1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
57 #include <linux/netdevice.h>
58 #include <linux/ethtool.h>
59 #include <linux/delay.h>
60 #include <linux/pci.h>
64 #define ICH_FLASH_GFPREG 0x0000
65 #define ICH_FLASH_HSFSTS 0x0004
66 #define ICH_FLASH_HSFCTL 0x0006
67 #define ICH_FLASH_FADDR 0x0008
68 #define ICH_FLASH_FDATA0 0x0010
69 #define ICH_FLASH_PR0 0x0074
71 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
72 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
73 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
74 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
75 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
77 #define ICH_CYCLE_READ 0
78 #define ICH_CYCLE_WRITE 2
79 #define ICH_CYCLE_ERASE 3
81 #define FLASH_GFPREG_BASE_MASK 0x1FFF
82 #define FLASH_SECTOR_ADDR_SHIFT 12
84 #define ICH_FLASH_SEG_SIZE_256 256
85 #define ICH_FLASH_SEG_SIZE_4K 4096
86 #define ICH_FLASH_SEG_SIZE_8K 8192
87 #define ICH_FLASH_SEG_SIZE_64K 65536
90 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
92 #define E1000_ICH_MNG_IAMT_MODE 0x2
94 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
95 (ID_LED_DEF1_OFF2 << 8) | \
96 (ID_LED_DEF1_ON2 << 4) | \
99 #define E1000_ICH_NVM_SIG_WORD 0x13
100 #define E1000_ICH_NVM_SIG_MASK 0xC000
101 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
102 #define E1000_ICH_NVM_SIG_VALUE 0x80
104 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
106 #define E1000_FEXTNVM_SW_CONFIG 1
107 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
109 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
111 #define E1000_ICH_RAR_ENTRIES 7
113 #define PHY_PAGE_SHIFT 5
114 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
115 ((reg) & MAX_PHY_REG_ADDRESS))
116 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
117 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
119 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
120 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
121 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
123 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
125 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
126 /* Offset 04h HSFSTS */
127 union ich8_hws_flash_status {
129 u16 flcdone :1; /* bit 0 Flash Cycle Done */
130 u16 flcerr :1; /* bit 1 Flash Cycle Error */
131 u16 dael :1; /* bit 2 Direct Access error Log */
132 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
133 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
134 u16 reserved1 :2; /* bit 13:6 Reserved */
135 u16 reserved2 :6; /* bit 13:6 Reserved */
136 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
137 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
142 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
143 /* Offset 06h FLCTL */
144 union ich8_hws_flash_ctrl {
145 struct ich8_hsflctl {
146 u16 flcgo :1; /* 0 Flash Cycle Go */
147 u16 flcycle :2; /* 2:1 Flash Cycle */
148 u16 reserved :5; /* 7:3 Reserved */
149 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
150 u16 flockdn :6; /* 15:10 Reserved */
155 /* ICH Flash Region Access Permissions */
156 union ich8_hws_flash_regacc {
158 u32 grra :8; /* 0:7 GbE region Read Access */
159 u32 grwa :8; /* 8:15 GbE region Write Access */
160 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
161 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
166 /* ICH Flash Protected Region */
167 union ich8_flash_protected_range {
169 u32 base:13; /* 0:12 Protected Range Base */
170 u32 reserved1:2; /* 13:14 Reserved */
171 u32 rpe:1; /* 15 Read Protection Enable */
172 u32 limit:13; /* 16:28 Protected Range Limit */
173 u32 reserved2:2; /* 29:30 Reserved */
174 u32 wpe:1; /* 31 Write Protection Enable */
179 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
180 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
181 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
182 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
183 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
184 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
185 u32 offset, u8 byte);
186 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
188 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
190 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
192 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
193 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
194 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
195 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
196 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
197 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
198 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
199 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
200 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
201 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
202 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
204 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
206 return readw(hw->flash_address + reg);
209 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
211 return readl(hw->flash_address + reg);
214 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
216 writew(val, hw->flash_address + reg);
219 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
221 writel(val, hw->flash_address + reg);
224 #define er16flash(reg) __er16flash(hw, (reg))
225 #define er32flash(reg) __er32flash(hw, (reg))
226 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
227 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
230 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
231 * @hw: pointer to the HW structure
233 * Initialize family-specific PHY parameters and function pointers.
235 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
237 struct e1000_phy_info *phy = &hw->phy;
241 phy->reset_delay_us = 100;
243 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
244 phy->ops.read_phy_reg = e1000_read_phy_reg_hv;
245 phy->ops.write_phy_reg = e1000_write_phy_reg_hv;
246 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
248 phy->id = e1000_phy_unknown;
249 e1000e_get_phy_id(hw);
250 phy->type = e1000e_get_phy_type_from_id(phy->id);
252 if (phy->type == e1000_phy_82577) {
253 phy->ops.check_polarity = e1000_check_polarity_82577;
254 phy->ops.force_speed_duplex =
255 e1000_phy_force_speed_duplex_82577;
256 phy->ops.get_cable_length = e1000_get_cable_length_82577;
257 phy->ops.get_phy_info = e1000_get_phy_info_82577;
258 phy->ops.commit_phy = e1000e_phy_sw_reset;
265 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
266 * @hw: pointer to the HW structure
268 * Initialize family-specific PHY parameters and function pointers.
270 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
272 struct e1000_phy_info *phy = &hw->phy;
277 phy->reset_delay_us = 100;
280 * We may need to do this twice - once for IGP and if that fails,
281 * we'll set BM func pointers and try again
283 ret_val = e1000e_determine_phy_address(hw);
285 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
286 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
287 ret_val = e1000e_determine_phy_address(hw);
293 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
296 ret_val = e1000e_get_phy_id(hw);
303 case IGP03E1000_E_PHY_ID:
304 phy->type = e1000_phy_igp_3;
305 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
308 case IFE_PLUS_E_PHY_ID:
310 phy->type = e1000_phy_ife;
311 phy->autoneg_mask = E1000_ALL_NOT_GIG;
313 case BME1000_E_PHY_ID:
314 phy->type = e1000_phy_bm;
315 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
316 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
317 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
318 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
321 return -E1000_ERR_PHY;
325 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
331 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
332 * @hw: pointer to the HW structure
334 * Initialize family-specific NVM parameters and function
337 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
339 struct e1000_nvm_info *nvm = &hw->nvm;
340 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
341 union ich8_hws_flash_status hsfsts;
343 u32 sector_base_addr;
347 /* Can't read flash registers if the register set isn't mapped. */
348 if (!hw->flash_address) {
349 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
350 return -E1000_ERR_CONFIG;
353 nvm->type = e1000_nvm_flash_sw;
355 gfpreg = er32flash(ICH_FLASH_GFPREG);
358 * sector_X_addr is a "sector"-aligned address (4096 bytes)
359 * Add 1 to sector_end_addr since this sector is included in
362 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
363 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
365 /* flash_base_addr is byte-aligned */
366 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
369 * find total size of the NVM, then cut in half since the total
370 * size represents two separate NVM banks.
372 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
373 << FLASH_SECTOR_ADDR_SHIFT;
374 nvm->flash_bank_size /= 2;
375 /* Adjust to word count */
376 nvm->flash_bank_size /= sizeof(u16);
379 * Make sure the flash bank size does not overwrite the 4k
380 * sector ranges. We may have 64k allotted to us but we only care
381 * about the first 2 4k sectors. Therefore, if we have anything less
382 * than 64k set in the HSFSTS register, we will reduce the bank size
383 * down to 4k and let the rest remain unused. If berasesz == 3, then
384 * we are working in 64k mode. Otherwise we are not.
386 if (nvm->flash_bank_size > E1000_ICH8_SHADOW_RAM_WORDS) {
387 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
388 if (hsfsts.hsf_status.berasesz != 3)
389 nvm->flash_bank_size = E1000_ICH8_SHADOW_RAM_WORDS;
392 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
394 /* Clear shadow ram */
395 for (i = 0; i < nvm->word_size; i++) {
396 dev_spec->shadow_ram[i].modified = 0;
397 dev_spec->shadow_ram[i].value = 0xFFFF;
404 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
405 * @hw: pointer to the HW structure
407 * Initialize family-specific MAC parameters and function
410 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
412 struct e1000_hw *hw = &adapter->hw;
413 struct e1000_mac_info *mac = &hw->mac;
415 /* Set media type function pointer */
416 hw->phy.media_type = e1000_media_type_copper;
418 /* Set mta register count */
419 mac->mta_reg_count = 32;
420 /* Set rar entry count */
421 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
422 if (mac->type == e1000_ich8lan)
423 mac->rar_entry_count--;
424 /* Set if manageability features are enabled. */
425 mac->arc_subsystem_valid = 1;
433 mac->ops.id_led_init = e1000e_id_led_init;
435 mac->ops.setup_led = e1000e_setup_led_generic;
437 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
438 /* turn on/off LED */
439 mac->ops.led_on = e1000_led_on_ich8lan;
440 mac->ops.led_off = e1000_led_off_ich8lan;
444 mac->ops.id_led_init = e1000_id_led_init_pchlan;
446 mac->ops.setup_led = e1000_setup_led_pchlan;
448 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
449 /* turn on/off LED */
450 mac->ops.led_on = e1000_led_on_pchlan;
451 mac->ops.led_off = e1000_led_off_pchlan;
457 /* Enable PCS Lock-loss workaround for ICH8 */
458 if (mac->type == e1000_ich8lan)
459 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
465 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
466 * @hw: pointer to the HW structure
468 * Checks to see of the link status of the hardware has changed. If a
469 * change in link status has been detected, then we read the PHY registers
470 * to get the current speed/duplex if link exists.
472 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
474 struct e1000_mac_info *mac = &hw->mac;
479 * We only want to go out to the PHY registers to see if Auto-Neg
480 * has completed and/or if our link status has changed. The
481 * get_link_status flag is set upon receiving a Link Status
482 * Change or Rx Sequence Error interrupt.
484 if (!mac->get_link_status) {
489 if (hw->mac.type == e1000_pchlan) {
490 ret_val = e1000e_write_kmrn_reg(hw,
491 E1000_KMRNCTRLSTA_K1_CONFIG,
492 E1000_KMRNCTRLSTA_K1_ENABLE);
498 * First we want to see if the MII Status Register reports
499 * link. If so, then we want to get the current speed/duplex
502 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
507 goto out; /* No link detected */
509 mac->get_link_status = false;
511 if (hw->phy.type == e1000_phy_82578) {
512 ret_val = e1000_link_stall_workaround_hv(hw);
518 * Check if there was DownShift, must be checked
519 * immediately after link-up
521 e1000e_check_downshift(hw);
524 * If we are forcing speed/duplex, then we simply return since
525 * we have already determined whether we have link or not.
528 ret_val = -E1000_ERR_CONFIG;
533 * Auto-Neg is enabled. Auto Speed Detection takes care
534 * of MAC speed/duplex configuration. So we only need to
535 * configure Collision Distance in the MAC.
537 e1000e_config_collision_dist(hw);
540 * Configure Flow Control now that Auto-Neg has completed.
541 * First, we need to restore the desired flow control
542 * settings because we may have had to re-autoneg with a
543 * different link partner.
545 ret_val = e1000e_config_fc_after_link_up(hw);
547 hw_dbg(hw, "Error configuring flow control\n");
553 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
555 struct e1000_hw *hw = &adapter->hw;
558 rc = e1000_init_mac_params_ich8lan(adapter);
562 rc = e1000_init_nvm_params_ich8lan(hw);
566 if (hw->mac.type == e1000_pchlan)
567 rc = e1000_init_phy_params_pchlan(hw);
569 rc = e1000_init_phy_params_ich8lan(hw);
573 if (adapter->hw.phy.type == e1000_phy_ife) {
574 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
575 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
578 if ((adapter->hw.mac.type == e1000_ich8lan) &&
579 (adapter->hw.phy.type == e1000_phy_igp_3))
580 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
585 static DEFINE_MUTEX(nvm_mutex);
588 * e1000_acquire_swflag_ich8lan - Acquire software control flag
589 * @hw: pointer to the HW structure
591 * Acquires the software control flag for performing NVM and PHY
592 * operations. This is a function pointer entry point only called by
593 * read/write routines for the PHY and NVM parts.
595 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
598 u32 timeout = PHY_CFG_TIMEOUT;
602 mutex_lock(&nvm_mutex);
605 extcnf_ctrl = er32(EXTCNF_CTRL);
607 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) {
608 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
609 ew32(EXTCNF_CTRL, extcnf_ctrl);
611 extcnf_ctrl = er32(EXTCNF_CTRL);
612 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
620 hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
621 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
622 ew32(EXTCNF_CTRL, extcnf_ctrl);
623 mutex_unlock(&nvm_mutex);
624 return -E1000_ERR_CONFIG;
631 * e1000_release_swflag_ich8lan - Release software control flag
632 * @hw: pointer to the HW structure
634 * Releases the software control flag for performing NVM and PHY operations.
635 * This is a function pointer entry point only called by read/write
636 * routines for the PHY and NVM parts.
638 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
642 extcnf_ctrl = er32(EXTCNF_CTRL);
643 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
644 ew32(EXTCNF_CTRL, extcnf_ctrl);
646 mutex_unlock(&nvm_mutex);
650 * e1000_check_mng_mode_ich8lan - Checks management mode
651 * @hw: pointer to the HW structure
653 * This checks if the adapter has manageability enabled.
654 * This is a function pointer entry point only called by read/write
655 * routines for the PHY and NVM parts.
657 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
659 u32 fwsm = er32(FWSM);
661 return (fwsm & E1000_FWSM_MODE_MASK) ==
662 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
666 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
667 * @hw: pointer to the HW structure
669 * Checks if firmware is blocking the reset of the PHY.
670 * This is a function pointer entry point only called by
673 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
679 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
683 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
684 * @hw: pointer to the HW structure
686 * Forces the speed and duplex settings of the PHY.
687 * This is a function pointer entry point only called by
688 * PHY setup routines.
690 static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
692 struct e1000_phy_info *phy = &hw->phy;
697 if (phy->type != e1000_phy_ife) {
698 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
702 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
706 e1000e_phy_force_speed_duplex_setup(hw, &data);
708 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
712 /* Disable MDI-X support for 10/100 */
713 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
717 data &= ~IFE_PMC_AUTO_MDIX;
718 data &= ~IFE_PMC_FORCE_MDIX;
720 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
724 hw_dbg(hw, "IFE PMC: %X\n", data);
728 if (phy->autoneg_wait_to_complete) {
729 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
731 ret_val = e1000e_phy_has_link_generic(hw,
739 hw_dbg(hw, "Link taking longer than expected.\n");
742 ret_val = e1000e_phy_has_link_generic(hw,
754 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
755 * done after every PHY reset.
757 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
761 if (hw->mac.type != e1000_pchlan)
764 if (((hw->phy.type == e1000_phy_82577) &&
765 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
766 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
767 /* Disable generation of early preamble */
768 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
772 /* Preamble tuning for SSC */
773 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
778 if (hw->phy.type == e1000_phy_82578) {
780 * Return registers to default by doing a soft reset then
781 * writing 0x3140 to the control register.
783 if (hw->phy.revision < 2) {
784 e1000e_phy_sw_reset(hw);
785 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
790 ret_val = hw->phy.ops.acquire_phy(hw);
794 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
795 hw->phy.ops.release_phy(hw);
801 * e1000_lan_init_done_ich8lan - Check for PHY config completion
802 * @hw: pointer to the HW structure
804 * Check the appropriate indication the MAC has finished configuring the
805 * PHY after a software reset.
807 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
809 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
811 /* Wait for basic configuration completes before proceeding */
814 data &= E1000_STATUS_LAN_INIT_DONE;
816 } while ((!data) && --loop);
819 * If basic configuration is incomplete before the above loop
820 * count reaches 0, loading the configuration from NVM will
821 * leave the PHY in a bad state possibly resulting in no link.
824 hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
826 /* Clear the Init Done bit for the next init event */
828 data &= ~E1000_STATUS_LAN_INIT_DONE;
833 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
834 * @hw: pointer to the HW structure
837 * This is a function pointer entry point called by drivers
838 * or other shared routines.
840 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
842 struct e1000_phy_info *phy = &hw->phy;
844 u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
846 u16 word_addr, reg_data, reg_addr, phy_page = 0;
848 ret_val = e1000e_phy_hw_reset_generic(hw);
852 /* Allow time for h/w to get to a quiescent state after reset */
855 if (hw->mac.type == e1000_pchlan) {
856 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
862 * Initialize the PHY from the NVM on ICH platforms. This
863 * is needed due to an issue where the NVM configuration is
864 * not properly autoloaded after power transitions.
865 * Therefore, after each PHY reset, we will load the
866 * configuration data out of the NVM manually.
868 if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
869 struct e1000_adapter *adapter = hw->adapter;
871 /* Check if SW needs configure the PHY */
872 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
873 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
874 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
876 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
878 data = er32(FEXTNVM);
879 if (!(data & sw_cfg_mask))
882 /* Wait for basic configuration completes before proceeding */
883 e1000_lan_init_done_ich8lan(hw);
886 * Make sure HW does not configure LCD from PHY
887 * extended configuration before SW configuration
889 data = er32(EXTCNF_CTRL);
890 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
893 cnf_size = er32(EXTCNF_SIZE);
894 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
895 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
899 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
900 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
902 /* Configure LCD from extended configuration region. */
904 /* cnf_base_addr is in DWORD */
905 word_addr = (u16)(cnf_base_addr << 1);
907 for (i = 0; i < cnf_size; i++) {
908 ret_val = e1000_read_nvm(hw,
915 ret_val = e1000_read_nvm(hw,
916 (word_addr + i * 2 + 1),
922 /* Save off the PHY page for future writes. */
923 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
928 reg_addr |= phy_page;
930 ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
940 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
941 * @hw: pointer to the HW structure
943 * Populates "phy" structure with various feature states.
944 * This function is only called by other family-specific
947 static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
949 struct e1000_phy_info *phy = &hw->phy;
954 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
959 hw_dbg(hw, "Phy info is only valid if link is up\n");
960 return -E1000_ERR_CONFIG;
963 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
966 phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
968 if (phy->polarity_correction) {
969 ret_val = phy->ops.check_polarity(hw);
973 /* Polarity is forced */
974 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
975 ? e1000_rev_polarity_reversed
976 : e1000_rev_polarity_normal;
979 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
983 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
985 /* The following parameters are undefined for 10/100 operation. */
986 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
987 phy->local_rx = e1000_1000t_rx_status_undefined;
988 phy->remote_rx = e1000_1000t_rx_status_undefined;
994 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
995 * @hw: pointer to the HW structure
997 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
998 * This is a function pointer entry point called by drivers
999 * or other shared routines.
1001 static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
1003 switch (hw->phy.type) {
1005 return e1000_get_phy_info_ife_ich8lan(hw);
1007 case e1000_phy_igp_3:
1009 case e1000_phy_82578:
1010 case e1000_phy_82577:
1011 return e1000e_get_phy_info_igp(hw);
1017 return -E1000_ERR_PHY_TYPE;
1021 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
1022 * @hw: pointer to the HW structure
1024 * Polarity is determined on the polarity reversal feature being enabled.
1025 * This function is only called by other family-specific
1028 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
1030 struct e1000_phy_info *phy = &hw->phy;
1032 u16 phy_data, offset, mask;
1035 * Polarity is determined based on the reversal feature being enabled.
1037 if (phy->polarity_correction) {
1038 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1039 mask = IFE_PESC_POLARITY_REVERSED;
1041 offset = IFE_PHY_SPECIAL_CONTROL;
1042 mask = IFE_PSC_FORCE_POLARITY;
1045 ret_val = e1e_rphy(hw, offset, &phy_data);
1048 phy->cable_polarity = (phy_data & mask)
1049 ? e1000_rev_polarity_reversed
1050 : e1000_rev_polarity_normal;
1056 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1057 * @hw: pointer to the HW structure
1058 * @active: TRUE to enable LPLU, FALSE to disable
1060 * Sets the LPLU D0 state according to the active flag. When
1061 * activating LPLU this function also disables smart speed
1062 * and vice versa. LPLU will not be activated unless the
1063 * device autonegotiation advertisement meets standards of
1064 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1065 * This is a function pointer entry point only called by
1066 * PHY setup routines.
1068 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1070 struct e1000_phy_info *phy = &hw->phy;
1075 if (phy->type == e1000_phy_ife)
1078 phy_ctrl = er32(PHY_CTRL);
1081 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1082 ew32(PHY_CTRL, phy_ctrl);
1084 if (phy->type != e1000_phy_igp_3)
1088 * Call gig speed drop workaround on LPLU before accessing
1091 if (hw->mac.type == e1000_ich8lan)
1092 e1000e_gig_downshift_workaround_ich8lan(hw);
1094 /* When LPLU is enabled, we should disable SmartSpeed */
1095 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1096 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1097 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1101 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1102 ew32(PHY_CTRL, phy_ctrl);
1104 if (phy->type != e1000_phy_igp_3)
1108 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1109 * during Dx states where the power conservation is most
1110 * important. During driver activity we should enable
1111 * SmartSpeed, so performance is maintained.
1113 if (phy->smart_speed == e1000_smart_speed_on) {
1114 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1119 data |= IGP01E1000_PSCFR_SMART_SPEED;
1120 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1124 } else if (phy->smart_speed == e1000_smart_speed_off) {
1125 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1130 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1131 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1142 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1143 * @hw: pointer to the HW structure
1144 * @active: TRUE to enable LPLU, FALSE to disable
1146 * Sets the LPLU D3 state according to the active flag. When
1147 * activating LPLU this function also disables smart speed
1148 * and vice versa. LPLU will not be activated unless the
1149 * device autonegotiation advertisement meets standards of
1150 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1151 * This is a function pointer entry point only called by
1152 * PHY setup routines.
1154 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1156 struct e1000_phy_info *phy = &hw->phy;
1161 phy_ctrl = er32(PHY_CTRL);
1164 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1165 ew32(PHY_CTRL, phy_ctrl);
1167 if (phy->type != e1000_phy_igp_3)
1171 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1172 * during Dx states where the power conservation is most
1173 * important. During driver activity we should enable
1174 * SmartSpeed, so performance is maintained.
1176 if (phy->smart_speed == e1000_smart_speed_on) {
1177 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1182 data |= IGP01E1000_PSCFR_SMART_SPEED;
1183 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1187 } else if (phy->smart_speed == e1000_smart_speed_off) {
1188 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1193 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1194 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1199 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1200 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1201 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1202 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1203 ew32(PHY_CTRL, phy_ctrl);
1205 if (phy->type != e1000_phy_igp_3)
1209 * Call gig speed drop workaround on LPLU before accessing
1212 if (hw->mac.type == e1000_ich8lan)
1213 e1000e_gig_downshift_workaround_ich8lan(hw);
1215 /* When LPLU is enabled, we should disable SmartSpeed */
1216 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1220 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1221 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1228 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1229 * @hw: pointer to the HW structure
1230 * @bank: pointer to the variable that returns the active bank
1232 * Reads signature byte from the NVM using the flash access registers.
1233 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1235 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1238 struct e1000_nvm_info *nvm = &hw->nvm;
1239 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1240 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
1244 switch (hw->mac.type) {
1248 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1249 E1000_EECD_SEC1VAL_VALID_MASK) {
1250 if (eecd & E1000_EECD_SEC1VAL)
1257 hw_dbg(hw, "Unable to determine valid NVM bank via EEC - "
1258 "reading flash signature\n");
1261 /* set bank to 0 in case flash read fails */
1265 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1269 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1270 E1000_ICH_NVM_SIG_VALUE) {
1276 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1281 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1282 E1000_ICH_NVM_SIG_VALUE) {
1287 hw_dbg(hw, "ERROR: No valid NVM bank present\n");
1288 return -E1000_ERR_NVM;
1295 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1296 * @hw: pointer to the HW structure
1297 * @offset: The offset (in bytes) of the word(s) to read.
1298 * @words: Size of data to read in words
1299 * @data: Pointer to the word(s) to read at offset.
1301 * Reads a word(s) from the NVM using the flash access registers.
1303 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1306 struct e1000_nvm_info *nvm = &hw->nvm;
1307 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1313 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1315 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1316 return -E1000_ERR_NVM;
1319 ret_val = e1000_acquire_swflag_ich8lan(hw);
1323 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1327 act_offset = (bank) ? nvm->flash_bank_size : 0;
1328 act_offset += offset;
1330 for (i = 0; i < words; i++) {
1331 if ((dev_spec->shadow_ram) &&
1332 (dev_spec->shadow_ram[offset+i].modified)) {
1333 data[i] = dev_spec->shadow_ram[offset+i].value;
1335 ret_val = e1000_read_flash_word_ich8lan(hw,
1345 e1000_release_swflag_ich8lan(hw);
1349 hw_dbg(hw, "NVM read error: %d\n", ret_val);
1355 * e1000_flash_cycle_init_ich8lan - Initialize flash
1356 * @hw: pointer to the HW structure
1358 * This function does initial flash setup so that a new read/write/erase cycle
1361 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1363 union ich8_hws_flash_status hsfsts;
1364 s32 ret_val = -E1000_ERR_NVM;
1367 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1369 /* Check if the flash descriptor is valid */
1370 if (hsfsts.hsf_status.fldesvalid == 0) {
1371 hw_dbg(hw, "Flash descriptor invalid. "
1372 "SW Sequencing must be used.");
1373 return -E1000_ERR_NVM;
1376 /* Clear FCERR and DAEL in hw status by writing 1 */
1377 hsfsts.hsf_status.flcerr = 1;
1378 hsfsts.hsf_status.dael = 1;
1380 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1383 * Either we should have a hardware SPI cycle in progress
1384 * bit to check against, in order to start a new cycle or
1385 * FDONE bit should be changed in the hardware so that it
1386 * is 1 after hardware reset, which can then be used as an
1387 * indication whether a cycle is in progress or has been
1391 if (hsfsts.hsf_status.flcinprog == 0) {
1393 * There is no cycle running at present,
1394 * so we can start a cycle
1395 * Begin by setting Flash Cycle Done.
1397 hsfsts.hsf_status.flcdone = 1;
1398 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1402 * otherwise poll for sometime so the current
1403 * cycle has a chance to end before giving up.
1405 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1406 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1407 if (hsfsts.hsf_status.flcinprog == 0) {
1415 * Successful in waiting for previous cycle to timeout,
1416 * now set the Flash Cycle Done.
1418 hsfsts.hsf_status.flcdone = 1;
1419 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1421 hw_dbg(hw, "Flash controller busy, cannot get access");
1429 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1430 * @hw: pointer to the HW structure
1431 * @timeout: maximum time to wait for completion
1433 * This function starts a flash cycle and waits for its completion.
1435 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1437 union ich8_hws_flash_ctrl hsflctl;
1438 union ich8_hws_flash_status hsfsts;
1439 s32 ret_val = -E1000_ERR_NVM;
1442 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1443 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1444 hsflctl.hsf_ctrl.flcgo = 1;
1445 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1447 /* wait till FDONE bit is set to 1 */
1449 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1450 if (hsfsts.hsf_status.flcdone == 1)
1453 } while (i++ < timeout);
1455 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1462 * e1000_read_flash_word_ich8lan - Read word from flash
1463 * @hw: pointer to the HW structure
1464 * @offset: offset to data location
1465 * @data: pointer to the location for storing the data
1467 * Reads the flash word at offset into data. Offset is converted
1468 * to bytes before read.
1470 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1473 /* Must convert offset into bytes. */
1476 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1480 * e1000_read_flash_byte_ich8lan - Read byte from flash
1481 * @hw: pointer to the HW structure
1482 * @offset: The offset of the byte to read.
1483 * @data: Pointer to a byte to store the value read.
1485 * Reads a single byte from the NVM using the flash access registers.
1487 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1493 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1503 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1504 * @hw: pointer to the HW structure
1505 * @offset: The offset (in bytes) of the byte or word to read.
1506 * @size: Size of data to read, 1=byte 2=word
1507 * @data: Pointer to the word to store the value read.
1509 * Reads a byte or word from the NVM using the flash access registers.
1511 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1514 union ich8_hws_flash_status hsfsts;
1515 union ich8_hws_flash_ctrl hsflctl;
1516 u32 flash_linear_addr;
1518 s32 ret_val = -E1000_ERR_NVM;
1521 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1522 return -E1000_ERR_NVM;
1524 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1525 hw->nvm.flash_base_addr;
1530 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1534 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1535 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1536 hsflctl.hsf_ctrl.fldbcount = size - 1;
1537 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1538 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1540 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1542 ret_val = e1000_flash_cycle_ich8lan(hw,
1543 ICH_FLASH_READ_COMMAND_TIMEOUT);
1546 * Check if FCERR is set to 1, if set to 1, clear it
1547 * and try the whole sequence a few more times, else
1548 * read in (shift in) the Flash Data0, the order is
1549 * least significant byte first msb to lsb
1552 flash_data = er32flash(ICH_FLASH_FDATA0);
1554 *data = (u8)(flash_data & 0x000000FF);
1555 } else if (size == 2) {
1556 *data = (u16)(flash_data & 0x0000FFFF);
1561 * If we've gotten here, then things are probably
1562 * completely hosed, but if the error condition is
1563 * detected, it won't hurt to give it another try...
1564 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1566 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1567 if (hsfsts.hsf_status.flcerr == 1) {
1568 /* Repeat for some time before giving up. */
1570 } else if (hsfsts.hsf_status.flcdone == 0) {
1571 hw_dbg(hw, "Timeout error - flash cycle "
1572 "did not complete.");
1576 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1582 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1583 * @hw: pointer to the HW structure
1584 * @offset: The offset (in bytes) of the word(s) to write.
1585 * @words: Size of data to write in words
1586 * @data: Pointer to the word(s) to write at offset.
1588 * Writes a byte or word to the NVM using the flash access registers.
1590 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1593 struct e1000_nvm_info *nvm = &hw->nvm;
1594 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1598 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1600 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1601 return -E1000_ERR_NVM;
1604 ret_val = e1000_acquire_swflag_ich8lan(hw);
1608 for (i = 0; i < words; i++) {
1609 dev_spec->shadow_ram[offset+i].modified = 1;
1610 dev_spec->shadow_ram[offset+i].value = data[i];
1613 e1000_release_swflag_ich8lan(hw);
1619 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1620 * @hw: pointer to the HW structure
1622 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1623 * which writes the checksum to the shadow ram. The changes in the shadow
1624 * ram are then committed to the EEPROM by processing each bank at a time
1625 * checking for the modified bit and writing only the pending changes.
1626 * After a successful commit, the shadow ram is cleared and is ready for
1629 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1631 struct e1000_nvm_info *nvm = &hw->nvm;
1632 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1633 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1637 ret_val = e1000e_update_nvm_checksum_generic(hw);
1641 if (nvm->type != e1000_nvm_flash_sw)
1644 ret_val = e1000_acquire_swflag_ich8lan(hw);
1649 * We're writing to the opposite bank so if we're on bank 1,
1650 * write to bank 0 etc. We also need to erase the segment that
1651 * is going to be written
1653 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1655 e1000_release_swflag_ich8lan(hw);
1660 new_bank_offset = nvm->flash_bank_size;
1661 old_bank_offset = 0;
1662 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
1664 e1000_release_swflag_ich8lan(hw);
1668 old_bank_offset = nvm->flash_bank_size;
1669 new_bank_offset = 0;
1670 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
1672 e1000_release_swflag_ich8lan(hw);
1677 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1679 * Determine whether to write the value stored
1680 * in the other NVM bank or a modified value stored
1683 if (dev_spec->shadow_ram[i].modified) {
1684 data = dev_spec->shadow_ram[i].value;
1686 ret_val = e1000_read_flash_word_ich8lan(hw, i +
1694 * If the word is 0x13, then make sure the signature bits
1695 * (15:14) are 11b until the commit has completed.
1696 * This will allow us to write 10b which indicates the
1697 * signature is valid. We want to do this after the write
1698 * has completed so that we don't mark the segment valid
1699 * while the write is still in progress
1701 if (i == E1000_ICH_NVM_SIG_WORD)
1702 data |= E1000_ICH_NVM_SIG_MASK;
1704 /* Convert offset to bytes. */
1705 act_offset = (i + new_bank_offset) << 1;
1708 /* Write the bytes to the new bank. */
1709 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1716 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1724 * Don't bother writing the segment valid bits if sector
1725 * programming failed.
1728 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
1729 hw_dbg(hw, "Flash commit failed.\n");
1730 e1000_release_swflag_ich8lan(hw);
1735 * Finally validate the new segment by setting bit 15:14
1736 * to 10b in word 0x13 , this can be done without an
1737 * erase as well since these bits are 11 to start with
1738 * and we need to change bit 14 to 0b
1740 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1741 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1743 e1000_release_swflag_ich8lan(hw);
1747 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1751 e1000_release_swflag_ich8lan(hw);
1756 * And invalidate the previously valid segment by setting
1757 * its signature word (0x13) high_byte to 0b. This can be
1758 * done without an erase because flash erase sets all bits
1759 * to 1's. We can write 1's to 0's without an erase
1761 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1762 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1764 e1000_release_swflag_ich8lan(hw);
1768 /* Great! Everything worked, we can now clear the cached entries. */
1769 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1770 dev_spec->shadow_ram[i].modified = 0;
1771 dev_spec->shadow_ram[i].value = 0xFFFF;
1774 e1000_release_swflag_ich8lan(hw);
1777 * Reload the EEPROM, or else modifications will not appear
1778 * until after the next adapter reset.
1780 e1000e_reload_nvm(hw);
1785 hw_dbg(hw, "NVM update error: %d\n", ret_val);
1791 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1792 * @hw: pointer to the HW structure
1794 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1795 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1796 * calculated, in which case we need to calculate the checksum and set bit 6.
1798 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1804 * Read 0x19 and check bit 6. If this bit is 0, the checksum
1805 * needs to be fixed. This bit is an indication that the NVM
1806 * was prepared by OEM software and did not calculate the
1807 * checksum...a likely scenario.
1809 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1813 if ((data & 0x40) == 0) {
1815 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1818 ret_val = e1000e_update_nvm_checksum(hw);
1823 return e1000e_validate_nvm_checksum_generic(hw);
1827 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
1828 * @hw: pointer to the HW structure
1830 * To prevent malicious write/erase of the NVM, set it to be read-only
1831 * so that the hardware ignores all write/erase cycles of the NVM via
1832 * the flash control registers. The shadow-ram copy of the NVM will
1833 * still be updated, however any updates to this copy will not stick
1834 * across driver reloads.
1836 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
1838 union ich8_flash_protected_range pr0;
1839 union ich8_hws_flash_status hsfsts;
1843 ret_val = e1000_acquire_swflag_ich8lan(hw);
1847 gfpreg = er32flash(ICH_FLASH_GFPREG);
1849 /* Write-protect GbE Sector of NVM */
1850 pr0.regval = er32flash(ICH_FLASH_PR0);
1851 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
1852 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
1853 pr0.range.wpe = true;
1854 ew32flash(ICH_FLASH_PR0, pr0.regval);
1857 * Lock down a subset of GbE Flash Control Registers, e.g.
1858 * PR0 to prevent the write-protection from being lifted.
1859 * Once FLOCKDN is set, the registers protected by it cannot
1860 * be written until FLOCKDN is cleared by a hardware reset.
1862 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1863 hsfsts.hsf_status.flockdn = true;
1864 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1866 e1000_release_swflag_ich8lan(hw);
1870 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1871 * @hw: pointer to the HW structure
1872 * @offset: The offset (in bytes) of the byte/word to read.
1873 * @size: Size of data to read, 1=byte 2=word
1874 * @data: The byte(s) to write to the NVM.
1876 * Writes one/two bytes to the NVM using the flash access registers.
1878 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1881 union ich8_hws_flash_status hsfsts;
1882 union ich8_hws_flash_ctrl hsflctl;
1883 u32 flash_linear_addr;
1888 if (size < 1 || size > 2 || data > size * 0xff ||
1889 offset > ICH_FLASH_LINEAR_ADDR_MASK)
1890 return -E1000_ERR_NVM;
1892 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1893 hw->nvm.flash_base_addr;
1898 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1902 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1903 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1904 hsflctl.hsf_ctrl.fldbcount = size -1;
1905 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1906 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1908 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1911 flash_data = (u32)data & 0x00FF;
1913 flash_data = (u32)data;
1915 ew32flash(ICH_FLASH_FDATA0, flash_data);
1918 * check if FCERR is set to 1 , if set to 1, clear it
1919 * and try the whole sequence a few more times else done
1921 ret_val = e1000_flash_cycle_ich8lan(hw,
1922 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1927 * If we're here, then things are most likely
1928 * completely hosed, but if the error condition
1929 * is detected, it won't hurt to give it another
1930 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1932 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1933 if (hsfsts.hsf_status.flcerr == 1)
1934 /* Repeat for some time before giving up. */
1936 if (hsfsts.hsf_status.flcdone == 0) {
1937 hw_dbg(hw, "Timeout error - flash cycle "
1938 "did not complete.");
1941 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1947 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1948 * @hw: pointer to the HW structure
1949 * @offset: The index of the byte to read.
1950 * @data: The byte to write to the NVM.
1952 * Writes a single byte to the NVM using the flash access registers.
1954 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1957 u16 word = (u16)data;
1959 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
1963 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1964 * @hw: pointer to the HW structure
1965 * @offset: The offset of the byte to write.
1966 * @byte: The byte to write to the NVM.
1968 * Writes a single byte to the NVM using the flash access registers.
1969 * Goes through a retry algorithm before giving up.
1971 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
1972 u32 offset, u8 byte)
1975 u16 program_retries;
1977 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1981 for (program_retries = 0; program_retries < 100; program_retries++) {
1982 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
1984 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1988 if (program_retries == 100)
1989 return -E1000_ERR_NVM;
1995 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1996 * @hw: pointer to the HW structure
1997 * @bank: 0 for first bank, 1 for second bank, etc.
1999 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2000 * bank N is 4096 * N + flash_reg_addr.
2002 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2004 struct e1000_nvm_info *nvm = &hw->nvm;
2005 union ich8_hws_flash_status hsfsts;
2006 union ich8_hws_flash_ctrl hsflctl;
2007 u32 flash_linear_addr;
2008 /* bank size is in 16bit words - adjust to bytes */
2009 u32 flash_bank_size = nvm->flash_bank_size * 2;
2016 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2019 * Determine HW Sector size: Read BERASE bits of hw flash status
2021 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2022 * consecutive sectors. The start index for the nth Hw sector
2023 * can be calculated as = bank * 4096 + n * 256
2024 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2025 * The start index for the nth Hw sector can be calculated
2027 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2028 * (ich9 only, otherwise error condition)
2029 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2031 switch (hsfsts.hsf_status.berasesz) {
2033 /* Hw sector size 256 */
2034 sector_size = ICH_FLASH_SEG_SIZE_256;
2035 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2038 sector_size = ICH_FLASH_SEG_SIZE_4K;
2042 if (hw->mac.type == e1000_ich9lan) {
2043 sector_size = ICH_FLASH_SEG_SIZE_8K;
2044 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
2046 return -E1000_ERR_NVM;
2050 sector_size = ICH_FLASH_SEG_SIZE_64K;
2054 return -E1000_ERR_NVM;
2057 /* Start with the base address, then add the sector offset. */
2058 flash_linear_addr = hw->nvm.flash_base_addr;
2059 flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
2061 for (j = 0; j < iteration ; j++) {
2064 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2069 * Write a value 11 (block Erase) in Flash
2070 * Cycle field in hw flash control
2072 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2073 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2074 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2077 * Write the last 24 bits of an index within the
2078 * block into Flash Linear address field in Flash
2081 flash_linear_addr += (j * sector_size);
2082 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2084 ret_val = e1000_flash_cycle_ich8lan(hw,
2085 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2090 * Check if FCERR is set to 1. If 1,
2091 * clear it and try the whole sequence
2092 * a few more times else Done
2094 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2095 if (hsfsts.hsf_status.flcerr == 1)
2096 /* repeat for some time before giving up */
2098 else if (hsfsts.hsf_status.flcdone == 0)
2100 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2107 * e1000_valid_led_default_ich8lan - Set the default LED settings
2108 * @hw: pointer to the HW structure
2109 * @data: Pointer to the LED settings
2111 * Reads the LED default settings from the NVM to data. If the NVM LED
2112 * settings is all 0's or F's, set the LED default to a valid LED default
2115 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2119 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2121 hw_dbg(hw, "NVM Read Error\n");
2125 if (*data == ID_LED_RESERVED_0000 ||
2126 *data == ID_LED_RESERVED_FFFF)
2127 *data = ID_LED_DEFAULT_ICH8LAN;
2133 * e1000_id_led_init_pchlan - store LED configurations
2134 * @hw: pointer to the HW structure
2136 * PCH does not control LEDs via the LEDCTL register, rather it uses
2137 * the PHY LED configuration register.
2139 * PCH also does not have an "always on" or "always off" mode which
2140 * complicates the ID feature. Instead of using the "on" mode to indicate
2141 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2142 * use "link_up" mode. The LEDs will still ID on request if there is no
2143 * link based on logic in e1000_led_[on|off]_pchlan().
2145 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2147 struct e1000_mac_info *mac = &hw->mac;
2149 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2150 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2151 u16 data, i, temp, shift;
2153 /* Get default ID LED modes */
2154 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2158 mac->ledctl_default = er32(LEDCTL);
2159 mac->ledctl_mode1 = mac->ledctl_default;
2160 mac->ledctl_mode2 = mac->ledctl_default;
2162 for (i = 0; i < 4; i++) {
2163 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2166 case ID_LED_ON1_DEF2:
2167 case ID_LED_ON1_ON2:
2168 case ID_LED_ON1_OFF2:
2169 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2170 mac->ledctl_mode1 |= (ledctl_on << shift);
2172 case ID_LED_OFF1_DEF2:
2173 case ID_LED_OFF1_ON2:
2174 case ID_LED_OFF1_OFF2:
2175 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2176 mac->ledctl_mode1 |= (ledctl_off << shift);
2183 case ID_LED_DEF1_ON2:
2184 case ID_LED_ON1_ON2:
2185 case ID_LED_OFF1_ON2:
2186 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2187 mac->ledctl_mode2 |= (ledctl_on << shift);
2189 case ID_LED_DEF1_OFF2:
2190 case ID_LED_ON1_OFF2:
2191 case ID_LED_OFF1_OFF2:
2192 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2193 mac->ledctl_mode2 |= (ledctl_off << shift);
2206 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2207 * @hw: pointer to the HW structure
2209 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2210 * register, so the the bus width is hard coded.
2212 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2214 struct e1000_bus_info *bus = &hw->bus;
2217 ret_val = e1000e_get_bus_info_pcie(hw);
2220 * ICH devices are "PCI Express"-ish. They have
2221 * a configuration space, but do not contain
2222 * PCI Express Capability registers, so bus width
2223 * must be hardcoded.
2225 if (bus->width == e1000_bus_width_unknown)
2226 bus->width = e1000_bus_width_pcie_x1;
2232 * e1000_reset_hw_ich8lan - Reset the hardware
2233 * @hw: pointer to the HW structure
2235 * Does a full reset of the hardware which includes a reset of the PHY and
2238 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2244 * Prevent the PCI-E bus from sticking if there is no TLP connection
2245 * on the last TLP read/write transaction when MAC is reset.
2247 ret_val = e1000e_disable_pcie_master(hw);
2249 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
2252 hw_dbg(hw, "Masking off all interrupts\n");
2253 ew32(IMC, 0xffffffff);
2256 * Disable the Transmit and Receive units. Then delay to allow
2257 * any pending transactions to complete before we hit the MAC
2258 * with the global reset.
2261 ew32(TCTL, E1000_TCTL_PSP);
2266 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2267 if (hw->mac.type == e1000_ich8lan) {
2268 /* Set Tx and Rx buffer allocation to 8k apiece. */
2269 ew32(PBA, E1000_PBA_8K);
2270 /* Set Packet Buffer Size to 16k. */
2271 ew32(PBS, E1000_PBS_16K);
2276 if (!e1000_check_reset_block(hw)) {
2277 /* Clear PHY Reset Asserted bit */
2278 if (hw->mac.type >= e1000_pchlan) {
2279 u32 status = er32(STATUS);
2280 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2284 * PHY HW reset requires MAC CORE reset at the same
2285 * time to make sure the interface between MAC and the
2286 * external PHY is reset.
2288 ctrl |= E1000_CTRL_PHY_RST;
2290 ret_val = e1000_acquire_swflag_ich8lan(hw);
2291 /* Whether or not the swflag was acquired, we need to reset the part */
2292 hw_dbg(hw, "Issuing a global reset to ich8lan\n");
2293 ew32(CTRL, (ctrl | E1000_CTRL_RST));
2297 e1000_release_swflag_ich8lan(hw);
2299 if (ctrl & E1000_CTRL_PHY_RST)
2300 ret_val = hw->phy.ops.get_cfg_done(hw);
2302 if (hw->mac.type >= e1000_ich10lan) {
2303 e1000_lan_init_done_ich8lan(hw);
2305 ret_val = e1000e_get_auto_rd_done(hw);
2308 * When auto config read does not complete, do not
2309 * return with an error. This can happen in situations
2310 * where there is no eeprom and prevents getting link.
2312 hw_dbg(hw, "Auto Read Done did not complete\n");
2317 * For PCH, this write will make sure that any noise
2318 * will be detected as a CRC error and be dropped rather than show up
2319 * as a bad packet to the DMA engine.
2321 if (hw->mac.type == e1000_pchlan)
2322 ew32(CRC_OFFSET, 0x65656565);
2324 ew32(IMC, 0xffffffff);
2327 kab = er32(KABGTXD);
2328 kab |= E1000_KABGTXD_BGSQLBIAS;
2331 if (hw->mac.type == e1000_pchlan)
2332 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2338 * e1000_init_hw_ich8lan - Initialize the hardware
2339 * @hw: pointer to the HW structure
2341 * Prepares the hardware for transmit and receive by doing the following:
2342 * - initialize hardware bits
2343 * - initialize LED identification
2344 * - setup receive address registers
2345 * - setup flow control
2346 * - setup transmit descriptors
2347 * - clear statistics
2349 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2351 struct e1000_mac_info *mac = &hw->mac;
2352 u32 ctrl_ext, txdctl, snoop;
2356 e1000_initialize_hw_bits_ich8lan(hw);
2358 /* Initialize identification LED */
2359 ret_val = mac->ops.id_led_init(hw);
2361 hw_dbg(hw, "Error initializing identification LED\n");
2365 /* Setup the receive address. */
2366 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2368 /* Zero out the Multicast HASH table */
2369 hw_dbg(hw, "Zeroing the MTA\n");
2370 for (i = 0; i < mac->mta_reg_count; i++)
2371 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2374 * The 82578 Rx buffer will stall if wakeup is enabled in host and
2375 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
2376 * Reset the phy after disabling host wakeup to reset the Rx buffer.
2378 if (hw->phy.type == e1000_phy_82578) {
2379 hw->phy.ops.read_phy_reg(hw, BM_WUC, &i);
2380 ret_val = e1000_phy_hw_reset_ich8lan(hw);
2385 /* Setup link and flow control */
2386 ret_val = e1000_setup_link_ich8lan(hw);
2388 /* Set the transmit descriptor write-back policy for both queues */
2389 txdctl = er32(TXDCTL(0));
2390 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2391 E1000_TXDCTL_FULL_TX_DESC_WB;
2392 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2393 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2394 ew32(TXDCTL(0), txdctl);
2395 txdctl = er32(TXDCTL(1));
2396 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2397 E1000_TXDCTL_FULL_TX_DESC_WB;
2398 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2399 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2400 ew32(TXDCTL(1), txdctl);
2403 * ICH8 has opposite polarity of no_snoop bits.
2404 * By default, we should use snoop behavior.
2406 if (mac->type == e1000_ich8lan)
2407 snoop = PCIE_ICH8_SNOOP_ALL;
2409 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2410 e1000e_set_pcie_no_snoop(hw, snoop);
2412 ctrl_ext = er32(CTRL_EXT);
2413 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2414 ew32(CTRL_EXT, ctrl_ext);
2417 * Clear all of the statistics registers (clear on read). It is
2418 * important that we do this after we have tried to establish link
2419 * because the symbol error count will increment wildly if there
2422 e1000_clear_hw_cntrs_ich8lan(hw);
2427 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2428 * @hw: pointer to the HW structure
2430 * Sets/Clears required hardware bits necessary for correctly setting up the
2431 * hardware for transmit and receive.
2433 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2437 /* Extended Device Control */
2438 reg = er32(CTRL_EXT);
2440 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2441 if (hw->mac.type >= e1000_pchlan)
2442 reg |= E1000_CTRL_EXT_PHYPDEN;
2443 ew32(CTRL_EXT, reg);
2445 /* Transmit Descriptor Control 0 */
2446 reg = er32(TXDCTL(0));
2448 ew32(TXDCTL(0), reg);
2450 /* Transmit Descriptor Control 1 */
2451 reg = er32(TXDCTL(1));
2453 ew32(TXDCTL(1), reg);
2455 /* Transmit Arbitration Control 0 */
2456 reg = er32(TARC(0));
2457 if (hw->mac.type == e1000_ich8lan)
2458 reg |= (1 << 28) | (1 << 29);
2459 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2462 /* Transmit Arbitration Control 1 */
2463 reg = er32(TARC(1));
2464 if (er32(TCTL) & E1000_TCTL_MULR)
2468 reg |= (1 << 24) | (1 << 26) | (1 << 30);
2472 if (hw->mac.type == e1000_ich8lan) {
2480 * e1000_setup_link_ich8lan - Setup flow control and link settings
2481 * @hw: pointer to the HW structure
2483 * Determines which flow control settings to use, then configures flow
2484 * control. Calls the appropriate media-specific link configuration
2485 * function. Assuming the adapter has a valid link partner, a valid link
2486 * should be established. Assumes the hardware has previously been reset
2487 * and the transmitter and receiver are not enabled.
2489 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2493 if (e1000_check_reset_block(hw))
2497 * ICH parts do not have a word in the NVM to determine
2498 * the default flow control setting, so we explicitly
2501 if (hw->fc.requested_mode == e1000_fc_default) {
2502 /* Workaround h/w hang when Tx flow control enabled */
2503 if (hw->mac.type == e1000_pchlan)
2504 hw->fc.requested_mode = e1000_fc_rx_pause;
2506 hw->fc.requested_mode = e1000_fc_full;
2510 * Save off the requested flow control mode for use later. Depending
2511 * on the link partner's capabilities, we may or may not use this mode.
2513 hw->fc.current_mode = hw->fc.requested_mode;
2515 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n",
2516 hw->fc.current_mode);
2518 /* Continue to configure the copper link. */
2519 ret_val = e1000_setup_copper_link_ich8lan(hw);
2523 ew32(FCTTV, hw->fc.pause_time);
2524 if ((hw->phy.type == e1000_phy_82578) ||
2525 (hw->phy.type == e1000_phy_82577)) {
2526 ret_val = hw->phy.ops.write_phy_reg(hw,
2527 PHY_REG(BM_PORT_CTRL_PAGE, 27),
2533 return e1000e_set_fc_watermarks(hw);
2537 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2538 * @hw: pointer to the HW structure
2540 * Configures the kumeran interface to the PHY to wait the appropriate time
2541 * when polling the PHY, then call the generic setup_copper_link to finish
2542 * configuring the copper link.
2544 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2551 ctrl |= E1000_CTRL_SLU;
2552 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2556 * Set the mac to wait the maximum time between each iteration
2557 * and increase the max iterations when polling the phy;
2558 * this fixes erroneous timeouts at 10Mbps.
2560 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2563 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data);
2567 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2571 switch (hw->phy.type) {
2572 case e1000_phy_igp_3:
2573 ret_val = e1000e_copper_link_setup_igp(hw);
2578 case e1000_phy_82578:
2579 ret_val = e1000e_copper_link_setup_m88(hw);
2583 case e1000_phy_82577:
2584 ret_val = e1000_copper_link_setup_82577(hw);
2589 ret_val = hw->phy.ops.read_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2594 reg_data &= ~IFE_PMC_AUTO_MDIX;
2596 switch (hw->phy.mdix) {
2598 reg_data &= ~IFE_PMC_FORCE_MDIX;
2601 reg_data |= IFE_PMC_FORCE_MDIX;
2605 reg_data |= IFE_PMC_AUTO_MDIX;
2608 ret_val = hw->phy.ops.write_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2616 return e1000e_setup_copper_link(hw);
2620 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2621 * @hw: pointer to the HW structure
2622 * @speed: pointer to store current link speed
2623 * @duplex: pointer to store the current link duplex
2625 * Calls the generic get_speed_and_duplex to retrieve the current link
2626 * information and then calls the Kumeran lock loss workaround for links at
2629 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2634 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2638 if ((hw->mac.type == e1000_pchlan) && (*speed == SPEED_1000)) {
2639 ret_val = e1000e_write_kmrn_reg(hw,
2640 E1000_KMRNCTRLSTA_K1_CONFIG,
2641 E1000_KMRNCTRLSTA_K1_DISABLE);
2646 if ((hw->mac.type == e1000_ich8lan) &&
2647 (hw->phy.type == e1000_phy_igp_3) &&
2648 (*speed == SPEED_1000)) {
2649 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2656 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2657 * @hw: pointer to the HW structure
2659 * Work-around for 82566 Kumeran PCS lock loss:
2660 * On link status change (i.e. PCI reset, speed change) and link is up and
2662 * 0) if workaround is optionally disabled do nothing
2663 * 1) wait 1ms for Kumeran link to come up
2664 * 2) check Kumeran Diagnostic register PCS lock loss bit
2665 * 3) if not set the link is locked (all is good), otherwise...
2667 * 5) repeat up to 10 times
2668 * Note: this is only called for IGP3 copper when speed is 1gb.
2670 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2672 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2678 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2682 * Make sure link is up before proceeding. If not just return.
2683 * Attempting this while link is negotiating fouled up link
2686 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2690 for (i = 0; i < 10; i++) {
2691 /* read once to clear */
2692 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2695 /* and again to get new status */
2696 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2700 /* check for PCS lock */
2701 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2704 /* Issue PHY reset */
2705 e1000_phy_hw_reset(hw);
2708 /* Disable GigE link negotiation */
2709 phy_ctrl = er32(PHY_CTRL);
2710 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2711 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2712 ew32(PHY_CTRL, phy_ctrl);
2715 * Call gig speed drop workaround on Gig disable before accessing
2718 e1000e_gig_downshift_workaround_ich8lan(hw);
2720 /* unable to acquire PCS lock */
2721 return -E1000_ERR_PHY;
2725 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2726 * @hw: pointer to the HW structure
2727 * @state: boolean value used to set the current Kumeran workaround state
2729 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2730 * /disabled - FALSE).
2732 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2735 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2737 if (hw->mac.type != e1000_ich8lan) {
2738 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2742 dev_spec->kmrn_lock_loss_workaround_enabled = state;
2746 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2747 * @hw: pointer to the HW structure
2749 * Workaround for 82566 power-down on D3 entry:
2750 * 1) disable gigabit link
2751 * 2) write VR power-down enable
2753 * Continue if successful, else issue LCD reset and repeat
2755 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2761 if (hw->phy.type != e1000_phy_igp_3)
2764 /* Try the workaround twice (if needed) */
2767 reg = er32(PHY_CTRL);
2768 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2769 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2770 ew32(PHY_CTRL, reg);
2773 * Call gig speed drop workaround on Gig disable before
2774 * accessing any PHY registers
2776 if (hw->mac.type == e1000_ich8lan)
2777 e1000e_gig_downshift_workaround_ich8lan(hw);
2779 /* Write VR power-down enable */
2780 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2781 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2782 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2784 /* Read it back and test */
2785 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2786 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2787 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2790 /* Issue PHY reset and repeat at most one more time */
2792 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2798 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2799 * @hw: pointer to the HW structure
2801 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2802 * LPLU, Gig disable, MDIC PHY reset):
2803 * 1) Set Kumeran Near-end loopback
2804 * 2) Clear Kumeran Near-end loopback
2805 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2807 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2812 if ((hw->mac.type != e1000_ich8lan) ||
2813 (hw->phy.type != e1000_phy_igp_3))
2816 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2820 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2821 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2825 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2826 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2831 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2832 * @hw: pointer to the HW structure
2834 * During S0 to Sx transition, it is possible the link remains at gig
2835 * instead of negotiating to a lower speed. Before going to Sx, set
2836 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2839 * Should only be called for applicable parts.
2841 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
2845 switch (hw->mac.type) {
2847 case e1000_ich10lan:
2849 phy_ctrl = er32(PHY_CTRL);
2850 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
2851 E1000_PHY_CTRL_GBE_DISABLE;
2852 ew32(PHY_CTRL, phy_ctrl);
2854 /* Workaround SWFLAG unexpectedly set during S0->Sx */
2855 if (hw->mac.type == e1000_pchlan)
2865 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2866 * @hw: pointer to the HW structure
2868 * Return the LED back to the default configuration.
2870 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2872 if (hw->phy.type == e1000_phy_ife)
2873 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2875 ew32(LEDCTL, hw->mac.ledctl_default);
2880 * e1000_led_on_ich8lan - Turn LEDs on
2881 * @hw: pointer to the HW structure
2885 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2887 if (hw->phy.type == e1000_phy_ife)
2888 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2889 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2891 ew32(LEDCTL, hw->mac.ledctl_mode2);
2896 * e1000_led_off_ich8lan - Turn LEDs off
2897 * @hw: pointer to the HW structure
2899 * Turn off the LEDs.
2901 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2903 if (hw->phy.type == e1000_phy_ife)
2904 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2905 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2907 ew32(LEDCTL, hw->mac.ledctl_mode1);
2912 * e1000_setup_led_pchlan - Configures SW controllable LED
2913 * @hw: pointer to the HW structure
2915 * This prepares the SW controllable LED for use.
2917 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
2919 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
2920 (u16)hw->mac.ledctl_mode1);
2924 * e1000_cleanup_led_pchlan - Restore the default LED operation
2925 * @hw: pointer to the HW structure
2927 * Return the LED back to the default configuration.
2929 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
2931 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
2932 (u16)hw->mac.ledctl_default);
2936 * e1000_led_on_pchlan - Turn LEDs on
2937 * @hw: pointer to the HW structure
2941 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
2943 u16 data = (u16)hw->mac.ledctl_mode2;
2947 * If no link, then turn LED on by setting the invert bit
2948 * for each LED that's mode is "link_up" in ledctl_mode2.
2950 if (!(er32(STATUS) & E1000_STATUS_LU)) {
2951 for (i = 0; i < 3; i++) {
2952 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
2953 if ((led & E1000_PHY_LED0_MODE_MASK) !=
2954 E1000_LEDCTL_MODE_LINK_UP)
2956 if (led & E1000_PHY_LED0_IVRT)
2957 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
2959 data |= (E1000_PHY_LED0_IVRT << (i * 5));
2963 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
2967 * e1000_led_off_pchlan - Turn LEDs off
2968 * @hw: pointer to the HW structure
2970 * Turn off the LEDs.
2972 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
2974 u16 data = (u16)hw->mac.ledctl_mode1;
2978 * If no link, then turn LED off by clearing the invert bit
2979 * for each LED that's mode is "link_up" in ledctl_mode1.
2981 if (!(er32(STATUS) & E1000_STATUS_LU)) {
2982 for (i = 0; i < 3; i++) {
2983 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
2984 if ((led & E1000_PHY_LED0_MODE_MASK) !=
2985 E1000_LEDCTL_MODE_LINK_UP)
2987 if (led & E1000_PHY_LED0_IVRT)
2988 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
2990 data |= (E1000_PHY_LED0_IVRT << (i * 5));
2994 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
2998 * e1000_get_cfg_done_ich8lan - Read config done bit
2999 * @hw: pointer to the HW structure
3001 * Read the management control register for the config done bit for
3002 * completion status. NOTE: silicon which is EEPROM-less will fail trying
3003 * to read the config done bit, so an error is *ONLY* logged and returns
3004 * 0. If we were to return with error, EEPROM-less silicon
3005 * would not be able to be reset or change link.
3007 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3011 if (hw->mac.type >= e1000_pchlan) {
3012 u32 status = er32(STATUS);
3014 if (status & E1000_STATUS_PHYRA)
3015 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3018 "PHY Reset Asserted not set - needs delay\n");
3021 e1000e_get_cfg_done(hw);
3023 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3024 if ((hw->mac.type != e1000_ich10lan) &&
3025 (hw->mac.type != e1000_pchlan)) {
3026 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3027 (hw->phy.type == e1000_phy_igp_3)) {
3028 e1000e_phy_init_script_igp3(hw);
3031 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3032 /* Maybe we should do a basic PHY config */
3033 hw_dbg(hw, "EEPROM not present\n");
3034 return -E1000_ERR_CONFIG;
3042 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3043 * @hw: pointer to the HW structure
3045 * Clears hardware counters specific to the silicon family and calls
3046 * clear_hw_cntrs_generic to clear all general purpose counters.
3048 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3053 e1000e_clear_hw_cntrs_base(hw);
3055 temp = er32(ALGNERRC);
3056 temp = er32(RXERRC);
3058 temp = er32(CEXTERR);
3060 temp = er32(TSCTFC);
3062 temp = er32(MGTPRC);
3063 temp = er32(MGTPDC);
3064 temp = er32(MGTPTC);
3067 temp = er32(ICRXOC);
3069 /* Clear PHY statistics registers */
3070 if ((hw->phy.type == e1000_phy_82578) ||
3071 (hw->phy.type == e1000_phy_82577)) {
3072 hw->phy.ops.read_phy_reg(hw, HV_SCC_UPPER, &phy_data);
3073 hw->phy.ops.read_phy_reg(hw, HV_SCC_LOWER, &phy_data);
3074 hw->phy.ops.read_phy_reg(hw, HV_ECOL_UPPER, &phy_data);
3075 hw->phy.ops.read_phy_reg(hw, HV_ECOL_LOWER, &phy_data);
3076 hw->phy.ops.read_phy_reg(hw, HV_MCC_UPPER, &phy_data);
3077 hw->phy.ops.read_phy_reg(hw, HV_MCC_LOWER, &phy_data);
3078 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_UPPER, &phy_data);
3079 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_LOWER, &phy_data);
3080 hw->phy.ops.read_phy_reg(hw, HV_COLC_UPPER, &phy_data);
3081 hw->phy.ops.read_phy_reg(hw, HV_COLC_LOWER, &phy_data);
3082 hw->phy.ops.read_phy_reg(hw, HV_DC_UPPER, &phy_data);
3083 hw->phy.ops.read_phy_reg(hw, HV_DC_LOWER, &phy_data);
3084 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_UPPER, &phy_data);
3085 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_LOWER, &phy_data);
3089 static struct e1000_mac_operations ich8_mac_ops = {
3090 .id_led_init = e1000e_id_led_init,
3091 .check_mng_mode = e1000_check_mng_mode_ich8lan,
3092 .check_for_link = e1000_check_for_copper_link_ich8lan,
3093 /* cleanup_led dependent on mac type */
3094 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
3095 .get_bus_info = e1000_get_bus_info_ich8lan,
3096 .get_link_up_info = e1000_get_link_up_info_ich8lan,
3097 /* led_on dependent on mac type */
3098 /* led_off dependent on mac type */
3099 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
3100 .reset_hw = e1000_reset_hw_ich8lan,
3101 .init_hw = e1000_init_hw_ich8lan,
3102 .setup_link = e1000_setup_link_ich8lan,
3103 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
3104 /* id_led_init dependent on mac type */
3107 static struct e1000_phy_operations ich8_phy_ops = {
3108 .acquire_phy = e1000_acquire_swflag_ich8lan,
3109 .check_reset_block = e1000_check_reset_block_ich8lan,
3111 .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
3112 .get_cfg_done = e1000_get_cfg_done_ich8lan,
3113 .get_cable_length = e1000e_get_cable_length_igp_2,
3114 .get_phy_info = e1000_get_phy_info_ich8lan,
3115 .read_phy_reg = e1000e_read_phy_reg_igp,
3116 .release_phy = e1000_release_swflag_ich8lan,
3117 .reset_phy = e1000_phy_hw_reset_ich8lan,
3118 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
3119 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
3120 .write_phy_reg = e1000e_write_phy_reg_igp,
3123 static struct e1000_nvm_operations ich8_nvm_ops = {
3124 .acquire_nvm = e1000_acquire_swflag_ich8lan,
3125 .read_nvm = e1000_read_nvm_ich8lan,
3126 .release_nvm = e1000_release_swflag_ich8lan,
3127 .update_nvm = e1000_update_nvm_checksum_ich8lan,
3128 .valid_led_default = e1000_valid_led_default_ich8lan,
3129 .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
3130 .write_nvm = e1000_write_nvm_ich8lan,
3133 struct e1000_info e1000_ich8_info = {
3134 .mac = e1000_ich8lan,
3135 .flags = FLAG_HAS_WOL
3137 | FLAG_RX_CSUM_ENABLED
3138 | FLAG_HAS_CTRLEXT_ON_LOAD
3143 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
3144 .get_variants = e1000_get_variants_ich8lan,
3145 .mac_ops = &ich8_mac_ops,
3146 .phy_ops = &ich8_phy_ops,
3147 .nvm_ops = &ich8_nvm_ops,
3150 struct e1000_info e1000_ich9_info = {
3151 .mac = e1000_ich9lan,
3152 .flags = FLAG_HAS_JUMBO_FRAMES
3155 | FLAG_RX_CSUM_ENABLED
3156 | FLAG_HAS_CTRLEXT_ON_LOAD
3162 .max_hw_frame_size = DEFAULT_JUMBO,
3163 .get_variants = e1000_get_variants_ich8lan,
3164 .mac_ops = &ich8_mac_ops,
3165 .phy_ops = &ich8_phy_ops,
3166 .nvm_ops = &ich8_nvm_ops,
3169 struct e1000_info e1000_ich10_info = {
3170 .mac = e1000_ich10lan,
3171 .flags = FLAG_HAS_JUMBO_FRAMES
3174 | FLAG_RX_CSUM_ENABLED
3175 | FLAG_HAS_CTRLEXT_ON_LOAD
3181 .max_hw_frame_size = DEFAULT_JUMBO,
3182 .get_variants = e1000_get_variants_ich8lan,
3183 .mac_ops = &ich8_mac_ops,
3184 .phy_ops = &ich8_phy_ops,
3185 .nvm_ops = &ich8_nvm_ops,
3188 struct e1000_info e1000_pch_info = {
3189 .mac = e1000_pchlan,
3190 .flags = FLAG_IS_ICH
3192 | FLAG_RX_CSUM_ENABLED
3193 | FLAG_HAS_CTRLEXT_ON_LOAD
3196 | FLAG_HAS_JUMBO_FRAMES
3199 .max_hw_frame_size = 4096,
3200 .get_variants = e1000_get_variants_ich8lan,
3201 .mac_ops = &ich8_mac_ops,
3202 .phy_ops = &ich8_phy_ops,
3203 .nvm_ops = &ich8_nvm_ops,