4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/bug.h>
45 #include <asm/pgtable.h>
46 #include <asm/tlbflush.h>
47 #include <asm/mmu_context.h>
48 #include <asm/paravirt.h>
50 #include <asm/xen/hypercall.h>
51 #include <asm/xen/hypervisor.h>
54 #include <xen/interface/xen.h>
56 #include "multicalls.h"
59 xmaddr_t arbitrary_virt_to_machine(unsigned long address)
62 pte_t *pte = lookup_address(address, &level);
63 unsigned offset = address & ~PAGE_MASK;
67 return XMADDR((pte_mfn(*pte) << PAGE_SHIFT) + offset);
70 void make_lowmem_page_readonly(void *vaddr)
73 unsigned long address = (unsigned long)vaddr;
76 pte = lookup_address(address, &level);
79 ptev = pte_wrprotect(*pte);
81 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
85 void make_lowmem_page_readwrite(void *vaddr)
88 unsigned long address = (unsigned long)vaddr;
91 pte = lookup_address(address, &level);
94 ptev = pte_mkwrite(*pte);
96 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
101 void xen_set_pmd(pmd_t *ptr, pmd_t val)
103 struct multicall_space mcs;
104 struct mmu_update *u;
108 mcs = xen_mc_entry(sizeof(*u));
110 u->ptr = virt_to_machine(ptr).maddr;
111 u->val = pmd_val_ma(val);
112 MULTI_mmu_update(mcs.mc, u, 1, NULL, DOMID_SELF);
114 xen_mc_issue(PARAVIRT_LAZY_MMU);
120 * Associate a virtual page frame with a given physical page frame
121 * and protection flags for that frame.
123 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
130 pgd = swapper_pg_dir + pgd_index(vaddr);
131 if (pgd_none(*pgd)) {
135 pud = pud_offset(pgd, vaddr);
136 if (pud_none(*pud)) {
140 pmd = pmd_offset(pud, vaddr);
141 if (pmd_none(*pmd)) {
145 pte = pte_offset_kernel(pmd, vaddr);
146 /* <mfn,flags> stored as-is, to permit clearing entries */
147 xen_set_pte(pte, mfn_pte(mfn, flags));
150 * It's enough to flush this one mapping.
151 * (PGE mappings get flushed as well)
153 __flush_tlb_one(vaddr);
156 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
157 pte_t *ptep, pte_t pteval)
159 /* updates to init_mm may be done without lock */
163 if (mm == current->mm || mm == &init_mm) {
164 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
165 struct multicall_space mcs;
166 mcs = xen_mc_entry(0);
168 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
169 xen_mc_issue(PARAVIRT_LAZY_MMU);
172 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
175 xen_set_pte(ptep, pteval);
182 pteval_t xen_pte_val(pte_t pte)
184 pteval_t ret = pte.pte;
186 if (ret & _PAGE_PRESENT)
187 ret = machine_to_phys(XMADDR(ret)).paddr | _PAGE_PRESENT;
192 pgdval_t xen_pgd_val(pgd_t pgd)
194 pgdval_t ret = pgd.pgd;
195 if (ret & _PAGE_PRESENT)
196 ret = machine_to_phys(XMADDR(ret)).paddr | _PAGE_PRESENT;
200 pte_t xen_make_pte(pteval_t pte)
202 if (pte & _PAGE_PRESENT)
203 pte = phys_to_machine(XPADDR(pte)).maddr;
205 return (pte_t){ .pte = pte };
208 pgd_t xen_make_pgd(pgdval_t pgd)
210 if (pgd & _PAGE_PRESENT)
211 pgd = phys_to_machine(XPADDR(pgd)).maddr;
213 return (pgd_t){ pgd };
216 pmdval_t xen_pmd_val(pmd_t pmd)
218 pmdval_t ret = native_pmd_val(pmd);
219 if (ret & _PAGE_PRESENT)
220 ret = machine_to_phys(XMADDR(ret)).paddr | _PAGE_PRESENT;
223 #ifdef CONFIG_X86_PAE
224 void xen_set_pud(pud_t *ptr, pud_t val)
226 struct multicall_space mcs;
227 struct mmu_update *u;
231 mcs = xen_mc_entry(sizeof(*u));
233 u->ptr = virt_to_machine(ptr).maddr;
234 u->val = pud_val_ma(val);
235 MULTI_mmu_update(mcs.mc, u, 1, NULL, DOMID_SELF);
237 xen_mc_issue(PARAVIRT_LAZY_MMU);
242 void xen_set_pte(pte_t *ptep, pte_t pte)
244 ptep->pte_high = pte.pte_high;
246 ptep->pte_low = pte.pte_low;
249 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
251 set_64bit((u64 *)ptep, pte_val_ma(pte));
254 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
257 smp_wmb(); /* make sure low gets written first */
261 void xen_pmd_clear(pmd_t *pmdp)
263 xen_set_pmd(pmdp, __pmd(0));
266 pmd_t xen_make_pmd(pmdval_t pmd)
268 if (pmd & _PAGE_PRESENT)
269 pmd = phys_to_machine(XPADDR(pmd)).maddr;
271 return native_make_pmd(pmd);
274 void xen_set_pte(pte_t *ptep, pte_t pte)
278 #endif /* CONFIG_X86_PAE */
281 (Yet another) pagetable walker. This one is intended for pinning a
282 pagetable. This means that it walks a pagetable and calls the
283 callback function on each page it finds making up the page table,
284 at every level. It walks the entire pagetable, but it only bothers
285 pinning pte pages which are below pte_limit. In the normal case
286 this will be TASK_SIZE, but at boot we need to pin up to
287 FIXADDR_TOP. But the important bit is that we don't pin beyond
288 there, because then we start getting into Xen's ptes.
290 static int pgd_walk(pgd_t *pgd_base, int (*func)(struct page *, enum pt_level),
293 pgd_t *pgd = pgd_base;
295 unsigned long addr = 0;
296 unsigned long pgd_next;
298 BUG_ON(limit > FIXADDR_TOP);
300 if (xen_feature(XENFEAT_auto_translated_physmap))
303 for (; addr != FIXADDR_TOP; pgd++, addr = pgd_next) {
305 unsigned long pud_limit, pud_next;
307 pgd_next = pud_limit = pgd_addr_end(addr, FIXADDR_TOP);
312 pud = pud_offset(pgd, 0);
314 if (PTRS_PER_PUD > 1) /* not folded */
315 flush |= (*func)(virt_to_page(pud), PT_PUD);
317 for (; addr != pud_limit; pud++, addr = pud_next) {
319 unsigned long pmd_limit;
321 pud_next = pud_addr_end(addr, pud_limit);
323 if (pud_next < limit)
324 pmd_limit = pud_next;
331 pmd = pmd_offset(pud, 0);
333 if (PTRS_PER_PMD > 1) /* not folded */
334 flush |= (*func)(virt_to_page(pmd), PT_PMD);
336 for (; addr != pmd_limit; pmd++) {
337 addr += (PAGE_SIZE * PTRS_PER_PTE);
338 if ((pmd_limit-1) < (addr-1)) {
346 flush |= (*func)(pmd_page(*pmd), PT_PTE);
351 flush |= (*func)(virt_to_page(pgd_base), PT_PGD);
356 static spinlock_t *lock_pte(struct page *page)
358 spinlock_t *ptl = NULL;
360 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
361 ptl = __pte_lockptr(page);
368 static void do_unlock(void *v)
374 static void xen_do_pin(unsigned level, unsigned long pfn)
376 struct mmuext_op *op;
377 struct multicall_space mcs;
379 mcs = __xen_mc_entry(sizeof(*op));
382 op->arg1.mfn = pfn_to_mfn(pfn);
383 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
386 static int pin_page(struct page *page, enum pt_level level)
388 unsigned pgfl = TestSetPagePinned(page);
392 flush = 0; /* already pinned */
393 else if (PageHighMem(page))
394 /* kmaps need flushing if we found an unpinned
398 void *pt = lowmem_page_address(page);
399 unsigned long pfn = page_to_pfn(page);
400 struct multicall_space mcs = __xen_mc_entry(0);
407 ptl = lock_pte(page);
409 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
410 pfn_pte(pfn, PAGE_KERNEL_RO),
411 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
414 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
417 /* Queue a deferred unlock for when this batch
419 xen_mc_callback(do_unlock, ptl);
426 /* This is called just after a mm has been created, but it has not
427 been used yet. We need to make sure that its pagetable is all
428 read-only, and can be pinned. */
429 void xen_pgd_pin(pgd_t *pgd)
435 if (pgd_walk(pgd, pin_page, TASK_SIZE)) {
436 /* re-enable interrupts for kmap_flush_unused */
442 #ifdef CONFIG_X86_PAE
443 level = MMUEXT_PIN_L3_TABLE;
445 level = MMUEXT_PIN_L2_TABLE;
448 xen_do_pin(level, PFN_DOWN(__pa(pgd)));
453 /* The init_mm pagetable is really pinned as soon as its created, but
454 that's before we have page structures to store the bits. So do all
455 the book-keeping now. */
456 static __init int mark_pinned(struct page *page, enum pt_level level)
462 void __init xen_mark_init_mm_pinned(void)
464 pgd_walk(init_mm.pgd, mark_pinned, FIXADDR_TOP);
467 static int unpin_page(struct page *page, enum pt_level level)
469 unsigned pgfl = TestClearPagePinned(page);
471 if (pgfl && !PageHighMem(page)) {
472 void *pt = lowmem_page_address(page);
473 unsigned long pfn = page_to_pfn(page);
474 spinlock_t *ptl = NULL;
475 struct multicall_space mcs;
477 if (level == PT_PTE) {
478 ptl = lock_pte(page);
480 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
483 mcs = __xen_mc_entry(0);
485 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
486 pfn_pte(pfn, PAGE_KERNEL),
487 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
490 /* unlock when batch completed */
491 xen_mc_callback(do_unlock, ptl);
495 return 0; /* never need to flush on unpin */
498 /* Release a pagetables pages back as normal RW */
499 static void xen_pgd_unpin(pgd_t *pgd)
503 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
505 pgd_walk(pgd, unpin_page, TASK_SIZE);
510 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
512 spin_lock(&next->page_table_lock);
513 xen_pgd_pin(next->pgd);
514 spin_unlock(&next->page_table_lock);
517 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
519 spin_lock(&mm->page_table_lock);
520 xen_pgd_pin(mm->pgd);
521 spin_unlock(&mm->page_table_lock);
526 /* Another cpu may still have their %cr3 pointing at the pagetable, so
527 we need to repoint it somewhere else before we can unpin it. */
528 static void drop_other_mm_ref(void *info)
530 struct mm_struct *mm = info;
532 if (__get_cpu_var(cpu_tlbstate).active_mm == mm)
533 leave_mm(smp_processor_id());
535 /* If this cpu still has a stale cr3 reference, then make sure
536 it has been flushed. */
537 if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) {
538 load_cr3(swapper_pg_dir);
539 arch_flush_lazy_cpu_mode();
543 static void drop_mm_ref(struct mm_struct *mm)
548 if (current->active_mm == mm) {
549 if (current->mm == mm)
550 load_cr3(swapper_pg_dir);
552 leave_mm(smp_processor_id());
553 arch_flush_lazy_cpu_mode();
556 /* Get the "official" set of cpus referring to our pagetable. */
557 mask = mm->cpu_vm_mask;
559 /* It's possible that a vcpu may have a stale reference to our
560 cr3, because its in lazy mode, and it hasn't yet flushed
561 its set of pending hypercalls yet. In this case, we can
562 look at its actual current cr3 value, and force it to flush
564 for_each_online_cpu(cpu) {
565 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
569 if (!cpus_empty(mask))
570 xen_smp_call_function_mask(mask, drop_other_mm_ref, mm, 1);
573 static void drop_mm_ref(struct mm_struct *mm)
575 if (current->active_mm == mm)
576 load_cr3(swapper_pg_dir);
581 * While a process runs, Xen pins its pagetables, which means that the
582 * hypervisor forces it to be read-only, and it controls all updates
583 * to it. This means that all pagetable updates have to go via the
584 * hypervisor, which is moderately expensive.
586 * Since we're pulling the pagetable down, we switch to use init_mm,
587 * unpin old process pagetable and mark it all read-write, which
588 * allows further operations on it to be simple memory accesses.
590 * The only subtle point is that another CPU may be still using the
591 * pagetable because of lazy tlb flushing. This means we need need to
592 * switch all CPUs off this pagetable before we can unpin it.
594 void xen_exit_mmap(struct mm_struct *mm)
596 get_cpu(); /* make sure we don't move around */
600 spin_lock(&mm->page_table_lock);
602 /* pgd may not be pinned in the error exit path of execve */
603 if (PagePinned(virt_to_page(mm->pgd)))
604 xen_pgd_unpin(mm->pgd);
606 spin_unlock(&mm->page_table_lock);