sgi-xp: use standard bitops macros and functions
[linux-2.6] / drivers / misc / sgi-xp / xpc_sn2.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
7  */
8
9 /*
10  * Cross Partition Communication (XPC) sn2-based functions.
11  *
12  *     Architecture specific implementation of common functions.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <asm/uncached.h>
19 #include <asm/sn/sn_sal.h>
20 #include "xpc.h"
21
22 /*
23  * Define the number of u64s required to represent all the C-brick nasids
24  * as a bitmap.  The cross-partition kernel modules deal only with
25  * C-brick nasids, thus the need for bitmaps which don't account for
26  * odd-numbered (non C-brick) nasids.
27  */
28 #define XPC_MAX_PHYSNODES_SN2   (MAX_NUMALINK_NODES / 2)
29 #define XP_NASID_MASK_BYTES_SN2 ((XPC_MAX_PHYSNODES_SN2 + 7) / 8)
30 #define XP_NASID_MASK_WORDS_SN2 ((XPC_MAX_PHYSNODES_SN2 + 63) / 64)
31
32 /*
33  * Memory for XPC's amo variables is allocated by the MSPEC driver. These
34  * pages are located in the lowest granule. The lowest granule uses 4k pages
35  * for cached references and an alternate TLB handler to never provide a
36  * cacheable mapping for the entire region. This will prevent speculative
37  * reading of cached copies of our lines from being issued which will cause
38  * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64
39  * amo variables (based on XP_MAX_NPARTITIONS_SN2) to identify the senders of
40  * NOTIFY IRQs, 128 amo variables (based on XP_NASID_MASK_WORDS_SN2) to identify
41  * the senders of ACTIVATE IRQs, 1 amo variable to identify which remote
42  * partitions (i.e., XPCs) consider themselves currently engaged with the
43  * local XPC and 1 amo variable to request partition deactivation.
44  */
45 #define XPC_NOTIFY_IRQ_AMOS_SN2         0
46 #define XPC_ACTIVATE_IRQ_AMOS_SN2       (XPC_NOTIFY_IRQ_AMOS_SN2 + \
47                                          XP_MAX_NPARTITIONS_SN2)
48 #define XPC_ENGAGED_PARTITIONS_AMO_SN2  (XPC_ACTIVATE_IRQ_AMOS_SN2 + \
49                                          XP_NASID_MASK_WORDS_SN2)
50 #define XPC_DEACTIVATE_REQUEST_AMO_SN2  (XPC_ENGAGED_PARTITIONS_AMO_SN2 + 1)
51
52 /*
53  * Buffer used to store a local copy of portions of a remote partition's
54  * reserved page (either its header and part_nasids mask, or its vars).
55  */
56 static char *xpc_remote_copy_buffer_sn2;
57 static void *xpc_remote_copy_buffer_base_sn2;
58
59 static struct xpc_vars_sn2 *xpc_vars_sn2;
60 static struct xpc_vars_part_sn2 *xpc_vars_part_sn2;
61
62 /* SH_IPI_ACCESS shub register value on startup */
63 static u64 xpc_sh1_IPI_access_sn2;
64 static u64 xpc_sh2_IPI_access0_sn2;
65 static u64 xpc_sh2_IPI_access1_sn2;
66 static u64 xpc_sh2_IPI_access2_sn2;
67 static u64 xpc_sh2_IPI_access3_sn2;
68
69 /*
70  * Change protections to allow IPI operations.
71  */
72 static void
73 xpc_allow_IPI_ops_sn2(void)
74 {
75         int node;
76         int nasid;
77
78         /* !!! The following should get moved into SAL. */
79         if (is_shub2()) {
80                 xpc_sh2_IPI_access0_sn2 =
81                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS0));
82                 xpc_sh2_IPI_access1_sn2 =
83                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS1));
84                 xpc_sh2_IPI_access2_sn2 =
85                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS2));
86                 xpc_sh2_IPI_access3_sn2 =
87                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS3));
88
89                 for_each_online_node(node) {
90                         nasid = cnodeid_to_nasid(node);
91                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
92                               -1UL);
93                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
94                               -1UL);
95                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
96                               -1UL);
97                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
98                               -1UL);
99                 }
100         } else {
101                 xpc_sh1_IPI_access_sn2 =
102                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH1_IPI_ACCESS));
103
104                 for_each_online_node(node) {
105                         nasid = cnodeid_to_nasid(node);
106                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
107                               -1UL);
108                 }
109         }
110 }
111
112 /*
113  * Restrict protections to disallow IPI operations.
114  */
115 static void
116 xpc_disallow_IPI_ops_sn2(void)
117 {
118         int node;
119         int nasid;
120
121         /* !!! The following should get moved into SAL. */
122         if (is_shub2()) {
123                 for_each_online_node(node) {
124                         nasid = cnodeid_to_nasid(node);
125                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
126                               xpc_sh2_IPI_access0_sn2);
127                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
128                               xpc_sh2_IPI_access1_sn2);
129                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
130                               xpc_sh2_IPI_access2_sn2);
131                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
132                               xpc_sh2_IPI_access3_sn2);
133                 }
134         } else {
135                 for_each_online_node(node) {
136                         nasid = cnodeid_to_nasid(node);
137                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
138                               xpc_sh1_IPI_access_sn2);
139                 }
140         }
141 }
142
143 /*
144  * The following set of functions are used for the sending and receiving of
145  * IRQs (also known as IPIs). There are two flavors of IRQs, one that is
146  * associated with partition activity (SGI_XPC_ACTIVATE) and the other that
147  * is associated with channel activity (SGI_XPC_NOTIFY).
148  */
149
150 static u64
151 xpc_receive_IRQ_amo_sn2(struct amo *amo)
152 {
153         return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR);
154 }
155
156 static enum xp_retval
157 xpc_send_IRQ_sn2(struct amo *amo, u64 flag, int nasid, int phys_cpuid,
158                  int vector)
159 {
160         int ret = 0;
161         unsigned long irq_flags;
162
163         local_irq_save(irq_flags);
164
165         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag);
166         sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
167
168         /*
169          * We must always use the nofault function regardless of whether we
170          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
171          * didn't, we'd never know that the other partition is down and would
172          * keep sending IRQs and amos to it until the heartbeat times out.
173          */
174         ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
175                                                      xp_nofault_PIOR_target));
176
177         local_irq_restore(irq_flags);
178
179         return ((ret == 0) ? xpSuccess : xpPioReadError);
180 }
181
182 static struct amo *
183 xpc_init_IRQ_amo_sn2(int index)
184 {
185         struct amo *amo = xpc_vars_sn2->amos_page + index;
186
187         (void)xpc_receive_IRQ_amo_sn2(amo);     /* clear amo variable */
188         return amo;
189 }
190
191 /*
192  * Functions associated with SGI_XPC_ACTIVATE IRQ.
193  */
194
195 /*
196  * Notify the heartbeat check thread that an activate IRQ has been received.
197  */
198 static irqreturn_t
199 xpc_handle_activate_IRQ_sn2(int irq, void *dev_id)
200 {
201         atomic_inc(&xpc_activate_IRQ_rcvd);
202         wake_up_interruptible(&xpc_activate_IRQ_wq);
203         return IRQ_HANDLED;
204 }
205
206 /*
207  * Flag the appropriate amo variable and send an IRQ to the specified node.
208  */
209 static void
210 xpc_send_activate_IRQ_sn2(u64 amos_page_pa, int from_nasid, int to_nasid,
211                           int to_phys_cpuid)
212 {
213         struct amo *amos = (struct amo *)__va(amos_page_pa +
214                                               (XPC_ACTIVATE_IRQ_AMOS_SN2 *
215                                               sizeof(struct amo)));
216
217         (void)xpc_send_IRQ_sn2(&amos[BIT_WORD(from_nasid / 2)],
218                                BIT_MASK(from_nasid / 2), to_nasid,
219                                to_phys_cpuid, SGI_XPC_ACTIVATE);
220 }
221
222 static void
223 xpc_send_local_activate_IRQ_sn2(int from_nasid)
224 {
225         struct amo *amos = (struct amo *)__va(xpc_vars_sn2->amos_page_pa +
226                                               (XPC_ACTIVATE_IRQ_AMOS_SN2 *
227                                               sizeof(struct amo)));
228
229         /* fake the sending and receipt of an activate IRQ from remote nasid */
230         FETCHOP_STORE_OP(TO_AMO((u64)&amos[BIT_WORD(from_nasid / 2)].variable),
231                          FETCHOP_OR, BIT_MASK(from_nasid / 2));
232
233         atomic_inc(&xpc_activate_IRQ_rcvd);
234         wake_up_interruptible(&xpc_activate_IRQ_wq);
235 }
236
237 /*
238  * Functions associated with SGI_XPC_NOTIFY IRQ.
239  */
240
241 /*
242  * Check to see if any chctl flags were sent from the specified partition.
243  */
244 static void
245 xpc_check_for_sent_chctl_flags_sn2(struct xpc_partition *part)
246 {
247         union xpc_channel_ctl_flags chctl;
248         unsigned long irq_flags;
249
250         chctl.all_flags = xpc_receive_IRQ_amo_sn2(part->sn.sn2.
251                                                   local_chctl_amo_va);
252         if (chctl.all_flags == 0)
253                 return;
254
255         spin_lock_irqsave(&part->chctl_lock, irq_flags);
256         part->chctl.all_flags |= chctl.all_flags;
257         spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
258
259         dev_dbg(xpc_chan, "received notify IRQ from partid=%d, chctl.all_flags="
260                 "0x%lx\n", XPC_PARTID(part), chctl.all_flags);
261
262         xpc_wakeup_channel_mgr(part);
263 }
264
265 /*
266  * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified
267  * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more
268  * than one partition, we use an amo structure per partition to indicate
269  * whether a partition has sent an IRQ or not.  If it has, then wake up the
270  * associated kthread to handle it.
271  *
272  * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IRQs sent by XPC
273  * running on other partitions.
274  *
275  * Noteworthy Arguments:
276  *
277  *      irq - Interrupt ReQuest number. NOT USED.
278  *
279  *      dev_id - partid of IRQ's potential sender.
280  */
281 static irqreturn_t
282 xpc_handle_notify_IRQ_sn2(int irq, void *dev_id)
283 {
284         short partid = (short)(u64)dev_id;
285         struct xpc_partition *part = &xpc_partitions[partid];
286
287         DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
288
289         if (xpc_part_ref(part)) {
290                 xpc_check_for_sent_chctl_flags_sn2(part);
291
292                 xpc_part_deref(part);
293         }
294         return IRQ_HANDLED;
295 }
296
297 /*
298  * Check to see if xpc_handle_notify_IRQ_sn2() dropped any IRQs on the floor
299  * because the write to their associated amo variable completed after the IRQ
300  * was received.
301  */
302 static void
303 xpc_check_for_dropped_notify_IRQ_sn2(struct xpc_partition *part)
304 {
305         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
306
307         if (xpc_part_ref(part)) {
308                 xpc_check_for_sent_chctl_flags_sn2(part);
309
310                 part_sn2->dropped_notify_IRQ_timer.expires = jiffies +
311                     XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
312                 add_timer(&part_sn2->dropped_notify_IRQ_timer);
313                 xpc_part_deref(part);
314         }
315 }
316
317 /*
318  * Send a notify IRQ to the remote partition that is associated with the
319  * specified channel.
320  */
321 static void
322 xpc_send_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
323                         char *chctl_flag_string, unsigned long *irq_flags)
324 {
325         struct xpc_partition *part = &xpc_partitions[ch->partid];
326         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
327         union xpc_channel_ctl_flags chctl = { 0 };
328         enum xp_retval ret;
329
330         if (likely(part->act_state != XPC_P_DEACTIVATING)) {
331                 chctl.flags[ch->number] = chctl_flag;
332                 ret = xpc_send_IRQ_sn2(part_sn2->remote_chctl_amo_va,
333                                        chctl.all_flags,
334                                        part_sn2->notify_IRQ_nasid,
335                                        part_sn2->notify_IRQ_phys_cpuid,
336                                        SGI_XPC_NOTIFY);
337                 dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
338                         chctl_flag_string, ch->partid, ch->number, ret);
339                 if (unlikely(ret != xpSuccess)) {
340                         if (irq_flags != NULL)
341                                 spin_unlock_irqrestore(&ch->lock, *irq_flags);
342                         XPC_DEACTIVATE_PARTITION(part, ret);
343                         if (irq_flags != NULL)
344                                 spin_lock_irqsave(&ch->lock, *irq_flags);
345                 }
346         }
347 }
348
349 #define XPC_SEND_NOTIFY_IRQ_SN2(_ch, _ipi_f, _irq_f) \
350                 xpc_send_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f, _irq_f)
351
352 /*
353  * Make it look like the remote partition, which is associated with the
354  * specified channel, sent us a notify IRQ. This faked IRQ will be handled
355  * by xpc_check_for_dropped_notify_IRQ_sn2().
356  */
357 static void
358 xpc_send_local_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
359                               char *chctl_flag_string)
360 {
361         struct xpc_partition *part = &xpc_partitions[ch->partid];
362         union xpc_channel_ctl_flags chctl = { 0 };
363
364         chctl.flags[ch->number] = chctl_flag;
365         FETCHOP_STORE_OP(TO_AMO((u64)&part->sn.sn2.local_chctl_amo_va->
366                                 variable), FETCHOP_OR, chctl.all_flags);
367         dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
368                 chctl_flag_string, ch->partid, ch->number);
369 }
370
371 #define XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(_ch, _ipi_f) \
372                 xpc_send_local_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f)
373
374 static void
375 xpc_send_chctl_closerequest_sn2(struct xpc_channel *ch,
376                                 unsigned long *irq_flags)
377 {
378         struct xpc_openclose_args *args = ch->local_openclose_args;
379
380         args->reason = ch->reason;
381         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREQUEST, irq_flags);
382 }
383
384 static void
385 xpc_send_chctl_closereply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
386 {
387         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREPLY, irq_flags);
388 }
389
390 static void
391 xpc_send_chctl_openrequest_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
392 {
393         struct xpc_openclose_args *args = ch->local_openclose_args;
394
395         args->msg_size = ch->msg_size;
396         args->local_nentries = ch->local_nentries;
397         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREQUEST, irq_flags);
398 }
399
400 static void
401 xpc_send_chctl_openreply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
402 {
403         struct xpc_openclose_args *args = ch->local_openclose_args;
404
405         args->remote_nentries = ch->remote_nentries;
406         args->local_nentries = ch->local_nentries;
407         args->local_msgqueue_pa = __pa(ch->local_msgqueue);
408         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREPLY, irq_flags);
409 }
410
411 static void
412 xpc_send_chctl_msgrequest_sn2(struct xpc_channel *ch)
413 {
414         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST, NULL);
415 }
416
417 static void
418 xpc_send_chctl_local_msgrequest_sn2(struct xpc_channel *ch)
419 {
420         XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST);
421 }
422
423 /*
424  * This next set of functions are used to keep track of when a partition is
425  * potentially engaged in accessing memory belonging to another partition.
426  */
427
428 static void
429 xpc_indicate_partition_engaged_sn2(struct xpc_partition *part)
430 {
431         unsigned long irq_flags;
432         struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
433                                              (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
434                                              sizeof(struct amo)));
435
436         local_irq_save(irq_flags);
437
438         /* set bit corresponding to our partid in remote partition's amo */
439         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
440                          BIT(sn_partition_id));
441
442         /*
443          * We must always use the nofault function regardless of whether we
444          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
445          * didn't, we'd never know that the other partition is down and would
446          * keep sending IRQs and amos to it until the heartbeat times out.
447          */
448         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
449                                                                variable),
450                                                      xp_nofault_PIOR_target));
451
452         local_irq_restore(irq_flags);
453 }
454
455 static void
456 xpc_indicate_partition_disengaged_sn2(struct xpc_partition *part)
457 {
458         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
459         unsigned long irq_flags;
460         struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
461                                              (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
462                                              sizeof(struct amo)));
463
464         local_irq_save(irq_flags);
465
466         /* clear bit corresponding to our partid in remote partition's amo */
467         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
468                          ~BIT(sn_partition_id));
469
470         /*
471          * We must always use the nofault function regardless of whether we
472          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
473          * didn't, we'd never know that the other partition is down and would
474          * keep sending IRQs and amos to it until the heartbeat times out.
475          */
476         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
477                                                                variable),
478                                                      xp_nofault_PIOR_target));
479
480         local_irq_restore(irq_flags);
481
482         /*
483          * Send activate IRQ to get other side to see that we've cleared our
484          * bit in their engaged partitions amo.
485          */
486         xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
487                                   cnodeid_to_nasid(0),
488                                   part_sn2->activate_IRQ_nasid,
489                                   part_sn2->activate_IRQ_phys_cpuid);
490 }
491
492 static int
493 xpc_partition_engaged_sn2(short partid)
494 {
495         struct amo *amo = xpc_vars_sn2->amos_page +
496                           XPC_ENGAGED_PARTITIONS_AMO_SN2;
497
498         /* our partition's amo variable ANDed with partid mask */
499         return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
500                 BIT(partid)) != 0;
501 }
502
503 static int
504 xpc_any_partition_engaged_sn2(void)
505 {
506         struct amo *amo = xpc_vars_sn2->amos_page +
507                           XPC_ENGAGED_PARTITIONS_AMO_SN2;
508
509         /* our partition's amo variable */
510         return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) != 0;
511 }
512
513 static void
514 xpc_assume_partition_disengaged_sn2(short partid)
515 {
516         struct amo *amo = xpc_vars_sn2->amos_page +
517                           XPC_ENGAGED_PARTITIONS_AMO_SN2;
518
519         /* clear bit(s) based on partid mask in our partition's amo */
520         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
521                          ~BIT(partid));
522 }
523
524 /* original protection values for each node */
525 static u64 xpc_prot_vec_sn2[MAX_NUMNODES];
526
527 /*
528  * Change protections to allow amo operations on non-Shub 1.1 systems.
529  */
530 static enum xp_retval
531 xpc_allow_amo_ops_sn2(struct amo *amos_page)
532 {
533         u64 nasid_array = 0;
534         int ret;
535
536         /*
537          * On SHUB 1.1, we cannot call sn_change_memprotect() since the BIST
538          * collides with memory operations. On those systems we call
539          * xpc_allow_amo_ops_shub_wars_1_1_sn2() instead.
540          */
541         if (!enable_shub_wars_1_1()) {
542                 ret = sn_change_memprotect(ia64_tpa((u64)amos_page), PAGE_SIZE,
543                                            SN_MEMPROT_ACCESS_CLASS_1,
544                                            &nasid_array);
545                 if (ret != 0)
546                         return xpSalError;
547         }
548         return xpSuccess;
549 }
550
551 /*
552  * Change protections to allow amo operations on Shub 1.1 systems.
553  */
554 static void
555 xpc_allow_amo_ops_shub_wars_1_1_sn2(void)
556 {
557         int node;
558         int nasid;
559
560         if (!enable_shub_wars_1_1())
561                 return;
562
563         for_each_online_node(node) {
564                 nasid = cnodeid_to_nasid(node);
565                 /* save current protection values */
566                 xpc_prot_vec_sn2[node] =
567                     (u64)HUB_L((u64 *)GLOBAL_MMR_ADDR(nasid,
568                                                   SH1_MD_DQLP_MMR_DIR_PRIVEC0));
569                 /* open up everything */
570                 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
571                                              SH1_MD_DQLP_MMR_DIR_PRIVEC0),
572                       -1UL);
573                 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
574                                              SH1_MD_DQRP_MMR_DIR_PRIVEC0),
575                       -1UL);
576         }
577 }
578
579 static enum xp_retval
580 xpc_rsvd_page_init_sn2(struct xpc_rsvd_page *rp)
581 {
582         struct amo *amos_page;
583         int i;
584         int ret;
585
586         xpc_vars_sn2 = XPC_RP_VARS(rp);
587
588         rp->sn.vars_pa = __pa(xpc_vars_sn2);
589
590         /* vars_part array follows immediately after vars */
591         xpc_vars_part_sn2 = (struct xpc_vars_part_sn2 *)((u8 *)XPC_RP_VARS(rp) +
592                                                          XPC_RP_VARS_SIZE);
593
594         /*
595          * Before clearing xpc_vars_sn2, see if a page of amos had been
596          * previously allocated. If not we'll need to allocate one and set
597          * permissions so that cross-partition amos are allowed.
598          *
599          * The allocated amo page needs MCA reporting to remain disabled after
600          * XPC has unloaded.  To make this work, we keep a copy of the pointer
601          * to this page (i.e., amos_page) in the struct xpc_vars_sn2 structure,
602          * which is pointed to by the reserved page, and re-use that saved copy
603          * on subsequent loads of XPC. This amo page is never freed, and its
604          * memory protections are never restricted.
605          */
606         amos_page = xpc_vars_sn2->amos_page;
607         if (amos_page == NULL) {
608                 amos_page = (struct amo *)TO_AMO(uncached_alloc_page(0, 1));
609                 if (amos_page == NULL) {
610                         dev_err(xpc_part, "can't allocate page of amos\n");
611                         return xpNoMemory;
612                 }
613
614                 /*
615                  * Open up amo-R/W to cpu.  This is done on Shub 1.1 systems
616                  * when xpc_allow_amo_ops_shub_wars_1_1_sn2() is called.
617                  */
618                 ret = xpc_allow_amo_ops_sn2(amos_page);
619                 if (ret != xpSuccess) {
620                         dev_err(xpc_part, "can't allow amo operations\n");
621                         uncached_free_page(__IA64_UNCACHED_OFFSET |
622                                            TO_PHYS((u64)amos_page), 1);
623                         return ret;
624                 }
625         }
626
627         /* clear xpc_vars_sn2 */
628         memset(xpc_vars_sn2, 0, sizeof(struct xpc_vars_sn2));
629
630         xpc_vars_sn2->version = XPC_V_VERSION;
631         xpc_vars_sn2->activate_IRQ_nasid = cpuid_to_nasid(0);
632         xpc_vars_sn2->activate_IRQ_phys_cpuid = cpu_physical_id(0);
633         xpc_vars_sn2->vars_part_pa = __pa(xpc_vars_part_sn2);
634         xpc_vars_sn2->amos_page_pa = ia64_tpa((u64)amos_page);
635         xpc_vars_sn2->amos_page = amos_page;    /* save for next load of XPC */
636
637         /* clear xpc_vars_part_sn2 */
638         memset((u64 *)xpc_vars_part_sn2, 0, sizeof(struct xpc_vars_part_sn2) *
639                xp_max_npartitions);
640
641         /* initialize the activate IRQ related amo variables */
642         for (i = 0; i < xpc_nasid_mask_nlongs; i++)
643                 (void)xpc_init_IRQ_amo_sn2(XPC_ACTIVATE_IRQ_AMOS_SN2 + i);
644
645         /* initialize the engaged remote partitions related amo variables */
646         (void)xpc_init_IRQ_amo_sn2(XPC_ENGAGED_PARTITIONS_AMO_SN2);
647         (void)xpc_init_IRQ_amo_sn2(XPC_DEACTIVATE_REQUEST_AMO_SN2);
648
649         return xpSuccess;
650 }
651
652 static void
653 xpc_increment_heartbeat_sn2(void)
654 {
655         xpc_vars_sn2->heartbeat++;
656 }
657
658 static void
659 xpc_offline_heartbeat_sn2(void)
660 {
661         xpc_increment_heartbeat_sn2();
662         xpc_vars_sn2->heartbeat_offline = 1;
663 }
664
665 static void
666 xpc_online_heartbeat_sn2(void)
667 {
668         xpc_increment_heartbeat_sn2();
669         xpc_vars_sn2->heartbeat_offline = 0;
670 }
671
672 static void
673 xpc_heartbeat_init_sn2(void)
674 {
675         DBUG_ON(xpc_vars_sn2 == NULL);
676
677         bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, XP_MAX_NPARTITIONS_SN2);
678         xpc_heartbeating_to_mask = &xpc_vars_sn2->heartbeating_to_mask[0];
679         xpc_online_heartbeat_sn2();
680 }
681
682 static void
683 xpc_heartbeat_exit_sn2(void)
684 {
685         xpc_offline_heartbeat_sn2();
686 }
687
688 /*
689  * At periodic intervals, scan through all active partitions and ensure
690  * their heartbeat is still active.  If not, the partition is deactivated.
691  */
692 static void
693 xpc_check_remote_hb_sn2(void)
694 {
695         struct xpc_vars_sn2 *remote_vars;
696         struct xpc_partition *part;
697         short partid;
698         enum xp_retval ret;
699
700         remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
701
702         for (partid = 0; partid < xp_max_npartitions; partid++) {
703
704                 if (xpc_exiting)
705                         break;
706
707                 if (partid == sn_partition_id)
708                         continue;
709
710                 part = &xpc_partitions[partid];
711
712                 if (part->act_state == XPC_P_INACTIVE ||
713                     part->act_state == XPC_P_DEACTIVATING) {
714                         continue;
715                 }
716
717                 /* pull the remote_hb cache line */
718                 ret = xp_remote_memcpy(remote_vars,
719                                        (void *)part->sn.sn2.remote_vars_pa,
720                                        XPC_RP_VARS_SIZE);
721                 if (ret != xpSuccess) {
722                         XPC_DEACTIVATE_PARTITION(part, ret);
723                         continue;
724                 }
725
726                 dev_dbg(xpc_part, "partid = %d, heartbeat = %ld, last_heartbeat"
727                         " = %ld, heartbeat_offline = %ld, HB_mask[0] = 0x%lx\n",
728                         partid, remote_vars->heartbeat, part->last_heartbeat,
729                         remote_vars->heartbeat_offline,
730                         remote_vars->heartbeating_to_mask[0]);
731
732                 if (((remote_vars->heartbeat == part->last_heartbeat) &&
733                      (remote_vars->heartbeat_offline == 0)) ||
734                     !xpc_hb_allowed(sn_partition_id,
735                                     &remote_vars->heartbeating_to_mask)) {
736
737                         XPC_DEACTIVATE_PARTITION(part, xpNoHeartbeat);
738                         continue;
739                 }
740
741                 part->last_heartbeat = remote_vars->heartbeat;
742         }
743 }
744
745 /*
746  * Get a copy of the remote partition's XPC variables from the reserved page.
747  *
748  * remote_vars points to a buffer that is cacheline aligned for BTE copies and
749  * assumed to be of size XPC_RP_VARS_SIZE.
750  */
751 static enum xp_retval
752 xpc_get_remote_vars_sn2(u64 remote_vars_pa, struct xpc_vars_sn2 *remote_vars)
753 {
754         enum xp_retval ret;
755
756         if (remote_vars_pa == 0)
757                 return xpVarsNotSet;
758
759         /* pull over the cross partition variables */
760         ret = xp_remote_memcpy(remote_vars, (void *)remote_vars_pa,
761                                XPC_RP_VARS_SIZE);
762         if (ret != xpSuccess)
763                 return ret;
764
765         if (XPC_VERSION_MAJOR(remote_vars->version) !=
766             XPC_VERSION_MAJOR(XPC_V_VERSION)) {
767                 return xpBadVersion;
768         }
769
770         return xpSuccess;
771 }
772
773 static void
774 xpc_request_partition_activation_sn2(struct xpc_rsvd_page *remote_rp,
775                                      u64 remote_rp_pa, int nasid)
776 {
777         xpc_send_local_activate_IRQ_sn2(nasid);
778 }
779
780 static void
781 xpc_request_partition_reactivation_sn2(struct xpc_partition *part)
782 {
783         xpc_send_local_activate_IRQ_sn2(part->sn.sn2.activate_IRQ_nasid);
784 }
785
786 static void
787 xpc_request_partition_deactivation_sn2(struct xpc_partition *part)
788 {
789         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
790         unsigned long irq_flags;
791         struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
792                                              (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
793                                              sizeof(struct amo)));
794
795         local_irq_save(irq_flags);
796
797         /* set bit corresponding to our partid in remote partition's amo */
798         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
799                          BIT(sn_partition_id));
800
801         /*
802          * We must always use the nofault function regardless of whether we
803          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
804          * didn't, we'd never know that the other partition is down and would
805          * keep sending IRQs and amos to it until the heartbeat times out.
806          */
807         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
808                                                                variable),
809                                                      xp_nofault_PIOR_target));
810
811         local_irq_restore(irq_flags);
812
813         /*
814          * Send activate IRQ to get other side to see that we've set our
815          * bit in their deactivate request amo.
816          */
817         xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
818                                   cnodeid_to_nasid(0),
819                                   part_sn2->activate_IRQ_nasid,
820                                   part_sn2->activate_IRQ_phys_cpuid);
821 }
822
823 static void
824 xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition *part)
825 {
826         unsigned long irq_flags;
827         struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
828                                              (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
829                                              sizeof(struct amo)));
830
831         local_irq_save(irq_flags);
832
833         /* clear bit corresponding to our partid in remote partition's amo */
834         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
835                          ~BIT(sn_partition_id));
836
837         /*
838          * We must always use the nofault function regardless of whether we
839          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
840          * didn't, we'd never know that the other partition is down and would
841          * keep sending IRQs and amos to it until the heartbeat times out.
842          */
843         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
844                                                                variable),
845                                                      xp_nofault_PIOR_target));
846
847         local_irq_restore(irq_flags);
848 }
849
850 static int
851 xpc_partition_deactivation_requested_sn2(short partid)
852 {
853         struct amo *amo = xpc_vars_sn2->amos_page +
854                           XPC_DEACTIVATE_REQUEST_AMO_SN2;
855
856         /* our partition's amo variable ANDed with partid mask */
857         return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
858                 BIT(partid)) != 0;
859 }
860
861 /*
862  * Update the remote partition's info.
863  */
864 static void
865 xpc_update_partition_info_sn2(struct xpc_partition *part, u8 remote_rp_version,
866                               unsigned long *remote_rp_stamp, u64 remote_rp_pa,
867                               u64 remote_vars_pa,
868                               struct xpc_vars_sn2 *remote_vars)
869 {
870         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
871
872         part->remote_rp_version = remote_rp_version;
873         dev_dbg(xpc_part, "  remote_rp_version = 0x%016x\n",
874                 part->remote_rp_version);
875
876         part->remote_rp_stamp = *remote_rp_stamp;
877         dev_dbg(xpc_part, "  remote_rp_stamp = 0x%016lx\n",
878                 part->remote_rp_stamp);
879
880         part->remote_rp_pa = remote_rp_pa;
881         dev_dbg(xpc_part, "  remote_rp_pa = 0x%016lx\n", part->remote_rp_pa);
882
883         part_sn2->remote_vars_pa = remote_vars_pa;
884         dev_dbg(xpc_part, "  remote_vars_pa = 0x%016lx\n",
885                 part_sn2->remote_vars_pa);
886
887         part->last_heartbeat = remote_vars->heartbeat;
888         dev_dbg(xpc_part, "  last_heartbeat = 0x%016lx\n",
889                 part->last_heartbeat);
890
891         part_sn2->remote_vars_part_pa = remote_vars->vars_part_pa;
892         dev_dbg(xpc_part, "  remote_vars_part_pa = 0x%016lx\n",
893                 part_sn2->remote_vars_part_pa);
894
895         part_sn2->activate_IRQ_nasid = remote_vars->activate_IRQ_nasid;
896         dev_dbg(xpc_part, "  activate_IRQ_nasid = 0x%x\n",
897                 part_sn2->activate_IRQ_nasid);
898
899         part_sn2->activate_IRQ_phys_cpuid =
900             remote_vars->activate_IRQ_phys_cpuid;
901         dev_dbg(xpc_part, "  activate_IRQ_phys_cpuid = 0x%x\n",
902                 part_sn2->activate_IRQ_phys_cpuid);
903
904         part_sn2->remote_amos_page_pa = remote_vars->amos_page_pa;
905         dev_dbg(xpc_part, "  remote_amos_page_pa = 0x%lx\n",
906                 part_sn2->remote_amos_page_pa);
907
908         part_sn2->remote_vars_version = remote_vars->version;
909         dev_dbg(xpc_part, "  remote_vars_version = 0x%x\n",
910                 part_sn2->remote_vars_version);
911 }
912
913 /*
914  * Prior code has determined the nasid which generated a activate IRQ.
915  * Inspect that nasid to determine if its partition needs to be activated
916  * or deactivated.
917  *
918  * A partition is considered "awaiting activation" if our partition
919  * flags indicate it is not active and it has a heartbeat.  A
920  * partition is considered "awaiting deactivation" if our partition
921  * flags indicate it is active but it has no heartbeat or it is not
922  * sending its heartbeat to us.
923  *
924  * To determine the heartbeat, the remote nasid must have a properly
925  * initialized reserved page.
926  */
927 static void
928 xpc_identify_activate_IRQ_req_sn2(int nasid)
929 {
930         struct xpc_rsvd_page *remote_rp;
931         struct xpc_vars_sn2 *remote_vars;
932         u64 remote_rp_pa;
933         u64 remote_vars_pa;
934         int remote_rp_version;
935         int reactivate = 0;
936         unsigned long remote_rp_stamp = 0;
937         short partid;
938         struct xpc_partition *part;
939         struct xpc_partition_sn2 *part_sn2;
940         enum xp_retval ret;
941
942         /* pull over the reserved page structure */
943
944         remote_rp = (struct xpc_rsvd_page *)xpc_remote_copy_buffer_sn2;
945
946         ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa);
947         if (ret != xpSuccess) {
948                 dev_warn(xpc_part, "unable to get reserved page from nasid %d, "
949                          "which sent interrupt, reason=%d\n", nasid, ret);
950                 return;
951         }
952
953         remote_vars_pa = remote_rp->sn.vars_pa;
954         remote_rp_version = remote_rp->version;
955         remote_rp_stamp = remote_rp->stamp;
956
957         partid = remote_rp->SAL_partid;
958         part = &xpc_partitions[partid];
959         part_sn2 = &part->sn.sn2;
960
961         /* pull over the cross partition variables */
962
963         remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
964
965         ret = xpc_get_remote_vars_sn2(remote_vars_pa, remote_vars);
966         if (ret != xpSuccess) {
967                 dev_warn(xpc_part, "unable to get XPC variables from nasid %d, "
968                          "which sent interrupt, reason=%d\n", nasid, ret);
969
970                 XPC_DEACTIVATE_PARTITION(part, ret);
971                 return;
972         }
973
974         part->activate_IRQ_rcvd++;
975
976         dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = "
977                 "%ld:0x%lx\n", (int)nasid, (int)partid, part->activate_IRQ_rcvd,
978                 remote_vars->heartbeat, remote_vars->heartbeating_to_mask[0]);
979
980         if (xpc_partition_disengaged(part) &&
981             part->act_state == XPC_P_INACTIVE) {
982
983                 xpc_update_partition_info_sn2(part, remote_rp_version,
984                                               &remote_rp_stamp, remote_rp_pa,
985                                               remote_vars_pa, remote_vars);
986
987                 if (xpc_partition_deactivation_requested_sn2(partid)) {
988                         /*
989                          * Other side is waiting on us to deactivate even though
990                          * we already have.
991                          */
992                         return;
993                 }
994
995                 xpc_activate_partition(part);
996                 return;
997         }
998
999         DBUG_ON(part->remote_rp_version == 0);
1000         DBUG_ON(part_sn2->remote_vars_version == 0);
1001
1002         if (remote_rp_stamp != part->remote_rp_stamp) {
1003
1004                 /* the other side rebooted */
1005
1006                 DBUG_ON(xpc_partition_engaged_sn2(partid));
1007                 DBUG_ON(xpc_partition_deactivation_requested_sn2(partid));
1008
1009                 xpc_update_partition_info_sn2(part, remote_rp_version,
1010                                               &remote_rp_stamp, remote_rp_pa,
1011                                               remote_vars_pa, remote_vars);
1012                 reactivate = 1;
1013         }
1014
1015         if (part->disengage_timeout > 0 && !xpc_partition_disengaged(part)) {
1016                 /* still waiting on other side to disengage from us */
1017                 return;
1018         }
1019
1020         if (reactivate)
1021                 XPC_DEACTIVATE_PARTITION(part, xpReactivating);
1022         else if (xpc_partition_deactivation_requested_sn2(partid))
1023                 XPC_DEACTIVATE_PARTITION(part, xpOtherGoingDown);
1024 }
1025
1026 /*
1027  * Loop through the activation amo variables and process any bits
1028  * which are set.  Each bit indicates a nasid sending a partition
1029  * activation or deactivation request.
1030  *
1031  * Return #of IRQs detected.
1032  */
1033 int
1034 xpc_identify_activate_IRQ_sender_sn2(void)
1035 {
1036         int l;
1037         int b;
1038         unsigned long nasid_mask_long;
1039         u64 nasid;              /* remote nasid */
1040         int n_IRQs_detected = 0;
1041         struct amo *act_amos;
1042
1043         act_amos = xpc_vars_sn2->amos_page + XPC_ACTIVATE_IRQ_AMOS_SN2;
1044
1045         /* scan through activate amo variables looking for non-zero entries */
1046         for (l = 0; l < xpc_nasid_mask_nlongs; l++) {
1047
1048                 if (xpc_exiting)
1049                         break;
1050
1051                 nasid_mask_long = xpc_receive_IRQ_amo_sn2(&act_amos[l]);
1052
1053                 b = find_first_bit(&nasid_mask_long, BITS_PER_LONG);
1054                 if (b >= BITS_PER_LONG) {
1055                         /* no IRQs from nasids in this amo variable */
1056                         continue;
1057                 }
1058
1059                 dev_dbg(xpc_part, "amo[%d] gave back 0x%lx\n", l,
1060                         nasid_mask_long);
1061
1062                 /*
1063                  * If this nasid has been added to the machine since
1064                  * our partition was reset, this will retain the
1065                  * remote nasid in our reserved pages machine mask.
1066                  * This is used in the event of module reload.
1067                  */
1068                 xpc_mach_nasids[l] |= nasid_mask_long;
1069
1070                 /* locate the nasid(s) which sent interrupts */
1071
1072                 do {
1073                         n_IRQs_detected++;
1074                         nasid = (l * BITS_PER_LONG + b) * 2;
1075                         dev_dbg(xpc_part, "interrupt from nasid %ld\n", nasid);
1076                         xpc_identify_activate_IRQ_req_sn2(nasid);
1077
1078                         b = find_next_bit(&nasid_mask_long, BITS_PER_LONG,
1079                                           b + 1);
1080                 } while (b < BITS_PER_LONG);
1081         }
1082         return n_IRQs_detected;
1083 }
1084
1085 static void
1086 xpc_process_activate_IRQ_rcvd_sn2(int n_IRQs_expected)
1087 {
1088         int n_IRQs_detected;
1089
1090         n_IRQs_detected = xpc_identify_activate_IRQ_sender_sn2();
1091         if (n_IRQs_detected < n_IRQs_expected) {
1092                 /* retry once to help avoid missing amo */
1093                 (void)xpc_identify_activate_IRQ_sender_sn2();
1094         }
1095 }
1096
1097 /*
1098  * Guarantee that the kzalloc'd memory is cacheline aligned.
1099  */
1100 static void *
1101 xpc_kzalloc_cacheline_aligned_sn2(size_t size, gfp_t flags, void **base)
1102 {
1103         /* see if kzalloc will give us cachline aligned memory by default */
1104         *base = kzalloc(size, flags);
1105         if (*base == NULL)
1106                 return NULL;
1107
1108         if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
1109                 return *base;
1110
1111         kfree(*base);
1112
1113         /* nope, we'll have to do it ourselves */
1114         *base = kzalloc(size + L1_CACHE_BYTES, flags);
1115         if (*base == NULL)
1116                 return NULL;
1117
1118         return (void *)L1_CACHE_ALIGN((u64)*base);
1119 }
1120
1121 /*
1122  * Setup the infrastructure necessary to support XPartition Communication
1123  * between the specified remote partition and the local one.
1124  */
1125 static enum xp_retval
1126 xpc_setup_infrastructure_sn2(struct xpc_partition *part)
1127 {
1128         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1129         enum xp_retval retval;
1130         int ret;
1131         int cpuid;
1132         int ch_number;
1133         struct xpc_channel *ch;
1134         struct timer_list *timer;
1135         short partid = XPC_PARTID(part);
1136
1137         /*
1138          * Allocate all of the channel structures as a contiguous chunk of
1139          * memory.
1140          */
1141         DBUG_ON(part->channels != NULL);
1142         part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS,
1143                                  GFP_KERNEL);
1144         if (part->channels == NULL) {
1145                 dev_err(xpc_chan, "can't get memory for channels\n");
1146                 return xpNoMemory;
1147         }
1148
1149         /* allocate all the required GET/PUT values */
1150
1151         part_sn2->local_GPs =
1152             xpc_kzalloc_cacheline_aligned_sn2(XPC_GP_SIZE, GFP_KERNEL,
1153                                               &part_sn2->local_GPs_base);
1154         if (part_sn2->local_GPs == NULL) {
1155                 dev_err(xpc_chan, "can't get memory for local get/put "
1156                         "values\n");
1157                 retval = xpNoMemory;
1158                 goto out_1;
1159         }
1160
1161         part_sn2->remote_GPs =
1162             xpc_kzalloc_cacheline_aligned_sn2(XPC_GP_SIZE, GFP_KERNEL,
1163                                               &part_sn2->remote_GPs_base);
1164         if (part_sn2->remote_GPs == NULL) {
1165                 dev_err(xpc_chan, "can't get memory for remote get/put "
1166                         "values\n");
1167                 retval = xpNoMemory;
1168                 goto out_2;
1169         }
1170
1171         part_sn2->remote_GPs_pa = 0;
1172
1173         /* allocate all the required open and close args */
1174
1175         part->local_openclose_args =
1176             xpc_kzalloc_cacheline_aligned_sn2(XPC_OPENCLOSE_ARGS_SIZE,
1177                                               GFP_KERNEL,
1178                                               &part->local_openclose_args_base);
1179         if (part->local_openclose_args == NULL) {
1180                 dev_err(xpc_chan, "can't get memory for local connect args\n");
1181                 retval = xpNoMemory;
1182                 goto out_3;
1183         }
1184
1185         part->remote_openclose_args =
1186             xpc_kzalloc_cacheline_aligned_sn2(XPC_OPENCLOSE_ARGS_SIZE,
1187                                               GFP_KERNEL,
1188                                              &part->remote_openclose_args_base);
1189         if (part->remote_openclose_args == NULL) {
1190                 dev_err(xpc_chan, "can't get memory for remote connect args\n");
1191                 retval = xpNoMemory;
1192                 goto out_4;
1193         }
1194
1195         part_sn2->remote_openclose_args_pa = 0;
1196
1197         part_sn2->local_chctl_amo_va = xpc_init_IRQ_amo_sn2(partid);
1198         part->chctl.all_flags = 0;
1199         spin_lock_init(&part->chctl_lock);
1200
1201         part_sn2->notify_IRQ_nasid = 0;
1202         part_sn2->notify_IRQ_phys_cpuid = 0;
1203         part_sn2->remote_chctl_amo_va = NULL;
1204
1205         atomic_set(&part->channel_mgr_requests, 1);
1206         init_waitqueue_head(&part->channel_mgr_wq);
1207
1208         sprintf(part_sn2->notify_IRQ_owner, "xpc%02d", partid);
1209         ret = request_irq(SGI_XPC_NOTIFY, xpc_handle_notify_IRQ_sn2,
1210                           IRQF_SHARED, part_sn2->notify_IRQ_owner,
1211                           (void *)(u64)partid);
1212         if (ret != 0) {
1213                 dev_err(xpc_chan, "can't register NOTIFY IRQ handler, "
1214                         "errno=%d\n", -ret);
1215                 retval = xpLackOfResources;
1216                 goto out_5;
1217         }
1218
1219         /* Setup a timer to check for dropped notify IRQs */
1220         timer = &part_sn2->dropped_notify_IRQ_timer;
1221         init_timer(timer);
1222         timer->function =
1223             (void (*)(unsigned long))xpc_check_for_dropped_notify_IRQ_sn2;
1224         timer->data = (unsigned long)part;
1225         timer->expires = jiffies + XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
1226         add_timer(timer);
1227
1228         part->nchannels = XPC_MAX_NCHANNELS;
1229
1230         atomic_set(&part->nchannels_active, 0);
1231         atomic_set(&part->nchannels_engaged, 0);
1232
1233         for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
1234                 ch = &part->channels[ch_number];
1235
1236                 ch->partid = partid;
1237                 ch->number = ch_number;
1238                 ch->flags = XPC_C_DISCONNECTED;
1239
1240                 ch->sn.sn2.local_GP = &part_sn2->local_GPs[ch_number];
1241                 ch->local_openclose_args =
1242                     &part->local_openclose_args[ch_number];
1243
1244                 atomic_set(&ch->kthreads_assigned, 0);
1245                 atomic_set(&ch->kthreads_idle, 0);
1246                 atomic_set(&ch->kthreads_active, 0);
1247
1248                 atomic_set(&ch->references, 0);
1249                 atomic_set(&ch->n_to_notify, 0);
1250
1251                 spin_lock_init(&ch->lock);
1252                 mutex_init(&ch->sn.sn2.msg_to_pull_mutex);
1253                 init_completion(&ch->wdisconnect_wait);
1254
1255                 atomic_set(&ch->n_on_msg_allocate_wq, 0);
1256                 init_waitqueue_head(&ch->msg_allocate_wq);
1257                 init_waitqueue_head(&ch->idle_wq);
1258         }
1259
1260         /*
1261          * With the setting of the partition setup_state to XPC_P_SETUP, we're
1262          * declaring that this partition is ready to go.
1263          */
1264         part->setup_state = XPC_P_SETUP;
1265
1266         /*
1267          * Setup the per partition specific variables required by the
1268          * remote partition to establish channel connections with us.
1269          *
1270          * The setting of the magic # indicates that these per partition
1271          * specific variables are ready to be used.
1272          */
1273         xpc_vars_part_sn2[partid].GPs_pa = __pa(part_sn2->local_GPs);
1274         xpc_vars_part_sn2[partid].openclose_args_pa =
1275             __pa(part->local_openclose_args);
1276         xpc_vars_part_sn2[partid].chctl_amo_pa =
1277             __pa(part_sn2->local_chctl_amo_va);
1278         cpuid = raw_smp_processor_id(); /* any CPU in this partition will do */
1279         xpc_vars_part_sn2[partid].notify_IRQ_nasid = cpuid_to_nasid(cpuid);
1280         xpc_vars_part_sn2[partid].notify_IRQ_phys_cpuid =
1281             cpu_physical_id(cpuid);
1282         xpc_vars_part_sn2[partid].nchannels = part->nchannels;
1283         xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC1;
1284
1285         return xpSuccess;
1286
1287         /* setup of infrastructure failed */
1288 out_5:
1289         kfree(part->remote_openclose_args_base);
1290         part->remote_openclose_args = NULL;
1291 out_4:
1292         kfree(part->local_openclose_args_base);
1293         part->local_openclose_args = NULL;
1294 out_3:
1295         kfree(part_sn2->remote_GPs_base);
1296         part_sn2->remote_GPs = NULL;
1297 out_2:
1298         kfree(part_sn2->local_GPs_base);
1299         part_sn2->local_GPs = NULL;
1300 out_1:
1301         kfree(part->channels);
1302         part->channels = NULL;
1303         return retval;
1304 }
1305
1306 /*
1307  * Teardown the infrastructure necessary to support XPartition Communication
1308  * between the specified remote partition and the local one.
1309  */
1310 static void
1311 xpc_teardown_infrastructure_sn2(struct xpc_partition *part)
1312 {
1313         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1314         short partid = XPC_PARTID(part);
1315
1316         /*
1317          * We start off by making this partition inaccessible to local
1318          * processes by marking it as no longer setup. Then we make it
1319          * inaccessible to remote processes by clearing the XPC per partition
1320          * specific variable's magic # (which indicates that these variables
1321          * are no longer valid) and by ignoring all XPC notify IRQs sent to
1322          * this partition.
1323          */
1324
1325         DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
1326         DBUG_ON(atomic_read(&part->nchannels_active) != 0);
1327         DBUG_ON(part->setup_state != XPC_P_SETUP);
1328         part->setup_state = XPC_P_WTEARDOWN;
1329
1330         xpc_vars_part_sn2[partid].magic = 0;
1331
1332         free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid);
1333
1334         /*
1335          * Before proceeding with the teardown we have to wait until all
1336          * existing references cease.
1337          */
1338         wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
1339
1340         /* now we can begin tearing down the infrastructure */
1341
1342         part->setup_state = XPC_P_TORNDOWN;
1343
1344         /* in case we've still got outstanding timers registered... */
1345         del_timer_sync(&part_sn2->dropped_notify_IRQ_timer);
1346
1347         kfree(part->remote_openclose_args_base);
1348         part->remote_openclose_args = NULL;
1349         kfree(part->local_openclose_args_base);
1350         part->local_openclose_args = NULL;
1351         kfree(part_sn2->remote_GPs_base);
1352         part_sn2->remote_GPs = NULL;
1353         kfree(part_sn2->local_GPs_base);
1354         part_sn2->local_GPs = NULL;
1355         kfree(part->channels);
1356         part->channels = NULL;
1357         part_sn2->local_chctl_amo_va = NULL;
1358 }
1359
1360 /*
1361  * Create a wrapper that hides the underlying mechanism for pulling a cacheline
1362  * (or multiple cachelines) from a remote partition.
1363  *
1364  * src must be a cacheline aligned physical address on the remote partition.
1365  * dst must be a cacheline aligned virtual address on this partition.
1366  * cnt must be cacheline sized
1367  */
1368 /* ??? Replace this function by call to xp_remote_memcpy() or bte_copy()? */
1369 static enum xp_retval
1370 xpc_pull_remote_cachelines_sn2(struct xpc_partition *part, void *dst,
1371                                const void *src, size_t cnt)
1372 {
1373         enum xp_retval ret;
1374
1375         DBUG_ON((u64)src != L1_CACHE_ALIGN((u64)src));
1376         DBUG_ON((u64)dst != L1_CACHE_ALIGN((u64)dst));
1377         DBUG_ON(cnt != L1_CACHE_ALIGN(cnt));
1378
1379         if (part->act_state == XPC_P_DEACTIVATING)
1380                 return part->reason;
1381
1382         ret = xp_remote_memcpy(dst, src, cnt);
1383         if (ret != xpSuccess) {
1384                 dev_dbg(xpc_chan, "xp_remote_memcpy() from partition %d failed,"
1385                         " ret=%d\n", XPC_PARTID(part), ret);
1386         }
1387         return ret;
1388 }
1389
1390 /*
1391  * Pull the remote per partition specific variables from the specified
1392  * partition.
1393  */
1394 static enum xp_retval
1395 xpc_pull_remote_vars_part_sn2(struct xpc_partition *part)
1396 {
1397         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1398         u8 buffer[L1_CACHE_BYTES * 2];
1399         struct xpc_vars_part_sn2 *pulled_entry_cacheline =
1400             (struct xpc_vars_part_sn2 *)L1_CACHE_ALIGN((u64)buffer);
1401         struct xpc_vars_part_sn2 *pulled_entry;
1402         u64 remote_entry_cacheline_pa, remote_entry_pa;
1403         short partid = XPC_PARTID(part);
1404         enum xp_retval ret;
1405
1406         /* pull the cacheline that contains the variables we're interested in */
1407
1408         DBUG_ON(part_sn2->remote_vars_part_pa !=
1409                 L1_CACHE_ALIGN(part_sn2->remote_vars_part_pa));
1410         DBUG_ON(sizeof(struct xpc_vars_part_sn2) != L1_CACHE_BYTES / 2);
1411
1412         remote_entry_pa = part_sn2->remote_vars_part_pa +
1413             sn_partition_id * sizeof(struct xpc_vars_part_sn2);
1414
1415         remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1));
1416
1417         pulled_entry = (struct xpc_vars_part_sn2 *)((u64)pulled_entry_cacheline
1418                                                     + (remote_entry_pa &
1419                                                     (L1_CACHE_BYTES - 1)));
1420
1421         ret = xpc_pull_remote_cachelines_sn2(part, pulled_entry_cacheline,
1422                                              (void *)remote_entry_cacheline_pa,
1423                                              L1_CACHE_BYTES);
1424         if (ret != xpSuccess) {
1425                 dev_dbg(xpc_chan, "failed to pull XPC vars_part from "
1426                         "partition %d, ret=%d\n", partid, ret);
1427                 return ret;
1428         }
1429
1430         /* see if they've been set up yet */
1431
1432         if (pulled_entry->magic != XPC_VP_MAGIC1 &&
1433             pulled_entry->magic != XPC_VP_MAGIC2) {
1434
1435                 if (pulled_entry->magic != 0) {
1436                         dev_dbg(xpc_chan, "partition %d's XPC vars_part for "
1437                                 "partition %d has bad magic value (=0x%lx)\n",
1438                                 partid, sn_partition_id, pulled_entry->magic);
1439                         return xpBadMagic;
1440                 }
1441
1442                 /* they've not been initialized yet */
1443                 return xpRetry;
1444         }
1445
1446         if (xpc_vars_part_sn2[partid].magic == XPC_VP_MAGIC1) {
1447
1448                 /* validate the variables */
1449
1450                 if (pulled_entry->GPs_pa == 0 ||
1451                     pulled_entry->openclose_args_pa == 0 ||
1452                     pulled_entry->chctl_amo_pa == 0) {
1453
1454                         dev_err(xpc_chan, "partition %d's XPC vars_part for "
1455                                 "partition %d are not valid\n", partid,
1456                                 sn_partition_id);
1457                         return xpInvalidAddress;
1458                 }
1459
1460                 /* the variables we imported look to be valid */
1461
1462                 part_sn2->remote_GPs_pa = pulled_entry->GPs_pa;
1463                 part_sn2->remote_openclose_args_pa =
1464                     pulled_entry->openclose_args_pa;
1465                 part_sn2->remote_chctl_amo_va =
1466                     (struct amo *)__va(pulled_entry->chctl_amo_pa);
1467                 part_sn2->notify_IRQ_nasid = pulled_entry->notify_IRQ_nasid;
1468                 part_sn2->notify_IRQ_phys_cpuid =
1469                     pulled_entry->notify_IRQ_phys_cpuid;
1470
1471                 if (part->nchannels > pulled_entry->nchannels)
1472                         part->nchannels = pulled_entry->nchannels;
1473
1474                 /* let the other side know that we've pulled their variables */
1475
1476                 xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC2;
1477         }
1478
1479         if (pulled_entry->magic == XPC_VP_MAGIC1)
1480                 return xpRetry;
1481
1482         return xpSuccess;
1483 }
1484
1485 /*
1486  * Establish first contact with the remote partititon. This involves pulling
1487  * the XPC per partition variables from the remote partition and waiting for
1488  * the remote partition to pull ours.
1489  */
1490 static enum xp_retval
1491 xpc_make_first_contact_sn2(struct xpc_partition *part)
1492 {
1493         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1494         enum xp_retval ret;
1495
1496         /*
1497          * Register the remote partition's amos with SAL so it can handle
1498          * and cleanup errors within that address range should the remote
1499          * partition go down. We don't unregister this range because it is
1500          * difficult to tell when outstanding writes to the remote partition
1501          * are finished and thus when it is safe to unregister. This should
1502          * not result in wasted space in the SAL xp_addr_region table because
1503          * we should get the same page for remote_amos_page_pa after module
1504          * reloads and system reboots.
1505          */
1506         if (sn_register_xp_addr_region(part_sn2->remote_amos_page_pa,
1507                                        PAGE_SIZE, 1) < 0) {
1508                 dev_warn(xpc_part, "xpc_activating(%d) failed to register "
1509                          "xp_addr region\n", XPC_PARTID(part));
1510
1511                 ret = xpPhysAddrRegFailed;
1512                 XPC_DEACTIVATE_PARTITION(part, ret);
1513                 return ret;
1514         }
1515
1516         /*
1517          * Send activate IRQ to get other side to activate if they've not
1518          * already begun to do so.
1519          */
1520         xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
1521                                   cnodeid_to_nasid(0),
1522                                   part_sn2->activate_IRQ_nasid,
1523                                   part_sn2->activate_IRQ_phys_cpuid);
1524
1525         while ((ret = xpc_pull_remote_vars_part_sn2(part)) != xpSuccess) {
1526                 if (ret != xpRetry) {
1527                         XPC_DEACTIVATE_PARTITION(part, ret);
1528                         return ret;
1529                 }
1530
1531                 dev_dbg(xpc_part, "waiting to make first contact with "
1532                         "partition %d\n", XPC_PARTID(part));
1533
1534                 /* wait a 1/4 of a second or so */
1535                 (void)msleep_interruptible(250);
1536
1537                 if (part->act_state == XPC_P_DEACTIVATING)
1538                         return part->reason;
1539         }
1540
1541         return xpSuccess;
1542 }
1543
1544 /*
1545  * Get the chctl flags and pull the openclose args and/or remote GPs as needed.
1546  */
1547 static u64
1548 xpc_get_chctl_all_flags_sn2(struct xpc_partition *part)
1549 {
1550         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1551         unsigned long irq_flags;
1552         union xpc_channel_ctl_flags chctl;
1553         enum xp_retval ret;
1554
1555         /*
1556          * See if there are any chctl flags to be handled.
1557          */
1558
1559         spin_lock_irqsave(&part->chctl_lock, irq_flags);
1560         chctl = part->chctl;
1561         if (chctl.all_flags != 0)
1562                 part->chctl.all_flags = 0;
1563
1564         spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
1565
1566         if (xpc_any_openclose_chctl_flags_set(&chctl)) {
1567                 ret = xpc_pull_remote_cachelines_sn2(part, part->
1568                                                      remote_openclose_args,
1569                                                      (void *)part_sn2->
1570                                                      remote_openclose_args_pa,
1571                                                      XPC_OPENCLOSE_ARGS_SIZE);
1572                 if (ret != xpSuccess) {
1573                         XPC_DEACTIVATE_PARTITION(part, ret);
1574
1575                         dev_dbg(xpc_chan, "failed to pull openclose args from "
1576                                 "partition %d, ret=%d\n", XPC_PARTID(part),
1577                                 ret);
1578
1579                         /* don't bother processing chctl flags anymore */
1580                         chctl.all_flags = 0;
1581                 }
1582         }
1583
1584         if (xpc_any_msg_chctl_flags_set(&chctl)) {
1585                 ret = xpc_pull_remote_cachelines_sn2(part, part_sn2->remote_GPs,
1586                                                 (void *)part_sn2->remote_GPs_pa,
1587                                                      XPC_GP_SIZE);
1588                 if (ret != xpSuccess) {
1589                         XPC_DEACTIVATE_PARTITION(part, ret);
1590
1591                         dev_dbg(xpc_chan, "failed to pull GPs from partition "
1592                                 "%d, ret=%d\n", XPC_PARTID(part), ret);
1593
1594                         /* don't bother processing chctl flags anymore */
1595                         chctl.all_flags = 0;
1596                 }
1597         }
1598
1599         return chctl.all_flags;
1600 }
1601
1602 /*
1603  * Allocate the local message queue and the notify queue.
1604  */
1605 static enum xp_retval
1606 xpc_allocate_local_msgqueue_sn2(struct xpc_channel *ch)
1607 {
1608         unsigned long irq_flags;
1609         int nentries;
1610         size_t nbytes;
1611
1612         for (nentries = ch->local_nentries; nentries > 0; nentries--) {
1613
1614                 nbytes = nentries * ch->msg_size;
1615                 ch->local_msgqueue =
1616                     xpc_kzalloc_cacheline_aligned_sn2(nbytes, GFP_KERNEL,
1617                                                       &ch->local_msgqueue_base);
1618                 if (ch->local_msgqueue == NULL)
1619                         continue;
1620
1621                 nbytes = nentries * sizeof(struct xpc_notify);
1622                 ch->notify_queue = kzalloc(nbytes, GFP_KERNEL);
1623                 if (ch->notify_queue == NULL) {
1624                         kfree(ch->local_msgqueue_base);
1625                         ch->local_msgqueue = NULL;
1626                         continue;
1627                 }
1628
1629                 spin_lock_irqsave(&ch->lock, irq_flags);
1630                 if (nentries < ch->local_nentries) {
1631                         dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, "
1632                                 "partid=%d, channel=%d\n", nentries,
1633                                 ch->local_nentries, ch->partid, ch->number);
1634
1635                         ch->local_nentries = nentries;
1636                 }
1637                 spin_unlock_irqrestore(&ch->lock, irq_flags);
1638                 return xpSuccess;
1639         }
1640
1641         dev_dbg(xpc_chan, "can't get memory for local message queue and notify "
1642                 "queue, partid=%d, channel=%d\n", ch->partid, ch->number);
1643         return xpNoMemory;
1644 }
1645
1646 /*
1647  * Allocate the cached remote message queue.
1648  */
1649 static enum xp_retval
1650 xpc_allocate_remote_msgqueue_sn2(struct xpc_channel *ch)
1651 {
1652         unsigned long irq_flags;
1653         int nentries;
1654         size_t nbytes;
1655
1656         DBUG_ON(ch->remote_nentries <= 0);
1657
1658         for (nentries = ch->remote_nentries; nentries > 0; nentries--) {
1659
1660                 nbytes = nentries * ch->msg_size;
1661                 ch->remote_msgqueue =
1662                     xpc_kzalloc_cacheline_aligned_sn2(nbytes, GFP_KERNEL,
1663                                                      &ch->remote_msgqueue_base);
1664                 if (ch->remote_msgqueue == NULL)
1665                         continue;
1666
1667                 spin_lock_irqsave(&ch->lock, irq_flags);
1668                 if (nentries < ch->remote_nentries) {
1669                         dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, "
1670                                 "partid=%d, channel=%d\n", nentries,
1671                                 ch->remote_nentries, ch->partid, ch->number);
1672
1673                         ch->remote_nentries = nentries;
1674                 }
1675                 spin_unlock_irqrestore(&ch->lock, irq_flags);
1676                 return xpSuccess;
1677         }
1678
1679         dev_dbg(xpc_chan, "can't get memory for cached remote message queue, "
1680                 "partid=%d, channel=%d\n", ch->partid, ch->number);
1681         return xpNoMemory;
1682 }
1683
1684 /*
1685  * Allocate message queues and other stuff associated with a channel.
1686  *
1687  * Note: Assumes all of the channel sizes are filled in.
1688  */
1689 static enum xp_retval
1690 xpc_allocate_msgqueues_sn2(struct xpc_channel *ch)
1691 {
1692         enum xp_retval ret;
1693
1694         DBUG_ON(ch->flags & XPC_C_SETUP);
1695
1696         ret = xpc_allocate_local_msgqueue_sn2(ch);
1697         if (ret == xpSuccess) {
1698
1699                 ret = xpc_allocate_remote_msgqueue_sn2(ch);
1700                 if (ret != xpSuccess) {
1701                         kfree(ch->local_msgqueue_base);
1702                         ch->local_msgqueue = NULL;
1703                         kfree(ch->notify_queue);
1704                         ch->notify_queue = NULL;
1705                 }
1706         }
1707         return ret;
1708 }
1709
1710 /*
1711  * Free up message queues and other stuff that were allocated for the specified
1712  * channel.
1713  *
1714  * Note: ch->reason and ch->reason_line are left set for debugging purposes,
1715  * they're cleared when XPC_C_DISCONNECTED is cleared.
1716  */
1717 static void
1718 xpc_free_msgqueues_sn2(struct xpc_channel *ch)
1719 {
1720         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1721
1722         DBUG_ON(!spin_is_locked(&ch->lock));
1723         DBUG_ON(atomic_read(&ch->n_to_notify) != 0);
1724
1725         ch->remote_msgqueue_pa = 0;
1726         ch->func = NULL;
1727         ch->key = NULL;
1728         ch->msg_size = 0;
1729         ch->local_nentries = 0;
1730         ch->remote_nentries = 0;
1731         ch->kthreads_assigned_limit = 0;
1732         ch->kthreads_idle_limit = 0;
1733
1734         ch_sn2->local_GP->get = 0;
1735         ch_sn2->local_GP->put = 0;
1736         ch_sn2->remote_GP.get = 0;
1737         ch_sn2->remote_GP.put = 0;
1738         ch_sn2->w_local_GP.get = 0;
1739         ch_sn2->w_local_GP.put = 0;
1740         ch_sn2->w_remote_GP.get = 0;
1741         ch_sn2->w_remote_GP.put = 0;
1742         ch_sn2->next_msg_to_pull = 0;
1743
1744         if (ch->flags & XPC_C_SETUP) {
1745                 dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n",
1746                         ch->flags, ch->partid, ch->number);
1747
1748                 kfree(ch->local_msgqueue_base);
1749                 ch->local_msgqueue = NULL;
1750                 kfree(ch->remote_msgqueue_base);
1751                 ch->remote_msgqueue = NULL;
1752                 kfree(ch->notify_queue);
1753                 ch->notify_queue = NULL;
1754         }
1755 }
1756
1757 /*
1758  * Notify those who wanted to be notified upon delivery of their message.
1759  */
1760 static void
1761 xpc_notify_senders_sn2(struct xpc_channel *ch, enum xp_retval reason, s64 put)
1762 {
1763         struct xpc_notify *notify;
1764         u8 notify_type;
1765         s64 get = ch->sn.sn2.w_remote_GP.get - 1;
1766
1767         while (++get < put && atomic_read(&ch->n_to_notify) > 0) {
1768
1769                 notify = &ch->notify_queue[get % ch->local_nentries];
1770
1771                 /*
1772                  * See if the notify entry indicates it was associated with
1773                  * a message who's sender wants to be notified. It is possible
1774                  * that it is, but someone else is doing or has done the
1775                  * notification.
1776                  */
1777                 notify_type = notify->type;
1778                 if (notify_type == 0 ||
1779                     cmpxchg(&notify->type, notify_type, 0) != notify_type) {
1780                         continue;
1781                 }
1782
1783                 DBUG_ON(notify_type != XPC_N_CALL);
1784
1785                 atomic_dec(&ch->n_to_notify);
1786
1787                 if (notify->func != NULL) {
1788                         dev_dbg(xpc_chan, "notify->func() called, notify=0x%p, "
1789                                 "msg_number=%ld, partid=%d, channel=%d\n",
1790                                 (void *)notify, get, ch->partid, ch->number);
1791
1792                         notify->func(reason, ch->partid, ch->number,
1793                                      notify->key);
1794
1795                         dev_dbg(xpc_chan, "notify->func() returned, "
1796                                 "notify=0x%p, msg_number=%ld, partid=%d, "
1797                                 "channel=%d\n", (void *)notify, get,
1798                                 ch->partid, ch->number);
1799                 }
1800         }
1801 }
1802
1803 static void
1804 xpc_notify_senders_of_disconnect_sn2(struct xpc_channel *ch)
1805 {
1806         xpc_notify_senders_sn2(ch, ch->reason, ch->sn.sn2.w_local_GP.put);
1807 }
1808
1809 /*
1810  * Clear some of the msg flags in the local message queue.
1811  */
1812 static inline void
1813 xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel *ch)
1814 {
1815         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1816         struct xpc_msg *msg;
1817         s64 get;
1818
1819         get = ch_sn2->w_remote_GP.get;
1820         do {
1821                 msg = (struct xpc_msg *)((u64)ch->local_msgqueue +
1822                                          (get % ch->local_nentries) *
1823                                          ch->msg_size);
1824                 msg->flags = 0;
1825         } while (++get < ch_sn2->remote_GP.get);
1826 }
1827
1828 /*
1829  * Clear some of the msg flags in the remote message queue.
1830  */
1831 static inline void
1832 xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel *ch)
1833 {
1834         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1835         struct xpc_msg *msg;
1836         s64 put;
1837
1838         put = ch_sn2->w_remote_GP.put;
1839         do {
1840                 msg = (struct xpc_msg *)((u64)ch->remote_msgqueue +
1841                                          (put % ch->remote_nentries) *
1842                                          ch->msg_size);
1843                 msg->flags = 0;
1844         } while (++put < ch_sn2->remote_GP.put);
1845 }
1846
1847 static void
1848 xpc_process_msg_chctl_flags_sn2(struct xpc_partition *part, int ch_number)
1849 {
1850         struct xpc_channel *ch = &part->channels[ch_number];
1851         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1852         int nmsgs_sent;
1853
1854         ch_sn2->remote_GP = part->sn.sn2.remote_GPs[ch_number];
1855
1856         /* See what, if anything, has changed for each connected channel */
1857
1858         xpc_msgqueue_ref(ch);
1859
1860         if (ch_sn2->w_remote_GP.get == ch_sn2->remote_GP.get &&
1861             ch_sn2->w_remote_GP.put == ch_sn2->remote_GP.put) {
1862                 /* nothing changed since GPs were last pulled */
1863                 xpc_msgqueue_deref(ch);
1864                 return;
1865         }
1866
1867         if (!(ch->flags & XPC_C_CONNECTED)) {
1868                 xpc_msgqueue_deref(ch);
1869                 return;
1870         }
1871
1872         /*
1873          * First check to see if messages recently sent by us have been
1874          * received by the other side. (The remote GET value will have
1875          * changed since we last looked at it.)
1876          */
1877
1878         if (ch_sn2->w_remote_GP.get != ch_sn2->remote_GP.get) {
1879
1880                 /*
1881                  * We need to notify any senders that want to be notified
1882                  * that their sent messages have been received by their
1883                  * intended recipients. We need to do this before updating
1884                  * w_remote_GP.get so that we don't allocate the same message
1885                  * queue entries prematurely (see xpc_allocate_msg()).
1886                  */
1887                 if (atomic_read(&ch->n_to_notify) > 0) {
1888                         /*
1889                          * Notify senders that messages sent have been
1890                          * received and delivered by the other side.
1891                          */
1892                         xpc_notify_senders_sn2(ch, xpMsgDelivered,
1893                                                ch_sn2->remote_GP.get);
1894                 }
1895
1896                 /*
1897                  * Clear msg->flags in previously sent messages, so that
1898                  * they're ready for xpc_allocate_msg().
1899                  */
1900                 xpc_clear_local_msgqueue_flags_sn2(ch);
1901
1902                 ch_sn2->w_remote_GP.get = ch_sn2->remote_GP.get;
1903
1904                 dev_dbg(xpc_chan, "w_remote_GP.get changed to %ld, partid=%d, "
1905                         "channel=%d\n", ch_sn2->w_remote_GP.get, ch->partid,
1906                         ch->number);
1907
1908                 /*
1909                  * If anyone was waiting for message queue entries to become
1910                  * available, wake them up.
1911                  */
1912                 if (atomic_read(&ch->n_on_msg_allocate_wq) > 0)
1913                         wake_up(&ch->msg_allocate_wq);
1914         }
1915
1916         /*
1917          * Now check for newly sent messages by the other side. (The remote
1918          * PUT value will have changed since we last looked at it.)
1919          */
1920
1921         if (ch_sn2->w_remote_GP.put != ch_sn2->remote_GP.put) {
1922                 /*
1923                  * Clear msg->flags in previously received messages, so that
1924                  * they're ready for xpc_get_deliverable_msg().
1925                  */
1926                 xpc_clear_remote_msgqueue_flags_sn2(ch);
1927
1928                 ch_sn2->w_remote_GP.put = ch_sn2->remote_GP.put;
1929
1930                 dev_dbg(xpc_chan, "w_remote_GP.put changed to %ld, partid=%d, "
1931                         "channel=%d\n", ch_sn2->w_remote_GP.put, ch->partid,
1932                         ch->number);
1933
1934                 nmsgs_sent = ch_sn2->w_remote_GP.put - ch_sn2->w_local_GP.get;
1935                 if (nmsgs_sent > 0) {
1936                         dev_dbg(xpc_chan, "msgs waiting to be copied and "
1937                                 "delivered=%d, partid=%d, channel=%d\n",
1938                                 nmsgs_sent, ch->partid, ch->number);
1939
1940                         if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE)
1941                                 xpc_activate_kthreads(ch, nmsgs_sent);
1942                 }
1943         }
1944
1945         xpc_msgqueue_deref(ch);
1946 }
1947
1948 static struct xpc_msg *
1949 xpc_pull_remote_msg_sn2(struct xpc_channel *ch, s64 get)
1950 {
1951         struct xpc_partition *part = &xpc_partitions[ch->partid];
1952         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1953         struct xpc_msg *remote_msg, *msg;
1954         u32 msg_index, nmsgs;
1955         u64 msg_offset;
1956         enum xp_retval ret;
1957
1958         if (mutex_lock_interruptible(&ch_sn2->msg_to_pull_mutex) != 0) {
1959                 /* we were interrupted by a signal */
1960                 return NULL;
1961         }
1962
1963         while (get >= ch_sn2->next_msg_to_pull) {
1964
1965                 /* pull as many messages as are ready and able to be pulled */
1966
1967                 msg_index = ch_sn2->next_msg_to_pull % ch->remote_nentries;
1968
1969                 DBUG_ON(ch_sn2->next_msg_to_pull >= ch_sn2->w_remote_GP.put);
1970                 nmsgs = ch_sn2->w_remote_GP.put - ch_sn2->next_msg_to_pull;
1971                 if (msg_index + nmsgs > ch->remote_nentries) {
1972                         /* ignore the ones that wrap the msg queue for now */
1973                         nmsgs = ch->remote_nentries - msg_index;
1974                 }
1975
1976                 msg_offset = msg_index * ch->msg_size;
1977                 msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset);
1978                 remote_msg = (struct xpc_msg *)(ch->remote_msgqueue_pa +
1979                                                 msg_offset);
1980
1981                 ret = xpc_pull_remote_cachelines_sn2(part, msg, remote_msg,
1982                                                      nmsgs * ch->msg_size);
1983                 if (ret != xpSuccess) {
1984
1985                         dev_dbg(xpc_chan, "failed to pull %d msgs starting with"
1986                                 " msg %ld from partition %d, channel=%d, "
1987                                 "ret=%d\n", nmsgs, ch_sn2->next_msg_to_pull,
1988                                 ch->partid, ch->number, ret);
1989
1990                         XPC_DEACTIVATE_PARTITION(part, ret);
1991
1992                         mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1993                         return NULL;
1994                 }
1995
1996                 ch_sn2->next_msg_to_pull += nmsgs;
1997         }
1998
1999         mutex_unlock(&ch_sn2->msg_to_pull_mutex);
2000
2001         /* return the message we were looking for */
2002         msg_offset = (get % ch->remote_nentries) * ch->msg_size;
2003         msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset);
2004
2005         return msg;
2006 }
2007
2008 static int
2009 xpc_n_of_deliverable_msgs_sn2(struct xpc_channel *ch)
2010 {
2011         return ch->sn.sn2.w_remote_GP.put - ch->sn.sn2.w_local_GP.get;
2012 }
2013
2014 /*
2015  * Get a message to be delivered.
2016  */
2017 static struct xpc_msg *
2018 xpc_get_deliverable_msg_sn2(struct xpc_channel *ch)
2019 {
2020         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2021         struct xpc_msg *msg = NULL;
2022         s64 get;
2023
2024         do {
2025                 if (ch->flags & XPC_C_DISCONNECTING)
2026                         break;
2027
2028                 get = ch_sn2->w_local_GP.get;
2029                 rmb();  /* guarantee that .get loads before .put */
2030                 if (get == ch_sn2->w_remote_GP.put)
2031                         break;
2032
2033                 /* There are messages waiting to be pulled and delivered.
2034                  * We need to try to secure one for ourselves. We'll do this
2035                  * by trying to increment w_local_GP.get and hope that no one
2036                  * else beats us to it. If they do, we'll we'll simply have
2037                  * to try again for the next one.
2038                  */
2039
2040                 if (cmpxchg(&ch_sn2->w_local_GP.get, get, get + 1) == get) {
2041                         /* we got the entry referenced by get */
2042
2043                         dev_dbg(xpc_chan, "w_local_GP.get changed to %ld, "
2044                                 "partid=%d, channel=%d\n", get + 1,
2045                                 ch->partid, ch->number);
2046
2047                         /* pull the message from the remote partition */
2048
2049                         msg = xpc_pull_remote_msg_sn2(ch, get);
2050
2051                         DBUG_ON(msg != NULL && msg->number != get);
2052                         DBUG_ON(msg != NULL && (msg->flags & XPC_M_DONE));
2053                         DBUG_ON(msg != NULL && !(msg->flags & XPC_M_READY));
2054
2055                         break;
2056                 }
2057
2058         } while (1);
2059
2060         return msg;
2061 }
2062
2063 /*
2064  * Now we actually send the messages that are ready to be sent by advancing
2065  * the local message queue's Put value and then send a chctl msgrequest to the
2066  * recipient partition.
2067  */
2068 static void
2069 xpc_send_msgs_sn2(struct xpc_channel *ch, s64 initial_put)
2070 {
2071         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2072         struct xpc_msg *msg;
2073         s64 put = initial_put + 1;
2074         int send_msgrequest = 0;
2075
2076         while (1) {
2077
2078                 while (1) {
2079                         if (put == ch_sn2->w_local_GP.put)
2080                                 break;
2081
2082                         msg = (struct xpc_msg *)((u64)ch->local_msgqueue +
2083                                                  (put % ch->local_nentries) *
2084                                                  ch->msg_size);
2085
2086                         if (!(msg->flags & XPC_M_READY))
2087                                 break;
2088
2089                         put++;
2090                 }
2091
2092                 if (put == initial_put) {
2093                         /* nothing's changed */
2094                         break;
2095                 }
2096
2097                 if (cmpxchg_rel(&ch_sn2->local_GP->put, initial_put, put) !=
2098                     initial_put) {
2099                         /* someone else beat us to it */
2100                         DBUG_ON(ch_sn2->local_GP->put < initial_put);
2101                         break;
2102                 }
2103
2104                 /* we just set the new value of local_GP->put */
2105
2106                 dev_dbg(xpc_chan, "local_GP->put changed to %ld, partid=%d, "
2107                         "channel=%d\n", put, ch->partid, ch->number);
2108
2109                 send_msgrequest = 1;
2110
2111                 /*
2112                  * We need to ensure that the message referenced by
2113                  * local_GP->put is not XPC_M_READY or that local_GP->put
2114                  * equals w_local_GP.put, so we'll go have a look.
2115                  */
2116                 initial_put = put;
2117         }
2118
2119         if (send_msgrequest)
2120                 xpc_send_chctl_msgrequest_sn2(ch);
2121 }
2122
2123 /*
2124  * Allocate an entry for a message from the message queue associated with the
2125  * specified channel.
2126  */
2127 static enum xp_retval
2128 xpc_allocate_msg_sn2(struct xpc_channel *ch, u32 flags,
2129                      struct xpc_msg **address_of_msg)
2130 {
2131         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2132         struct xpc_msg *msg;
2133         enum xp_retval ret;
2134         s64 put;
2135
2136         /*
2137          * Get the next available message entry from the local message queue.
2138          * If none are available, we'll make sure that we grab the latest
2139          * GP values.
2140          */
2141         ret = xpTimeout;
2142
2143         while (1) {
2144
2145                 put = ch_sn2->w_local_GP.put;
2146                 rmb();  /* guarantee that .put loads before .get */
2147                 if (put - ch_sn2->w_remote_GP.get < ch->local_nentries) {
2148
2149                         /* There are available message entries. We need to try
2150                          * to secure one for ourselves. We'll do this by trying
2151                          * to increment w_local_GP.put as long as someone else
2152                          * doesn't beat us to it. If they do, we'll have to
2153                          * try again.
2154                          */
2155                         if (cmpxchg(&ch_sn2->w_local_GP.put, put, put + 1) ==
2156                             put) {
2157                                 /* we got the entry referenced by put */
2158                                 break;
2159                         }
2160                         continue;       /* try again */
2161                 }
2162
2163                 /*
2164                  * There aren't any available msg entries at this time.
2165                  *
2166                  * In waiting for a message entry to become available,
2167                  * we set a timeout in case the other side is not sending
2168                  * completion interrupts. This lets us fake a notify IRQ
2169                  * that will cause the notify IRQ handler to fetch the latest
2170                  * GP values as if an interrupt was sent by the other side.
2171                  */
2172                 if (ret == xpTimeout)
2173                         xpc_send_chctl_local_msgrequest_sn2(ch);
2174
2175                 if (flags & XPC_NOWAIT)
2176                         return xpNoWait;
2177
2178                 ret = xpc_allocate_msg_wait(ch);
2179                 if (ret != xpInterrupted && ret != xpTimeout)
2180                         return ret;
2181         }
2182
2183         /* get the message's address and initialize it */
2184         msg = (struct xpc_msg *)((u64)ch->local_msgqueue +
2185                                  (put % ch->local_nentries) * ch->msg_size);
2186
2187         DBUG_ON(msg->flags != 0);
2188         msg->number = put;
2189
2190         dev_dbg(xpc_chan, "w_local_GP.put changed to %ld; msg=0x%p, "
2191                 "msg_number=%ld, partid=%d, channel=%d\n", put + 1,
2192                 (void *)msg, msg->number, ch->partid, ch->number);
2193
2194         *address_of_msg = msg;
2195         return xpSuccess;
2196 }
2197
2198 /*
2199  * Common code that does the actual sending of the message by advancing the
2200  * local message queue's Put value and sends a chctl msgrequest to the
2201  * partition the message is being sent to.
2202  */
2203 static enum xp_retval
2204 xpc_send_msg_sn2(struct xpc_channel *ch, u32 flags, void *payload,
2205                  u16 payload_size, u8 notify_type, xpc_notify_func func,
2206                  void *key)
2207 {
2208         enum xp_retval ret = xpSuccess;
2209         struct xpc_msg *msg = msg;
2210         struct xpc_notify *notify = notify;
2211         s64 msg_number;
2212         s64 put;
2213
2214         DBUG_ON(notify_type == XPC_N_CALL && func == NULL);
2215
2216         if (XPC_MSG_SIZE(payload_size) > ch->msg_size)
2217                 return xpPayloadTooBig;
2218
2219         xpc_msgqueue_ref(ch);
2220
2221         if (ch->flags & XPC_C_DISCONNECTING) {
2222                 ret = ch->reason;
2223                 goto out_1;
2224         }
2225         if (!(ch->flags & XPC_C_CONNECTED)) {
2226                 ret = xpNotConnected;
2227                 goto out_1;
2228         }
2229
2230         ret = xpc_allocate_msg_sn2(ch, flags, &msg);
2231         if (ret != xpSuccess)
2232                 goto out_1;
2233
2234         msg_number = msg->number;
2235
2236         if (notify_type != 0) {
2237                 /*
2238                  * Tell the remote side to send an ACK interrupt when the
2239                  * message has been delivered.
2240                  */
2241                 msg->flags |= XPC_M_INTERRUPT;
2242
2243                 atomic_inc(&ch->n_to_notify);
2244
2245                 notify = &ch->notify_queue[msg_number % ch->local_nentries];
2246                 notify->func = func;
2247                 notify->key = key;
2248                 notify->type = notify_type;
2249
2250                 /* ??? Is a mb() needed here? */
2251
2252                 if (ch->flags & XPC_C_DISCONNECTING) {
2253                         /*
2254                          * An error occurred between our last error check and
2255                          * this one. We will try to clear the type field from
2256                          * the notify entry. If we succeed then
2257                          * xpc_disconnect_channel() didn't already process
2258                          * the notify entry.
2259                          */
2260                         if (cmpxchg(&notify->type, notify_type, 0) ==
2261                             notify_type) {
2262                                 atomic_dec(&ch->n_to_notify);
2263                                 ret = ch->reason;
2264                         }
2265                         goto out_1;
2266                 }
2267         }
2268
2269         memcpy(&msg->payload, payload, payload_size);
2270
2271         msg->flags |= XPC_M_READY;
2272
2273         /*
2274          * The preceding store of msg->flags must occur before the following
2275          * load of local_GP->put.
2276          */
2277         mb();
2278
2279         /* see if the message is next in line to be sent, if so send it */
2280
2281         put = ch->sn.sn2.local_GP->put;
2282         if (put == msg_number)
2283                 xpc_send_msgs_sn2(ch, put);
2284
2285 out_1:
2286         xpc_msgqueue_deref(ch);
2287         return ret;
2288 }
2289
2290 /*
2291  * Now we actually acknowledge the messages that have been delivered and ack'd
2292  * by advancing the cached remote message queue's Get value and if requested
2293  * send a chctl msgrequest to the message sender's partition.
2294  */
2295 static void
2296 xpc_acknowledge_msgs_sn2(struct xpc_channel *ch, s64 initial_get, u8 msg_flags)
2297 {
2298         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2299         struct xpc_msg *msg;
2300         s64 get = initial_get + 1;
2301         int send_msgrequest = 0;
2302
2303         while (1) {
2304
2305                 while (1) {
2306                         if (get == ch_sn2->w_local_GP.get)
2307                                 break;
2308
2309                         msg = (struct xpc_msg *)((u64)ch->remote_msgqueue +
2310                                                  (get % ch->remote_nentries) *
2311                                                  ch->msg_size);
2312
2313                         if (!(msg->flags & XPC_M_DONE))
2314                                 break;
2315
2316                         msg_flags |= msg->flags;
2317                         get++;
2318                 }
2319
2320                 if (get == initial_get) {
2321                         /* nothing's changed */
2322                         break;
2323                 }
2324
2325                 if (cmpxchg_rel(&ch_sn2->local_GP->get, initial_get, get) !=
2326                     initial_get) {
2327                         /* someone else beat us to it */
2328                         DBUG_ON(ch_sn2->local_GP->get <= initial_get);
2329                         break;
2330                 }
2331
2332                 /* we just set the new value of local_GP->get */
2333
2334                 dev_dbg(xpc_chan, "local_GP->get changed to %ld, partid=%d, "
2335                         "channel=%d\n", get, ch->partid, ch->number);
2336
2337                 send_msgrequest = (msg_flags & XPC_M_INTERRUPT);
2338
2339                 /*
2340                  * We need to ensure that the message referenced by
2341                  * local_GP->get is not XPC_M_DONE or that local_GP->get
2342                  * equals w_local_GP.get, so we'll go have a look.
2343                  */
2344                 initial_get = get;
2345         }
2346
2347         if (send_msgrequest)
2348                 xpc_send_chctl_msgrequest_sn2(ch);
2349 }
2350
2351 static void
2352 xpc_received_msg_sn2(struct xpc_channel *ch, struct xpc_msg *msg)
2353 {
2354         s64 get;
2355         s64 msg_number = msg->number;
2356
2357         dev_dbg(xpc_chan, "msg=0x%p, msg_number=%ld, partid=%d, channel=%d\n",
2358                 (void *)msg, msg_number, ch->partid, ch->number);
2359
2360         DBUG_ON((((u64)msg - (u64)ch->remote_msgqueue) / ch->msg_size) !=
2361                 msg_number % ch->remote_nentries);
2362         DBUG_ON(msg->flags & XPC_M_DONE);
2363
2364         msg->flags |= XPC_M_DONE;
2365
2366         /*
2367          * The preceding store of msg->flags must occur before the following
2368          * load of local_GP->get.
2369          */
2370         mb();
2371
2372         /*
2373          * See if this message is next in line to be acknowledged as having
2374          * been delivered.
2375          */
2376         get = ch->sn.sn2.local_GP->get;
2377         if (get == msg_number)
2378                 xpc_acknowledge_msgs_sn2(ch, get, msg->flags);
2379 }
2380
2381 int
2382 xpc_init_sn2(void)
2383 {
2384         int ret;
2385         size_t buf_size;
2386
2387         xpc_rsvd_page_init = xpc_rsvd_page_init_sn2;
2388         xpc_increment_heartbeat = xpc_increment_heartbeat_sn2;
2389         xpc_offline_heartbeat = xpc_offline_heartbeat_sn2;
2390         xpc_online_heartbeat = xpc_online_heartbeat_sn2;
2391         xpc_heartbeat_init = xpc_heartbeat_init_sn2;
2392         xpc_heartbeat_exit = xpc_heartbeat_exit_sn2;
2393         xpc_check_remote_hb = xpc_check_remote_hb_sn2;
2394
2395         xpc_request_partition_activation = xpc_request_partition_activation_sn2;
2396         xpc_request_partition_reactivation =
2397             xpc_request_partition_reactivation_sn2;
2398         xpc_request_partition_deactivation =
2399             xpc_request_partition_deactivation_sn2;
2400         xpc_cancel_partition_deactivation_request =
2401             xpc_cancel_partition_deactivation_request_sn2;
2402
2403         xpc_process_activate_IRQ_rcvd = xpc_process_activate_IRQ_rcvd_sn2;
2404         xpc_setup_infrastructure = xpc_setup_infrastructure_sn2;
2405         xpc_teardown_infrastructure = xpc_teardown_infrastructure_sn2;
2406         xpc_make_first_contact = xpc_make_first_contact_sn2;
2407         xpc_get_chctl_all_flags = xpc_get_chctl_all_flags_sn2;
2408         xpc_allocate_msgqueues = xpc_allocate_msgqueues_sn2;
2409         xpc_free_msgqueues = xpc_free_msgqueues_sn2;
2410         xpc_notify_senders_of_disconnect = xpc_notify_senders_of_disconnect_sn2;
2411         xpc_process_msg_chctl_flags = xpc_process_msg_chctl_flags_sn2;
2412         xpc_n_of_deliverable_msgs = xpc_n_of_deliverable_msgs_sn2;
2413         xpc_get_deliverable_msg = xpc_get_deliverable_msg_sn2;
2414
2415         xpc_indicate_partition_engaged = xpc_indicate_partition_engaged_sn2;
2416         xpc_partition_engaged = xpc_partition_engaged_sn2;
2417         xpc_any_partition_engaged = xpc_any_partition_engaged_sn2;
2418         xpc_indicate_partition_disengaged =
2419             xpc_indicate_partition_disengaged_sn2;
2420         xpc_assume_partition_disengaged = xpc_assume_partition_disengaged_sn2;
2421
2422         xpc_send_chctl_closerequest = xpc_send_chctl_closerequest_sn2;
2423         xpc_send_chctl_closereply = xpc_send_chctl_closereply_sn2;
2424         xpc_send_chctl_openrequest = xpc_send_chctl_openrequest_sn2;
2425         xpc_send_chctl_openreply = xpc_send_chctl_openreply_sn2;
2426
2427         xpc_send_msg = xpc_send_msg_sn2;
2428         xpc_received_msg = xpc_received_msg_sn2;
2429
2430         buf_size = max(XPC_RP_VARS_SIZE,
2431                        XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES_SN2);
2432         xpc_remote_copy_buffer_sn2 = xpc_kmalloc_cacheline_aligned(buf_size,
2433                                                                    GFP_KERNEL,
2434                                               &xpc_remote_copy_buffer_base_sn2);
2435         if (xpc_remote_copy_buffer_sn2 == NULL) {
2436                 dev_err(xpc_part, "can't get memory for remote copy buffer\n");
2437                 return -ENOMEM;
2438         }
2439
2440         /* open up protections for IPI and [potentially] amo operations */
2441         xpc_allow_IPI_ops_sn2();
2442         xpc_allow_amo_ops_shub_wars_1_1_sn2();
2443
2444         /*
2445          * This is safe to do before the xpc_hb_checker thread has started
2446          * because the handler releases a wait queue.  If an interrupt is
2447          * received before the thread is waiting, it will not go to sleep,
2448          * but rather immediately process the interrupt.
2449          */
2450         ret = request_irq(SGI_XPC_ACTIVATE, xpc_handle_activate_IRQ_sn2, 0,
2451                           "xpc hb", NULL);
2452         if (ret != 0) {
2453                 dev_err(xpc_part, "can't register ACTIVATE IRQ handler, "
2454                         "errno=%d\n", -ret);
2455                 xpc_disallow_IPI_ops_sn2();
2456                 kfree(xpc_remote_copy_buffer_base_sn2);
2457         }
2458         return ret;
2459 }
2460
2461 void
2462 xpc_exit_sn2(void)
2463 {
2464         free_irq(SGI_XPC_ACTIVATE, NULL);
2465         xpc_disallow_IPI_ops_sn2();
2466         kfree(xpc_remote_copy_buffer_base_sn2);
2467 }