2 * DVB USB Linux driver for Afatech AF9015 DVB-T USB2.0 receiver
4 * Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
6 * Thanks to Afatech who kindly provided information.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/string.h>
30 #include <linux/slab.h>
31 #include <linux/firmware.h>
33 #include "dvb_frontend.h"
34 #include "af9013_priv.h"
40 struct i2c_adapter *i2c;
41 struct dvb_frontend frontend;
43 struct af9013_config config;
50 unsigned long next_statistics_check;
53 static u8 regmask[8] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff };
55 static int af9013_write_regs(struct af9013_state *state, u8 mbox, u16 reg,
59 struct i2c_msg msg = {
60 .addr = state->config.demod_address,
68 memcpy(&buf[3], val, len);
70 if (i2c_transfer(state->i2c, &msg, 1) != 1) {
71 warn("I2C write failed reg:%04x len:%d", reg, len);
77 static int af9013_write_ofdm_regs(struct af9013_state *state, u16 reg, u8 *val,
80 u8 mbox = (1 << 0)|(1 << 1)|((len - 1) << 2)|(0 << 6)|(0 << 7);
81 return af9013_write_regs(state, mbox, reg, val, len);
84 static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val,
87 u8 mbox = (1 << 0)|(1 << 1)|((len - 1) << 2)|(1 << 6)|(1 << 7);
88 return af9013_write_regs(state, mbox, reg, val, len);
91 /* write single register */
92 static int af9013_write_reg(struct af9013_state *state, u16 reg, u8 val)
94 return af9013_write_ofdm_regs(state, reg, &val, 1);
97 /* read single register */
98 static int af9013_read_reg(struct af9013_state *state, u16 reg, u8 *val)
100 u8 obuf[3] = { reg >> 8, reg & 0xff, 0 };
102 struct i2c_msg msg[2] = {
104 .addr = state->config.demod_address,
109 .addr = state->config.demod_address,
116 if (i2c_transfer(state->i2c, msg, 2) != 2) {
117 warn("I2C read failed reg:%04x", reg);
124 static int af9013_write_reg_bits(struct af9013_state *state, u16 reg, u8 pos,
130 ret = af9013_read_reg(state, reg, &tmp);
134 mask = regmask[len - 1] << pos;
135 tmp = (tmp & ~mask) | ((val << pos) & mask);
137 return af9013_write_reg(state, reg, tmp);
140 static int af9013_read_reg_bits(struct af9013_state *state, u16 reg, u8 pos,
146 ret = af9013_read_reg(state, reg, &tmp);
149 *val = (tmp >> pos) & regmask[len - 1];
153 static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
158 deb_info("%s: gpio:%d gpioval:%02x\n", __func__, gpio, gpioval);
160 /* GPIO0 & GPIO1 0xd735
161 GPIO2 & GPIO3 0xd736 */
174 err("invalid gpio:%d\n", gpio);
191 ret = af9013_write_reg_bits(state, addr, pos, 4, gpioval);
197 static u32 af913_div(u32 a, u32 b, u32 x)
200 deb_info("%s: a:%d b:%d x:%d\n", __func__, a, b, x);
207 for (i = 0; i < x; i++) {
215 r = (c << (u32)x) + r;
217 deb_info("%s: a:%d b:%d x:%d r:%d r:%x\n", __func__, a, b, x, r, r);
221 static int af9013_set_coeff(struct af9013_state *state, fe_bandwidth_t bw)
226 u32 ns_coeff1_2048nu;
227 u32 ns_coeff1_8191nu;
228 u32 ns_coeff1_8192nu;
229 u32 ns_coeff1_8193nu;
233 deb_info("%s: adc_clock:%d bw:%d\n", __func__,
234 state->config.adc_clock, bw);
236 switch (state->config.adc_clock) {
237 case 28800: /* 28.800 MHz */
239 case BANDWIDTH_6_MHZ:
240 ns_coeff1_2048nu = 0x01e79e7a;
241 ns_coeff1_8191nu = 0x0079eb6e;
242 ns_coeff1_8192nu = 0x0079e79e;
243 ns_coeff1_8193nu = 0x0079e3cf;
244 ns_coeff2_2k = 0x00f3cf3d;
245 ns_coeff2_8k = 0x003cf3cf;
247 case BANDWIDTH_7_MHZ:
248 ns_coeff1_2048nu = 0x0238e38e;
249 ns_coeff1_8191nu = 0x008e3d55;
250 ns_coeff1_8192nu = 0x008e38e4;
251 ns_coeff1_8193nu = 0x008e3472;
252 ns_coeff2_2k = 0x011c71c7;
253 ns_coeff2_8k = 0x00471c72;
255 case BANDWIDTH_8_MHZ:
256 ns_coeff1_2048nu = 0x028a28a3;
257 ns_coeff1_8191nu = 0x00a28f3d;
258 ns_coeff1_8192nu = 0x00a28a29;
259 ns_coeff1_8193nu = 0x00a28514;
260 ns_coeff2_2k = 0x01451451;
261 ns_coeff2_8k = 0x00514514;
267 case 20480: /* 20.480 MHz */
269 case BANDWIDTH_6_MHZ:
270 ns_coeff1_2048nu = 0x02adb6dc;
271 ns_coeff1_8191nu = 0x00ab7313;
272 ns_coeff1_8192nu = 0x00ab6db7;
273 ns_coeff1_8193nu = 0x00ab685c;
274 ns_coeff2_2k = 0x0156db6e;
275 ns_coeff2_8k = 0x0055b6dc;
277 case BANDWIDTH_7_MHZ:
278 ns_coeff1_2048nu = 0x03200001;
279 ns_coeff1_8191nu = 0x00c80640;
280 ns_coeff1_8192nu = 0x00c80000;
281 ns_coeff1_8193nu = 0x00c7f9c0;
282 ns_coeff2_2k = 0x01900000;
283 ns_coeff2_8k = 0x00640000;
285 case BANDWIDTH_8_MHZ:
286 ns_coeff1_2048nu = 0x03924926;
287 ns_coeff1_8191nu = 0x00e4996e;
288 ns_coeff1_8192nu = 0x00e49249;
289 ns_coeff1_8193nu = 0x00e48b25;
290 ns_coeff2_2k = 0x01c92493;
291 ns_coeff2_8k = 0x00724925;
297 case 28000: /* 28.000 MHz */
299 case BANDWIDTH_6_MHZ:
300 ns_coeff1_2048nu = 0x01f58d10;
301 ns_coeff1_8191nu = 0x007d672f;
302 ns_coeff1_8192nu = 0x007d6344;
303 ns_coeff1_8193nu = 0x007d5f59;
304 ns_coeff2_2k = 0x00fac688;
305 ns_coeff2_8k = 0x003eb1a2;
307 case BANDWIDTH_7_MHZ:
308 ns_coeff1_2048nu = 0x02492492;
309 ns_coeff1_8191nu = 0x00924db7;
310 ns_coeff1_8192nu = 0x00924925;
311 ns_coeff1_8193nu = 0x00924492;
312 ns_coeff2_2k = 0x01249249;
313 ns_coeff2_8k = 0x00492492;
315 case BANDWIDTH_8_MHZ:
316 ns_coeff1_2048nu = 0x029cbc15;
317 ns_coeff1_8191nu = 0x00a7343f;
318 ns_coeff1_8192nu = 0x00a72f05;
319 ns_coeff1_8193nu = 0x00a729cc;
320 ns_coeff2_2k = 0x014e5e0a;
321 ns_coeff2_8k = 0x00539783;
327 case 25000: /* 25.000 MHz */
329 case BANDWIDTH_6_MHZ:
330 ns_coeff1_2048nu = 0x0231bcb5;
331 ns_coeff1_8191nu = 0x008c7391;
332 ns_coeff1_8192nu = 0x008c6f2d;
333 ns_coeff1_8193nu = 0x008c6aca;
334 ns_coeff2_2k = 0x0118de5b;
335 ns_coeff2_8k = 0x00463797;
337 case BANDWIDTH_7_MHZ:
338 ns_coeff1_2048nu = 0x028f5c29;
339 ns_coeff1_8191nu = 0x00a3dc29;
340 ns_coeff1_8192nu = 0x00a3d70a;
341 ns_coeff1_8193nu = 0x00a3d1ec;
342 ns_coeff2_2k = 0x0147ae14;
343 ns_coeff2_8k = 0x0051eb85;
345 case BANDWIDTH_8_MHZ:
346 ns_coeff1_2048nu = 0x02ecfb9d;
347 ns_coeff1_8191nu = 0x00bb44c1;
348 ns_coeff1_8192nu = 0x00bb3ee7;
349 ns_coeff1_8193nu = 0x00bb390d;
350 ns_coeff2_2k = 0x01767dce;
351 ns_coeff2_8k = 0x005d9f74;
362 err("invalid bandwidth");
366 buf[i++] = (u8) ((ns_coeff1_2048nu & 0x03000000) >> 24);
367 buf[i++] = (u8) ((ns_coeff1_2048nu & 0x00ff0000) >> 16);
368 buf[i++] = (u8) ((ns_coeff1_2048nu & 0x0000ff00) >> 8);
369 buf[i++] = (u8) ((ns_coeff1_2048nu & 0x000000ff));
370 buf[i++] = (u8) ((ns_coeff2_2k & 0x01c00000) >> 22);
371 buf[i++] = (u8) ((ns_coeff2_2k & 0x003fc000) >> 14);
372 buf[i++] = (u8) ((ns_coeff2_2k & 0x00003fc0) >> 6);
373 buf[i++] = (u8) ((ns_coeff2_2k & 0x0000003f));
374 buf[i++] = (u8) ((ns_coeff1_8191nu & 0x03000000) >> 24);
375 buf[i++] = (u8) ((ns_coeff1_8191nu & 0x00ffc000) >> 16);
376 buf[i++] = (u8) ((ns_coeff1_8191nu & 0x0000ff00) >> 8);
377 buf[i++] = (u8) ((ns_coeff1_8191nu & 0x000000ff));
378 buf[i++] = (u8) ((ns_coeff1_8192nu & 0x03000000) >> 24);
379 buf[i++] = (u8) ((ns_coeff1_8192nu & 0x00ffc000) >> 16);
380 buf[i++] = (u8) ((ns_coeff1_8192nu & 0x0000ff00) >> 8);
381 buf[i++] = (u8) ((ns_coeff1_8192nu & 0x000000ff));
382 buf[i++] = (u8) ((ns_coeff1_8193nu & 0x03000000) >> 24);
383 buf[i++] = (u8) ((ns_coeff1_8193nu & 0x00ffc000) >> 16);
384 buf[i++] = (u8) ((ns_coeff1_8193nu & 0x0000ff00) >> 8);
385 buf[i++] = (u8) ((ns_coeff1_8193nu & 0x000000ff));
386 buf[i++] = (u8) ((ns_coeff2_8k & 0x01c00000) >> 22);
387 buf[i++] = (u8) ((ns_coeff2_8k & 0x003fc000) >> 14);
388 buf[i++] = (u8) ((ns_coeff2_8k & 0x00003fc0) >> 6);
389 buf[i++] = (u8) ((ns_coeff2_8k & 0x0000003f));
391 deb_info("%s: coeff:", __func__);
392 debug_dump(buf, sizeof(buf), deb_info);
395 for (i = 0; i < sizeof(buf); i++) {
396 ret = af9013_write_reg(state, 0xae00 + i, buf[i]);
404 static int af9013_set_adc_ctrl(struct af9013_state *state)
410 deb_info("%s: adc_clock:%d\n", __func__, state->config.adc_clock);
412 /* adc frequency type */
413 switch (state->config.adc_clock) {
414 case 28800: /* 28.800 MHz */
417 case 20480: /* 20.480 MHz */
420 case 28000: /* 28.000 MHz */
423 case 25000: /* 25.000 MHz */
431 adc_cw = af913_div(state->config.adc_clock*1000, 1000000ul, 19ul);
433 buf[0] = (u8) ((adc_cw & 0x000000ff));
434 buf[1] = (u8) ((adc_cw & 0x0000ff00) >> 8);
435 buf[2] = (u8) ((adc_cw & 0x00ff0000) >> 16);
437 deb_info("%s: adc_cw:", __func__);
438 debug_dump(buf, sizeof(buf), deb_info);
441 for (i = 0; i < sizeof(buf); i++) {
442 ret = af9013_write_reg(state, 0xd180 + i, buf[i]);
446 ret = af9013_write_reg_bits(state, 0x9bd2, 0, 4, tmp);
451 static int af9013_set_freq_ctrl(struct af9013_state *state, fe_bandwidth_t bw)
456 u32 adc_freq, freq_cw;
460 for (j = 0; j < 3; j++) {
462 addr = 0xd140; /* fcw normal */
463 bfs_spec_inv = state->config.rf_spec_inv ? -1 : 1;
465 addr = 0x9be7; /* fcw dummy ram */
466 bfs_spec_inv = state->config.rf_spec_inv ? -1 : 1;
468 addr = 0x9bea; /* fcw inverted */
469 bfs_spec_inv = state->config.rf_spec_inv ? 1 : -1;
472 adc_freq = state->config.adc_clock * 1000;
473 if_sample_freq = state->config.tuner_if * 1000;
475 /* TDA18271 uses different sampling freq for every bw */
476 if (state->config.tuner == AF9013_TUNER_TDA18271) {
478 case BANDWIDTH_6_MHZ:
479 if_sample_freq = 3300000; /* 3.3 MHz */
481 case BANDWIDTH_7_MHZ:
482 if_sample_freq = 3800000; /* 3.8 MHz */
484 case BANDWIDTH_8_MHZ:
486 if_sample_freq = 4300000; /* 4.3 MHz */
491 while (if_sample_freq > (adc_freq / 2))
492 if_sample_freq = if_sample_freq - adc_freq;
494 if (if_sample_freq >= 0)
495 bfs_spec_inv = bfs_spec_inv * (-1);
497 if_sample_freq = if_sample_freq * (-1);
499 freq_cw = af913_div(if_sample_freq, adc_freq, 23ul);
501 if (bfs_spec_inv == -1)
502 freq_cw = 0x00800000 - freq_cw;
504 buf[0] = (u8) ((freq_cw & 0x000000ff));
505 buf[1] = (u8) ((freq_cw & 0x0000ff00) >> 8);
506 buf[2] = (u8) ((freq_cw & 0x007f0000) >> 16);
509 deb_info("%s: freq_cw:", __func__);
510 debug_dump(buf, sizeof(buf), deb_info);
513 for (i = 0; i < sizeof(buf); i++) {
514 ret = af9013_write_reg(state, addr++, buf[i]);
523 static int af9013_set_ofdm_params(struct af9013_state *state,
524 struct dvb_ofdm_parameters *params, u8 *auto_mode)
527 u8 i, buf[3] = {0, 0, 0};
528 *auto_mode = 0; /* set if parameters are requested to auto set */
530 switch (params->transmission_mode) {
531 case TRANSMISSION_MODE_AUTO:
533 case TRANSMISSION_MODE_2K:
535 case TRANSMISSION_MODE_8K:
542 switch (params->guard_interval) {
543 case GUARD_INTERVAL_AUTO:
545 case GUARD_INTERVAL_1_32:
547 case GUARD_INTERVAL_1_16:
550 case GUARD_INTERVAL_1_8:
553 case GUARD_INTERVAL_1_4:
560 switch (params->hierarchy_information) {
578 switch (params->constellation) {
593 /* Use HP. How and which case we can switch to LP? */
596 switch (params->code_rate_HP) {
617 switch (params->code_rate_LP) {
619 /* if HIERARCHY_NONE and FEC_NONE then LP FEC is set to FEC_AUTO
620 by dvb_frontend.c for compatibility */
621 if (params->hierarchy_information != HIERARCHY_NONE)
638 if (params->hierarchy_information == HIERARCHY_AUTO)
644 switch (params->bandwidth) {
645 case BANDWIDTH_6_MHZ:
647 case BANDWIDTH_7_MHZ:
650 case BANDWIDTH_8_MHZ:
658 for (i = 0; i < sizeof(buf); i++) {
659 ret = af9013_write_reg(state, 0xd3c0 + i, buf[i]);
667 static int af9013_reset(struct af9013_state *state, u8 sleep)
671 deb_info("%s\n", __func__);
673 /* enable OFDM reset */
674 ret = af9013_write_reg_bits(state, 0xd417, 4, 1, 1);
678 /* start reset mechanism */
679 ret = af9013_write_reg(state, 0xaeff, 1);
683 /* reset is done when bit 1 is set */
684 for (i = 0; i < 150; i++) {
685 ret = af9013_read_reg_bits(state, 0xd417, 1, 1, &tmp);
689 break; /* reset done */
695 /* don't clear reset when going to sleep */
697 /* clear OFDM reset */
698 ret = af9013_write_reg_bits(state, 0xd417, 1, 1, 0);
702 /* disable OFDM reset */
703 ret = af9013_write_reg_bits(state, 0xd417, 4, 1, 0);
709 static int af9013_power_ctrl(struct af9013_state *state, u8 onoff)
712 deb_info("%s: onoff:%d\n", __func__, onoff);
716 ret = af9013_write_reg_bits(state, 0xd73a, 3, 1, 0);
719 ret = af9013_write_reg_bits(state, 0xd417, 1, 1, 0);
722 ret = af9013_write_reg_bits(state, 0xd417, 4, 1, 0);
725 ret = af9013_reset(state, 1);
728 ret = af9013_write_reg_bits(state, 0xd73a, 3, 1, 1);
734 static int af9013_lock_led(struct af9013_state *state, u8 onoff)
736 deb_info("%s: onoff:%d\n", __func__, onoff);
738 return af9013_write_reg_bits(state, 0xd730, 0, 1, onoff);
741 static int af9013_set_frontend(struct dvb_frontend *fe,
742 struct dvb_frontend_parameters *params)
744 struct af9013_state *state = fe->demodulator_priv;
746 u8 auto_mode; /* auto set TPS */
748 deb_info("%s: freq:%d bw:%d\n", __func__, params->frequency,
749 params->u.ofdm.bandwidth);
751 state->frequency = params->frequency;
753 /* program CFOE coefficients */
754 ret = af9013_set_coeff(state, params->u.ofdm.bandwidth);
758 /* program frequency control */
759 ret = af9013_set_freq_ctrl(state, params->u.ofdm.bandwidth);
763 /* clear TPS lock flag (inverted flag) */
764 ret = af9013_write_reg_bits(state, 0xd330, 3, 1, 1);
768 /* clear MPEG2 lock flag */
769 ret = af9013_write_reg_bits(state, 0xd507, 6, 1, 0);
773 /* empty channel function */
774 ret = af9013_write_reg_bits(state, 0x9bfe, 0, 1, 0);
778 /* empty DVB-T channel function */
779 ret = af9013_write_reg_bits(state, 0x9bc2, 0, 1, 0);
784 if (fe->ops.tuner_ops.set_params)
785 fe->ops.tuner_ops.set_params(fe, params);
787 /* program TPS and bandwidth, check if auto mode needed */
788 ret = af9013_set_ofdm_params(state, ¶ms->u.ofdm, &auto_mode);
793 /* clear easy mode flag */
794 ret = af9013_write_reg(state, 0xaefd, 0);
795 deb_info("%s: auto TPS\n", __func__);
797 /* set easy mode flag */
798 ret = af9013_write_reg(state, 0xaefd, 1);
801 ret = af9013_write_reg(state, 0xaefe, 0);
802 deb_info("%s: manual TPS\n", __func__);
807 /* everything is set, lets try to receive channel - OFSM GO! */
808 ret = af9013_write_reg(state, 0xffff, 0);
816 static int af9013_get_frontend(struct dvb_frontend *fe,
817 struct dvb_frontend_parameters *p)
819 struct af9013_state *state = fe->demodulator_priv;
822 deb_info("%s\n", __func__);
824 /* read TPS registers */
825 for (i = 0; i < 3; i++) {
826 ret = af9013_read_reg(state, 0xd3c0 + i, &buf[i]);
831 switch ((buf[1] >> 6) & 3) {
833 p->u.ofdm.constellation = QPSK;
836 p->u.ofdm.constellation = QAM_16;
839 p->u.ofdm.constellation = QAM_64;
843 switch ((buf[0] >> 0) & 3) {
845 p->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
848 p->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
851 switch ((buf[0] >> 2) & 3) {
853 p->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
856 p->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
859 p->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
862 p->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
866 switch ((buf[0] >> 4) & 7) {
868 p->u.ofdm.hierarchy_information = HIERARCHY_NONE;
871 p->u.ofdm.hierarchy_information = HIERARCHY_1;
874 p->u.ofdm.hierarchy_information = HIERARCHY_2;
877 p->u.ofdm.hierarchy_information = HIERARCHY_4;
881 switch ((buf[2] >> 0) & 7) {
883 p->u.ofdm.code_rate_HP = FEC_1_2;
886 p->u.ofdm.code_rate_HP = FEC_2_3;
889 p->u.ofdm.code_rate_HP = FEC_3_4;
892 p->u.ofdm.code_rate_HP = FEC_5_6;
895 p->u.ofdm.code_rate_HP = FEC_7_8;
899 switch ((buf[2] >> 3) & 7) {
901 p->u.ofdm.code_rate_LP = FEC_1_2;
904 p->u.ofdm.code_rate_LP = FEC_2_3;
907 p->u.ofdm.code_rate_LP = FEC_3_4;
910 p->u.ofdm.code_rate_LP = FEC_5_6;
913 p->u.ofdm.code_rate_LP = FEC_7_8;
917 switch ((buf[1] >> 2) & 3) {
919 p->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
922 p->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
925 p->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
929 p->inversion = INVERSION_AUTO;
930 p->frequency = state->frequency;
936 static int af9013_update_ber_unc(struct dvb_frontend *fe)
938 struct af9013_state *state = fe->demodulator_priv;
941 u32 error_bit_count = 0;
942 u32 total_bit_count = 0;
943 u32 abort_packet_count = 0;
947 /* check if error bit count is ready */
948 ret = af9013_read_reg_bits(state, 0xd391, 4, 1, &buf[0]);
954 /* get RSD packet abort count */
955 for (i = 0; i < 2; i++) {
956 ret = af9013_read_reg(state, 0xd38a + i, &buf[i]);
960 abort_packet_count = (buf[1] << 8) + buf[0];
962 /* get error bit count */
963 for (i = 0; i < 3; i++) {
964 ret = af9013_read_reg(state, 0xd387 + i, &buf[i]);
968 error_bit_count = (buf[2] << 16) + (buf[1] << 8) + buf[0];
969 error_bit_count = error_bit_count - abort_packet_count * 8 * 8;
971 /* get used RSD counting period (10000 RSD packets used) */
972 for (i = 0; i < 2; i++) {
973 ret = af9013_read_reg(state, 0xd385 + i, &buf[i]);
977 total_bit_count = (buf[1] << 8) + buf[0];
978 total_bit_count = total_bit_count - abort_packet_count;
979 total_bit_count = total_bit_count * 204 * 8;
982 state->ber = error_bit_count * 1000000000 / total_bit_count;
984 state->ucblocks += abort_packet_count;
986 deb_info("%s: err bits:%d total bits:%d abort count:%d\n", __func__,
987 error_bit_count, total_bit_count, abort_packet_count);
989 /* set BER counting range */
990 ret = af9013_write_reg(state, 0xd385, 10000 & 0xff);
993 ret = af9013_write_reg(state, 0xd386, 10000 >> 8);
996 /* reset and start BER counter */
997 ret = af9013_write_reg_bits(state, 0xd391, 4, 1, 1);
1006 static int af9013_update_snr(struct dvb_frontend *fe)
1008 struct af9013_state *state = fe->demodulator_priv;
1012 struct snr_table *snr_table;
1014 /* check if quantizer ready (for snr) */
1015 ret = af9013_read_reg_bits(state, 0xd2e1, 3, 1, &buf[0]);
1019 /* quantizer ready - read it */
1020 for (i = 0; i < 3; i++) {
1021 ret = af9013_read_reg(state, 0xd2e3 + i, &buf[i]);
1025 quant = (buf[2] << 16) + (buf[1] << 8) + buf[0];
1027 /* read current constellation */
1028 ret = af9013_read_reg(state, 0xd3c1, &buf[0]);
1032 switch ((buf[0] >> 6) & 3) {
1034 len = ARRAY_SIZE(qpsk_snr_table);
1035 snr_table = qpsk_snr_table;
1038 len = ARRAY_SIZE(qam16_snr_table);
1039 snr_table = qam16_snr_table;
1042 len = ARRAY_SIZE(qam64_snr_table);
1043 snr_table = qam64_snr_table;
1051 for (i = 0; i < len; i++) {
1052 if (quant < snr_table[i].val) {
1053 state->snr = snr_table[i].snr * 10;
1059 /* set quantizer super frame count */
1060 ret = af9013_write_reg(state, 0xd2e2, 1);
1064 /* check quantizer availability */
1065 for (i = 0; i < 10; i++) {
1067 ret = af9013_read_reg_bits(state, 0xd2e6, 0, 1,
1075 /* reset quantizer */
1076 ret = af9013_write_reg_bits(state, 0xd2e1, 3, 1, 1);
1085 static int af9013_update_signal_strength(struct dvb_frontend *fe)
1087 struct af9013_state *state = fe->demodulator_priv;
1090 u8 rf_gain, rf_50, rf_80, if_gain, if_50, if_80;
1091 int signal_strength;
1093 deb_info("%s\n", __func__);
1095 state->signal_strength = 0;
1097 ret = af9013_read_reg_bits(state, 0x9bee, 0, 1, &tmp0);
1101 ret = af9013_read_reg(state, 0x9bbd, &rf_50);
1104 ret = af9013_read_reg(state, 0x9bd0, &rf_80);
1107 ret = af9013_read_reg(state, 0x9be2, &if_50);
1110 ret = af9013_read_reg(state, 0x9be4, &if_80);
1113 ret = af9013_read_reg(state, 0xd07c, &rf_gain);
1116 ret = af9013_read_reg(state, 0xd07d, &if_gain);
1119 signal_strength = (0xffff / (9 * (rf_50 + if_50) - \
1120 11 * (rf_80 + if_80))) * (10 * (rf_gain + if_gain) - \
1121 11 * (rf_80 + if_80));
1122 if (signal_strength < 0)
1123 signal_strength = 0;
1124 else if (signal_strength > 0xffff)
1125 signal_strength = 0xffff;
1127 state->signal_strength = signal_strength;
1134 static int af9013_update_statistics(struct dvb_frontend *fe)
1136 struct af9013_state *state = fe->demodulator_priv;
1139 if (time_before(jiffies, state->next_statistics_check))
1142 /* set minimum statistic update interval */
1143 state->next_statistics_check = jiffies + msecs_to_jiffies(1200);
1145 ret = af9013_update_signal_strength(fe);
1148 ret = af9013_update_snr(fe);
1151 ret = af9013_update_ber_unc(fe);
1159 static int af9013_get_tune_settings(struct dvb_frontend *fe,
1160 struct dvb_frontend_tune_settings *fesettings)
1162 fesettings->min_delay_ms = 800;
1163 fesettings->step_size = 0;
1164 fesettings->max_drift = 0;
1169 static int af9013_read_status(struct dvb_frontend *fe, fe_status_t *status)
1171 struct af9013_state *state = fe->demodulator_priv;
1177 ret = af9013_read_reg_bits(state, 0xd330, 3, 1, &tmp);
1181 *status |= FE_HAS_VITERBI | FE_HAS_CARRIER | FE_HAS_SIGNAL;
1184 ret = af9013_read_reg_bits(state, 0xd507, 6, 1, &tmp);
1188 *status |= FE_HAS_SYNC | FE_HAS_LOCK;
1190 if (!(*status & FE_HAS_SIGNAL)) {
1192 ret = af9013_read_reg_bits(state, 0xd1a0, 6, 1, &tmp);
1196 *status |= FE_HAS_SIGNAL;
1199 if (!(*status & FE_HAS_CARRIER)) {
1201 ret = af9013_read_reg_bits(state, 0xd333, 7, 1, &tmp);
1205 *status |= FE_HAS_CARRIER;
1208 if (!(*status & FE_HAS_CARRIER)) {
1210 ret = af9013_read_reg_bits(state, 0xd334, 6, 1, &tmp);
1214 *status |= FE_HAS_CARRIER;
1217 ret = af9013_update_statistics(fe);
1224 static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
1226 struct af9013_state *state = fe->demodulator_priv;
1228 ret = af9013_update_statistics(fe);
1233 static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1235 struct af9013_state *state = fe->demodulator_priv;
1237 ret = af9013_update_statistics(fe);
1238 *strength = state->signal_strength;
1242 static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
1244 struct af9013_state *state = fe->demodulator_priv;
1246 ret = af9013_update_statistics(fe);
1251 static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1253 struct af9013_state *state = fe->demodulator_priv;
1255 ret = af9013_update_statistics(fe);
1256 *ucblocks = state->ucblocks;
1260 static int af9013_sleep(struct dvb_frontend *fe)
1262 struct af9013_state *state = fe->demodulator_priv;
1264 deb_info("%s\n", __func__);
1266 ret = af9013_lock_led(state, 0);
1270 ret = af9013_power_ctrl(state, 0);
1275 static int af9013_init(struct dvb_frontend *fe)
1277 struct af9013_state *state = fe->demodulator_priv;
1280 struct regdesc *init;
1281 deb_info("%s\n", __func__);
1284 ret = af9013_reset(state, 0);
1289 ret = af9013_power_ctrl(state, 1);
1294 ret = af9013_write_reg(state, 0xd73a, 0xa4);
1298 /* write API version to firmware */
1299 for (i = 0; i < sizeof(state->config.api_version); i++) {
1300 ret = af9013_write_reg(state, 0x9bf2 + i,
1301 state->config.api_version[i]);
1306 /* program ADC control */
1307 ret = af9013_set_adc_ctrl(state);
1311 /* set I2C master clock */
1312 ret = af9013_write_reg(state, 0xd416, 0x14);
1317 ret = af9013_write_reg_bits(state, 0xd700, 1, 1, 1);
1321 /* set no trigger */
1322 ret = af9013_write_reg_bits(state, 0xd700, 2, 1, 0);
1326 /* set read-update bit for constellation */
1327 ret = af9013_write_reg_bits(state, 0xd371, 1, 1, 1);
1331 /* enable FEC monitor */
1332 ret = af9013_write_reg_bits(state, 0xd392, 1, 1, 1);
1336 /* load OFSM settings */
1337 deb_info("%s: load ofsm settings\n", __func__);
1338 len = ARRAY_SIZE(ofsm_init);
1340 for (i = 0; i < len; i++) {
1341 ret = af9013_write_reg_bits(state, init[i].addr, init[i].pos,
1342 init[i].len, init[i].val);
1347 /* load tuner specific settings */
1348 deb_info("%s: load tuner specific settings\n", __func__);
1349 switch (state->config.tuner) {
1350 case AF9013_TUNER_MXL5003D:
1351 len = ARRAY_SIZE(tuner_init_mxl5003d);
1352 init = tuner_init_mxl5003d;
1354 case AF9013_TUNER_MXL5005D:
1355 case AF9013_TUNER_MXL5005R:
1356 len = ARRAY_SIZE(tuner_init_mxl5005);
1357 init = tuner_init_mxl5005;
1359 case AF9013_TUNER_ENV77H11D5:
1360 len = ARRAY_SIZE(tuner_init_env77h11d5);
1361 init = tuner_init_env77h11d5;
1363 case AF9013_TUNER_MT2060:
1364 len = ARRAY_SIZE(tuner_init_mt2060);
1365 init = tuner_init_mt2060;
1367 case AF9013_TUNER_MC44S803:
1368 len = ARRAY_SIZE(tuner_init_mc44s803);
1369 init = tuner_init_mc44s803;
1371 case AF9013_TUNER_QT1010:
1372 case AF9013_TUNER_QT1010A:
1373 len = ARRAY_SIZE(tuner_init_qt1010);
1374 init = tuner_init_qt1010;
1376 case AF9013_TUNER_MT2060_2:
1377 len = ARRAY_SIZE(tuner_init_mt2060_2);
1378 init = tuner_init_mt2060_2;
1380 case AF9013_TUNER_TDA18271:
1381 len = ARRAY_SIZE(tuner_init_tda18271);
1382 init = tuner_init_tda18271;
1384 case AF9013_TUNER_UNKNOWN:
1386 len = ARRAY_SIZE(tuner_init_unknown);
1387 init = tuner_init_unknown;
1391 for (i = 0; i < len; i++) {
1392 ret = af9013_write_reg_bits(state, init[i].addr, init[i].pos,
1393 init[i].len, init[i].val);
1399 deb_info("%s: setting ts mode\n", __func__);
1400 tmp0 = 0; /* parallel mode */
1401 tmp1 = 0; /* serial mode */
1402 switch (state->config.output_mode) {
1403 case AF9013_OUTPUT_MODE_PARALLEL:
1406 case AF9013_OUTPUT_MODE_SERIAL:
1409 case AF9013_OUTPUT_MODE_USB:
1410 /* usb mode for AF9015 */
1414 ret = af9013_write_reg_bits(state, 0xd500, 1, 1, tmp0); /* parallel */
1417 ret = af9013_write_reg_bits(state, 0xd500, 2, 1, tmp1); /* serial */
1421 /* enable lock led */
1422 ret = af9013_lock_led(state, 1);
1430 static struct dvb_frontend_ops af9013_ops;
1432 static int af9013_download_firmware(struct af9013_state *state)
1434 int i, len, packets, remainder, ret;
1435 const struct firmware *fw;
1436 u16 addr = 0x5100; /* firmware start address */
1441 u8 *fw_file = AF9013_DEFAULT_FIRMWARE;
1444 /* check whether firmware is already running */
1445 ret = af9013_read_reg(state, 0x98be, &val);
1449 deb_info("%s: firmware status:%02x\n", __func__, val);
1451 if (val == 0x0c) /* fw is running, no need for download */
1454 info("found a '%s' in cold state, will try to load a firmware",
1455 af9013_ops.info.name);
1457 /* request the firmware, this will block and timeout */
1458 ret = request_firmware(&fw, fw_file, &state->i2c->dev);
1460 err("did not find the firmware file. (%s) "
1461 "Please see linux/Documentation/dvb/ for more details" \
1462 " on firmware-problems. (%d)",
1467 info("downloading firmware from file '%s'", fw_file);
1470 for (i = 0; i < fw->size; i++)
1471 checksum += fw->data[i];
1473 fw_params[0] = checksum >> 8;
1474 fw_params[1] = checksum & 0xff;
1475 fw_params[2] = fw->size >> 8;
1476 fw_params[3] = fw->size & 0xff;
1478 /* write fw checksum & size */
1479 ret = af9013_write_ofsm_regs(state, 0x50fc,
1480 fw_params, sizeof(fw_params));
1484 #define FW_PACKET_MAX_DATA 16
1486 packets = fw->size / FW_PACKET_MAX_DATA;
1487 remainder = fw->size % FW_PACKET_MAX_DATA;
1488 len = FW_PACKET_MAX_DATA;
1489 for (i = 0; i <= packets; i++) {
1490 if (i == packets) /* set size of the last packet */
1493 data = (u8 *)(fw->data + i * FW_PACKET_MAX_DATA);
1494 ret = af9013_write_ofsm_regs(state, addr, data, len);
1495 addr += FW_PACKET_MAX_DATA;
1498 err("firmware download failed at %d with %d", i, ret);
1503 /* request boot firmware */
1504 ret = af9013_write_reg(state, 0xe205, 1);
1508 for (i = 0; i < 15; i++) {
1511 /* check firmware status */
1512 ret = af9013_read_reg(state, 0x98be, &val);
1516 deb_info("%s: firmware status:%02x\n", __func__, val);
1518 if (val == 0x0c || val == 0x04) /* success or fail */
1523 err("firmware did not run");
1525 } else if (val != 0x0c) {
1526 err("firmware boot timeout");
1531 release_firmware(fw);
1535 info("found a '%s' in warm state.", af9013_ops.info.name);
1539 static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
1542 struct af9013_state *state = fe->demodulator_priv;
1543 deb_info("%s: enable:%d\n", __func__, enable);
1545 if (state->config.output_mode == AF9013_OUTPUT_MODE_USB)
1546 ret = af9013_write_reg_bits(state, 0xd417, 3, 1, enable);
1548 ret = af9013_write_reg_bits(state, 0xd607, 2, 1, enable);
1553 static void af9013_release(struct dvb_frontend *fe)
1555 struct af9013_state *state = fe->demodulator_priv;
1559 static struct dvb_frontend_ops af9013_ops;
1561 struct dvb_frontend *af9013_attach(const struct af9013_config *config,
1562 struct i2c_adapter *i2c)
1565 struct af9013_state *state = NULL;
1568 /* allocate memory for the internal state */
1569 state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL);
1573 /* setup the state */
1575 memcpy(&state->config, config, sizeof(struct af9013_config));
1578 ret = af9013_read_reg_bits(state, 0xd733, 4, 4, &buf[2]);
1583 for (i = 0; i < 2; i++) {
1584 ret = af9013_read_reg(state, 0x116b + i, &buf[i]);
1588 deb_info("%s: chip version:%d ROM version:%d.%d\n", __func__,
1589 buf[2], buf[0], buf[1]);
1591 /* download firmware */
1592 if (state->config.output_mode != AF9013_OUTPUT_MODE_USB) {
1593 ret = af9013_download_firmware(state);
1598 /* firmware version */
1599 for (i = 0; i < 3; i++) {
1600 ret = af9013_read_reg(state, 0x5103 + i, &buf[i]);
1604 info("firmware version:%d.%d.%d", buf[0], buf[1], buf[2]);
1606 /* settings for mp2if */
1607 if (state->config.output_mode == AF9013_OUTPUT_MODE_USB) {
1608 /* AF9015 split PSB to 1.5k + 0.5k */
1609 ret = af9013_write_reg_bits(state, 0xd50b, 2, 1, 1);
1611 /* AF9013 change the output bit to data7 */
1612 ret = af9013_write_reg_bits(state, 0xd500, 3, 1, 1);
1615 /* AF9013 set mpeg to full speed */
1616 ret = af9013_write_reg_bits(state, 0xd502, 4, 1, 1);
1620 ret = af9013_write_reg_bits(state, 0xd520, 4, 1, 1);
1625 for (i = 0; i < sizeof(state->config.gpio); i++) {
1626 ret = af9013_set_gpio(state, i, state->config.gpio[i]);
1631 /* create dvb_frontend */
1632 memcpy(&state->frontend.ops, &af9013_ops,
1633 sizeof(struct dvb_frontend_ops));
1634 state->frontend.demodulator_priv = state;
1636 return &state->frontend;
1641 EXPORT_SYMBOL(af9013_attach);
1643 static struct dvb_frontend_ops af9013_ops = {
1645 .name = "Afatech AF9013 DVB-T",
1647 .frequency_min = 174000000,
1648 .frequency_max = 862000000,
1649 .frequency_stepsize = 250000,
1650 .frequency_tolerance = 0,
1652 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1653 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1654 FE_CAN_QPSK | FE_CAN_QAM_16 |
1655 FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1656 FE_CAN_TRANSMISSION_MODE_AUTO |
1657 FE_CAN_GUARD_INTERVAL_AUTO |
1658 FE_CAN_HIERARCHY_AUTO |
1663 .release = af9013_release,
1664 .init = af9013_init,
1665 .sleep = af9013_sleep,
1666 .i2c_gate_ctrl = af9013_i2c_gate_ctrl,
1668 .set_frontend = af9013_set_frontend,
1669 .get_frontend = af9013_get_frontend,
1671 .get_tune_settings = af9013_get_tune_settings,
1673 .read_status = af9013_read_status,
1674 .read_ber = af9013_read_ber,
1675 .read_signal_strength = af9013_read_signal_strength,
1676 .read_snr = af9013_read_snr,
1677 .read_ucblocks = af9013_read_ucblocks,
1680 module_param_named(debug, af9013_debug, int, 0644);
1681 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
1683 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
1684 MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
1685 MODULE_LICENSE("GPL");