2 * SPU file system -- file contents
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
33 #include <asm/semaphore.h>
35 #include <asm/spu_info.h>
36 #include <asm/uaccess.h>
40 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
43 spufs_mem_open(struct inode *inode, struct file *file)
45 struct spufs_inode_info *i = SPUFS_I(inode);
46 struct spu_context *ctx = i->i_ctx;
48 mutex_lock(&ctx->mapping_lock);
49 file->private_data = ctx;
51 ctx->local_store = inode->i_mapping;
52 mutex_unlock(&ctx->mapping_lock);
57 spufs_mem_release(struct inode *inode, struct file *file)
59 struct spufs_inode_info *i = SPUFS_I(inode);
60 struct spu_context *ctx = i->i_ctx;
62 mutex_lock(&ctx->mapping_lock);
64 ctx->local_store = NULL;
65 mutex_unlock(&ctx->mapping_lock);
70 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
71 size_t size, loff_t *pos)
73 char *local_store = ctx->ops->get_ls(ctx);
74 return simple_read_from_buffer(buffer, size, pos, local_store,
79 spufs_mem_read(struct file *file, char __user *buffer,
80 size_t size, loff_t *pos)
82 struct spu_context *ctx = file->private_data;
86 ret = __spufs_mem_read(ctx, buffer, size, pos);
92 spufs_mem_write(struct file *file, const char __user *buffer,
93 size_t size, loff_t *ppos)
95 struct spu_context *ctx = file->private_data;
104 if (size > LS_SIZE - pos)
105 size = LS_SIZE - pos;
108 local_store = ctx->ops->get_ls(ctx);
109 ret = copy_from_user(local_store + pos, buffer, size);
118 static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
119 unsigned long address)
121 struct spu_context *ctx = vma->vm_file->private_data;
122 unsigned long pfn, offset, addr0 = address;
123 #ifdef CONFIG_SPU_FS_64K_LS
124 struct spu_state *csa = &ctx->csa;
127 /* Check what page size we are using */
128 psize = get_slice_psize(vma->vm_mm, address);
130 /* Some sanity checking */
131 BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
133 /* Wow, 64K, cool, we need to align the address though */
134 if (csa->use_big_pages) {
135 BUG_ON(vma->vm_start & 0xffff);
136 address &= ~0xfffful;
138 #endif /* CONFIG_SPU_FS_64K_LS */
140 offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
141 if (offset >= LS_SIZE)
144 pr_debug("spufs_mem_mmap_nopfn address=0x%lx -> 0x%lx, offset=0x%lx\n",
145 addr0, address, offset);
149 if (ctx->state == SPU_STATE_SAVED) {
150 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
152 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
154 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
156 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
158 vm_insert_pfn(vma, address, pfn);
162 return NOPFN_REFAULT;
166 static struct vm_operations_struct spufs_mem_mmap_vmops = {
167 .nopfn = spufs_mem_mmap_nopfn,
170 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
172 #ifdef CONFIG_SPU_FS_64K_LS
173 struct spu_context *ctx = file->private_data;
174 struct spu_state *csa = &ctx->csa;
176 /* Sanity check VMA alignment */
177 if (csa->use_big_pages) {
178 pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
179 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
181 if (vma->vm_start & 0xffff)
183 if (vma->vm_pgoff & 0xf)
186 #endif /* CONFIG_SPU_FS_64K_LS */
188 if (!(vma->vm_flags & VM_SHARED))
191 vma->vm_flags |= VM_IO | VM_PFNMAP;
192 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
195 vma->vm_ops = &spufs_mem_mmap_vmops;
199 #ifdef CONFIG_SPU_FS_64K_LS
200 unsigned long spufs_get_unmapped_area(struct file *file, unsigned long addr,
201 unsigned long len, unsigned long pgoff,
204 struct spu_context *ctx = file->private_data;
205 struct spu_state *csa = &ctx->csa;
207 /* If not using big pages, fallback to normal MM g_u_a */
208 if (!csa->use_big_pages)
209 return current->mm->get_unmapped_area(file, addr, len,
212 /* Else, try to obtain a 64K pages slice */
213 return slice_get_unmapped_area(addr, len, flags,
216 #endif /* CONFIG_SPU_FS_64K_LS */
218 static const struct file_operations spufs_mem_fops = {
219 .open = spufs_mem_open,
220 .release = spufs_mem_release,
221 .read = spufs_mem_read,
222 .write = spufs_mem_write,
223 .llseek = generic_file_llseek,
224 .mmap = spufs_mem_mmap,
225 #ifdef CONFIG_SPU_FS_64K_LS
226 .get_unmapped_area = spufs_get_unmapped_area,
230 static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
231 unsigned long address,
232 unsigned long ps_offs,
233 unsigned long ps_size)
235 struct spu_context *ctx = vma->vm_file->private_data;
236 unsigned long area, offset = address - vma->vm_start;
239 offset += vma->vm_pgoff << PAGE_SHIFT;
240 if (offset >= ps_size)
243 /* error here usually means a signal.. we might want to test
244 * the error code more precisely though
246 ret = spu_acquire_runnable(ctx, 0);
248 return NOPFN_REFAULT;
250 area = ctx->spu->problem_phys + ps_offs;
251 vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
254 return NOPFN_REFAULT;
258 static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
259 unsigned long address)
261 return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
264 static struct vm_operations_struct spufs_cntl_mmap_vmops = {
265 .nopfn = spufs_cntl_mmap_nopfn,
269 * mmap support for problem state control area [0x4000 - 0x4fff].
271 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
273 if (!(vma->vm_flags & VM_SHARED))
276 vma->vm_flags |= VM_IO | VM_PFNMAP;
277 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
278 | _PAGE_NO_CACHE | _PAGE_GUARDED);
280 vma->vm_ops = &spufs_cntl_mmap_vmops;
283 #else /* SPUFS_MMAP_4K */
284 #define spufs_cntl_mmap NULL
285 #endif /* !SPUFS_MMAP_4K */
287 static u64 spufs_cntl_get(void *data)
289 struct spu_context *ctx = data;
293 val = ctx->ops->status_read(ctx);
299 static void spufs_cntl_set(void *data, u64 val)
301 struct spu_context *ctx = data;
304 ctx->ops->runcntl_write(ctx, val);
308 static int spufs_cntl_open(struct inode *inode, struct file *file)
310 struct spufs_inode_info *i = SPUFS_I(inode);
311 struct spu_context *ctx = i->i_ctx;
313 mutex_lock(&ctx->mapping_lock);
314 file->private_data = ctx;
316 ctx->cntl = inode->i_mapping;
317 mutex_unlock(&ctx->mapping_lock);
318 return simple_attr_open(inode, file, spufs_cntl_get,
319 spufs_cntl_set, "0x%08lx");
323 spufs_cntl_release(struct inode *inode, struct file *file)
325 struct spufs_inode_info *i = SPUFS_I(inode);
326 struct spu_context *ctx = i->i_ctx;
328 simple_attr_close(inode, file);
330 mutex_lock(&ctx->mapping_lock);
333 mutex_unlock(&ctx->mapping_lock);
337 static const struct file_operations spufs_cntl_fops = {
338 .open = spufs_cntl_open,
339 .release = spufs_cntl_release,
340 .read = simple_attr_read,
341 .write = simple_attr_write,
342 .mmap = spufs_cntl_mmap,
346 spufs_regs_open(struct inode *inode, struct file *file)
348 struct spufs_inode_info *i = SPUFS_I(inode);
349 file->private_data = i->i_ctx;
354 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
355 size_t size, loff_t *pos)
357 struct spu_lscsa *lscsa = ctx->csa.lscsa;
358 return simple_read_from_buffer(buffer, size, pos,
359 lscsa->gprs, sizeof lscsa->gprs);
363 spufs_regs_read(struct file *file, char __user *buffer,
364 size_t size, loff_t *pos)
367 struct spu_context *ctx = file->private_data;
369 spu_acquire_saved(ctx);
370 ret = __spufs_regs_read(ctx, buffer, size, pos);
376 spufs_regs_write(struct file *file, const char __user *buffer,
377 size_t size, loff_t *pos)
379 struct spu_context *ctx = file->private_data;
380 struct spu_lscsa *lscsa = ctx->csa.lscsa;
383 size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
388 spu_acquire_saved(ctx);
390 ret = copy_from_user(lscsa->gprs + *pos - size,
391 buffer, size) ? -EFAULT : size;
397 static const struct file_operations spufs_regs_fops = {
398 .open = spufs_regs_open,
399 .read = spufs_regs_read,
400 .write = spufs_regs_write,
401 .llseek = generic_file_llseek,
405 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
406 size_t size, loff_t * pos)
408 struct spu_lscsa *lscsa = ctx->csa.lscsa;
409 return simple_read_from_buffer(buffer, size, pos,
410 &lscsa->fpcr, sizeof(lscsa->fpcr));
414 spufs_fpcr_read(struct file *file, char __user * buffer,
415 size_t size, loff_t * pos)
418 struct spu_context *ctx = file->private_data;
420 spu_acquire_saved(ctx);
421 ret = __spufs_fpcr_read(ctx, buffer, size, pos);
427 spufs_fpcr_write(struct file *file, const char __user * buffer,
428 size_t size, loff_t * pos)
430 struct spu_context *ctx = file->private_data;
431 struct spu_lscsa *lscsa = ctx->csa.lscsa;
434 size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
439 spu_acquire_saved(ctx);
441 ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
442 buffer, size) ? -EFAULT : size;
448 static const struct file_operations spufs_fpcr_fops = {
449 .open = spufs_regs_open,
450 .read = spufs_fpcr_read,
451 .write = spufs_fpcr_write,
452 .llseek = generic_file_llseek,
455 /* generic open function for all pipe-like files */
456 static int spufs_pipe_open(struct inode *inode, struct file *file)
458 struct spufs_inode_info *i = SPUFS_I(inode);
459 file->private_data = i->i_ctx;
461 return nonseekable_open(inode, file);
465 * Read as many bytes from the mailbox as possible, until
466 * one of the conditions becomes true:
468 * - no more data available in the mailbox
469 * - end of the user provided buffer
470 * - end of the mapped area
472 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
473 size_t len, loff_t *pos)
475 struct spu_context *ctx = file->private_data;
476 u32 mbox_data, __user *udata;
482 if (!access_ok(VERIFY_WRITE, buf, len))
485 udata = (void __user *)buf;
488 for (count = 0; (count + 4) <= len; count += 4, udata++) {
490 ret = ctx->ops->mbox_read(ctx, &mbox_data);
495 * at the end of the mapped area, we can fault
496 * but still need to return the data we have
497 * read successfully so far.
499 ret = __put_user(mbox_data, udata);
514 static const struct file_operations spufs_mbox_fops = {
515 .open = spufs_pipe_open,
516 .read = spufs_mbox_read,
519 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
520 size_t len, loff_t *pos)
522 struct spu_context *ctx = file->private_data;
530 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
534 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
540 static const struct file_operations spufs_mbox_stat_fops = {
541 .open = spufs_pipe_open,
542 .read = spufs_mbox_stat_read,
545 /* low-level ibox access function */
546 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
548 return ctx->ops->ibox_read(ctx, data);
551 static int spufs_ibox_fasync(int fd, struct file *file, int on)
553 struct spu_context *ctx = file->private_data;
555 return fasync_helper(fd, file, on, &ctx->ibox_fasync);
558 /* interrupt-level ibox callback function. */
559 void spufs_ibox_callback(struct spu *spu)
561 struct spu_context *ctx = spu->ctx;
563 wake_up_all(&ctx->ibox_wq);
564 kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
568 * Read as many bytes from the interrupt mailbox as possible, until
569 * one of the conditions becomes true:
571 * - no more data available in the mailbox
572 * - end of the user provided buffer
573 * - end of the mapped area
575 * If the file is opened without O_NONBLOCK, we wait here until
576 * any data is available, but return when we have been able to
579 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
580 size_t len, loff_t *pos)
582 struct spu_context *ctx = file->private_data;
583 u32 ibox_data, __user *udata;
589 if (!access_ok(VERIFY_WRITE, buf, len))
592 udata = (void __user *)buf;
596 /* wait only for the first element */
598 if (file->f_flags & O_NONBLOCK) {
599 if (!spu_ibox_read(ctx, &ibox_data))
602 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
607 /* if we can't write at all, return -EFAULT */
608 count = __put_user(ibox_data, udata);
612 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
614 ret = ctx->ops->ibox_read(ctx, &ibox_data);
618 * at the end of the mapped area, we can fault
619 * but still need to return the data we have
620 * read successfully so far.
622 ret = __put_user(ibox_data, udata);
633 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
635 struct spu_context *ctx = file->private_data;
638 poll_wait(file, &ctx->ibox_wq, wait);
641 mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
647 static const struct file_operations spufs_ibox_fops = {
648 .open = spufs_pipe_open,
649 .read = spufs_ibox_read,
650 .poll = spufs_ibox_poll,
651 .fasync = spufs_ibox_fasync,
654 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
655 size_t len, loff_t *pos)
657 struct spu_context *ctx = file->private_data;
664 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
667 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
673 static const struct file_operations spufs_ibox_stat_fops = {
674 .open = spufs_pipe_open,
675 .read = spufs_ibox_stat_read,
678 /* low-level mailbox write */
679 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
681 return ctx->ops->wbox_write(ctx, data);
684 static int spufs_wbox_fasync(int fd, struct file *file, int on)
686 struct spu_context *ctx = file->private_data;
689 ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
694 /* interrupt-level wbox callback function. */
695 void spufs_wbox_callback(struct spu *spu)
697 struct spu_context *ctx = spu->ctx;
699 wake_up_all(&ctx->wbox_wq);
700 kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
704 * Write as many bytes to the interrupt mailbox as possible, until
705 * one of the conditions becomes true:
707 * - the mailbox is full
708 * - end of the user provided buffer
709 * - end of the mapped area
711 * If the file is opened without O_NONBLOCK, we wait here until
712 * space is availabyl, but return when we have been able to
715 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
716 size_t len, loff_t *pos)
718 struct spu_context *ctx = file->private_data;
719 u32 wbox_data, __user *udata;
725 udata = (void __user *)buf;
726 if (!access_ok(VERIFY_READ, buf, len))
729 if (__get_user(wbox_data, udata))
735 * make sure we can at least write one element, by waiting
736 * in case of !O_NONBLOCK
739 if (file->f_flags & O_NONBLOCK) {
740 if (!spu_wbox_write(ctx, wbox_data))
743 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
749 /* write aѕ much as possible */
750 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
752 ret = __get_user(wbox_data, udata);
756 ret = spu_wbox_write(ctx, wbox_data);
766 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
768 struct spu_context *ctx = file->private_data;
771 poll_wait(file, &ctx->wbox_wq, wait);
774 mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
780 static const struct file_operations spufs_wbox_fops = {
781 .open = spufs_pipe_open,
782 .write = spufs_wbox_write,
783 .poll = spufs_wbox_poll,
784 .fasync = spufs_wbox_fasync,
787 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
788 size_t len, loff_t *pos)
790 struct spu_context *ctx = file->private_data;
797 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
800 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
806 static const struct file_operations spufs_wbox_stat_fops = {
807 .open = spufs_pipe_open,
808 .read = spufs_wbox_stat_read,
811 static int spufs_signal1_open(struct inode *inode, struct file *file)
813 struct spufs_inode_info *i = SPUFS_I(inode);
814 struct spu_context *ctx = i->i_ctx;
816 mutex_lock(&ctx->mapping_lock);
817 file->private_data = ctx;
819 ctx->signal1 = inode->i_mapping;
820 mutex_unlock(&ctx->mapping_lock);
821 return nonseekable_open(inode, file);
825 spufs_signal1_release(struct inode *inode, struct file *file)
827 struct spufs_inode_info *i = SPUFS_I(inode);
828 struct spu_context *ctx = i->i_ctx;
830 mutex_lock(&ctx->mapping_lock);
833 mutex_unlock(&ctx->mapping_lock);
837 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
838 size_t len, loff_t *pos)
846 if (ctx->csa.spu_chnlcnt_RW[3]) {
847 data = ctx->csa.spu_chnldata_RW[3];
854 if (copy_to_user(buf, &data, 4))
861 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
862 size_t len, loff_t *pos)
865 struct spu_context *ctx = file->private_data;
867 spu_acquire_saved(ctx);
868 ret = __spufs_signal1_read(ctx, buf, len, pos);
874 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
875 size_t len, loff_t *pos)
877 struct spu_context *ctx;
880 ctx = file->private_data;
885 if (copy_from_user(&data, buf, 4))
889 ctx->ops->signal1_write(ctx, data);
895 static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
896 unsigned long address)
898 #if PAGE_SIZE == 0x1000
899 return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
900 #elif PAGE_SIZE == 0x10000
901 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
902 * signal 1 and 2 area
904 return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
906 #error unsupported page size
910 static struct vm_operations_struct spufs_signal1_mmap_vmops = {
911 .nopfn = spufs_signal1_mmap_nopfn,
914 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
916 if (!(vma->vm_flags & VM_SHARED))
919 vma->vm_flags |= VM_IO | VM_PFNMAP;
920 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
921 | _PAGE_NO_CACHE | _PAGE_GUARDED);
923 vma->vm_ops = &spufs_signal1_mmap_vmops;
927 static const struct file_operations spufs_signal1_fops = {
928 .open = spufs_signal1_open,
929 .release = spufs_signal1_release,
930 .read = spufs_signal1_read,
931 .write = spufs_signal1_write,
932 .mmap = spufs_signal1_mmap,
935 static int spufs_signal2_open(struct inode *inode, struct file *file)
937 struct spufs_inode_info *i = SPUFS_I(inode);
938 struct spu_context *ctx = i->i_ctx;
940 mutex_lock(&ctx->mapping_lock);
941 file->private_data = ctx;
943 ctx->signal2 = inode->i_mapping;
944 mutex_unlock(&ctx->mapping_lock);
945 return nonseekable_open(inode, file);
949 spufs_signal2_release(struct inode *inode, struct file *file)
951 struct spufs_inode_info *i = SPUFS_I(inode);
952 struct spu_context *ctx = i->i_ctx;
954 mutex_lock(&ctx->mapping_lock);
957 mutex_unlock(&ctx->mapping_lock);
961 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
962 size_t len, loff_t *pos)
970 if (ctx->csa.spu_chnlcnt_RW[4]) {
971 data = ctx->csa.spu_chnldata_RW[4];
978 if (copy_to_user(buf, &data, 4))
985 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
986 size_t len, loff_t *pos)
988 struct spu_context *ctx = file->private_data;
991 spu_acquire_saved(ctx);
992 ret = __spufs_signal2_read(ctx, buf, len, pos);
998 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
999 size_t len, loff_t *pos)
1001 struct spu_context *ctx;
1004 ctx = file->private_data;
1009 if (copy_from_user(&data, buf, 4))
1013 ctx->ops->signal2_write(ctx, data);
1020 static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
1021 unsigned long address)
1023 #if PAGE_SIZE == 0x1000
1024 return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
1025 #elif PAGE_SIZE == 0x10000
1026 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1027 * signal 1 and 2 area
1029 return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1031 #error unsupported page size
1035 static struct vm_operations_struct spufs_signal2_mmap_vmops = {
1036 .nopfn = spufs_signal2_mmap_nopfn,
1039 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1041 if (!(vma->vm_flags & VM_SHARED))
1044 vma->vm_flags |= VM_IO | VM_PFNMAP;
1045 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1046 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1048 vma->vm_ops = &spufs_signal2_mmap_vmops;
1051 #else /* SPUFS_MMAP_4K */
1052 #define spufs_signal2_mmap NULL
1053 #endif /* !SPUFS_MMAP_4K */
1055 static const struct file_operations spufs_signal2_fops = {
1056 .open = spufs_signal2_open,
1057 .release = spufs_signal2_release,
1058 .read = spufs_signal2_read,
1059 .write = spufs_signal2_write,
1060 .mmap = spufs_signal2_mmap,
1063 static void spufs_signal1_type_set(void *data, u64 val)
1065 struct spu_context *ctx = data;
1068 ctx->ops->signal1_type_set(ctx, val);
1072 static u64 __spufs_signal1_type_get(void *data)
1074 struct spu_context *ctx = data;
1075 return ctx->ops->signal1_type_get(ctx);
1078 static u64 spufs_signal1_type_get(void *data)
1080 struct spu_context *ctx = data;
1084 ret = __spufs_signal1_type_get(data);
1089 DEFINE_SIMPLE_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1090 spufs_signal1_type_set, "%llu");
1092 static void spufs_signal2_type_set(void *data, u64 val)
1094 struct spu_context *ctx = data;
1097 ctx->ops->signal2_type_set(ctx, val);
1101 static u64 __spufs_signal2_type_get(void *data)
1103 struct spu_context *ctx = data;
1104 return ctx->ops->signal2_type_get(ctx);
1107 static u64 spufs_signal2_type_get(void *data)
1109 struct spu_context *ctx = data;
1113 ret = __spufs_signal2_type_get(data);
1118 DEFINE_SIMPLE_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1119 spufs_signal2_type_set, "%llu");
1122 static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
1123 unsigned long address)
1125 return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
1128 static struct vm_operations_struct spufs_mss_mmap_vmops = {
1129 .nopfn = spufs_mss_mmap_nopfn,
1133 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1135 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1137 if (!(vma->vm_flags & VM_SHARED))
1140 vma->vm_flags |= VM_IO | VM_PFNMAP;
1141 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1142 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1144 vma->vm_ops = &spufs_mss_mmap_vmops;
1147 #else /* SPUFS_MMAP_4K */
1148 #define spufs_mss_mmap NULL
1149 #endif /* !SPUFS_MMAP_4K */
1151 static int spufs_mss_open(struct inode *inode, struct file *file)
1153 struct spufs_inode_info *i = SPUFS_I(inode);
1154 struct spu_context *ctx = i->i_ctx;
1156 file->private_data = i->i_ctx;
1158 mutex_lock(&ctx->mapping_lock);
1159 if (!i->i_openers++)
1160 ctx->mss = inode->i_mapping;
1161 mutex_unlock(&ctx->mapping_lock);
1162 return nonseekable_open(inode, file);
1166 spufs_mss_release(struct inode *inode, struct file *file)
1168 struct spufs_inode_info *i = SPUFS_I(inode);
1169 struct spu_context *ctx = i->i_ctx;
1171 mutex_lock(&ctx->mapping_lock);
1172 if (!--i->i_openers)
1174 mutex_unlock(&ctx->mapping_lock);
1178 static const struct file_operations spufs_mss_fops = {
1179 .open = spufs_mss_open,
1180 .release = spufs_mss_release,
1181 .mmap = spufs_mss_mmap,
1184 static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
1185 unsigned long address)
1187 return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
1190 static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1191 .nopfn = spufs_psmap_mmap_nopfn,
1195 * mmap support for full problem state area [0x00000 - 0x1ffff].
1197 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1199 if (!(vma->vm_flags & VM_SHARED))
1202 vma->vm_flags |= VM_IO | VM_PFNMAP;
1203 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1204 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1206 vma->vm_ops = &spufs_psmap_mmap_vmops;
1210 static int spufs_psmap_open(struct inode *inode, struct file *file)
1212 struct spufs_inode_info *i = SPUFS_I(inode);
1213 struct spu_context *ctx = i->i_ctx;
1215 mutex_lock(&ctx->mapping_lock);
1216 file->private_data = i->i_ctx;
1217 if (!i->i_openers++)
1218 ctx->psmap = inode->i_mapping;
1219 mutex_unlock(&ctx->mapping_lock);
1220 return nonseekable_open(inode, file);
1224 spufs_psmap_release(struct inode *inode, struct file *file)
1226 struct spufs_inode_info *i = SPUFS_I(inode);
1227 struct spu_context *ctx = i->i_ctx;
1229 mutex_lock(&ctx->mapping_lock);
1230 if (!--i->i_openers)
1232 mutex_unlock(&ctx->mapping_lock);
1236 static const struct file_operations spufs_psmap_fops = {
1237 .open = spufs_psmap_open,
1238 .release = spufs_psmap_release,
1239 .mmap = spufs_psmap_mmap,
1244 static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
1245 unsigned long address)
1247 return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
1250 static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1251 .nopfn = spufs_mfc_mmap_nopfn,
1255 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1257 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1259 if (!(vma->vm_flags & VM_SHARED))
1262 vma->vm_flags |= VM_IO | VM_PFNMAP;
1263 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1264 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1266 vma->vm_ops = &spufs_mfc_mmap_vmops;
1269 #else /* SPUFS_MMAP_4K */
1270 #define spufs_mfc_mmap NULL
1271 #endif /* !SPUFS_MMAP_4K */
1273 static int spufs_mfc_open(struct inode *inode, struct file *file)
1275 struct spufs_inode_info *i = SPUFS_I(inode);
1276 struct spu_context *ctx = i->i_ctx;
1278 /* we don't want to deal with DMA into other processes */
1279 if (ctx->owner != current->mm)
1282 if (atomic_read(&inode->i_count) != 1)
1285 mutex_lock(&ctx->mapping_lock);
1286 file->private_data = ctx;
1287 if (!i->i_openers++)
1288 ctx->mfc = inode->i_mapping;
1289 mutex_unlock(&ctx->mapping_lock);
1290 return nonseekable_open(inode, file);
1294 spufs_mfc_release(struct inode *inode, struct file *file)
1296 struct spufs_inode_info *i = SPUFS_I(inode);
1297 struct spu_context *ctx = i->i_ctx;
1299 mutex_lock(&ctx->mapping_lock);
1300 if (!--i->i_openers)
1302 mutex_unlock(&ctx->mapping_lock);
1306 /* interrupt-level mfc callback function. */
1307 void spufs_mfc_callback(struct spu *spu)
1309 struct spu_context *ctx = spu->ctx;
1311 wake_up_all(&ctx->mfc_wq);
1313 pr_debug("%s %s\n", __FUNCTION__, spu->name);
1314 if (ctx->mfc_fasync) {
1315 u32 free_elements, tagstatus;
1318 /* no need for spu_acquire in interrupt context */
1319 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1320 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1323 if (free_elements & 0xffff)
1325 if (tagstatus & ctx->tagwait)
1328 kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1332 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1334 /* See if there is one tag group is complete */
1335 /* FIXME we need locking around tagwait */
1336 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1337 ctx->tagwait &= ~*status;
1341 /* enable interrupt waiting for any tag group,
1342 may silently fail if interrupts are already enabled */
1343 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1347 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1348 size_t size, loff_t *pos)
1350 struct spu_context *ctx = file->private_data;
1358 if (file->f_flags & O_NONBLOCK) {
1359 status = ctx->ops->read_mfc_tagstatus(ctx);
1360 if (!(status & ctx->tagwait))
1363 ctx->tagwait &= ~status;
1365 ret = spufs_wait(ctx->mfc_wq,
1366 spufs_read_mfc_tagstatus(ctx, &status));
1374 if (copy_to_user(buffer, &status, 4))
1381 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1383 pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
1384 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1395 pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1399 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1400 pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
1405 switch (cmd->size & 0xf) {
1426 pr_debug("invalid DMA alignment %x for size %x\n",
1427 cmd->lsa & 0xf, cmd->size);
1431 if (cmd->size > 16 * 1024) {
1432 pr_debug("invalid DMA size %x\n", cmd->size);
1436 if (cmd->tag & 0xfff0) {
1437 /* we reserve the higher tag numbers for kernel use */
1438 pr_debug("invalid DMA tag\n");
1443 /* not supported in this version */
1444 pr_debug("invalid DMA class\n");
1451 static int spu_send_mfc_command(struct spu_context *ctx,
1452 struct mfc_dma_command cmd,
1455 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1456 if (*error == -EAGAIN) {
1457 /* wait for any tag group to complete
1458 so we have space for the new command */
1459 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1460 /* try again, because the queue might be
1462 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1463 if (*error == -EAGAIN)
1469 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1470 size_t size, loff_t *pos)
1472 struct spu_context *ctx = file->private_data;
1473 struct mfc_dma_command cmd;
1476 if (size != sizeof cmd)
1480 if (copy_from_user(&cmd, buffer, sizeof cmd))
1483 ret = spufs_check_valid_dma(&cmd);
1487 ret = spu_acquire_runnable(ctx, 0);
1491 if (file->f_flags & O_NONBLOCK) {
1492 ret = ctx->ops->send_mfc_command(ctx, &cmd);
1495 ret = spufs_wait(ctx->mfc_wq,
1496 spu_send_mfc_command(ctx, cmd, &status));
1505 ctx->tagwait |= 1 << cmd.tag;
1512 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1514 struct spu_context *ctx = file->private_data;
1515 u32 free_elements, tagstatus;
1519 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1520 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1521 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1524 poll_wait(file, &ctx->mfc_wq, wait);
1527 if (free_elements & 0xffff)
1528 mask |= POLLOUT | POLLWRNORM;
1529 if (tagstatus & ctx->tagwait)
1530 mask |= POLLIN | POLLRDNORM;
1532 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
1533 free_elements, tagstatus, ctx->tagwait);
1538 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1540 struct spu_context *ctx = file->private_data;
1545 /* this currently hangs */
1546 ret = spufs_wait(ctx->mfc_wq,
1547 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1550 ret = spufs_wait(ctx->mfc_wq,
1551 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1561 static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
1564 return spufs_mfc_flush(file, NULL);
1567 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1569 struct spu_context *ctx = file->private_data;
1571 return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1574 static const struct file_operations spufs_mfc_fops = {
1575 .open = spufs_mfc_open,
1576 .release = spufs_mfc_release,
1577 .read = spufs_mfc_read,
1578 .write = spufs_mfc_write,
1579 .poll = spufs_mfc_poll,
1580 .flush = spufs_mfc_flush,
1581 .fsync = spufs_mfc_fsync,
1582 .fasync = spufs_mfc_fasync,
1583 .mmap = spufs_mfc_mmap,
1586 static void spufs_npc_set(void *data, u64 val)
1588 struct spu_context *ctx = data;
1590 ctx->ops->npc_write(ctx, val);
1594 static u64 spufs_npc_get(void *data)
1596 struct spu_context *ctx = data;
1599 ret = ctx->ops->npc_read(ctx);
1603 DEFINE_SIMPLE_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1606 static void spufs_decr_set(void *data, u64 val)
1608 struct spu_context *ctx = data;
1609 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1610 spu_acquire_saved(ctx);
1611 lscsa->decr.slot[0] = (u32) val;
1615 static u64 __spufs_decr_get(void *data)
1617 struct spu_context *ctx = data;
1618 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1619 return lscsa->decr.slot[0];
1622 static u64 spufs_decr_get(void *data)
1624 struct spu_context *ctx = data;
1626 spu_acquire_saved(ctx);
1627 ret = __spufs_decr_get(data);
1631 DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1634 static void spufs_decr_status_set(void *data, u64 val)
1636 struct spu_context *ctx = data;
1637 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1638 spu_acquire_saved(ctx);
1639 lscsa->decr_status.slot[0] = (u32) val;
1643 static u64 __spufs_decr_status_get(void *data)
1645 struct spu_context *ctx = data;
1646 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1647 return lscsa->decr_status.slot[0];
1650 static u64 spufs_decr_status_get(void *data)
1652 struct spu_context *ctx = data;
1654 spu_acquire_saved(ctx);
1655 ret = __spufs_decr_status_get(data);
1659 DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1660 spufs_decr_status_set, "0x%llx\n")
1662 static void spufs_event_mask_set(void *data, u64 val)
1664 struct spu_context *ctx = data;
1665 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1666 spu_acquire_saved(ctx);
1667 lscsa->event_mask.slot[0] = (u32) val;
1671 static u64 __spufs_event_mask_get(void *data)
1673 struct spu_context *ctx = data;
1674 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1675 return lscsa->event_mask.slot[0];
1678 static u64 spufs_event_mask_get(void *data)
1680 struct spu_context *ctx = data;
1682 spu_acquire_saved(ctx);
1683 ret = __spufs_event_mask_get(data);
1687 DEFINE_SIMPLE_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1688 spufs_event_mask_set, "0x%llx\n")
1690 static u64 __spufs_event_status_get(void *data)
1692 struct spu_context *ctx = data;
1693 struct spu_state *state = &ctx->csa;
1695 stat = state->spu_chnlcnt_RW[0];
1697 return state->spu_chnldata_RW[0];
1701 static u64 spufs_event_status_get(void *data)
1703 struct spu_context *ctx = data;
1706 spu_acquire_saved(ctx);
1707 ret = __spufs_event_status_get(data);
1711 DEFINE_SIMPLE_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1714 static void spufs_srr0_set(void *data, u64 val)
1716 struct spu_context *ctx = data;
1717 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1718 spu_acquire_saved(ctx);
1719 lscsa->srr0.slot[0] = (u32) val;
1723 static u64 spufs_srr0_get(void *data)
1725 struct spu_context *ctx = data;
1726 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1728 spu_acquire_saved(ctx);
1729 ret = lscsa->srr0.slot[0];
1733 DEFINE_SIMPLE_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1736 static u64 spufs_id_get(void *data)
1738 struct spu_context *ctx = data;
1742 if (ctx->state == SPU_STATE_RUNNABLE)
1743 num = ctx->spu->number;
1745 num = (unsigned int)-1;
1750 DEFINE_SIMPLE_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n")
1752 static u64 __spufs_object_id_get(void *data)
1754 struct spu_context *ctx = data;
1755 return ctx->object_id;
1758 static u64 spufs_object_id_get(void *data)
1760 /* FIXME: Should there really be no locking here? */
1761 return __spufs_object_id_get(data);
1764 static void spufs_object_id_set(void *data, u64 id)
1766 struct spu_context *ctx = data;
1767 ctx->object_id = id;
1770 DEFINE_SIMPLE_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
1771 spufs_object_id_set, "0x%llx\n");
1773 static u64 __spufs_lslr_get(void *data)
1775 struct spu_context *ctx = data;
1776 return ctx->csa.priv2.spu_lslr_RW;
1779 static u64 spufs_lslr_get(void *data)
1781 struct spu_context *ctx = data;
1784 spu_acquire_saved(ctx);
1785 ret = __spufs_lslr_get(data);
1790 DEFINE_SIMPLE_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n")
1792 static int spufs_info_open(struct inode *inode, struct file *file)
1794 struct spufs_inode_info *i = SPUFS_I(inode);
1795 struct spu_context *ctx = i->i_ctx;
1796 file->private_data = ctx;
1800 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
1801 char __user *buf, size_t len, loff_t *pos)
1806 mbox_stat = ctx->csa.prob.mb_stat_R;
1807 if (mbox_stat & 0x0000ff) {
1808 data = ctx->csa.prob.pu_mb_R;
1811 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
1814 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
1815 size_t len, loff_t *pos)
1818 struct spu_context *ctx = file->private_data;
1820 if (!access_ok(VERIFY_WRITE, buf, len))
1823 spu_acquire_saved(ctx);
1824 spin_lock(&ctx->csa.register_lock);
1825 ret = __spufs_mbox_info_read(ctx, buf, len, pos);
1826 spin_unlock(&ctx->csa.register_lock);
1832 static const struct file_operations spufs_mbox_info_fops = {
1833 .open = spufs_info_open,
1834 .read = spufs_mbox_info_read,
1835 .llseek = generic_file_llseek,
1838 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
1839 char __user *buf, size_t len, loff_t *pos)
1844 ibox_stat = ctx->csa.prob.mb_stat_R;
1845 if (ibox_stat & 0xff0000) {
1846 data = ctx->csa.priv2.puint_mb_R;
1849 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
1852 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
1853 size_t len, loff_t *pos)
1855 struct spu_context *ctx = file->private_data;
1858 if (!access_ok(VERIFY_WRITE, buf, len))
1861 spu_acquire_saved(ctx);
1862 spin_lock(&ctx->csa.register_lock);
1863 ret = __spufs_ibox_info_read(ctx, buf, len, pos);
1864 spin_unlock(&ctx->csa.register_lock);
1870 static const struct file_operations spufs_ibox_info_fops = {
1871 .open = spufs_info_open,
1872 .read = spufs_ibox_info_read,
1873 .llseek = generic_file_llseek,
1876 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
1877 char __user *buf, size_t len, loff_t *pos)
1883 wbox_stat = ctx->csa.prob.mb_stat_R;
1884 cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
1885 for (i = 0; i < cnt; i++) {
1886 data[i] = ctx->csa.spu_mailbox_data[i];
1889 return simple_read_from_buffer(buf, len, pos, &data,
1893 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
1894 size_t len, loff_t *pos)
1896 struct spu_context *ctx = file->private_data;
1899 if (!access_ok(VERIFY_WRITE, buf, len))
1902 spu_acquire_saved(ctx);
1903 spin_lock(&ctx->csa.register_lock);
1904 ret = __spufs_wbox_info_read(ctx, buf, len, pos);
1905 spin_unlock(&ctx->csa.register_lock);
1911 static const struct file_operations spufs_wbox_info_fops = {
1912 .open = spufs_info_open,
1913 .read = spufs_wbox_info_read,
1914 .llseek = generic_file_llseek,
1917 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
1918 char __user *buf, size_t len, loff_t *pos)
1920 struct spu_dma_info info;
1921 struct mfc_cq_sr *qp, *spuqp;
1924 info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
1925 info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
1926 info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
1927 info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
1928 info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
1929 for (i = 0; i < 16; i++) {
1930 qp = &info.dma_info_command_data[i];
1931 spuqp = &ctx->csa.priv2.spuq[i];
1933 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
1934 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
1935 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
1936 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
1939 return simple_read_from_buffer(buf, len, pos, &info,
1943 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
1944 size_t len, loff_t *pos)
1946 struct spu_context *ctx = file->private_data;
1949 if (!access_ok(VERIFY_WRITE, buf, len))
1952 spu_acquire_saved(ctx);
1953 spin_lock(&ctx->csa.register_lock);
1954 ret = __spufs_dma_info_read(ctx, buf, len, pos);
1955 spin_unlock(&ctx->csa.register_lock);
1961 static const struct file_operations spufs_dma_info_fops = {
1962 .open = spufs_info_open,
1963 .read = spufs_dma_info_read,
1966 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
1967 char __user *buf, size_t len, loff_t *pos)
1969 struct spu_proxydma_info info;
1970 struct mfc_cq_sr *qp, *puqp;
1971 int ret = sizeof info;
1977 if (!access_ok(VERIFY_WRITE, buf, len))
1980 info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
1981 info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
1982 info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
1983 for (i = 0; i < 8; i++) {
1984 qp = &info.proxydma_info_command_data[i];
1985 puqp = &ctx->csa.priv2.puq[i];
1987 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
1988 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
1989 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
1990 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
1993 return simple_read_from_buffer(buf, len, pos, &info,
1997 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
1998 size_t len, loff_t *pos)
2000 struct spu_context *ctx = file->private_data;
2003 spu_acquire_saved(ctx);
2004 spin_lock(&ctx->csa.register_lock);
2005 ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2006 spin_unlock(&ctx->csa.register_lock);
2012 static const struct file_operations spufs_proxydma_info_fops = {
2013 .open = spufs_info_open,
2014 .read = spufs_proxydma_info_read,
2017 struct tree_descr spufs_dir_contents[] = {
2018 { "mem", &spufs_mem_fops, 0666, },
2019 { "regs", &spufs_regs_fops, 0666, },
2020 { "mbox", &spufs_mbox_fops, 0444, },
2021 { "ibox", &spufs_ibox_fops, 0444, },
2022 { "wbox", &spufs_wbox_fops, 0222, },
2023 { "mbox_stat", &spufs_mbox_stat_fops, 0444, },
2024 { "ibox_stat", &spufs_ibox_stat_fops, 0444, },
2025 { "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2026 { "signal1", &spufs_signal1_fops, 0666, },
2027 { "signal2", &spufs_signal2_fops, 0666, },
2028 { "signal1_type", &spufs_signal1_type, 0666, },
2029 { "signal2_type", &spufs_signal2_type, 0666, },
2030 { "cntl", &spufs_cntl_fops, 0666, },
2031 { "fpcr", &spufs_fpcr_fops, 0666, },
2032 { "lslr", &spufs_lslr_ops, 0444, },
2033 { "mfc", &spufs_mfc_fops, 0666, },
2034 { "mss", &spufs_mss_fops, 0666, },
2035 { "npc", &spufs_npc_ops, 0666, },
2036 { "srr0", &spufs_srr0_ops, 0666, },
2037 { "decr", &spufs_decr_ops, 0666, },
2038 { "decr_status", &spufs_decr_status_ops, 0666, },
2039 { "event_mask", &spufs_event_mask_ops, 0666, },
2040 { "event_status", &spufs_event_status_ops, 0444, },
2041 { "psmap", &spufs_psmap_fops, 0666, },
2042 { "phys-id", &spufs_id_ops, 0666, },
2043 { "object-id", &spufs_object_id_ops, 0666, },
2044 { "mbox_info", &spufs_mbox_info_fops, 0444, },
2045 { "ibox_info", &spufs_ibox_info_fops, 0444, },
2046 { "wbox_info", &spufs_wbox_info_fops, 0444, },
2047 { "dma_info", &spufs_dma_info_fops, 0444, },
2048 { "proxydma_info", &spufs_proxydma_info_fops, 0444, },
2052 struct tree_descr spufs_dir_nosched_contents[] = {
2053 { "mem", &spufs_mem_fops, 0666, },
2054 { "mbox", &spufs_mbox_fops, 0444, },
2055 { "ibox", &spufs_ibox_fops, 0444, },
2056 { "wbox", &spufs_wbox_fops, 0222, },
2057 { "mbox_stat", &spufs_mbox_stat_fops, 0444, },
2058 { "ibox_stat", &spufs_ibox_stat_fops, 0444, },
2059 { "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2060 { "signal1", &spufs_signal1_fops, 0666, },
2061 { "signal2", &spufs_signal2_fops, 0666, },
2062 { "signal1_type", &spufs_signal1_type, 0666, },
2063 { "signal2_type", &spufs_signal2_type, 0666, },
2064 { "mss", &spufs_mss_fops, 0666, },
2065 { "mfc", &spufs_mfc_fops, 0666, },
2066 { "cntl", &spufs_cntl_fops, 0666, },
2067 { "npc", &spufs_npc_ops, 0666, },
2068 { "psmap", &spufs_psmap_fops, 0666, },
2069 { "phys-id", &spufs_id_ops, 0666, },
2070 { "object-id", &spufs_object_id_ops, 0666, },
2074 struct spufs_coredump_reader spufs_coredump_read[] = {
2075 { "regs", __spufs_regs_read, NULL, 128 * 16 },
2076 { "fpcr", __spufs_fpcr_read, NULL, 16 },
2077 { "lslr", NULL, __spufs_lslr_get, 11 },
2078 { "decr", NULL, __spufs_decr_get, 11 },
2079 { "decr_status", NULL, __spufs_decr_status_get, 11 },
2080 { "mem", __spufs_mem_read, NULL, 256 * 1024, },
2081 { "signal1", __spufs_signal1_read, NULL, 4 },
2082 { "signal1_type", NULL, __spufs_signal1_type_get, 2 },
2083 { "signal2", __spufs_signal2_read, NULL, 4 },
2084 { "signal2_type", NULL, __spufs_signal2_type_get, 2 },
2085 { "event_mask", NULL, __spufs_event_mask_get, 8 },
2086 { "event_status", NULL, __spufs_event_status_get, 8 },
2087 { "mbox_info", __spufs_mbox_info_read, NULL, 4 },
2088 { "ibox_info", __spufs_ibox_info_read, NULL, 4 },
2089 { "wbox_info", __spufs_wbox_info_read, NULL, 16 },
2090 { "dma_info", __spufs_dma_info_read, NULL, 69 * 8 },
2091 { "proxydma_info", __spufs_proxydma_info_read, NULL, 35 * 8 },
2092 { "object-id", NULL, __spufs_object_id_get, 19 },
2095 int spufs_coredump_num_notes = ARRAY_SIZE(spufs_coredump_read) - 1;