
2362                 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2363                 break;
2364         default:
2365                 BUG();
2366                 break;
2367         }
2368         xfs_icsb_unlock_cntr(icsbp);
2369         put_cpu();
2370         return 0;
2371
2372 slow_path:
2373         put_cpu();
2374
2375         /*
2376          * serialise with a mutex so we don't burn lots of cpu on
2377          * the superblock lock. We still need to hold the superblock
2378          * lock, however, when we modify the global structures.
2379          */
2380         xfs_icsb_lock(mp);
2381
2382         /*
2383          * Now running atomically.
2384          *
2385          * If the counter is enabled, someone has beaten us to rebalancing.
2386          * Drop the lock and try again in the fast path....
2387          */
2388         if (!(xfs_icsb_counter_disabled(mp, field))) {
2389                 xfs_icsb_unlock(mp);
2390                 goto again;
2391         }
2392
2393         /*
2394          * The counter is currently disabled. Because we are
2395          * running atomically here, we know a rebalance cannot
2396          * be in progress. Hence we can go straight to operating
2397          * on the global superblock. We do not call xfs_mod_incore_sb()
2398          * here even though we need to get the m_sb_lock. Doing so
2399          * will cause us to re-enter this function and deadlock.
2400          * Hence we get the m_sb_lock ourselves and then call
2401          * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2402          * directly on the global counters.
2403          */
2404         spin_lock(&mp->m_sb_lock);
2405         ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2406         spin_unlock(&mp->m_sb_lock);
2407
2408         /*
2409          * Now that we've modified the global superblock, we
2410          * may be able to re-enable the distributed counters
2411          * (e.g. lots of space just got freed). After that
2412          * we are done.
2413          */
2414         if (ret != ENOSPC)
2415                 xfs_icsb_balance_counter(mp, field, 0);
2416         xfs_icsb_unlock(mp);
2417         return ret;
2418
2419 balance_counter:
2420         xfs_icsb_unlock_cntr(icsbp);
2421         put_cpu();
2422
2423         /*
2424          * We may have multiple threads here if multiple per-cpu
2425          * counters run dry at the same time. This will mean we can
2426          * do more balances than strictly necessary but it is not
2427          * the common slowpath case.
2428          */
2429         xfs_icsb_lock(mp);
2430
2431         /*
2432          * running atomically.
2433          *
2434          * This will leave the counter in the correct state for future
2435          * accesses. After the rebalance, we simply try again and our retry
2436          * will either succeed through the fast path or slow path without
2437          * another balance operation being required.
2438          */
2439         xfs_icsb_balance_counter(mp, field, delta);
2440         xfs_icsb_unlock(mp);
2441         goto again;
2442 }
2443
2444 #endif