2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/net_namespace.h>
97 #include <linux/rtnetlink.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/stat.h>
101 #include <linux/if_bridge.h>
102 #include <linux/if_macvlan.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/kmod.h>
109 #include <linux/module.h>
110 #include <linux/kallsyms.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
124 * The list of packet types we will receive (as opposed to discard)
125 * and the routines to invoke.
127 * Why 16. Because with 16 the only overlap we get on a hash of the
128 * low nibble of the protocol value is RARP/SNAP/X.25.
130 * NOTE: That is no longer true with the addition of VLAN tags. Not
131 * sure which should go first, but I bet it won't make much
132 * difference if we are running VLANs. The good news is that
133 * this protocol won't be in the list unless compiled in, so
134 * the average user (w/out VLANs) will not be adversely affected.
151 static DEFINE_SPINLOCK(ptype_lock);
152 static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */
153 static struct list_head ptype_all __read_mostly; /* Taps */
155 #ifdef CONFIG_NET_DMA
157 struct dma_client client;
159 cpumask_t channel_mask;
160 struct dma_chan *channels[NR_CPUS];
163 static enum dma_state_client
164 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
165 enum dma_state state);
167 static struct net_dma net_dma = {
169 .event_callback = netdev_dma_event,
175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178 * Pure readers hold dev_base_lock for reading.
180 * Writers must hold the rtnl semaphore while they loop through the
181 * dev_base_head list, and hold dev_base_lock for writing when they do the
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
193 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
197 #define NETDEV_HASHBITS 8
198 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
211 /* Device list insertion */
212 static int list_netdevice(struct net_device *dev)
214 struct net *net = dev->nd_net;
218 write_lock_bh(&dev_base_lock);
219 list_add_tail(&dev->dev_list, &net->dev_base_head);
220 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
221 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
226 /* Device list removal */
227 static void unlist_netdevice(struct net_device *dev)
231 /* Unlink dev from the device chain */
232 write_lock_bh(&dev_base_lock);
233 list_del(&dev->dev_list);
234 hlist_del(&dev->name_hlist);
235 hlist_del(&dev->index_hlist);
236 write_unlock_bh(&dev_base_lock);
243 static RAW_NOTIFIER_HEAD(netdev_chain);
246 * Device drivers call our routines to queue packets here. We empty the
247 * queue in the local softnet handler.
250 DEFINE_PER_CPU(struct softnet_data, softnet_data);
253 extern int netdev_sysfs_init(void);
254 extern int netdev_register_sysfs(struct net_device *);
255 extern void netdev_unregister_sysfs(struct net_device *);
257 #define netdev_sysfs_init() (0)
258 #define netdev_register_sysfs(dev) (0)
259 #define netdev_unregister_sysfs(dev) do { } while(0)
262 #ifdef CONFIG_DEBUG_LOCK_ALLOC
264 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
265 * according to dev->type
267 static const unsigned short netdev_lock_type[] =
268 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
269 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
270 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
271 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
272 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
273 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
274 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
275 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
276 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
277 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
278 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
279 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
280 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
281 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
284 static const char *netdev_lock_name[] =
285 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
286 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
287 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
288 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
289 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
290 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
291 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
292 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
293 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
294 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
295 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
296 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
297 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
298 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
301 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
303 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
307 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 if (netdev_lock_type[i] == dev_type)
310 /* the last key is used by default */
311 return ARRAY_SIZE(netdev_lock_type) - 1;
314 static inline void netdev_set_lockdep_class(spinlock_t *lock,
315 unsigned short dev_type)
319 i = netdev_lock_pos(dev_type);
320 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 netdev_lock_name[i]);
324 static inline void netdev_set_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
330 /*******************************************************************************
332 Protocol management and registration routines
334 *******************************************************************************/
337 * Add a protocol ID to the list. Now that the input handler is
338 * smarter we can dispense with all the messy stuff that used to be
341 * BEWARE!!! Protocol handlers, mangling input packets,
342 * MUST BE last in hash buckets and checking protocol handlers
343 * MUST start from promiscuous ptype_all chain in net_bh.
344 * It is true now, do not change it.
345 * Explanation follows: if protocol handler, mangling packet, will
346 * be the first on list, it is not able to sense, that packet
347 * is cloned and should be copied-on-write, so that it will
348 * change it and subsequent readers will get broken packet.
353 * dev_add_pack - add packet handler
354 * @pt: packet type declaration
356 * Add a protocol handler to the networking stack. The passed &packet_type
357 * is linked into kernel lists and may not be freed until it has been
358 * removed from the kernel lists.
360 * This call does not sleep therefore it can not
361 * guarantee all CPU's that are in middle of receiving packets
362 * will see the new packet type (until the next received packet).
365 void dev_add_pack(struct packet_type *pt)
369 spin_lock_bh(&ptype_lock);
370 if (pt->type == htons(ETH_P_ALL))
371 list_add_rcu(&pt->list, &ptype_all);
373 hash = ntohs(pt->type) & 15;
374 list_add_rcu(&pt->list, &ptype_base[hash]);
376 spin_unlock_bh(&ptype_lock);
380 * __dev_remove_pack - remove packet handler
381 * @pt: packet type declaration
383 * Remove a protocol handler that was previously added to the kernel
384 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
385 * from the kernel lists and can be freed or reused once this function
388 * The packet type might still be in use by receivers
389 * and must not be freed until after all the CPU's have gone
390 * through a quiescent state.
392 void __dev_remove_pack(struct packet_type *pt)
394 struct list_head *head;
395 struct packet_type *pt1;
397 spin_lock_bh(&ptype_lock);
399 if (pt->type == htons(ETH_P_ALL))
402 head = &ptype_base[ntohs(pt->type) & 15];
404 list_for_each_entry(pt1, head, list) {
406 list_del_rcu(&pt->list);
411 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
413 spin_unlock_bh(&ptype_lock);
416 * dev_remove_pack - remove packet handler
417 * @pt: packet type declaration
419 * Remove a protocol handler that was previously added to the kernel
420 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
421 * from the kernel lists and can be freed or reused once this function
424 * This call sleeps to guarantee that no CPU is looking at the packet
427 void dev_remove_pack(struct packet_type *pt)
429 __dev_remove_pack(pt);
434 /******************************************************************************
436 Device Boot-time Settings Routines
438 *******************************************************************************/
440 /* Boot time configuration table */
441 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
444 * netdev_boot_setup_add - add new setup entry
445 * @name: name of the device
446 * @map: configured settings for the device
448 * Adds new setup entry to the dev_boot_setup list. The function
449 * returns 0 on error and 1 on success. This is a generic routine to
452 static int netdev_boot_setup_add(char *name, struct ifmap *map)
454 struct netdev_boot_setup *s;
458 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
459 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
460 memset(s[i].name, 0, sizeof(s[i].name));
461 strcpy(s[i].name, name);
462 memcpy(&s[i].map, map, sizeof(s[i].map));
467 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
471 * netdev_boot_setup_check - check boot time settings
472 * @dev: the netdevice
474 * Check boot time settings for the device.
475 * The found settings are set for the device to be used
476 * later in the device probing.
477 * Returns 0 if no settings found, 1 if they are.
479 int netdev_boot_setup_check(struct net_device *dev)
481 struct netdev_boot_setup *s = dev_boot_setup;
484 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
485 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
486 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
487 dev->irq = s[i].map.irq;
488 dev->base_addr = s[i].map.base_addr;
489 dev->mem_start = s[i].map.mem_start;
490 dev->mem_end = s[i].map.mem_end;
499 * netdev_boot_base - get address from boot time settings
500 * @prefix: prefix for network device
501 * @unit: id for network device
503 * Check boot time settings for the base address of device.
504 * The found settings are set for the device to be used
505 * later in the device probing.
506 * Returns 0 if no settings found.
508 unsigned long netdev_boot_base(const char *prefix, int unit)
510 const struct netdev_boot_setup *s = dev_boot_setup;
514 sprintf(name, "%s%d", prefix, unit);
517 * If device already registered then return base of 1
518 * to indicate not to probe for this interface
520 if (__dev_get_by_name(&init_net, name))
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
524 if (!strcmp(name, s[i].name))
525 return s[i].map.base_addr;
530 * Saves at boot time configured settings for any netdevice.
532 int __init netdev_boot_setup(char *str)
537 str = get_options(str, ARRAY_SIZE(ints), ints);
542 memset(&map, 0, sizeof(map));
546 map.base_addr = ints[2];
548 map.mem_start = ints[3];
550 map.mem_end = ints[4];
552 /* Add new entry to the list */
553 return netdev_boot_setup_add(str, &map);
556 __setup("netdev=", netdev_boot_setup);
558 /*******************************************************************************
560 Device Interface Subroutines
562 *******************************************************************************/
565 * __dev_get_by_name - find a device by its name
566 * @name: name to find
568 * Find an interface by name. Must be called under RTNL semaphore
569 * or @dev_base_lock. If the name is found a pointer to the device
570 * is returned. If the name is not found then %NULL is returned. The
571 * reference counters are not incremented so the caller must be
572 * careful with locks.
575 struct net_device *__dev_get_by_name(struct net *net, const char *name)
577 struct hlist_node *p;
579 hlist_for_each(p, dev_name_hash(net, name)) {
580 struct net_device *dev
581 = hlist_entry(p, struct net_device, name_hlist);
582 if (!strncmp(dev->name, name, IFNAMSIZ))
589 * dev_get_by_name - find a device by its name
590 * @name: name to find
592 * Find an interface by name. This can be called from any
593 * context and does its own locking. The returned handle has
594 * the usage count incremented and the caller must use dev_put() to
595 * release it when it is no longer needed. %NULL is returned if no
596 * matching device is found.
599 struct net_device *dev_get_by_name(struct net *net, const char *name)
601 struct net_device *dev;
603 read_lock(&dev_base_lock);
604 dev = __dev_get_by_name(net, name);
607 read_unlock(&dev_base_lock);
612 * __dev_get_by_index - find a device by its ifindex
613 * @ifindex: index of device
615 * Search for an interface by index. Returns %NULL if the device
616 * is not found or a pointer to the device. The device has not
617 * had its reference counter increased so the caller must be careful
618 * about locking. The caller must hold either the RTNL semaphore
622 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
624 struct hlist_node *p;
626 hlist_for_each(p, dev_index_hash(net, ifindex)) {
627 struct net_device *dev
628 = hlist_entry(p, struct net_device, index_hlist);
629 if (dev->ifindex == ifindex)
637 * dev_get_by_index - find a device by its ifindex
638 * @ifindex: index of device
640 * Search for an interface by index. Returns NULL if the device
641 * is not found or a pointer to the device. The device returned has
642 * had a reference added and the pointer is safe until the user calls
643 * dev_put to indicate they have finished with it.
646 struct net_device *dev_get_by_index(struct net *net, int ifindex)
648 struct net_device *dev;
650 read_lock(&dev_base_lock);
651 dev = __dev_get_by_index(net, ifindex);
654 read_unlock(&dev_base_lock);
659 * dev_getbyhwaddr - find a device by its hardware address
660 * @type: media type of device
661 * @ha: hardware address
663 * Search for an interface by MAC address. Returns NULL if the device
664 * is not found or a pointer to the device. The caller must hold the
665 * rtnl semaphore. The returned device has not had its ref count increased
666 * and the caller must therefore be careful about locking
669 * If the API was consistent this would be __dev_get_by_hwaddr
672 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
674 struct net_device *dev;
678 for_each_netdev(&init_net, dev)
679 if (dev->type == type &&
680 !memcmp(dev->dev_addr, ha, dev->addr_len))
686 EXPORT_SYMBOL(dev_getbyhwaddr);
688 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
690 struct net_device *dev;
693 for_each_netdev(net, dev)
694 if (dev->type == type)
700 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
702 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
704 struct net_device *dev;
707 dev = __dev_getfirstbyhwtype(net, type);
714 EXPORT_SYMBOL(dev_getfirstbyhwtype);
717 * dev_get_by_flags - find any device with given flags
718 * @if_flags: IFF_* values
719 * @mask: bitmask of bits in if_flags to check
721 * Search for any interface with the given flags. Returns NULL if a device
722 * is not found or a pointer to the device. The device returned has
723 * had a reference added and the pointer is safe until the user calls
724 * dev_put to indicate they have finished with it.
727 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
729 struct net_device *dev, *ret;
732 read_lock(&dev_base_lock);
733 for_each_netdev(net, dev) {
734 if (((dev->flags ^ if_flags) & mask) == 0) {
740 read_unlock(&dev_base_lock);
745 * dev_valid_name - check if name is okay for network device
748 * Network device names need to be valid file names to
749 * to allow sysfs to work. We also disallow any kind of
752 int dev_valid_name(const char *name)
756 if (strlen(name) >= IFNAMSIZ)
758 if (!strcmp(name, ".") || !strcmp(name, ".."))
762 if (*name == '/' || isspace(*name))
770 * __dev_alloc_name - allocate a name for a device
771 * @net: network namespace to allocate the device name in
772 * @name: name format string
773 * @buf: scratch buffer and result name string
775 * Passed a format string - eg "lt%d" it will try and find a suitable
776 * id. It scans list of devices to build up a free map, then chooses
777 * the first empty slot. The caller must hold the dev_base or rtnl lock
778 * while allocating the name and adding the device in order to avoid
780 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
781 * Returns the number of the unit assigned or a negative errno code.
784 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
788 const int max_netdevices = 8*PAGE_SIZE;
790 struct net_device *d;
792 p = strnchr(name, IFNAMSIZ-1, '%');
795 * Verify the string as this thing may have come from
796 * the user. There must be either one "%d" and no other "%"
799 if (p[1] != 'd' || strchr(p + 2, '%'))
802 /* Use one page as a bit array of possible slots */
803 inuse = (long *) get_zeroed_page(GFP_ATOMIC);
807 for_each_netdev(net, d) {
808 if (!sscanf(d->name, name, &i))
810 if (i < 0 || i >= max_netdevices)
813 /* avoid cases where sscanf is not exact inverse of printf */
814 snprintf(buf, IFNAMSIZ, name, i);
815 if (!strncmp(buf, d->name, IFNAMSIZ))
819 i = find_first_zero_bit(inuse, max_netdevices);
820 free_page((unsigned long) inuse);
823 snprintf(buf, IFNAMSIZ, name, i);
824 if (!__dev_get_by_name(net, buf))
827 /* It is possible to run out of possible slots
828 * when the name is long and there isn't enough space left
829 * for the digits, or if all bits are used.
835 * dev_alloc_name - allocate a name for a device
837 * @name: name format string
839 * Passed a format string - eg "lt%d" it will try and find a suitable
840 * id. It scans list of devices to build up a free map, then chooses
841 * the first empty slot. The caller must hold the dev_base or rtnl lock
842 * while allocating the name and adding the device in order to avoid
844 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
845 * Returns the number of the unit assigned or a negative errno code.
848 int dev_alloc_name(struct net_device *dev, const char *name)
854 BUG_ON(!dev->nd_net);
856 ret = __dev_alloc_name(net, name, buf);
858 strlcpy(dev->name, buf, IFNAMSIZ);
864 * dev_change_name - change name of a device
866 * @newname: name (or format string) must be at least IFNAMSIZ
868 * Change name of a device, can pass format strings "eth%d".
871 int dev_change_name(struct net_device *dev, char *newname)
873 char oldname[IFNAMSIZ];
879 BUG_ON(!dev->nd_net);
882 if (dev->flags & IFF_UP)
885 if (!dev_valid_name(newname))
888 memcpy(oldname, dev->name, IFNAMSIZ);
890 if (strchr(newname, '%')) {
891 err = dev_alloc_name(dev, newname);
894 strcpy(newname, dev->name);
896 else if (__dev_get_by_name(net, newname))
899 strlcpy(dev->name, newname, IFNAMSIZ);
902 device_rename(&dev->dev, dev->name);
904 write_lock_bh(&dev_base_lock);
905 hlist_del(&dev->name_hlist);
906 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
907 write_unlock_bh(&dev_base_lock);
909 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
910 ret = notifier_to_errno(ret);
915 "%s: name change rollback failed: %d.\n",
919 memcpy(dev->name, oldname, IFNAMSIZ);
928 * netdev_features_change - device changes features
929 * @dev: device to cause notification
931 * Called to indicate a device has changed features.
933 void netdev_features_change(struct net_device *dev)
935 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
937 EXPORT_SYMBOL(netdev_features_change);
940 * netdev_state_change - device changes state
941 * @dev: device to cause notification
943 * Called to indicate a device has changed state. This function calls
944 * the notifier chains for netdev_chain and sends a NEWLINK message
945 * to the routing socket.
947 void netdev_state_change(struct net_device *dev)
949 if (dev->flags & IFF_UP) {
950 call_netdevice_notifiers(NETDEV_CHANGE, dev);
951 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
956 * dev_load - load a network module
957 * @name: name of interface
959 * If a network interface is not present and the process has suitable
960 * privileges this function loads the module. If module loading is not
961 * available in this kernel then it becomes a nop.
964 void dev_load(struct net *net, const char *name)
966 struct net_device *dev;
968 read_lock(&dev_base_lock);
969 dev = __dev_get_by_name(net, name);
970 read_unlock(&dev_base_lock);
972 if (!dev && capable(CAP_SYS_MODULE))
973 request_module("%s", name);
976 static int default_rebuild_header(struct sk_buff *skb)
978 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n",
979 skb->dev ? skb->dev->name : "NULL!!!");
985 * dev_open - prepare an interface for use.
986 * @dev: device to open
988 * Takes a device from down to up state. The device's private open
989 * function is invoked and then the multicast lists are loaded. Finally
990 * the device is moved into the up state and a %NETDEV_UP message is
991 * sent to the netdev notifier chain.
993 * Calling this function on an active interface is a nop. On a failure
994 * a negative errno code is returned.
996 int dev_open(struct net_device *dev)
1004 if (dev->flags & IFF_UP)
1008 * Is it even present?
1010 if (!netif_device_present(dev))
1014 * Call device private open method
1016 set_bit(__LINK_STATE_START, &dev->state);
1018 ret = dev->open(dev);
1020 clear_bit(__LINK_STATE_START, &dev->state);
1024 * If it went open OK then:
1031 dev->flags |= IFF_UP;
1034 * Initialize multicasting status
1036 dev_set_rx_mode(dev);
1039 * Wakeup transmit queue engine
1044 * ... and announce new interface.
1046 call_netdevice_notifiers(NETDEV_UP, dev);
1052 * dev_close - shutdown an interface.
1053 * @dev: device to shutdown
1055 * This function moves an active device into down state. A
1056 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1057 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1060 int dev_close(struct net_device *dev)
1064 if (!(dev->flags & IFF_UP))
1068 * Tell people we are going down, so that they can
1069 * prepare to death, when device is still operating.
1071 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1073 dev_deactivate(dev);
1075 clear_bit(__LINK_STATE_START, &dev->state);
1077 /* Synchronize to scheduled poll. We cannot touch poll list,
1078 * it can be even on different cpu. So just clear netif_running().
1080 * dev->stop() will invoke napi_disable() on all of it's
1081 * napi_struct instances on this device.
1083 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1086 * Call the device specific close. This cannot fail.
1087 * Only if device is UP
1089 * We allow it to be called even after a DETACH hot-plug
1096 * Device is now down.
1099 dev->flags &= ~IFF_UP;
1102 * Tell people we are down
1104 call_netdevice_notifiers(NETDEV_DOWN, dev);
1110 static int dev_boot_phase = 1;
1113 * Device change register/unregister. These are not inline or static
1114 * as we export them to the world.
1118 * register_netdevice_notifier - register a network notifier block
1121 * Register a notifier to be called when network device events occur.
1122 * The notifier passed is linked into the kernel structures and must
1123 * not be reused until it has been unregistered. A negative errno code
1124 * is returned on a failure.
1126 * When registered all registration and up events are replayed
1127 * to the new notifier to allow device to have a race free
1128 * view of the network device list.
1131 int register_netdevice_notifier(struct notifier_block *nb)
1133 struct net_device *dev;
1134 struct net_device *last;
1139 err = raw_notifier_chain_register(&netdev_chain, nb);
1145 for_each_netdev(net, dev) {
1146 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1147 err = notifier_to_errno(err);
1151 if (!(dev->flags & IFF_UP))
1154 nb->notifier_call(nb, NETDEV_UP, dev);
1165 for_each_netdev(net, dev) {
1169 if (dev->flags & IFF_UP) {
1170 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1171 nb->notifier_call(nb, NETDEV_DOWN, dev);
1173 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1180 * unregister_netdevice_notifier - unregister a network notifier block
1183 * Unregister a notifier previously registered by
1184 * register_netdevice_notifier(). The notifier is unlinked into the
1185 * kernel structures and may then be reused. A negative errno code
1186 * is returned on a failure.
1189 int unregister_netdevice_notifier(struct notifier_block *nb)
1194 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1200 * call_netdevice_notifiers - call all network notifier blocks
1201 * @val: value passed unmodified to notifier function
1202 * @v: pointer passed unmodified to notifier function
1204 * Call all network notifier blocks. Parameters and return value
1205 * are as for raw_notifier_call_chain().
1208 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1210 return raw_notifier_call_chain(&netdev_chain, val, dev);
1213 /* When > 0 there are consumers of rx skb time stamps */
1214 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1216 void net_enable_timestamp(void)
1218 atomic_inc(&netstamp_needed);
1221 void net_disable_timestamp(void)
1223 atomic_dec(&netstamp_needed);
1226 static inline void net_timestamp(struct sk_buff *skb)
1228 if (atomic_read(&netstamp_needed))
1229 __net_timestamp(skb);
1231 skb->tstamp.tv64 = 0;
1235 * Support routine. Sends outgoing frames to any network
1236 * taps currently in use.
1239 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1241 struct packet_type *ptype;
1246 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1247 /* Never send packets back to the socket
1248 * they originated from - MvS (miquels@drinkel.ow.org)
1250 if ((ptype->dev == dev || !ptype->dev) &&
1251 (ptype->af_packet_priv == NULL ||
1252 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1253 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1257 /* skb->nh should be correctly
1258 set by sender, so that the second statement is
1259 just protection against buggy protocols.
1261 skb_reset_mac_header(skb2);
1263 if (skb_network_header(skb2) < skb2->data ||
1264 skb2->network_header > skb2->tail) {
1265 if (net_ratelimit())
1266 printk(KERN_CRIT "protocol %04x is "
1268 skb2->protocol, dev->name);
1269 skb_reset_network_header(skb2);
1272 skb2->transport_header = skb2->network_header;
1273 skb2->pkt_type = PACKET_OUTGOING;
1274 ptype->func(skb2, skb->dev, ptype, skb->dev);
1281 void __netif_schedule(struct net_device *dev)
1283 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1284 unsigned long flags;
1285 struct softnet_data *sd;
1287 local_irq_save(flags);
1288 sd = &__get_cpu_var(softnet_data);
1289 dev->next_sched = sd->output_queue;
1290 sd->output_queue = dev;
1291 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1292 local_irq_restore(flags);
1295 EXPORT_SYMBOL(__netif_schedule);
1297 void dev_kfree_skb_irq(struct sk_buff *skb)
1299 if (atomic_dec_and_test(&skb->users)) {
1300 struct softnet_data *sd;
1301 unsigned long flags;
1303 local_irq_save(flags);
1304 sd = &__get_cpu_var(softnet_data);
1305 skb->next = sd->completion_queue;
1306 sd->completion_queue = skb;
1307 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1308 local_irq_restore(flags);
1311 EXPORT_SYMBOL(dev_kfree_skb_irq);
1313 void dev_kfree_skb_any(struct sk_buff *skb)
1315 if (in_irq() || irqs_disabled())
1316 dev_kfree_skb_irq(skb);
1320 EXPORT_SYMBOL(dev_kfree_skb_any);
1324 * netif_device_detach - mark device as removed
1325 * @dev: network device
1327 * Mark device as removed from system and therefore no longer available.
1329 void netif_device_detach(struct net_device *dev)
1331 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1332 netif_running(dev)) {
1333 netif_stop_queue(dev);
1336 EXPORT_SYMBOL(netif_device_detach);
1339 * netif_device_attach - mark device as attached
1340 * @dev: network device
1342 * Mark device as attached from system and restart if needed.
1344 void netif_device_attach(struct net_device *dev)
1346 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1347 netif_running(dev)) {
1348 netif_wake_queue(dev);
1349 __netdev_watchdog_up(dev);
1352 EXPORT_SYMBOL(netif_device_attach);
1356 * Invalidate hardware checksum when packet is to be mangled, and
1357 * complete checksum manually on outgoing path.
1359 int skb_checksum_help(struct sk_buff *skb)
1362 int ret = 0, offset;
1364 if (skb->ip_summed == CHECKSUM_COMPLETE)
1365 goto out_set_summed;
1367 if (unlikely(skb_shinfo(skb)->gso_size)) {
1368 /* Let GSO fix up the checksum. */
1369 goto out_set_summed;
1372 if (skb_cloned(skb)) {
1373 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1378 offset = skb->csum_start - skb_headroom(skb);
1379 BUG_ON(offset > (int)skb->len);
1380 csum = skb_checksum(skb, offset, skb->len-offset, 0);
1382 offset = skb_headlen(skb) - offset;
1383 BUG_ON(offset <= 0);
1384 BUG_ON(skb->csum_offset + 2 > offset);
1386 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) =
1389 skb->ip_summed = CHECKSUM_NONE;
1395 * skb_gso_segment - Perform segmentation on skb.
1396 * @skb: buffer to segment
1397 * @features: features for the output path (see dev->features)
1399 * This function segments the given skb and returns a list of segments.
1401 * It may return NULL if the skb requires no segmentation. This is
1402 * only possible when GSO is used for verifying header integrity.
1404 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1406 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1407 struct packet_type *ptype;
1408 __be16 type = skb->protocol;
1411 BUG_ON(skb_shinfo(skb)->frag_list);
1413 skb_reset_mac_header(skb);
1414 skb->mac_len = skb->network_header - skb->mac_header;
1415 __skb_pull(skb, skb->mac_len);
1417 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1418 if (skb_header_cloned(skb) &&
1419 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1420 return ERR_PTR(err);
1424 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) {
1425 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1426 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1427 err = ptype->gso_send_check(skb);
1428 segs = ERR_PTR(err);
1429 if (err || skb_gso_ok(skb, features))
1431 __skb_push(skb, (skb->data -
1432 skb_network_header(skb)));
1434 segs = ptype->gso_segment(skb, features);
1440 __skb_push(skb, skb->data - skb_mac_header(skb));
1445 EXPORT_SYMBOL(skb_gso_segment);
1447 /* Take action when hardware reception checksum errors are detected. */
1449 void netdev_rx_csum_fault(struct net_device *dev)
1451 if (net_ratelimit()) {
1452 printk(KERN_ERR "%s: hw csum failure.\n",
1453 dev ? dev->name : "<unknown>");
1457 EXPORT_SYMBOL(netdev_rx_csum_fault);
1460 /* Actually, we should eliminate this check as soon as we know, that:
1461 * 1. IOMMU is present and allows to map all the memory.
1462 * 2. No high memory really exists on this machine.
1465 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1467 #ifdef CONFIG_HIGHMEM
1470 if (dev->features & NETIF_F_HIGHDMA)
1473 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1474 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1482 void (*destructor)(struct sk_buff *skb);
1485 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1487 static void dev_gso_skb_destructor(struct sk_buff *skb)
1489 struct dev_gso_cb *cb;
1492 struct sk_buff *nskb = skb->next;
1494 skb->next = nskb->next;
1497 } while (skb->next);
1499 cb = DEV_GSO_CB(skb);
1501 cb->destructor(skb);
1505 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1506 * @skb: buffer to segment
1508 * This function segments the given skb and stores the list of segments
1511 static int dev_gso_segment(struct sk_buff *skb)
1513 struct net_device *dev = skb->dev;
1514 struct sk_buff *segs;
1515 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1518 segs = skb_gso_segment(skb, features);
1520 /* Verifying header integrity only. */
1524 if (unlikely(IS_ERR(segs)))
1525 return PTR_ERR(segs);
1528 DEV_GSO_CB(skb)->destructor = skb->destructor;
1529 skb->destructor = dev_gso_skb_destructor;
1534 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1536 if (likely(!skb->next)) {
1537 if (!list_empty(&ptype_all))
1538 dev_queue_xmit_nit(skb, dev);
1540 if (netif_needs_gso(dev, skb)) {
1541 if (unlikely(dev_gso_segment(skb)))
1547 return dev->hard_start_xmit(skb, dev);
1552 struct sk_buff *nskb = skb->next;
1555 skb->next = nskb->next;
1557 rc = dev->hard_start_xmit(nskb, dev);
1559 nskb->next = skb->next;
1563 if (unlikely((netif_queue_stopped(dev) ||
1564 netif_subqueue_stopped(dev, skb->queue_mapping)) &&
1566 return NETDEV_TX_BUSY;
1567 } while (skb->next);
1569 skb->destructor = DEV_GSO_CB(skb)->destructor;
1577 * dev_queue_xmit - transmit a buffer
1578 * @skb: buffer to transmit
1580 * Queue a buffer for transmission to a network device. The caller must
1581 * have set the device and priority and built the buffer before calling
1582 * this function. The function can be called from an interrupt.
1584 * A negative errno code is returned on a failure. A success does not
1585 * guarantee the frame will be transmitted as it may be dropped due
1586 * to congestion or traffic shaping.
1588 * -----------------------------------------------------------------------------------
1589 * I notice this method can also return errors from the queue disciplines,
1590 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1593 * Regardless of the return value, the skb is consumed, so it is currently
1594 * difficult to retry a send to this method. (You can bump the ref count
1595 * before sending to hold a reference for retry if you are careful.)
1597 * When calling this method, interrupts MUST be enabled. This is because
1598 * the BH enable code must have IRQs enabled so that it will not deadlock.
1602 int dev_queue_xmit(struct sk_buff *skb)
1604 struct net_device *dev = skb->dev;
1608 /* GSO will handle the following emulations directly. */
1609 if (netif_needs_gso(dev, skb))
1612 if (skb_shinfo(skb)->frag_list &&
1613 !(dev->features & NETIF_F_FRAGLIST) &&
1614 __skb_linearize(skb))
1617 /* Fragmented skb is linearized if device does not support SG,
1618 * or if at least one of fragments is in highmem and device
1619 * does not support DMA from it.
1621 if (skb_shinfo(skb)->nr_frags &&
1622 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1623 __skb_linearize(skb))
1626 /* If packet is not checksummed and device does not support
1627 * checksumming for this protocol, complete checksumming here.
1629 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1630 skb_set_transport_header(skb, skb->csum_start -
1633 if (!(dev->features & NETIF_F_GEN_CSUM) &&
1634 !((dev->features & NETIF_F_IP_CSUM) &&
1635 skb->protocol == htons(ETH_P_IP)) &&
1636 !((dev->features & NETIF_F_IPV6_CSUM) &&
1637 skb->protocol == htons(ETH_P_IPV6)))
1638 if (skb_checksum_help(skb))
1643 spin_lock_prefetch(&dev->queue_lock);
1645 /* Disable soft irqs for various locks below. Also
1646 * stops preemption for RCU.
1650 /* Updates of qdisc are serialized by queue_lock.
1651 * The struct Qdisc which is pointed to by qdisc is now a
1652 * rcu structure - it may be accessed without acquiring
1653 * a lock (but the structure may be stale.) The freeing of the
1654 * qdisc will be deferred until it's known that there are no
1655 * more references to it.
1657 * If the qdisc has an enqueue function, we still need to
1658 * hold the queue_lock before calling it, since queue_lock
1659 * also serializes access to the device queue.
1662 q = rcu_dereference(dev->qdisc);
1663 #ifdef CONFIG_NET_CLS_ACT
1664 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1667 /* Grab device queue */
1668 spin_lock(&dev->queue_lock);
1671 /* reset queue_mapping to zero */
1672 skb->queue_mapping = 0;
1673 rc = q->enqueue(skb, q);
1675 spin_unlock(&dev->queue_lock);
1677 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1680 spin_unlock(&dev->queue_lock);
1683 /* The device has no queue. Common case for software devices:
1684 loopback, all the sorts of tunnels...
1686 Really, it is unlikely that netif_tx_lock protection is necessary
1687 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1689 However, it is possible, that they rely on protection
1692 Check this and shot the lock. It is not prone from deadlocks.
1693 Either shot noqueue qdisc, it is even simpler 8)
1695 if (dev->flags & IFF_UP) {
1696 int cpu = smp_processor_id(); /* ok because BHs are off */
1698 if (dev->xmit_lock_owner != cpu) {
1700 HARD_TX_LOCK(dev, cpu);
1702 if (!netif_queue_stopped(dev) &&
1703 !netif_subqueue_stopped(dev, skb->queue_mapping)) {
1705 if (!dev_hard_start_xmit(skb, dev)) {
1706 HARD_TX_UNLOCK(dev);
1710 HARD_TX_UNLOCK(dev);
1711 if (net_ratelimit())
1712 printk(KERN_CRIT "Virtual device %s asks to "
1713 "queue packet!\n", dev->name);
1715 /* Recursion is detected! It is possible,
1717 if (net_ratelimit())
1718 printk(KERN_CRIT "Dead loop on virtual device "
1719 "%s, fix it urgently!\n", dev->name);
1724 rcu_read_unlock_bh();
1730 rcu_read_unlock_bh();
1735 /*=======================================================================
1737 =======================================================================*/
1739 int netdev_max_backlog __read_mostly = 1000;
1740 int netdev_budget __read_mostly = 300;
1741 int weight_p __read_mostly = 64; /* old backlog weight */
1743 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1747 * netif_rx - post buffer to the network code
1748 * @skb: buffer to post
1750 * This function receives a packet from a device driver and queues it for
1751 * the upper (protocol) levels to process. It always succeeds. The buffer
1752 * may be dropped during processing for congestion control or by the
1756 * NET_RX_SUCCESS (no congestion)
1757 * NET_RX_CN_LOW (low congestion)
1758 * NET_RX_CN_MOD (moderate congestion)
1759 * NET_RX_CN_HIGH (high congestion)
1760 * NET_RX_DROP (packet was dropped)
1764 int netif_rx(struct sk_buff *skb)
1766 struct softnet_data *queue;
1767 unsigned long flags;
1769 /* if netpoll wants it, pretend we never saw it */
1770 if (netpoll_rx(skb))
1773 if (!skb->tstamp.tv64)
1777 * The code is rearranged so that the path is the most
1778 * short when CPU is congested, but is still operating.
1780 local_irq_save(flags);
1781 queue = &__get_cpu_var(softnet_data);
1783 __get_cpu_var(netdev_rx_stat).total++;
1784 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1785 if (queue->input_pkt_queue.qlen) {
1788 __skb_queue_tail(&queue->input_pkt_queue, skb);
1789 local_irq_restore(flags);
1790 return NET_RX_SUCCESS;
1793 napi_schedule(&queue->backlog);
1797 __get_cpu_var(netdev_rx_stat).dropped++;
1798 local_irq_restore(flags);
1804 int netif_rx_ni(struct sk_buff *skb)
1809 err = netif_rx(skb);
1810 if (local_softirq_pending())
1817 EXPORT_SYMBOL(netif_rx_ni);
1819 static inline struct net_device *skb_bond(struct sk_buff *skb)
1821 struct net_device *dev = skb->dev;
1824 if (skb_bond_should_drop(skb)) {
1828 skb->dev = dev->master;
1835 static void net_tx_action(struct softirq_action *h)
1837 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1839 if (sd->completion_queue) {
1840 struct sk_buff *clist;
1842 local_irq_disable();
1843 clist = sd->completion_queue;
1844 sd->completion_queue = NULL;
1848 struct sk_buff *skb = clist;
1849 clist = clist->next;
1851 BUG_TRAP(!atomic_read(&skb->users));
1856 if (sd->output_queue) {
1857 struct net_device *head;
1859 local_irq_disable();
1860 head = sd->output_queue;
1861 sd->output_queue = NULL;
1865 struct net_device *dev = head;
1866 head = head->next_sched;
1868 smp_mb__before_clear_bit();
1869 clear_bit(__LINK_STATE_SCHED, &dev->state);
1871 if (spin_trylock(&dev->queue_lock)) {
1873 spin_unlock(&dev->queue_lock);
1875 netif_schedule(dev);
1881 static inline int deliver_skb(struct sk_buff *skb,
1882 struct packet_type *pt_prev,
1883 struct net_device *orig_dev)
1885 atomic_inc(&skb->users);
1886 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1889 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1890 /* These hooks defined here for ATM */
1892 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1893 unsigned char *addr);
1894 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1897 * If bridge module is loaded call bridging hook.
1898 * returns NULL if packet was consumed.
1900 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1901 struct sk_buff *skb) __read_mostly;
1902 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1903 struct packet_type **pt_prev, int *ret,
1904 struct net_device *orig_dev)
1906 struct net_bridge_port *port;
1908 if (skb->pkt_type == PACKET_LOOPBACK ||
1909 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1913 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1917 return br_handle_frame_hook(port, skb);
1920 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1923 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1924 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1925 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1927 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1928 struct packet_type **pt_prev,
1930 struct net_device *orig_dev)
1932 if (skb->dev->macvlan_port == NULL)
1936 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1939 return macvlan_handle_frame_hook(skb);
1942 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
1945 #ifdef CONFIG_NET_CLS_ACT
1946 /* TODO: Maybe we should just force sch_ingress to be compiled in
1947 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1948 * a compare and 2 stores extra right now if we dont have it on
1949 * but have CONFIG_NET_CLS_ACT
1950 * NOTE: This doesnt stop any functionality; if you dont have
1951 * the ingress scheduler, you just cant add policies on ingress.
1954 static int ing_filter(struct sk_buff *skb)
1957 struct net_device *dev = skb->dev;
1958 int result = TC_ACT_OK;
1960 if (dev->qdisc_ingress) {
1961 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd);
1962 if (MAX_RED_LOOP < ttl++) {
1963 printk(KERN_WARNING "Redir loop detected Dropping packet (%d->%d)\n",
1964 skb->iif, skb->dev->ifindex);
1968 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl);
1970 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS);
1972 spin_lock(&dev->ingress_lock);
1973 if ((q = dev->qdisc_ingress) != NULL)
1974 result = q->enqueue(skb, q);
1975 spin_unlock(&dev->ingress_lock);
1983 int netif_receive_skb(struct sk_buff *skb)
1985 struct packet_type *ptype, *pt_prev;
1986 struct net_device *orig_dev;
1987 int ret = NET_RX_DROP;
1990 /* if we've gotten here through NAPI, check netpoll */
1991 if (netpoll_receive_skb(skb))
1994 if (!skb->tstamp.tv64)
1998 skb->iif = skb->dev->ifindex;
2000 orig_dev = skb_bond(skb);
2005 __get_cpu_var(netdev_rx_stat).total++;
2007 skb_reset_network_header(skb);
2008 skb_reset_transport_header(skb);
2009 skb->mac_len = skb->network_header - skb->mac_header;
2015 #ifdef CONFIG_NET_CLS_ACT
2016 if (skb->tc_verd & TC_NCLS) {
2017 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2022 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2023 if (!ptype->dev || ptype->dev == skb->dev) {
2025 ret = deliver_skb(skb, pt_prev, orig_dev);
2030 #ifdef CONFIG_NET_CLS_ACT
2032 ret = deliver_skb(skb, pt_prev, orig_dev);
2033 pt_prev = NULL; /* noone else should process this after*/
2035 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2038 ret = ing_filter(skb);
2040 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) {
2049 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2052 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2056 type = skb->protocol;
2057 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
2058 if (ptype->type == type &&
2059 (!ptype->dev || ptype->dev == skb->dev)) {
2061 ret = deliver_skb(skb, pt_prev, orig_dev);
2067 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2070 /* Jamal, now you will not able to escape explaining
2071 * me how you were going to use this. :-)
2081 static int process_backlog(struct napi_struct *napi, int quota)
2084 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2085 unsigned long start_time = jiffies;
2087 napi->weight = weight_p;
2089 struct sk_buff *skb;
2090 struct net_device *dev;
2092 local_irq_disable();
2093 skb = __skb_dequeue(&queue->input_pkt_queue);
2095 __napi_complete(napi);
2104 netif_receive_skb(skb);
2107 } while (++work < quota && jiffies == start_time);
2113 * __napi_schedule - schedule for receive
2114 * @napi: entry to schedule
2116 * The entry's receive function will be scheduled to run
2118 void fastcall __napi_schedule(struct napi_struct *n)
2120 unsigned long flags;
2122 local_irq_save(flags);
2123 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2124 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2125 local_irq_restore(flags);
2127 EXPORT_SYMBOL(__napi_schedule);
2130 static void net_rx_action(struct softirq_action *h)
2132 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2133 unsigned long start_time = jiffies;
2134 int budget = netdev_budget;
2137 local_irq_disable();
2139 while (!list_empty(list)) {
2140 struct napi_struct *n;
2143 /* If softirq window is exhuasted then punt.
2145 * Note that this is a slight policy change from the
2146 * previous NAPI code, which would allow up to 2
2147 * jiffies to pass before breaking out. The test
2148 * used to be "jiffies - start_time > 1".
2150 if (unlikely(budget <= 0 || jiffies != start_time))
2155 /* Even though interrupts have been re-enabled, this
2156 * access is safe because interrupts can only add new
2157 * entries to the tail of this list, and only ->poll()
2158 * calls can remove this head entry from the list.
2160 n = list_entry(list->next, struct napi_struct, poll_list);
2162 have = netpoll_poll_lock(n);
2166 work = n->poll(n, weight);
2168 WARN_ON_ONCE(work > weight);
2172 local_irq_disable();
2174 /* Drivers must not modify the NAPI state if they
2175 * consume the entire weight. In such cases this code
2176 * still "owns" the NAPI instance and therefore can
2177 * move the instance around on the list at-will.
2179 if (unlikely(work == weight))
2180 list_move_tail(&n->poll_list, list);
2182 netpoll_poll_unlock(have);
2187 #ifdef CONFIG_NET_DMA
2189 * There may not be any more sk_buffs coming right now, so push
2190 * any pending DMA copies to hardware
2192 if (!cpus_empty(net_dma.channel_mask)) {
2194 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2195 struct dma_chan *chan = net_dma.channels[chan_idx];
2197 dma_async_memcpy_issue_pending(chan);
2205 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2206 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2210 static gifconf_func_t * gifconf_list [NPROTO];
2213 * register_gifconf - register a SIOCGIF handler
2214 * @family: Address family
2215 * @gifconf: Function handler
2217 * Register protocol dependent address dumping routines. The handler
2218 * that is passed must not be freed or reused until it has been replaced
2219 * by another handler.
2221 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2223 if (family >= NPROTO)
2225 gifconf_list[family] = gifconf;
2231 * Map an interface index to its name (SIOCGIFNAME)
2235 * We need this ioctl for efficient implementation of the
2236 * if_indextoname() function required by the IPv6 API. Without
2237 * it, we would have to search all the interfaces to find a
2241 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2243 struct net_device *dev;
2247 * Fetch the caller's info block.
2250 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2253 read_lock(&dev_base_lock);
2254 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2256 read_unlock(&dev_base_lock);
2260 strcpy(ifr.ifr_name, dev->name);
2261 read_unlock(&dev_base_lock);
2263 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2269 * Perform a SIOCGIFCONF call. This structure will change
2270 * size eventually, and there is nothing I can do about it.
2271 * Thus we will need a 'compatibility mode'.
2274 static int dev_ifconf(struct net *net, char __user *arg)
2277 struct net_device *dev;
2284 * Fetch the caller's info block.
2287 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2294 * Loop over the interfaces, and write an info block for each.
2298 for_each_netdev(net, dev) {
2299 for (i = 0; i < NPROTO; i++) {
2300 if (gifconf_list[i]) {
2303 done = gifconf_list[i](dev, NULL, 0);
2305 done = gifconf_list[i](dev, pos + total,
2315 * All done. Write the updated control block back to the caller.
2317 ifc.ifc_len = total;
2320 * Both BSD and Solaris return 0 here, so we do too.
2322 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2325 #ifdef CONFIG_PROC_FS
2327 * This is invoked by the /proc filesystem handler to display a device
2330 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2332 struct net *net = seq->private;
2334 struct net_device *dev;
2336 read_lock(&dev_base_lock);
2338 return SEQ_START_TOKEN;
2341 for_each_netdev(net, dev)
2348 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2350 struct net *net = seq->private;
2352 return v == SEQ_START_TOKEN ?
2353 first_net_device(net) : next_net_device((struct net_device *)v);
2356 void dev_seq_stop(struct seq_file *seq, void *v)
2358 read_unlock(&dev_base_lock);
2361 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2363 struct net_device_stats *stats = dev->get_stats(dev);
2365 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2366 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2367 dev->name, stats->rx_bytes, stats->rx_packets,
2369 stats->rx_dropped + stats->rx_missed_errors,
2370 stats->rx_fifo_errors,
2371 stats->rx_length_errors + stats->rx_over_errors +
2372 stats->rx_crc_errors + stats->rx_frame_errors,
2373 stats->rx_compressed, stats->multicast,
2374 stats->tx_bytes, stats->tx_packets,
2375 stats->tx_errors, stats->tx_dropped,
2376 stats->tx_fifo_errors, stats->collisions,
2377 stats->tx_carrier_errors +
2378 stats->tx_aborted_errors +
2379 stats->tx_window_errors +
2380 stats->tx_heartbeat_errors,
2381 stats->tx_compressed);
2385 * Called from the PROCfs module. This now uses the new arbitrary sized
2386 * /proc/net interface to create /proc/net/dev
2388 static int dev_seq_show(struct seq_file *seq, void *v)
2390 if (v == SEQ_START_TOKEN)
2391 seq_puts(seq, "Inter-| Receive "
2393 " face |bytes packets errs drop fifo frame "
2394 "compressed multicast|bytes packets errs "
2395 "drop fifo colls carrier compressed\n");
2397 dev_seq_printf_stats(seq, v);
2401 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2403 struct netif_rx_stats *rc = NULL;
2405 while (*pos < NR_CPUS)
2406 if (cpu_online(*pos)) {
2407 rc = &per_cpu(netdev_rx_stat, *pos);
2414 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2416 return softnet_get_online(pos);
2419 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2422 return softnet_get_online(pos);
2425 static void softnet_seq_stop(struct seq_file *seq, void *v)
2429 static int softnet_seq_show(struct seq_file *seq, void *v)
2431 struct netif_rx_stats *s = v;
2433 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2434 s->total, s->dropped, s->time_squeeze, 0,
2435 0, 0, 0, 0, /* was fastroute */
2440 static const struct seq_operations dev_seq_ops = {
2441 .start = dev_seq_start,
2442 .next = dev_seq_next,
2443 .stop = dev_seq_stop,
2444 .show = dev_seq_show,
2447 static int dev_seq_open(struct inode *inode, struct file *file)
2449 struct seq_file *seq;
2451 res = seq_open(file, &dev_seq_ops);
2453 seq = file->private_data;
2454 seq->private = get_proc_net(inode);
2455 if (!seq->private) {
2456 seq_release(inode, file);
2463 static int dev_seq_release(struct inode *inode, struct file *file)
2465 struct seq_file *seq = file->private_data;
2466 struct net *net = seq->private;
2468 return seq_release(inode, file);
2471 static const struct file_operations dev_seq_fops = {
2472 .owner = THIS_MODULE,
2473 .open = dev_seq_open,
2475 .llseek = seq_lseek,
2476 .release = dev_seq_release,
2479 static const struct seq_operations softnet_seq_ops = {
2480 .start = softnet_seq_start,
2481 .next = softnet_seq_next,
2482 .stop = softnet_seq_stop,
2483 .show = softnet_seq_show,
2486 static int softnet_seq_open(struct inode *inode, struct file *file)
2488 return seq_open(file, &softnet_seq_ops);
2491 static const struct file_operations softnet_seq_fops = {
2492 .owner = THIS_MODULE,
2493 .open = softnet_seq_open,
2495 .llseek = seq_lseek,
2496 .release = seq_release,
2499 static void *ptype_get_idx(loff_t pos)
2501 struct packet_type *pt = NULL;
2505 list_for_each_entry_rcu(pt, &ptype_all, list) {
2511 for (t = 0; t < 16; t++) {
2512 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2521 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2524 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2527 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2529 struct packet_type *pt;
2530 struct list_head *nxt;
2534 if (v == SEQ_START_TOKEN)
2535 return ptype_get_idx(0);
2538 nxt = pt->list.next;
2539 if (pt->type == htons(ETH_P_ALL)) {
2540 if (nxt != &ptype_all)
2543 nxt = ptype_base[0].next;
2545 hash = ntohs(pt->type) & 15;
2547 while (nxt == &ptype_base[hash]) {
2550 nxt = ptype_base[hash].next;
2553 return list_entry(nxt, struct packet_type, list);
2556 static void ptype_seq_stop(struct seq_file *seq, void *v)
2561 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2563 #ifdef CONFIG_KALLSYMS
2564 unsigned long offset = 0, symsize;
2565 const char *symname;
2569 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2576 modname = delim = "";
2577 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2583 seq_printf(seq, "[%p]", sym);
2586 static int ptype_seq_show(struct seq_file *seq, void *v)
2588 struct packet_type *pt = v;
2590 if (v == SEQ_START_TOKEN)
2591 seq_puts(seq, "Type Device Function\n");
2593 if (pt->type == htons(ETH_P_ALL))
2594 seq_puts(seq, "ALL ");
2596 seq_printf(seq, "%04x", ntohs(pt->type));
2598 seq_printf(seq, " %-8s ",
2599 pt->dev ? pt->dev->name : "");
2600 ptype_seq_decode(seq, pt->func);
2601 seq_putc(seq, '\n');
2607 static const struct seq_operations ptype_seq_ops = {
2608 .start = ptype_seq_start,
2609 .next = ptype_seq_next,
2610 .stop = ptype_seq_stop,
2611 .show = ptype_seq_show,
2614 static int ptype_seq_open(struct inode *inode, struct file *file)
2616 return seq_open(file, &ptype_seq_ops);
2619 static const struct file_operations ptype_seq_fops = {
2620 .owner = THIS_MODULE,
2621 .open = ptype_seq_open,
2623 .llseek = seq_lseek,
2624 .release = seq_release,
2628 static int dev_proc_net_init(struct net *net)
2632 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2634 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2636 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2639 if (wext_proc_init(net))
2645 proc_net_remove(net, "ptype");
2647 proc_net_remove(net, "softnet_stat");
2649 proc_net_remove(net, "dev");
2653 static void dev_proc_net_exit(struct net *net)
2655 wext_proc_exit(net);
2657 proc_net_remove(net, "ptype");
2658 proc_net_remove(net, "softnet_stat");
2659 proc_net_remove(net, "dev");
2662 static struct pernet_operations dev_proc_ops = {
2663 .init = dev_proc_net_init,
2664 .exit = dev_proc_net_exit,
2667 static int __init dev_proc_init(void)
2669 return register_pernet_subsys(&dev_proc_ops);
2672 #define dev_proc_init() 0
2673 #endif /* CONFIG_PROC_FS */
2677 * netdev_set_master - set up master/slave pair
2678 * @slave: slave device
2679 * @master: new master device
2681 * Changes the master device of the slave. Pass %NULL to break the
2682 * bonding. The caller must hold the RTNL semaphore. On a failure
2683 * a negative errno code is returned. On success the reference counts
2684 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2685 * function returns zero.
2687 int netdev_set_master(struct net_device *slave, struct net_device *master)
2689 struct net_device *old = slave->master;
2699 slave->master = master;
2707 slave->flags |= IFF_SLAVE;
2709 slave->flags &= ~IFF_SLAVE;
2711 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2715 static void __dev_set_promiscuity(struct net_device *dev, int inc)
2717 unsigned short old_flags = dev->flags;
2721 if ((dev->promiscuity += inc) == 0)
2722 dev->flags &= ~IFF_PROMISC;
2724 dev->flags |= IFF_PROMISC;
2725 if (dev->flags != old_flags) {
2726 printk(KERN_INFO "device %s %s promiscuous mode\n",
2727 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2729 audit_log(current->audit_context, GFP_ATOMIC,
2730 AUDIT_ANOM_PROMISCUOUS,
2731 "dev=%s prom=%d old_prom=%d auid=%u",
2732 dev->name, (dev->flags & IFF_PROMISC),
2733 (old_flags & IFF_PROMISC),
2734 audit_get_loginuid(current->audit_context));
2736 if (dev->change_rx_flags)
2737 dev->change_rx_flags(dev, IFF_PROMISC);
2742 * dev_set_promiscuity - update promiscuity count on a device
2746 * Add or remove promiscuity from a device. While the count in the device
2747 * remains above zero the interface remains promiscuous. Once it hits zero
2748 * the device reverts back to normal filtering operation. A negative inc
2749 * value is used to drop promiscuity on the device.
2751 void dev_set_promiscuity(struct net_device *dev, int inc)
2753 unsigned short old_flags = dev->flags;
2755 __dev_set_promiscuity(dev, inc);
2756 if (dev->flags != old_flags)
2757 dev_set_rx_mode(dev);
2761 * dev_set_allmulti - update allmulti count on a device
2765 * Add or remove reception of all multicast frames to a device. While the
2766 * count in the device remains above zero the interface remains listening
2767 * to all interfaces. Once it hits zero the device reverts back to normal
2768 * filtering operation. A negative @inc value is used to drop the counter
2769 * when releasing a resource needing all multicasts.
2772 void dev_set_allmulti(struct net_device *dev, int inc)
2774 unsigned short old_flags = dev->flags;
2778 dev->flags |= IFF_ALLMULTI;
2779 if ((dev->allmulti += inc) == 0)
2780 dev->flags &= ~IFF_ALLMULTI;
2781 if (dev->flags ^ old_flags) {
2782 if (dev->change_rx_flags)
2783 dev->change_rx_flags(dev, IFF_ALLMULTI);
2784 dev_set_rx_mode(dev);
2789 * Upload unicast and multicast address lists to device and
2790 * configure RX filtering. When the device doesn't support unicast
2791 * filtering it is put in promiscous mode while unicast addresses
2794 void __dev_set_rx_mode(struct net_device *dev)
2796 /* dev_open will call this function so the list will stay sane. */
2797 if (!(dev->flags&IFF_UP))
2800 if (!netif_device_present(dev))
2803 if (dev->set_rx_mode)
2804 dev->set_rx_mode(dev);
2806 /* Unicast addresses changes may only happen under the rtnl,
2807 * therefore calling __dev_set_promiscuity here is safe.
2809 if (dev->uc_count > 0 && !dev->uc_promisc) {
2810 __dev_set_promiscuity(dev, 1);
2811 dev->uc_promisc = 1;
2812 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2813 __dev_set_promiscuity(dev, -1);
2814 dev->uc_promisc = 0;
2817 if (dev->set_multicast_list)
2818 dev->set_multicast_list(dev);
2822 void dev_set_rx_mode(struct net_device *dev)
2824 netif_tx_lock_bh(dev);
2825 __dev_set_rx_mode(dev);
2826 netif_tx_unlock_bh(dev);
2829 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2830 void *addr, int alen, int glbl)
2832 struct dev_addr_list *da;
2834 for (; (da = *list) != NULL; list = &da->next) {
2835 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2836 alen == da->da_addrlen) {
2838 int old_glbl = da->da_gusers;
2855 int __dev_addr_add(struct dev_addr_list **list, int *count,
2856 void *addr, int alen, int glbl)
2858 struct dev_addr_list *da;
2860 for (da = *list; da != NULL; da = da->next) {
2861 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2862 da->da_addrlen == alen) {
2864 int old_glbl = da->da_gusers;
2874 da = kmalloc(sizeof(*da), GFP_ATOMIC);
2877 memcpy(da->da_addr, addr, alen);
2878 da->da_addrlen = alen;
2880 da->da_gusers = glbl ? 1 : 0;
2888 * dev_unicast_delete - Release secondary unicast address.
2890 * @addr: address to delete
2891 * @alen: length of @addr
2893 * Release reference to a secondary unicast address and remove it
2894 * from the device if the reference count drops to zero.
2896 * The caller must hold the rtnl_mutex.
2898 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2904 netif_tx_lock_bh(dev);
2905 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2907 __dev_set_rx_mode(dev);
2908 netif_tx_unlock_bh(dev);
2911 EXPORT_SYMBOL(dev_unicast_delete);
2914 * dev_unicast_add - add a secondary unicast address
2916 * @addr: address to delete
2917 * @alen: length of @addr
2919 * Add a secondary unicast address to the device or increase
2920 * the reference count if it already exists.
2922 * The caller must hold the rtnl_mutex.
2924 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2930 netif_tx_lock_bh(dev);
2931 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2933 __dev_set_rx_mode(dev);
2934 netif_tx_unlock_bh(dev);
2937 EXPORT_SYMBOL(dev_unicast_add);
2939 static void __dev_addr_discard(struct dev_addr_list **list)
2941 struct dev_addr_list *tmp;
2943 while (*list != NULL) {
2946 if (tmp->da_users > tmp->da_gusers)
2947 printk("__dev_addr_discard: address leakage! "
2948 "da_users=%d\n", tmp->da_users);
2953 static void dev_addr_discard(struct net_device *dev)
2955 netif_tx_lock_bh(dev);
2957 __dev_addr_discard(&dev->uc_list);
2960 __dev_addr_discard(&dev->mc_list);
2963 netif_tx_unlock_bh(dev);
2966 unsigned dev_get_flags(const struct net_device *dev)
2970 flags = (dev->flags & ~(IFF_PROMISC |
2975 (dev->gflags & (IFF_PROMISC |
2978 if (netif_running(dev)) {
2979 if (netif_oper_up(dev))
2980 flags |= IFF_RUNNING;
2981 if (netif_carrier_ok(dev))
2982 flags |= IFF_LOWER_UP;
2983 if (netif_dormant(dev))
2984 flags |= IFF_DORMANT;
2990 int dev_change_flags(struct net_device *dev, unsigned flags)
2993 int old_flags = dev->flags;
2998 * Set the flags on our device.
3001 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3002 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3004 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3008 * Load in the correct multicast list now the flags have changed.
3011 if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST)
3012 dev->change_rx_flags(dev, IFF_MULTICAST);
3014 dev_set_rx_mode(dev);
3017 * Have we downed the interface. We handle IFF_UP ourselves
3018 * according to user attempts to set it, rather than blindly
3023 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3024 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3027 dev_set_rx_mode(dev);
3030 if (dev->flags & IFF_UP &&
3031 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3033 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3035 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3036 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3037 dev->gflags ^= IFF_PROMISC;
3038 dev_set_promiscuity(dev, inc);
3041 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3042 is important. Some (broken) drivers set IFF_PROMISC, when
3043 IFF_ALLMULTI is requested not asking us and not reporting.
3045 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3046 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3047 dev->gflags ^= IFF_ALLMULTI;
3048 dev_set_allmulti(dev, inc);
3051 /* Exclude state transition flags, already notified */
3052 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3054 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3059 int dev_set_mtu(struct net_device *dev, int new_mtu)
3063 if (new_mtu == dev->mtu)
3066 /* MTU must be positive. */
3070 if (!netif_device_present(dev))
3074 if (dev->change_mtu)
3075 err = dev->change_mtu(dev, new_mtu);
3078 if (!err && dev->flags & IFF_UP)
3079 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3083 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3087 if (!dev->set_mac_address)
3089 if (sa->sa_family != dev->type)
3091 if (!netif_device_present(dev))
3093 err = dev->set_mac_address(dev, sa);
3095 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3100 * Perform the SIOCxIFxxx calls.
3102 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3105 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3111 case SIOCGIFFLAGS: /* Get interface flags */
3112 ifr->ifr_flags = dev_get_flags(dev);
3115 case SIOCSIFFLAGS: /* Set interface flags */
3116 return dev_change_flags(dev, ifr->ifr_flags);
3118 case SIOCGIFMETRIC: /* Get the metric on the interface
3119 (currently unused) */
3120 ifr->ifr_metric = 0;
3123 case SIOCSIFMETRIC: /* Set the metric on the interface
3124 (currently unused) */
3127 case SIOCGIFMTU: /* Get the MTU of a device */
3128 ifr->ifr_mtu = dev->mtu;
3131 case SIOCSIFMTU: /* Set the MTU of a device */
3132 return dev_set_mtu(dev, ifr->ifr_mtu);
3136 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3138 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3139 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3140 ifr->ifr_hwaddr.sa_family = dev->type;
3144 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3146 case SIOCSIFHWBROADCAST:
3147 if (ifr->ifr_hwaddr.sa_family != dev->type)
3149 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3150 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3151 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3155 ifr->ifr_map.mem_start = dev->mem_start;
3156 ifr->ifr_map.mem_end = dev->mem_end;
3157 ifr->ifr_map.base_addr = dev->base_addr;
3158 ifr->ifr_map.irq = dev->irq;
3159 ifr->ifr_map.dma = dev->dma;
3160 ifr->ifr_map.port = dev->if_port;
3164 if (dev->set_config) {
3165 if (!netif_device_present(dev))
3167 return dev->set_config(dev, &ifr->ifr_map);
3172 if (!dev->set_multicast_list ||
3173 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3175 if (!netif_device_present(dev))
3177 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3181 if (!dev->set_multicast_list ||
3182 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3184 if (!netif_device_present(dev))
3186 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3190 ifr->ifr_ifindex = dev->ifindex;
3194 ifr->ifr_qlen = dev->tx_queue_len;
3198 if (ifr->ifr_qlen < 0)
3200 dev->tx_queue_len = ifr->ifr_qlen;
3204 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3205 return dev_change_name(dev, ifr->ifr_newname);
3208 * Unknown or private ioctl
3212 if ((cmd >= SIOCDEVPRIVATE &&
3213 cmd <= SIOCDEVPRIVATE + 15) ||
3214 cmd == SIOCBONDENSLAVE ||
3215 cmd == SIOCBONDRELEASE ||
3216 cmd == SIOCBONDSETHWADDR ||
3217 cmd == SIOCBONDSLAVEINFOQUERY ||
3218 cmd == SIOCBONDINFOQUERY ||
3219 cmd == SIOCBONDCHANGEACTIVE ||
3220 cmd == SIOCGMIIPHY ||
3221 cmd == SIOCGMIIREG ||
3222 cmd == SIOCSMIIREG ||
3223 cmd == SIOCBRADDIF ||
3224 cmd == SIOCBRDELIF ||
3225 cmd == SIOCWANDEV) {
3227 if (dev->do_ioctl) {
3228 if (netif_device_present(dev))
3229 err = dev->do_ioctl(dev, ifr,
3242 * This function handles all "interface"-type I/O control requests. The actual
3243 * 'doing' part of this is dev_ifsioc above.
3247 * dev_ioctl - network device ioctl
3248 * @cmd: command to issue
3249 * @arg: pointer to a struct ifreq in user space
3251 * Issue ioctl functions to devices. This is normally called by the
3252 * user space syscall interfaces but can sometimes be useful for
3253 * other purposes. The return value is the return from the syscall if
3254 * positive or a negative errno code on error.
3257 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3263 /* One special case: SIOCGIFCONF takes ifconf argument
3264 and requires shared lock, because it sleeps writing
3268 if (cmd == SIOCGIFCONF) {
3270 ret = dev_ifconf(net, (char __user *) arg);
3274 if (cmd == SIOCGIFNAME)
3275 return dev_ifname(net, (struct ifreq __user *)arg);
3277 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3280 ifr.ifr_name[IFNAMSIZ-1] = 0;
3282 colon = strchr(ifr.ifr_name, ':');
3287 * See which interface the caller is talking about.
3292 * These ioctl calls:
3293 * - can be done by all.
3294 * - atomic and do not require locking.
3305 dev_load(net, ifr.ifr_name);
3306 read_lock(&dev_base_lock);
3307 ret = dev_ifsioc(net, &ifr, cmd);
3308 read_unlock(&dev_base_lock);
3312 if (copy_to_user(arg, &ifr,
3313 sizeof(struct ifreq)))
3319 dev_load(net, ifr.ifr_name);
3321 ret = dev_ethtool(net, &ifr);
3326 if (copy_to_user(arg, &ifr,
3327 sizeof(struct ifreq)))
3333 * These ioctl calls:
3334 * - require superuser power.
3335 * - require strict serialization.
3341 if (!capable(CAP_NET_ADMIN))
3343 dev_load(net, ifr.ifr_name);
3345 ret = dev_ifsioc(net, &ifr, cmd);
3350 if (copy_to_user(arg, &ifr,
3351 sizeof(struct ifreq)))
3357 * These ioctl calls:
3358 * - require superuser power.
3359 * - require strict serialization.
3360 * - do not return a value
3370 case SIOCSIFHWBROADCAST:
3373 case SIOCBONDENSLAVE:
3374 case SIOCBONDRELEASE:
3375 case SIOCBONDSETHWADDR:
3376 case SIOCBONDCHANGEACTIVE:
3379 if (!capable(CAP_NET_ADMIN))
3382 case SIOCBONDSLAVEINFOQUERY:
3383 case SIOCBONDINFOQUERY:
3384 dev_load(net, ifr.ifr_name);
3386 ret = dev_ifsioc(net, &ifr, cmd);
3391 /* Get the per device memory space. We can add this but
3392 * currently do not support it */
3394 /* Set the per device memory buffer space.
3395 * Not applicable in our case */
3400 * Unknown or private ioctl.
3403 if (cmd == SIOCWANDEV ||
3404 (cmd >= SIOCDEVPRIVATE &&
3405 cmd <= SIOCDEVPRIVATE + 15)) {
3406 dev_load(net, ifr.ifr_name);
3408 ret = dev_ifsioc(net, &ifr, cmd);
3410 if (!ret && copy_to_user(arg, &ifr,
3411 sizeof(struct ifreq)))
3415 /* Take care of Wireless Extensions */
3416 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3417 return wext_handle_ioctl(net, &ifr, cmd, arg);
3424 * dev_new_index - allocate an ifindex
3426 * Returns a suitable unique value for a new device interface
3427 * number. The caller must hold the rtnl semaphore or the
3428 * dev_base_lock to be sure it remains unique.
3430 static int dev_new_index(struct net *net)
3436 if (!__dev_get_by_index(net, ifindex))
3441 /* Delayed registration/unregisteration */
3442 static DEFINE_SPINLOCK(net_todo_list_lock);
3443 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
3445 static void net_set_todo(struct net_device *dev)
3447 spin_lock(&net_todo_list_lock);
3448 list_add_tail(&dev->todo_list, &net_todo_list);
3449 spin_unlock(&net_todo_list_lock);
3453 * register_netdevice - register a network device
3454 * @dev: device to register
3456 * Take a completed network device structure and add it to the kernel
3457 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3458 * chain. 0 is returned on success. A negative errno code is returned
3459 * on a failure to set up the device, or if the name is a duplicate.
3461 * Callers must hold the rtnl semaphore. You may want
3462 * register_netdev() instead of this.
3465 * The locking appears insufficient to guarantee two parallel registers
3466 * will not get the same name.
3469 int register_netdevice(struct net_device *dev)
3471 struct hlist_head *head;
3472 struct hlist_node *p;
3476 BUG_ON(dev_boot_phase);
3481 /* When net_device's are persistent, this will be fatal. */
3482 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3483 BUG_ON(!dev->nd_net);
3486 spin_lock_init(&dev->queue_lock);
3487 spin_lock_init(&dev->_xmit_lock);
3488 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3489 dev->xmit_lock_owner = -1;
3490 spin_lock_init(&dev->ingress_lock);
3494 /* Init, if this function is available */
3496 ret = dev->init(dev);
3504 if (!dev_valid_name(dev->name)) {
3509 dev->ifindex = dev_new_index(net);
3510 if (dev->iflink == -1)
3511 dev->iflink = dev->ifindex;
3513 /* Check for existence of name */
3514 head = dev_name_hash(net, dev->name);
3515 hlist_for_each(p, head) {
3516 struct net_device *d
3517 = hlist_entry(p, struct net_device, name_hlist);
3518 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3524 /* Fix illegal checksum combinations */
3525 if ((dev->features & NETIF_F_HW_CSUM) &&
3526 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3527 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3529 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3532 if ((dev->features & NETIF_F_NO_CSUM) &&
3533 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3534 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3536 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3540 /* Fix illegal SG+CSUM combinations. */
3541 if ((dev->features & NETIF_F_SG) &&
3542 !(dev->features & NETIF_F_ALL_CSUM)) {
3543 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3545 dev->features &= ~NETIF_F_SG;
3548 /* TSO requires that SG is present as well. */
3549 if ((dev->features & NETIF_F_TSO) &&
3550 !(dev->features & NETIF_F_SG)) {
3551 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3553 dev->features &= ~NETIF_F_TSO;
3555 if (dev->features & NETIF_F_UFO) {
3556 if (!(dev->features & NETIF_F_HW_CSUM)) {
3557 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3558 "NETIF_F_HW_CSUM feature.\n",
3560 dev->features &= ~NETIF_F_UFO;
3562 if (!(dev->features & NETIF_F_SG)) {
3563 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3564 "NETIF_F_SG feature.\n",
3566 dev->features &= ~NETIF_F_UFO;
3571 * nil rebuild_header routine,
3572 * that should be never called and used as just bug trap.
3575 if (!dev->rebuild_header)
3576 dev->rebuild_header = default_rebuild_header;
3578 ret = netdev_register_sysfs(dev);
3581 dev->reg_state = NETREG_REGISTERED;
3584 * Default initial state at registry is that the
3585 * device is present.
3588 set_bit(__LINK_STATE_PRESENT, &dev->state);
3590 dev_init_scheduler(dev);
3592 list_netdevice(dev);
3594 /* Notify protocols, that a new device appeared. */
3595 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3596 ret = notifier_to_errno(ret);
3598 unregister_netdevice(dev);
3610 * register_netdev - register a network device
3611 * @dev: device to register
3613 * Take a completed network device structure and add it to the kernel
3614 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3615 * chain. 0 is returned on success. A negative errno code is returned
3616 * on a failure to set up the device, or if the name is a duplicate.
3618 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3619 * and expands the device name if you passed a format string to
3622 int register_netdev(struct net_device *dev)
3629 * If the name is a format string the caller wants us to do a
3632 if (strchr(dev->name, '%')) {
3633 err = dev_alloc_name(dev, dev->name);
3638 err = register_netdevice(dev);
3643 EXPORT_SYMBOL(register_netdev);
3646 * netdev_wait_allrefs - wait until all references are gone.
3648 * This is called when unregistering network devices.
3650 * Any protocol or device that holds a reference should register
3651 * for netdevice notification, and cleanup and put back the
3652 * reference if they receive an UNREGISTER event.
3653 * We can get stuck here if buggy protocols don't correctly
3656 static void netdev_wait_allrefs(struct net_device *dev)
3658 unsigned long rebroadcast_time, warning_time;
3660 rebroadcast_time = warning_time = jiffies;
3661 while (atomic_read(&dev->refcnt) != 0) {
3662 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3665 /* Rebroadcast unregister notification */
3666 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3668 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3670 /* We must not have linkwatch events
3671 * pending on unregister. If this
3672 * happens, we simply run the queue
3673 * unscheduled, resulting in a noop
3676 linkwatch_run_queue();
3681 rebroadcast_time = jiffies;
3686 if (time_after(jiffies, warning_time + 10 * HZ)) {
3687 printk(KERN_EMERG "unregister_netdevice: "
3688 "waiting for %s to become free. Usage "
3690 dev->name, atomic_read(&dev->refcnt));
3691 warning_time = jiffies;
3700 * register_netdevice(x1);
3701 * register_netdevice(x2);
3703 * unregister_netdevice(y1);
3704 * unregister_netdevice(y2);
3710 * We are invoked by rtnl_unlock() after it drops the semaphore.
3711 * This allows us to deal with problems:
3712 * 1) We can delete sysfs objects which invoke hotplug
3713 * without deadlocking with linkwatch via keventd.
3714 * 2) Since we run with the RTNL semaphore not held, we can sleep
3715 * safely in order to wait for the netdev refcnt to drop to zero.
3717 static DEFINE_MUTEX(net_todo_run_mutex);
3718 void netdev_run_todo(void)
3720 struct list_head list;
3722 /* Need to guard against multiple cpu's getting out of order. */
3723 mutex_lock(&net_todo_run_mutex);
3725 /* Not safe to do outside the semaphore. We must not return
3726 * until all unregister events invoked by the local processor
3727 * have been completed (either by this todo run, or one on
3730 if (list_empty(&net_todo_list))
3733 /* Snapshot list, allow later requests */
3734 spin_lock(&net_todo_list_lock);
3735 list_replace_init(&net_todo_list, &list);
3736 spin_unlock(&net_todo_list_lock);
3738 while (!list_empty(&list)) {
3739 struct net_device *dev
3740 = list_entry(list.next, struct net_device, todo_list);
3741 list_del(&dev->todo_list);
3743 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3744 printk(KERN_ERR "network todo '%s' but state %d\n",
3745 dev->name, dev->reg_state);
3750 dev->reg_state = NETREG_UNREGISTERED;
3752 netdev_wait_allrefs(dev);
3755 BUG_ON(atomic_read(&dev->refcnt));
3756 BUG_TRAP(!dev->ip_ptr);
3757 BUG_TRAP(!dev->ip6_ptr);
3758 BUG_TRAP(!dev->dn_ptr);
3760 if (dev->destructor)
3761 dev->destructor(dev);
3763 /* Free network device */
3764 kobject_put(&dev->dev.kobj);
3768 mutex_unlock(&net_todo_run_mutex);
3771 static struct net_device_stats *internal_stats(struct net_device *dev)
3777 * alloc_netdev_mq - allocate network device
3778 * @sizeof_priv: size of private data to allocate space for
3779 * @name: device name format string
3780 * @setup: callback to initialize device
3781 * @queue_count: the number of subqueues to allocate
3783 * Allocates a struct net_device with private data area for driver use
3784 * and performs basic initialization. Also allocates subquue structs
3785 * for each queue on the device at the end of the netdevice.
3787 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
3788 void (*setup)(struct net_device *), unsigned int queue_count)
3791 struct net_device *dev;
3794 BUG_ON(strlen(name) >= sizeof(dev->name));
3796 /* ensure 32-byte alignment of both the device and private area */
3797 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST +
3798 (sizeof(struct net_device_subqueue) * (queue_count - 1))) &
3799 ~NETDEV_ALIGN_CONST;
3800 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3802 p = kzalloc(alloc_size, GFP_KERNEL);
3804 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
3808 dev = (struct net_device *)
3809 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3810 dev->padded = (char *)dev - (char *)p;
3811 dev->nd_net = &init_net;
3814 dev->priv = ((char *)dev +
3815 ((sizeof(struct net_device) +
3816 (sizeof(struct net_device_subqueue) *
3817 (queue_count - 1)) + NETDEV_ALIGN_CONST)
3818 & ~NETDEV_ALIGN_CONST));
3821 dev->egress_subqueue_count = queue_count;
3823 dev->get_stats = internal_stats;
3824 netpoll_netdev_init(dev);
3826 strcpy(dev->name, name);
3829 EXPORT_SYMBOL(alloc_netdev_mq);
3832 * free_netdev - free network device
3835 * This function does the last stage of destroying an allocated device
3836 * interface. The reference to the device object is released.
3837 * If this is the last reference then it will be freed.
3839 void free_netdev(struct net_device *dev)
3842 /* Compatibility with error handling in drivers */
3843 if (dev->reg_state == NETREG_UNINITIALIZED) {
3844 kfree((char *)dev - dev->padded);
3848 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3849 dev->reg_state = NETREG_RELEASED;
3851 /* will free via device release */
3852 put_device(&dev->dev);
3854 kfree((char *)dev - dev->padded);
3858 /* Synchronize with packet receive processing. */
3859 void synchronize_net(void)
3866 * unregister_netdevice - remove device from the kernel
3869 * This function shuts down a device interface and removes it
3870 * from the kernel tables. On success 0 is returned, on a failure
3871 * a negative errno code is returned.
3873 * Callers must hold the rtnl semaphore. You may want
3874 * unregister_netdev() instead of this.
3877 void unregister_netdevice(struct net_device *dev)
3879 BUG_ON(dev_boot_phase);
3882 /* Some devices call without registering for initialization unwind. */
3883 if (dev->reg_state == NETREG_UNINITIALIZED) {
3884 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3885 "was registered\n", dev->name, dev);
3891 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3893 /* If device is running, close it first. */
3894 if (dev->flags & IFF_UP)
3897 /* And unlink it from device chain. */
3898 unlist_netdevice(dev);
3900 dev->reg_state = NETREG_UNREGISTERING;
3904 /* Shutdown queueing discipline. */
3908 /* Notify protocols, that we are about to destroy
3909 this device. They should clean all the things.
3911 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3914 * Flush the unicast and multicast chains
3916 dev_addr_discard(dev);
3921 /* Notifier chain MUST detach us from master device. */
3922 BUG_TRAP(!dev->master);
3924 /* Remove entries from sysfs */
3925 netdev_unregister_sysfs(dev);
3927 /* Finish processing unregister after unlock */
3936 * unregister_netdev - remove device from the kernel
3939 * This function shuts down a device interface and removes it
3940 * from the kernel tables. On success 0 is returned, on a failure
3941 * a negative errno code is returned.
3943 * This is just a wrapper for unregister_netdevice that takes
3944 * the rtnl semaphore. In general you want to use this and not
3945 * unregister_netdevice.
3947 void unregister_netdev(struct net_device *dev)
3950 unregister_netdevice(dev);
3954 EXPORT_SYMBOL(unregister_netdev);
3957 * dev_change_net_namespace - move device to different nethost namespace
3959 * @net: network namespace
3960 * @pat: If not NULL name pattern to try if the current device name
3961 * is already taken in the destination network namespace.
3963 * This function shuts down a device interface and moves it
3964 * to a new network namespace. On success 0 is returned, on
3965 * a failure a netagive errno code is returned.
3967 * Callers must hold the rtnl semaphore.
3970 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
3973 const char *destname;
3978 /* Don't allow namespace local devices to be moved. */
3980 if (dev->features & NETIF_F_NETNS_LOCAL)
3983 /* Ensure the device has been registrered */
3985 if (dev->reg_state != NETREG_REGISTERED)
3988 /* Get out if there is nothing todo */
3990 if (dev->nd_net == net)
3993 /* Pick the destination device name, and ensure
3994 * we can use it in the destination network namespace.
3997 destname = dev->name;
3998 if (__dev_get_by_name(net, destname)) {
3999 /* We get here if we can't use the current device name */
4002 if (!dev_valid_name(pat))
4004 if (strchr(pat, '%')) {
4005 if (__dev_alloc_name(net, pat, buf) < 0)
4010 if (__dev_get_by_name(net, destname))
4015 * And now a mini version of register_netdevice unregister_netdevice.
4018 /* If device is running close it first. */
4019 if (dev->flags & IFF_UP)
4022 /* And unlink it from device chain */
4024 unlist_netdevice(dev);
4028 /* Shutdown queueing discipline. */
4031 /* Notify protocols, that we are about to destroy
4032 this device. They should clean all the things.
4034 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4037 * Flush the unicast and multicast chains
4039 dev_addr_discard(dev);
4041 /* Actually switch the network namespace */
4044 /* Assign the new device name */
4045 if (destname != dev->name)
4046 strcpy(dev->name, destname);
4048 /* If there is an ifindex conflict assign a new one */
4049 if (__dev_get_by_index(net, dev->ifindex)) {
4050 int iflink = (dev->iflink == dev->ifindex);
4051 dev->ifindex = dev_new_index(net);
4053 dev->iflink = dev->ifindex;
4057 err = device_rename(&dev->dev, dev->name);
4060 /* Add the device back in the hashes */
4061 list_netdevice(dev);
4063 /* Notify protocols, that a new device appeared. */
4064 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4072 static int dev_cpu_callback(struct notifier_block *nfb,
4073 unsigned long action,
4076 struct sk_buff **list_skb;
4077 struct net_device **list_net;
4078 struct sk_buff *skb;
4079 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4080 struct softnet_data *sd, *oldsd;
4082 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4085 local_irq_disable();
4086 cpu = smp_processor_id();
4087 sd = &per_cpu(softnet_data, cpu);
4088 oldsd = &per_cpu(softnet_data, oldcpu);
4090 /* Find end of our completion_queue. */
4091 list_skb = &sd->completion_queue;
4093 list_skb = &(*list_skb)->next;
4094 /* Append completion queue from offline CPU. */
4095 *list_skb = oldsd->completion_queue;
4096 oldsd->completion_queue = NULL;
4098 /* Find end of our output_queue. */
4099 list_net = &sd->output_queue;
4101 list_net = &(*list_net)->next_sched;
4102 /* Append output queue from offline CPU. */
4103 *list_net = oldsd->output_queue;
4104 oldsd->output_queue = NULL;
4106 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4109 /* Process offline CPU's input_pkt_queue */
4110 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4116 #ifdef CONFIG_NET_DMA
4118 * net_dma_rebalance - try to maintain one DMA channel per CPU
4119 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4121 * This is called when the number of channels allocated to the net_dma client
4122 * changes. The net_dma client tries to have one DMA channel per CPU.
4125 static void net_dma_rebalance(struct net_dma *net_dma)
4127 unsigned int cpu, i, n, chan_idx;
4128 struct dma_chan *chan;
4130 if (cpus_empty(net_dma->channel_mask)) {
4131 for_each_online_cpu(cpu)
4132 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4137 cpu = first_cpu(cpu_online_map);
4139 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4140 chan = net_dma->channels[chan_idx];
4142 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4143 + (i < (num_online_cpus() %
4144 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4147 per_cpu(softnet_data, cpu).net_dma = chan;
4148 cpu = next_cpu(cpu, cpu_online_map);
4156 * netdev_dma_event - event callback for the net_dma_client
4157 * @client: should always be net_dma_client
4158 * @chan: DMA channel for the event
4159 * @state: DMA state to be handled
4161 static enum dma_state_client
4162 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4163 enum dma_state state)
4165 int i, found = 0, pos = -1;
4166 struct net_dma *net_dma =
4167 container_of(client, struct net_dma, client);
4168 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4170 spin_lock(&net_dma->lock);
4172 case DMA_RESOURCE_AVAILABLE:
4173 for (i = 0; i < NR_CPUS; i++)
4174 if (net_dma->channels[i] == chan) {
4177 } else if (net_dma->channels[i] == NULL && pos < 0)
4180 if (!found && pos >= 0) {
4182 net_dma->channels[pos] = chan;
4183 cpu_set(pos, net_dma->channel_mask);
4184 net_dma_rebalance(net_dma);
4187 case DMA_RESOURCE_REMOVED:
4188 for (i = 0; i < NR_CPUS; i++)
4189 if (net_dma->channels[i] == chan) {
4197 cpu_clear(pos, net_dma->channel_mask);
4198 net_dma->channels[i] = NULL;
4199 net_dma_rebalance(net_dma);
4205 spin_unlock(&net_dma->lock);
4211 * netdev_dma_regiser - register the networking subsystem as a DMA client
4213 static int __init netdev_dma_register(void)
4215 spin_lock_init(&net_dma.lock);
4216 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4217 dma_async_client_register(&net_dma.client);
4218 dma_async_client_chan_request(&net_dma.client);
4223 static int __init netdev_dma_register(void) { return -ENODEV; }
4224 #endif /* CONFIG_NET_DMA */
4227 * netdev_compute_feature - compute conjunction of two feature sets
4228 * @all: first feature set
4229 * @one: second feature set
4231 * Computes a new feature set after adding a device with feature set
4232 * @one to the master device with current feature set @all. Returns
4233 * the new feature set.
4235 int netdev_compute_features(unsigned long all, unsigned long one)
4237 /* if device needs checksumming, downgrade to hw checksumming */
4238 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4239 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4241 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4242 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4243 all ^= NETIF_F_HW_CSUM
4244 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4246 if (one & NETIF_F_GSO)
4247 one |= NETIF_F_GSO_SOFTWARE;
4250 /* If even one device supports robust GSO, enable it for all. */
4251 if (one & NETIF_F_GSO_ROBUST)
4252 all |= NETIF_F_GSO_ROBUST;
4254 all &= one | NETIF_F_LLTX;
4256 if (!(all & NETIF_F_ALL_CSUM))
4258 if (!(all & NETIF_F_SG))
4259 all &= ~NETIF_F_GSO_MASK;
4263 EXPORT_SYMBOL(netdev_compute_features);
4265 static struct hlist_head *netdev_create_hash(void)
4268 struct hlist_head *hash;
4270 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4272 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4273 INIT_HLIST_HEAD(&hash[i]);
4278 /* Initialize per network namespace state */
4279 static int netdev_init(struct net *net)
4281 INIT_LIST_HEAD(&net->dev_base_head);
4282 rwlock_init(&dev_base_lock);
4284 net->dev_name_head = netdev_create_hash();
4285 if (net->dev_name_head == NULL)
4288 net->dev_index_head = netdev_create_hash();
4289 if (net->dev_index_head == NULL)
4295 kfree(net->dev_name_head);
4300 static void netdev_exit(struct net *net)
4302 kfree(net->dev_name_head);
4303 kfree(net->dev_index_head);
4306 static struct pernet_operations netdev_net_ops = {
4307 .init = netdev_init,
4308 .exit = netdev_exit,
4311 static void default_device_exit(struct net *net)
4313 struct net_device *dev, *next;
4315 * Push all migratable of the network devices back to the
4316 * initial network namespace
4319 for_each_netdev_safe(net, dev, next) {
4322 /* Ignore unmoveable devices (i.e. loopback) */
4323 if (dev->features & NETIF_F_NETNS_LOCAL)
4326 /* Push remaing network devices to init_net */
4327 err = dev_change_net_namespace(dev, &init_net, "dev%d");
4329 printk(KERN_WARNING "%s: failed to move %s to init_net: %d\n",
4330 __func__, dev->name, err);
4331 unregister_netdevice(dev);
4337 static struct pernet_operations default_device_ops = {
4338 .exit = default_device_exit,
4342 * Initialize the DEV module. At boot time this walks the device list and
4343 * unhooks any devices that fail to initialise (normally hardware not
4344 * present) and leaves us with a valid list of present and active devices.
4349 * This is called single threaded during boot, so no need
4350 * to take the rtnl semaphore.
4352 static int __init net_dev_init(void)
4354 int i, rc = -ENOMEM;
4356 BUG_ON(!dev_boot_phase);
4358 if (dev_proc_init())
4361 if (netdev_sysfs_init())
4364 INIT_LIST_HEAD(&ptype_all);
4365 for (i = 0; i < 16; i++)
4366 INIT_LIST_HEAD(&ptype_base[i]);
4368 if (register_pernet_subsys(&netdev_net_ops))
4371 if (register_pernet_device(&default_device_ops))
4375 * Initialise the packet receive queues.
4378 for_each_possible_cpu(i) {
4379 struct softnet_data *queue;
4381 queue = &per_cpu(softnet_data, i);
4382 skb_queue_head_init(&queue->input_pkt_queue);
4383 queue->completion_queue = NULL;
4384 INIT_LIST_HEAD(&queue->poll_list);
4386 queue->backlog.poll = process_backlog;
4387 queue->backlog.weight = weight_p;
4390 netdev_dma_register();
4394 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4395 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4397 hotcpu_notifier(dev_cpu_callback, 0);
4405 subsys_initcall(net_dev_init);
4407 EXPORT_SYMBOL(__dev_get_by_index);
4408 EXPORT_SYMBOL(__dev_get_by_name);
4409 EXPORT_SYMBOL(__dev_remove_pack);
4410 EXPORT_SYMBOL(dev_valid_name);
4411 EXPORT_SYMBOL(dev_add_pack);
4412 EXPORT_SYMBOL(dev_alloc_name);
4413 EXPORT_SYMBOL(dev_close);
4414 EXPORT_SYMBOL(dev_get_by_flags);
4415 EXPORT_SYMBOL(dev_get_by_index);
4416 EXPORT_SYMBOL(dev_get_by_name);
4417 EXPORT_SYMBOL(dev_open);
4418 EXPORT_SYMBOL(dev_queue_xmit);
4419 EXPORT_SYMBOL(dev_remove_pack);
4420 EXPORT_SYMBOL(dev_set_allmulti);
4421 EXPORT_SYMBOL(dev_set_promiscuity);
4422 EXPORT_SYMBOL(dev_change_flags);
4423 EXPORT_SYMBOL(dev_set_mtu);
4424 EXPORT_SYMBOL(dev_set_mac_address);
4425 EXPORT_SYMBOL(free_netdev);
4426 EXPORT_SYMBOL(netdev_boot_setup_check);
4427 EXPORT_SYMBOL(netdev_set_master);
4428 EXPORT_SYMBOL(netdev_state_change);
4429 EXPORT_SYMBOL(netif_receive_skb);
4430 EXPORT_SYMBOL(netif_rx);
4431 EXPORT_SYMBOL(register_gifconf);
4432 EXPORT_SYMBOL(register_netdevice);
4433 EXPORT_SYMBOL(register_netdevice_notifier);
4434 EXPORT_SYMBOL(skb_checksum_help);
4435 EXPORT_SYMBOL(synchronize_net);
4436 EXPORT_SYMBOL(unregister_netdevice);
4437 EXPORT_SYMBOL(unregister_netdevice_notifier);
4438 EXPORT_SYMBOL(net_enable_timestamp);
4439 EXPORT_SYMBOL(net_disable_timestamp);
4440 EXPORT_SYMBOL(dev_get_flags);
4442 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4443 EXPORT_SYMBOL(br_handle_frame_hook);
4444 EXPORT_SYMBOL(br_fdb_get_hook);
4445 EXPORT_SYMBOL(br_fdb_put_hook);
4449 EXPORT_SYMBOL(dev_load);
4452 EXPORT_PER_CPU_SYMBOL(softnet_data);