1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
3 Written 1998-2000 by Donald Becker.
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
16 The information below comes from Donald Becker's original driver:
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
29 #define DRV_NAME "starfire"
30 #define DRV_VERSION "2.1"
31 #define DRV_RELDATE "July 6, 2008"
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/pci.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/init.h>
39 #include <linux/delay.h>
40 #include <linux/crc32.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
45 #include <linux/firmware.h>
46 #include <asm/processor.h> /* Processor type for cache alignment. */
47 #include <asm/uaccess.h>
51 * The current frame processor firmware fails to checksum a fragment
52 * of length 1. If and when this is fixed, the #define below can be removed.
54 #define HAS_BROKEN_FIRMWARE
57 * If using the broken firmware, data must be padded to the next 32-bit boundary.
59 #ifdef HAS_BROKEN_FIRMWARE
60 #define PADDING_MASK 3
64 * Define this if using the driver with the zero-copy patch
68 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
72 /* The user-configurable values.
73 These may be modified when a driver module is loaded.*/
75 /* Used for tuning interrupt latency vs. overhead. */
76 static int intr_latency;
77 static int small_frames;
79 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
80 static int max_interrupt_work = 20;
82 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
83 The Starfire has a 512 element hash table based on the Ethernet CRC. */
84 static const int multicast_filter_limit = 512;
85 /* Whether to do TCP/UDP checksums in hardware */
86 static int enable_hw_cksum = 1;
88 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
90 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
91 * Setting to > 1518 effectively disables this feature.
94 * The ia64 doesn't allow for unaligned loads even of integers being
95 * misaligned on a 2 byte boundary. Thus always force copying of
96 * packets as the starfire doesn't allow for misaligned DMAs ;-(
99 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
100 * at least, having unaligned frames leads to a rather serious performance
103 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
104 static int rx_copybreak = PKT_BUF_SZ;
106 static int rx_copybreak /* = 0 */;
109 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111 #define DMA_BURST_SIZE 64
113 #define DMA_BURST_SIZE 128
116 /* Used to pass the media type, etc.
117 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
118 The media type is usually passed in 'options[]'.
119 These variables are deprecated, use ethtool instead. -Ion
121 #define MAX_UNITS 8 /* More are supported, limit only on options */
122 static int options[MAX_UNITS] = {0, };
123 static int full_duplex[MAX_UNITS] = {0, };
125 /* Operational parameters that are set at compile time. */
127 /* The "native" ring sizes are either 256 or 2048.
128 However in some modes a descriptor may be marked to wrap the ring earlier.
130 #define RX_RING_SIZE 256
131 #define TX_RING_SIZE 32
132 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
133 #define DONE_Q_SIZE 1024
134 /* All queues must be aligned on a 256-byte boundary */
135 #define QUEUE_ALIGN 256
137 #if RX_RING_SIZE > 256
138 #define RX_Q_ENTRIES Rx2048QEntries
140 #define RX_Q_ENTRIES Rx256QEntries
143 /* Operational parameters that usually are not changed. */
144 /* Time in jiffies before concluding the transmitter is hung. */
145 #define TX_TIMEOUT (2 * HZ)
149 * We need a much better method to determine if dma_addr_t is 64-bit.
151 #if (defined(__i386__) && defined(CONFIG_HIGHMEM64G)) || defined(__x86_64__) || defined (__ia64__) || defined(__alpha__) || defined(__mips64__) || (defined(__mips__) && defined(CONFIG_HIGHMEM) && defined(CONFIG_64BIT_PHYS_ADDR))
152 /* 64-bit dma_addr_t */
153 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
154 #define netdrv_addr_t __le64
155 #define cpu_to_dma(x) cpu_to_le64(x)
156 #define dma_to_cpu(x) le64_to_cpu(x)
157 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
158 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
159 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
160 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
161 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
162 #else /* 32-bit dma_addr_t */
163 #define netdrv_addr_t __le32
164 #define cpu_to_dma(x) cpu_to_le32(x)
165 #define dma_to_cpu(x) le32_to_cpu(x)
166 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
167 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
168 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
169 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
170 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
173 #define skb_first_frag_len(skb) skb_headlen(skb)
174 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
177 #define FIRMWARE_RX "adaptec/starfire_rx.bin"
178 #define FIRMWARE_TX "adaptec/starfire_tx.bin"
180 /* These identify the driver base version and may not be removed. */
181 static char version[] =
182 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
183 KERN_INFO " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
185 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
186 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
187 MODULE_LICENSE("GPL");
188 MODULE_VERSION(DRV_VERSION);
189 MODULE_FIRMWARE(FIRMWARE_RX);
190 MODULE_FIRMWARE(FIRMWARE_TX);
192 module_param(max_interrupt_work, int, 0);
193 module_param(mtu, int, 0);
194 module_param(debug, int, 0);
195 module_param(rx_copybreak, int, 0);
196 module_param(intr_latency, int, 0);
197 module_param(small_frames, int, 0);
198 module_param_array(options, int, NULL, 0);
199 module_param_array(full_duplex, int, NULL, 0);
200 module_param(enable_hw_cksum, int, 0);
201 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
202 MODULE_PARM_DESC(mtu, "MTU (all boards)");
203 MODULE_PARM_DESC(debug, "Debug level (0-6)");
204 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
205 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
206 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
207 MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
208 MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
209 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
214 I. Board Compatibility
216 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
218 II. Board-specific settings
220 III. Driver operation
224 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
225 ring sizes are set fixed by the hardware, but may optionally be wrapped
226 earlier by the END bit in the descriptor.
227 This driver uses that hardware queue size for the Rx ring, where a large
228 number of entries has no ill effect beyond increases the potential backlog.
229 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
230 disables the queue layer priority ordering and we have no mechanism to
231 utilize the hardware two-level priority queue. When modifying the
232 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
235 IIIb/c. Transmit/Receive Structure
237 See the Adaptec manual for the many possible structures, and options for
238 each structure. There are far too many to document all of them here.
240 For transmit this driver uses type 0/1 transmit descriptors (depending
241 on the 32/64 bitness of the architecture), and relies on automatic
242 minimum-length padding. It does not use the completion queue
243 consumer index, but instead checks for non-zero status entries.
245 For receive this driver uses type 2/3 receive descriptors. The driver
246 allocates full frame size skbuffs for the Rx ring buffers, so all frames
247 should fit in a single descriptor. The driver does not use the completion
248 queue consumer index, but instead checks for non-zero status entries.
250 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
251 is allocated and the frame is copied to the new skbuff. When the incoming
252 frame is larger, the skbuff is passed directly up the protocol stack.
253 Buffers consumed this way are replaced by newly allocated skbuffs in a later
256 A notable aspect of operation is that unaligned buffers are not permitted by
257 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
258 isn't longword aligned, which may cause problems on some machine
259 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
260 the frame into a new skbuff unconditionally. Copied frames are put into the
261 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
263 IIId. Synchronization
265 The driver runs as two independent, single-threaded flows of control. One
266 is the send-packet routine, which enforces single-threaded use by the
267 dev->tbusy flag. The other thread is the interrupt handler, which is single
268 threaded by the hardware and interrupt handling software.
270 The send packet thread has partial control over the Tx ring and the netif_queue
271 status. If the number of free Tx slots in the ring falls below a certain number
272 (currently hardcoded to 4), it signals the upper layer to stop the queue.
274 The interrupt handler has exclusive control over the Rx ring and records stats
275 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
276 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
277 number of free Tx slow is above the threshold, it signals the upper layer to
284 The Adaptec Starfire manuals, available only from Adaptec.
285 http://www.scyld.com/expert/100mbps.html
286 http://www.scyld.com/expert/NWay.html
290 - StopOnPerr is broken, don't enable
291 - Hardware ethernet padding exposes random data, perform software padding
292 instead (unverified -- works correctly for all the hardware I have)
298 enum chip_capability_flags {CanHaveMII=1, };
304 static struct pci_device_id starfire_pci_tbl[] = {
305 { 0x9004, 0x6915, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_6915 },
308 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
310 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
311 static const struct chip_info {
314 } netdrv_tbl[] __devinitdata = {
315 { "Adaptec Starfire 6915", CanHaveMII },
319 /* Offsets to the device registers.
320 Unlike software-only systems, device drivers interact with complex hardware.
321 It's not useful to define symbolic names for every register bit in the
322 device. The name can only partially document the semantics and make
323 the driver longer and more difficult to read.
324 In general, only the important configuration values or bits changed
325 multiple times should be defined symbolically.
327 enum register_offsets {
328 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
329 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
330 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
331 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
332 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
333 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
334 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
336 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
337 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
338 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
339 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
340 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
341 TxMode=0x55000, VlanType=0x55064,
342 PerfFilterTable=0x56000, HashTable=0x56100,
343 TxGfpMem=0x58000, RxGfpMem=0x5a000,
347 * Bits in the interrupt status/mask registers.
348 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
349 * enables all the interrupt sources that are or'ed into those status bits.
351 enum intr_status_bits {
352 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
353 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
354 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
355 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
356 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
357 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
358 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
359 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
360 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
361 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
362 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
363 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
364 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
365 IntrTxGfp=0x02, IntrPCIPad=0x01,
367 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
368 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
369 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
372 /* Bits in the RxFilterMode register. */
374 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
375 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
376 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
380 /* Bits in the TxMode register */
382 MiiSoftReset=0x8000, MIILoopback=0x4000,
383 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
384 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
387 /* Bits in the TxDescCtrl register. */
389 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
390 TxDescSpace128=0x30, TxDescSpace256=0x40,
391 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
392 TxDescType3=0x03, TxDescType4=0x04,
393 TxNoDMACompletion=0x08,
394 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
395 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
396 TxDMABurstSizeShift=8,
399 /* Bits in the RxDescQCtrl register. */
401 RxBufferLenShift=16, RxMinDescrThreshShift=0,
402 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
403 Rx2048QEntries=0x4000, Rx256QEntries=0,
404 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
405 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
406 RxDescSpace4=0x000, RxDescSpace8=0x100,
407 RxDescSpace16=0x200, RxDescSpace32=0x300,
408 RxDescSpace64=0x400, RxDescSpace128=0x500,
412 /* Bits in the RxDMACtrl register. */
413 enum rx_dmactrl_bits {
414 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
415 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
416 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
417 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
418 RxChecksumRejectTCPOnly=0x01000000,
419 RxCompletionQ2Enable=0x800000,
420 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
421 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
422 RxDMAQ2NonIP=0x400000,
423 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
424 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
428 /* Bits in the RxCompletionAddr register */
430 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
431 RxComplProducerWrEn=0x40,
432 RxComplType0=0x00, RxComplType1=0x10,
433 RxComplType2=0x20, RxComplType3=0x30,
434 RxComplThreshShift=0,
437 /* Bits in the TxCompletionAddr register */
439 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
440 TxComplProducerWrEn=0x40,
441 TxComplIntrStatus=0x20,
442 CommonQueueMode=0x10,
443 TxComplThreshShift=0,
446 /* Bits in the GenCtrl register */
448 RxEnable=0x05, TxEnable=0x0a,
449 RxGFPEnable=0x10, TxGFPEnable=0x20,
452 /* Bits in the IntrTimerCtrl register */
453 enum intr_ctrl_bits {
454 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
455 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
456 IntrLatencyMask=0x1f,
459 /* The Rx and Tx buffer descriptors. */
460 struct starfire_rx_desc {
461 netdrv_addr_t rxaddr;
464 RxDescValid=1, RxDescEndRing=2,
467 /* Completion queue entry. */
468 struct short_rx_done_desc {
469 __le32 status; /* Low 16 bits is length. */
471 struct basic_rx_done_desc {
472 __le32 status; /* Low 16 bits is length. */
476 struct csum_rx_done_desc {
477 __le32 status; /* Low 16 bits is length. */
478 __le16 csum; /* Partial checksum */
481 struct full_rx_done_desc {
482 __le32 status; /* Low 16 bits is length. */
486 __le16 csum; /* partial checksum */
489 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
491 typedef struct full_rx_done_desc rx_done_desc;
492 #define RxComplType RxComplType3
493 #else /* not VLAN_SUPPORT */
494 typedef struct csum_rx_done_desc rx_done_desc;
495 #define RxComplType RxComplType2
496 #endif /* not VLAN_SUPPORT */
499 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
502 /* Type 1 Tx descriptor. */
503 struct starfire_tx_desc_1 {
504 __le32 status; /* Upper bits are status, lower 16 length. */
508 /* Type 2 Tx descriptor. */
509 struct starfire_tx_desc_2 {
510 __le32 status; /* Upper bits are status, lower 16 length. */
516 typedef struct starfire_tx_desc_2 starfire_tx_desc;
517 #define TX_DESC_TYPE TxDescType2
518 #else /* not ADDR_64BITS */
519 typedef struct starfire_tx_desc_1 starfire_tx_desc;
520 #define TX_DESC_TYPE TxDescType1
521 #endif /* not ADDR_64BITS */
522 #define TX_DESC_SPACING TxDescSpaceUnlim
526 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
527 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
529 struct tx_done_desc {
530 __le32 status; /* timestamp, index. */
532 __le32 intrstatus; /* interrupt status */
536 struct rx_ring_info {
540 struct tx_ring_info {
543 unsigned int used_slots;
547 struct netdev_private {
548 /* Descriptor rings first for alignment. */
549 struct starfire_rx_desc *rx_ring;
550 starfire_tx_desc *tx_ring;
551 dma_addr_t rx_ring_dma;
552 dma_addr_t tx_ring_dma;
553 /* The addresses of rx/tx-in-place skbuffs. */
554 struct rx_ring_info rx_info[RX_RING_SIZE];
555 struct tx_ring_info tx_info[TX_RING_SIZE];
556 /* Pointers to completion queues (full pages). */
557 rx_done_desc *rx_done_q;
558 dma_addr_t rx_done_q_dma;
559 unsigned int rx_done;
560 struct tx_done_desc *tx_done_q;
561 dma_addr_t tx_done_q_dma;
562 unsigned int tx_done;
563 struct napi_struct napi;
564 struct net_device *dev;
565 struct net_device_stats stats;
566 struct pci_dev *pci_dev;
568 struct vlan_group *vlgrp;
571 dma_addr_t queue_mem_dma;
572 size_t queue_mem_size;
574 /* Frequently used values: keep some adjacent for cache effect. */
576 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
577 unsigned int cur_tx, dirty_tx, reap_tx;
578 unsigned int rx_buf_sz; /* Based on MTU+slack. */
579 /* These values keep track of the transceiver/media in use. */
580 int speed100; /* Set if speed == 100MBit. */
584 /* MII transceiver section. */
585 struct mii_if_info mii_if; /* MII lib hooks/info */
586 int phy_cnt; /* MII device addresses. */
587 unsigned char phys[PHY_CNT]; /* MII device addresses. */
592 static int mdio_read(struct net_device *dev, int phy_id, int location);
593 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
594 static int netdev_open(struct net_device *dev);
595 static void check_duplex(struct net_device *dev);
596 static void tx_timeout(struct net_device *dev);
597 static void init_ring(struct net_device *dev);
598 static int start_tx(struct sk_buff *skb, struct net_device *dev);
599 static irqreturn_t intr_handler(int irq, void *dev_instance);
600 static void netdev_error(struct net_device *dev, int intr_status);
601 static int __netdev_rx(struct net_device *dev, int *quota);
602 static int netdev_poll(struct napi_struct *napi, int budget);
603 static void refill_rx_ring(struct net_device *dev);
604 static void netdev_error(struct net_device *dev, int intr_status);
605 static void set_rx_mode(struct net_device *dev);
606 static struct net_device_stats *get_stats(struct net_device *dev);
607 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
608 static int netdev_close(struct net_device *dev);
609 static void netdev_media_change(struct net_device *dev);
610 static const struct ethtool_ops ethtool_ops;
614 static void netdev_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
616 struct netdev_private *np = netdev_priv(dev);
618 spin_lock(&np->lock);
620 printk("%s: Setting vlgrp to %p\n", dev->name, grp);
623 spin_unlock(&np->lock);
626 static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
628 struct netdev_private *np = netdev_priv(dev);
630 spin_lock(&np->lock);
632 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
634 spin_unlock(&np->lock);
637 static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
639 struct netdev_private *np = netdev_priv(dev);
641 spin_lock(&np->lock);
643 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
644 vlan_group_set_device(np->vlgrp, vid, NULL);
646 spin_unlock(&np->lock);
648 #endif /* VLAN_SUPPORT */
651 static int __devinit starfire_init_one(struct pci_dev *pdev,
652 const struct pci_device_id *ent)
654 struct netdev_private *np;
655 int i, irq, option, chip_idx = ent->driver_data;
656 struct net_device *dev;
657 static int card_idx = -1;
660 int drv_flags, io_size;
663 /* when built into the kernel, we only print version if device is found */
665 static int printed_version;
666 if (!printed_version++)
672 if (pci_enable_device (pdev))
675 ioaddr = pci_resource_start(pdev, 0);
676 io_size = pci_resource_len(pdev, 0);
677 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
678 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
682 dev = alloc_etherdev(sizeof(*np));
684 printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
687 SET_NETDEV_DEV(dev, &pdev->dev);
691 if (pci_request_regions (pdev, DRV_NAME)) {
692 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
693 goto err_out_free_netdev;
696 base = ioremap(ioaddr, io_size);
698 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
699 card_idx, io_size, ioaddr);
700 goto err_out_free_res;
703 pci_set_master(pdev);
705 /* enable MWI -- it vastly improves Rx performance on sparc64 */
706 pci_try_set_mwi(pdev);
709 /* Starfire can do TCP/UDP checksumming */
711 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
712 #endif /* ZEROCOPY */
714 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
715 dev->vlan_rx_register = netdev_vlan_rx_register;
716 dev->vlan_rx_add_vid = netdev_vlan_rx_add_vid;
717 dev->vlan_rx_kill_vid = netdev_vlan_rx_kill_vid;
718 #endif /* VLAN_RX_KILL_VID */
720 dev->features |= NETIF_F_HIGHDMA;
721 #endif /* ADDR_64BITS */
723 /* Serial EEPROM reads are hidden by the hardware. */
724 for (i = 0; i < 6; i++)
725 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
727 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
729 for (i = 0; i < 0x20; i++)
731 (unsigned int)readb(base + EEPROMCtrl + i),
732 i % 16 != 15 ? " " : "\n");
735 /* Issue soft reset */
736 writel(MiiSoftReset, base + TxMode);
738 writel(0, base + TxMode);
740 /* Reset the chip to erase previous misconfiguration. */
741 writel(1, base + PCIDeviceConfig);
743 while (--boguscnt > 0) {
745 if ((readl(base + PCIDeviceConfig) & 1) == 0)
749 printk("%s: chipset reset never completed!\n", dev->name);
750 /* wait a little longer */
753 dev->base_addr = (unsigned long)base;
756 np = netdev_priv(dev);
759 spin_lock_init(&np->lock);
760 pci_set_drvdata(pdev, dev);
764 np->mii_if.dev = dev;
765 np->mii_if.mdio_read = mdio_read;
766 np->mii_if.mdio_write = mdio_write;
767 np->mii_if.phy_id_mask = 0x1f;
768 np->mii_if.reg_num_mask = 0x1f;
770 drv_flags = netdrv_tbl[chip_idx].drv_flags;
772 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
774 option = dev->mem_start;
776 /* The lower four bits are the media type. */
778 np->mii_if.full_duplex = 1;
780 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
781 np->mii_if.full_duplex = 1;
783 if (np->mii_if.full_duplex)
784 np->mii_if.force_media = 1;
786 np->mii_if.force_media = 0;
789 /* timer resolution is 128 * 0.8us */
790 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
791 Timer10X | EnableIntrMasking;
793 if (small_frames > 0) {
794 np->intr_timer_ctrl |= SmallFrameBypass;
795 switch (small_frames) {
797 np->intr_timer_ctrl |= SmallFrame64;
800 np->intr_timer_ctrl |= SmallFrame128;
803 np->intr_timer_ctrl |= SmallFrame256;
806 np->intr_timer_ctrl |= SmallFrame512;
807 if (small_frames > 512)
808 printk("Adjusting small_frames down to 512\n");
813 /* The chip-specific entries in the device structure. */
814 dev->open = &netdev_open;
815 dev->hard_start_xmit = &start_tx;
816 dev->tx_timeout = tx_timeout;
817 dev->watchdog_timeo = TX_TIMEOUT;
818 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
819 dev->stop = &netdev_close;
820 dev->get_stats = &get_stats;
821 dev->set_multicast_list = &set_rx_mode;
822 dev->do_ioctl = &netdev_ioctl;
823 SET_ETHTOOL_OPS(dev, ðtool_ops);
828 if (register_netdev(dev))
829 goto err_out_cleardev;
831 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
832 dev->name, netdrv_tbl[chip_idx].name, base,
835 if (drv_flags & CanHaveMII) {
836 int phy, phy_idx = 0;
838 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
839 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
842 while (--boguscnt > 0)
843 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
846 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
849 mii_status = mdio_read(dev, phy, MII_BMSR);
850 if (mii_status != 0) {
851 np->phys[phy_idx++] = phy;
852 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
853 printk(KERN_INFO "%s: MII PHY found at address %d, status "
854 "%#4.4x advertising %#4.4x.\n",
855 dev->name, phy, mii_status, np->mii_if.advertising);
856 /* there can be only one PHY on-board */
860 np->phy_cnt = phy_idx;
862 np->mii_if.phy_id = np->phys[0];
864 memset(&np->mii_if, 0, sizeof(np->mii_if));
867 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
868 dev->name, enable_hw_cksum ? "enabled" : "disabled");
872 pci_set_drvdata(pdev, NULL);
875 pci_release_regions (pdev);
882 /* Read the MII Management Data I/O (MDIO) interfaces. */
883 static int mdio_read(struct net_device *dev, int phy_id, int location)
885 struct netdev_private *np = netdev_priv(dev);
886 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
887 int result, boguscnt=1000;
888 /* ??? Should we add a busy-wait here? */
890 result = readl(mdio_addr);
891 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
894 if ((result & 0xffff) == 0xffff)
896 return result & 0xffff;
900 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
902 struct netdev_private *np = netdev_priv(dev);
903 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
904 writel(value, mdio_addr);
905 /* The busy-wait will occur before a read. */
909 static int netdev_open(struct net_device *dev)
911 const struct firmware *fw_rx, *fw_tx;
912 const __be32 *fw_rx_data, *fw_tx_data;
913 struct netdev_private *np = netdev_priv(dev);
914 void __iomem *ioaddr = np->base;
916 size_t tx_size, rx_size;
917 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
919 /* Do we ever need to reset the chip??? */
921 retval = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
925 /* Disable the Rx and Tx, and reset the chip. */
926 writel(0, ioaddr + GenCtrl);
927 writel(1, ioaddr + PCIDeviceConfig);
929 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
930 dev->name, dev->irq);
932 /* Allocate the various queues. */
933 if (!np->queue_mem) {
934 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
935 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
936 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
937 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
938 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
939 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
940 if (np->queue_mem == NULL) {
941 free_irq(dev->irq, dev);
945 np->tx_done_q = np->queue_mem;
946 np->tx_done_q_dma = np->queue_mem_dma;
947 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
948 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
949 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
950 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
951 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
952 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
955 /* Start with no carrier, it gets adjusted later */
956 netif_carrier_off(dev);
958 /* Set the size of the Rx buffers. */
959 writel((np->rx_buf_sz << RxBufferLenShift) |
960 (0 << RxMinDescrThreshShift) |
961 RxPrefetchMode | RxVariableQ |
963 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
965 ioaddr + RxDescQCtrl);
967 /* Set up the Rx DMA controller. */
968 writel(RxChecksumIgnore |
969 (0 << RxEarlyIntThreshShift) |
970 (6 << RxHighPrioThreshShift) |
971 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
974 /* Set Tx descriptor */
975 writel((2 << TxHiPriFIFOThreshShift) |
976 (0 << TxPadLenShift) |
977 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
978 TX_DESC_Q_ADDR_SIZE |
979 TX_DESC_SPACING | TX_DESC_TYPE,
980 ioaddr + TxDescCtrl);
982 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
983 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
984 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
985 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
986 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
988 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
989 writel(np->rx_done_q_dma |
991 (0 << RxComplThreshShift),
992 ioaddr + RxCompletionAddr);
995 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
997 /* Fill both the Tx SA register and the Rx perfect filter. */
998 for (i = 0; i < 6; i++)
999 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
1000 /* The first entry is special because it bypasses the VLAN filter.
1002 writew(0, ioaddr + PerfFilterTable);
1003 writew(0, ioaddr + PerfFilterTable + 4);
1004 writew(0, ioaddr + PerfFilterTable + 8);
1005 for (i = 1; i < 16; i++) {
1006 __be16 *eaddrs = (__be16 *)dev->dev_addr;
1007 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
1008 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
1009 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
1010 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
1013 /* Initialize other registers. */
1014 /* Configure the PCI bus bursts and FIFO thresholds. */
1015 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1016 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1018 writel(np->tx_mode, ioaddr + TxMode);
1019 np->tx_threshold = 4;
1020 writel(np->tx_threshold, ioaddr + TxThreshold);
1022 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1024 napi_enable(&np->napi);
1026 netif_start_queue(dev);
1029 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1032 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1035 /* Enable GPIO interrupts on link change */
1036 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1038 /* Set the interrupt mask */
1039 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1040 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1041 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1042 ioaddr + IntrEnable);
1043 /* Enable PCI interrupts. */
1044 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1045 ioaddr + PCIDeviceConfig);
1048 /* Set VLAN type to 802.1q */
1049 writel(ETH_P_8021Q, ioaddr + VlanType);
1050 #endif /* VLAN_SUPPORT */
1052 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1054 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1058 if (fw_rx->size % 4) {
1059 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1060 fw_rx->size, FIRMWARE_RX);
1064 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1066 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1070 if (fw_tx->size % 4) {
1071 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1072 fw_tx->size, FIRMWARE_TX);
1076 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1077 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1078 rx_size = fw_rx->size / 4;
1079 tx_size = fw_tx->size / 4;
1081 /* Load Rx/Tx firmware into the frame processors */
1082 for (i = 0; i < rx_size; i++)
1083 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1084 for (i = 0; i < tx_size; i++)
1085 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1086 if (enable_hw_cksum)
1087 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1088 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1090 /* Enable the Rx and Tx units only. */
1091 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1094 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1098 release_firmware(fw_tx);
1100 release_firmware(fw_rx);
1105 static void check_duplex(struct net_device *dev)
1107 struct netdev_private *np = netdev_priv(dev);
1109 int silly_count = 1000;
1111 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1112 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1114 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1117 printk("%s: MII reset failed!\n", dev->name);
1121 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1123 if (!np->mii_if.force_media) {
1124 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1126 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1128 reg0 |= BMCR_SPEED100;
1129 if (np->mii_if.full_duplex)
1130 reg0 |= BMCR_FULLDPLX;
1131 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1133 np->speed100 ? "100" : "10",
1134 np->mii_if.full_duplex ? "full" : "half");
1136 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1140 static void tx_timeout(struct net_device *dev)
1142 struct netdev_private *np = netdev_priv(dev);
1143 void __iomem *ioaddr = np->base;
1146 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1147 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1149 /* Perhaps we should reinitialize the hardware here. */
1152 * Stop and restart the interface.
1153 * Cheat and increase the debug level temporarily.
1161 /* Trigger an immediate transmit demand. */
1163 dev->trans_start = jiffies;
1164 np->stats.tx_errors++;
1165 netif_wake_queue(dev);
1169 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1170 static void init_ring(struct net_device *dev)
1172 struct netdev_private *np = netdev_priv(dev);
1175 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1176 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1178 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1180 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1181 for (i = 0; i < RX_RING_SIZE; i++) {
1182 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1183 np->rx_info[i].skb = skb;
1186 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1187 skb->dev = dev; /* Mark as being used by this device. */
1188 /* Grrr, we cannot offset to correctly align the IP header. */
1189 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1191 writew(i - 1, np->base + RxDescQIdx);
1192 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1194 /* Clear the remainder of the Rx buffer ring. */
1195 for ( ; i < RX_RING_SIZE; i++) {
1196 np->rx_ring[i].rxaddr = 0;
1197 np->rx_info[i].skb = NULL;
1198 np->rx_info[i].mapping = 0;
1200 /* Mark the last entry as wrapping the ring. */
1201 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1203 /* Clear the completion rings. */
1204 for (i = 0; i < DONE_Q_SIZE; i++) {
1205 np->rx_done_q[i].status = 0;
1206 np->tx_done_q[i].status = 0;
1209 for (i = 0; i < TX_RING_SIZE; i++)
1210 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1216 static int start_tx(struct sk_buff *skb, struct net_device *dev)
1218 struct netdev_private *np = netdev_priv(dev);
1224 * be cautious here, wrapping the queue has weird semantics
1225 * and we may not have enough slots even when it seems we do.
1227 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1228 netif_stop_queue(dev);
1232 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1233 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1234 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1235 return NETDEV_TX_OK;
1237 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1239 entry = np->cur_tx % TX_RING_SIZE;
1240 for (i = 0; i < skb_num_frags(skb); i++) {
1245 np->tx_info[entry].skb = skb;
1247 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1248 status |= TxRingWrap;
1252 status |= TxDescIntr;
1255 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1257 np->stats.tx_compressed++;
1259 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1261 np->tx_info[entry].mapping =
1262 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1264 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1265 status |= this_frag->size;
1266 np->tx_info[entry].mapping =
1267 pci_map_single(np->pci_dev, page_address(this_frag->page) + this_frag->page_offset, this_frag->size, PCI_DMA_TODEVICE);
1270 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1271 np->tx_ring[entry].status = cpu_to_le32(status);
1273 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1274 dev->name, np->cur_tx, np->dirty_tx,
1277 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1278 np->cur_tx += np->tx_info[entry].used_slots;
1281 np->tx_info[entry].used_slots = 1;
1282 np->cur_tx += np->tx_info[entry].used_slots;
1285 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1286 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1290 /* Non-x86: explicitly flush descriptor cache lines here. */
1291 /* Ensure all descriptors are written back before the transmit is
1295 /* Update the producer index. */
1296 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1298 /* 4 is arbitrary, but should be ok */
1299 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1300 netif_stop_queue(dev);
1302 dev->trans_start = jiffies;
1308 /* The interrupt handler does all of the Rx thread work and cleans up
1309 after the Tx thread. */
1310 static irqreturn_t intr_handler(int irq, void *dev_instance)
1312 struct net_device *dev = dev_instance;
1313 struct netdev_private *np = netdev_priv(dev);
1314 void __iomem *ioaddr = np->base;
1315 int boguscnt = max_interrupt_work;
1321 u32 intr_status = readl(ioaddr + IntrClear);
1324 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1325 dev->name, intr_status);
1327 if (intr_status == 0 || intr_status == (u32) -1)
1332 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1335 if (likely(netif_rx_schedule_prep(&np->napi))) {
1336 __netif_rx_schedule(&np->napi);
1337 enable = readl(ioaddr + IntrEnable);
1338 enable &= ~(IntrRxDone | IntrRxEmpty);
1339 writel(enable, ioaddr + IntrEnable);
1340 /* flush PCI posting buffers */
1341 readl(ioaddr + IntrEnable);
1343 /* Paranoia check */
1344 enable = readl(ioaddr + IntrEnable);
1345 if (enable & (IntrRxDone | IntrRxEmpty)) {
1347 "%s: interrupt while in poll!\n",
1349 enable &= ~(IntrRxDone | IntrRxEmpty);
1350 writel(enable, ioaddr + IntrEnable);
1355 /* Scavenge the skbuff list based on the Tx-done queue.
1356 There are redundant checks here that may be cleaned up
1357 after the driver has proven to be reliable. */
1358 consumer = readl(ioaddr + TxConsumerIdx);
1360 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1361 dev->name, consumer);
1363 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1365 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1366 dev->name, np->dirty_tx, np->tx_done, tx_status);
1367 if ((tx_status & 0xe0000000) == 0xa0000000) {
1368 np->stats.tx_packets++;
1369 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1370 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1371 struct sk_buff *skb = np->tx_info[entry].skb;
1372 np->tx_info[entry].skb = NULL;
1373 pci_unmap_single(np->pci_dev,
1374 np->tx_info[entry].mapping,
1375 skb_first_frag_len(skb),
1377 np->tx_info[entry].mapping = 0;
1378 np->dirty_tx += np->tx_info[entry].used_slots;
1379 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1382 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1383 pci_unmap_single(np->pci_dev,
1384 np->tx_info[entry].mapping,
1385 skb_shinfo(skb)->frags[i].size,
1392 dev_kfree_skb_irq(skb);
1394 np->tx_done_q[np->tx_done].status = 0;
1395 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1397 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1399 if (netif_queue_stopped(dev) &&
1400 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1401 /* The ring is no longer full, wake the queue. */
1402 netif_wake_queue(dev);
1405 /* Stats overflow */
1406 if (intr_status & IntrStatsMax)
1409 /* Media change interrupt. */
1410 if (intr_status & IntrLinkChange)
1411 netdev_media_change(dev);
1413 /* Abnormal error summary/uncommon events handlers. */
1414 if (intr_status & IntrAbnormalSummary)
1415 netdev_error(dev, intr_status);
1417 if (--boguscnt < 0) {
1419 printk(KERN_WARNING "%s: Too much work at interrupt, "
1421 dev->name, intr_status);
1427 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1428 dev->name, (int) readl(ioaddr + IntrStatus));
1429 return IRQ_RETVAL(handled);
1434 * This routine is logically part of the interrupt/poll handler, but separated
1435 * for clarity and better register allocation.
1437 static int __netdev_rx(struct net_device *dev, int *quota)
1439 struct netdev_private *np = netdev_priv(dev);
1443 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1444 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1445 struct sk_buff *skb;
1448 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1451 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1452 if (!(desc_status & RxOK)) {
1453 /* There was an error. */
1455 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1456 np->stats.rx_errors++;
1457 if (desc_status & RxFIFOErr)
1458 np->stats.rx_fifo_errors++;
1462 if (*quota <= 0) { /* out of rx quota */
1468 pkt_len = desc_status; /* Implicitly Truncate */
1469 entry = (desc_status >> 16) & 0x7ff;
1472 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1473 /* Check if the packet is long enough to accept without copying
1474 to a minimally-sized skbuff. */
1475 if (pkt_len < rx_copybreak
1476 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1477 skb_reserve(skb, 2); /* 16 byte align the IP header */
1478 pci_dma_sync_single_for_cpu(np->pci_dev,
1479 np->rx_info[entry].mapping,
1480 pkt_len, PCI_DMA_FROMDEVICE);
1481 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1482 pci_dma_sync_single_for_device(np->pci_dev,
1483 np->rx_info[entry].mapping,
1484 pkt_len, PCI_DMA_FROMDEVICE);
1485 skb_put(skb, pkt_len);
1487 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1488 skb = np->rx_info[entry].skb;
1489 skb_put(skb, pkt_len);
1490 np->rx_info[entry].skb = NULL;
1491 np->rx_info[entry].mapping = 0;
1493 #ifndef final_version /* Remove after testing. */
1494 /* You will want this info for the initial debug. */
1496 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1497 skb->data, skb->data + 6,
1498 skb->data[12], skb->data[13]);
1502 skb->protocol = eth_type_trans(skb, dev);
1505 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1507 if (le16_to_cpu(desc->status2) & 0x0100) {
1508 skb->ip_summed = CHECKSUM_UNNECESSARY;
1509 np->stats.rx_compressed++;
1512 * This feature doesn't seem to be working, at least
1513 * with the two firmware versions I have. If the GFP sees
1514 * an IP fragment, it either ignores it completely, or reports
1515 * "bad checksum" on it.
1517 * Maybe I missed something -- corrections are welcome.
1518 * Until then, the printk stays. :-) -Ion
1520 else if (le16_to_cpu(desc->status2) & 0x0040) {
1521 skb->ip_summed = CHECKSUM_COMPLETE;
1522 skb->csum = le16_to_cpu(desc->csum);
1523 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1526 if (np->vlgrp && le16_to_cpu(desc->status2) & 0x0200) {
1527 u16 vlid = le16_to_cpu(desc->vlanid);
1530 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1534 * vlan_hwaccel_rx expects a packet with the VLAN tag
1537 vlan_hwaccel_rx(skb, np->vlgrp, vlid);
1539 #endif /* VLAN_SUPPORT */
1540 netif_receive_skb(skb);
1541 np->stats.rx_packets++;
1546 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1549 if (*quota == 0) { /* out of rx quota */
1553 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1556 refill_rx_ring(dev);
1558 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1559 retcode, np->rx_done, desc_status);
1563 static int netdev_poll(struct napi_struct *napi, int budget)
1565 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1566 struct net_device *dev = np->dev;
1568 void __iomem *ioaddr = np->base;
1572 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1574 if (__netdev_rx(dev, "a))
1577 intr_status = readl(ioaddr + IntrStatus);
1578 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1580 netif_rx_complete(napi);
1581 intr_status = readl(ioaddr + IntrEnable);
1582 intr_status |= IntrRxDone | IntrRxEmpty;
1583 writel(intr_status, ioaddr + IntrEnable);
1587 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1590 /* Restart Rx engine if stopped. */
1591 return budget - quota;
1594 static void refill_rx_ring(struct net_device *dev)
1596 struct netdev_private *np = netdev_priv(dev);
1597 struct sk_buff *skb;
1600 /* Refill the Rx ring buffers. */
1601 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1602 entry = np->dirty_rx % RX_RING_SIZE;
1603 if (np->rx_info[entry].skb == NULL) {
1604 skb = dev_alloc_skb(np->rx_buf_sz);
1605 np->rx_info[entry].skb = skb;
1607 break; /* Better luck next round. */
1608 np->rx_info[entry].mapping =
1609 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1610 skb->dev = dev; /* Mark as being used by this device. */
1611 np->rx_ring[entry].rxaddr =
1612 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1614 if (entry == RX_RING_SIZE - 1)
1615 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1618 writew(entry, np->base + RxDescQIdx);
1622 static void netdev_media_change(struct net_device *dev)
1624 struct netdev_private *np = netdev_priv(dev);
1625 void __iomem *ioaddr = np->base;
1626 u16 reg0, reg1, reg4, reg5;
1628 u32 new_intr_timer_ctrl;
1630 /* reset status first */
1631 mdio_read(dev, np->phys[0], MII_BMCR);
1632 mdio_read(dev, np->phys[0], MII_BMSR);
1634 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1635 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1637 if (reg1 & BMSR_LSTATUS) {
1639 if (reg0 & BMCR_ANENABLE) {
1640 /* autonegotiation is enabled */
1641 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1642 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1643 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1645 np->mii_if.full_duplex = 1;
1646 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1648 np->mii_if.full_duplex = 0;
1649 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1651 np->mii_if.full_duplex = 1;
1654 np->mii_if.full_duplex = 0;
1657 /* autonegotiation is disabled */
1658 if (reg0 & BMCR_SPEED100)
1662 if (reg0 & BMCR_FULLDPLX)
1663 np->mii_if.full_duplex = 1;
1665 np->mii_if.full_duplex = 0;
1667 netif_carrier_on(dev);
1668 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1670 np->speed100 ? "100" : "10",
1671 np->mii_if.full_duplex ? "full" : "half");
1673 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1674 if (np->mii_if.full_duplex)
1675 new_tx_mode |= FullDuplex;
1676 if (np->tx_mode != new_tx_mode) {
1677 np->tx_mode = new_tx_mode;
1678 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1680 writel(np->tx_mode, ioaddr + TxMode);
1683 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1685 new_intr_timer_ctrl |= Timer10X;
1686 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1687 np->intr_timer_ctrl = new_intr_timer_ctrl;
1688 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1691 netif_carrier_off(dev);
1692 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1697 static void netdev_error(struct net_device *dev, int intr_status)
1699 struct netdev_private *np = netdev_priv(dev);
1701 /* Came close to underrunning the Tx FIFO, increase threshold. */
1702 if (intr_status & IntrTxDataLow) {
1703 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1704 writel(++np->tx_threshold, np->base + TxThreshold);
1705 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1706 dev->name, np->tx_threshold * 16);
1708 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1710 if (intr_status & IntrRxGFPDead) {
1711 np->stats.rx_fifo_errors++;
1712 np->stats.rx_errors++;
1714 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1715 np->stats.tx_fifo_errors++;
1716 np->stats.tx_errors++;
1718 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1719 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1720 dev->name, intr_status);
1724 static struct net_device_stats *get_stats(struct net_device *dev)
1726 struct netdev_private *np = netdev_priv(dev);
1727 void __iomem *ioaddr = np->base;
1729 /* This adapter architecture needs no SMP locks. */
1730 np->stats.tx_bytes = readl(ioaddr + 0x57010);
1731 np->stats.rx_bytes = readl(ioaddr + 0x57044);
1732 np->stats.tx_packets = readl(ioaddr + 0x57000);
1733 np->stats.tx_aborted_errors =
1734 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1735 np->stats.tx_window_errors = readl(ioaddr + 0x57018);
1736 np->stats.collisions =
1737 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1739 /* The chip only need report frame silently dropped. */
1740 np->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1741 writew(0, ioaddr + RxDMAStatus);
1742 np->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1743 np->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1744 np->stats.rx_length_errors = readl(ioaddr + 0x57058);
1745 np->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1751 static void set_rx_mode(struct net_device *dev)
1753 struct netdev_private *np = netdev_priv(dev);
1754 void __iomem *ioaddr = np->base;
1755 u32 rx_mode = MinVLANPrio;
1756 struct dev_mc_list *mclist;
1760 rx_mode |= VlanMode;
1763 void __iomem *filter_addr = ioaddr + HashTable + 8;
1764 for (i = 0; i < VLAN_VID_MASK; i++) {
1765 if (vlan_group_get_device(np->vlgrp, i)) {
1766 if (vlan_count >= 32)
1768 writew(i, filter_addr);
1773 if (i == VLAN_VID_MASK) {
1774 rx_mode |= PerfectFilterVlan;
1775 while (vlan_count < 32) {
1776 writew(0, filter_addr);
1782 #endif /* VLAN_SUPPORT */
1784 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1785 rx_mode |= AcceptAll;
1786 } else if ((dev->mc_count > multicast_filter_limit)
1787 || (dev->flags & IFF_ALLMULTI)) {
1788 /* Too many to match, or accept all multicasts. */
1789 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1790 } else if (dev->mc_count <= 14) {
1791 /* Use the 16 element perfect filter, skip first two entries. */
1792 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1794 for (i = 2, mclist = dev->mc_list; mclist && i < dev->mc_count + 2;
1795 i++, mclist = mclist->next) {
1796 eaddrs = (__be16 *)mclist->dmi_addr;
1797 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1798 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1799 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1801 eaddrs = (__be16 *)dev->dev_addr;
1803 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1804 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1805 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1807 rx_mode |= AcceptBroadcast|PerfectFilter;
1809 /* Must use a multicast hash table. */
1810 void __iomem *filter_addr;
1812 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1814 memset(mc_filter, 0, sizeof(mc_filter));
1815 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1816 i++, mclist = mclist->next) {
1817 /* The chip uses the upper 9 CRC bits
1818 as index into the hash table */
1819 int bit_nr = ether_crc_le(ETH_ALEN, mclist->dmi_addr) >> 23;
1820 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1822 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1824 /* Clear the perfect filter list, skip first two entries. */
1825 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1826 eaddrs = (__be16 *)dev->dev_addr;
1827 for (i = 2; i < 16; i++) {
1828 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1829 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1830 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1832 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1833 writew(mc_filter[i], filter_addr);
1834 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1836 writel(rx_mode, ioaddr + RxFilterMode);
1839 static int check_if_running(struct net_device *dev)
1841 if (!netif_running(dev))
1846 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1848 struct netdev_private *np = netdev_priv(dev);
1849 strcpy(info->driver, DRV_NAME);
1850 strcpy(info->version, DRV_VERSION);
1851 strcpy(info->bus_info, pci_name(np->pci_dev));
1854 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1856 struct netdev_private *np = netdev_priv(dev);
1857 spin_lock_irq(&np->lock);
1858 mii_ethtool_gset(&np->mii_if, ecmd);
1859 spin_unlock_irq(&np->lock);
1863 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1865 struct netdev_private *np = netdev_priv(dev);
1867 spin_lock_irq(&np->lock);
1868 res = mii_ethtool_sset(&np->mii_if, ecmd);
1869 spin_unlock_irq(&np->lock);
1874 static int nway_reset(struct net_device *dev)
1876 struct netdev_private *np = netdev_priv(dev);
1877 return mii_nway_restart(&np->mii_if);
1880 static u32 get_link(struct net_device *dev)
1882 struct netdev_private *np = netdev_priv(dev);
1883 return mii_link_ok(&np->mii_if);
1886 static u32 get_msglevel(struct net_device *dev)
1891 static void set_msglevel(struct net_device *dev, u32 val)
1896 static const struct ethtool_ops ethtool_ops = {
1897 .begin = check_if_running,
1898 .get_drvinfo = get_drvinfo,
1899 .get_settings = get_settings,
1900 .set_settings = set_settings,
1901 .nway_reset = nway_reset,
1902 .get_link = get_link,
1903 .get_msglevel = get_msglevel,
1904 .set_msglevel = set_msglevel,
1907 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1909 struct netdev_private *np = netdev_priv(dev);
1910 struct mii_ioctl_data *data = if_mii(rq);
1913 if (!netif_running(dev))
1916 spin_lock_irq(&np->lock);
1917 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1918 spin_unlock_irq(&np->lock);
1920 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1926 static int netdev_close(struct net_device *dev)
1928 struct netdev_private *np = netdev_priv(dev);
1929 void __iomem *ioaddr = np->base;
1932 netif_stop_queue(dev);
1934 napi_disable(&np->napi);
1937 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1938 dev->name, (int) readl(ioaddr + IntrStatus));
1939 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1940 dev->name, np->cur_tx, np->dirty_tx,
1941 np->cur_rx, np->dirty_rx);
1944 /* Disable interrupts by clearing the interrupt mask. */
1945 writel(0, ioaddr + IntrEnable);
1947 /* Stop the chip's Tx and Rx processes. */
1948 writel(0, ioaddr + GenCtrl);
1949 readl(ioaddr + GenCtrl);
1952 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1953 (long long) np->tx_ring_dma);
1954 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1955 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1956 i, le32_to_cpu(np->tx_ring[i].status),
1957 (long long) dma_to_cpu(np->tx_ring[i].addr),
1958 le32_to_cpu(np->tx_done_q[i].status));
1959 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1960 (long long) np->rx_ring_dma, np->rx_done_q);
1962 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1963 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1964 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1968 free_irq(dev->irq, dev);
1970 /* Free all the skbuffs in the Rx queue. */
1971 for (i = 0; i < RX_RING_SIZE; i++) {
1972 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1973 if (np->rx_info[i].skb != NULL) {
1974 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1975 dev_kfree_skb(np->rx_info[i].skb);
1977 np->rx_info[i].skb = NULL;
1978 np->rx_info[i].mapping = 0;
1980 for (i = 0; i < TX_RING_SIZE; i++) {
1981 struct sk_buff *skb = np->tx_info[i].skb;
1984 pci_unmap_single(np->pci_dev,
1985 np->tx_info[i].mapping,
1986 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1987 np->tx_info[i].mapping = 0;
1989 np->tx_info[i].skb = NULL;
1996 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1998 struct net_device *dev = pci_get_drvdata(pdev);
2000 if (netif_running(dev)) {
2001 netif_device_detach(dev);
2005 pci_save_state(pdev);
2006 pci_set_power_state(pdev, pci_choose_state(pdev,state));
2011 static int starfire_resume(struct pci_dev *pdev)
2013 struct net_device *dev = pci_get_drvdata(pdev);
2015 pci_set_power_state(pdev, PCI_D0);
2016 pci_restore_state(pdev);
2018 if (netif_running(dev)) {
2020 netif_device_attach(dev);
2025 #endif /* CONFIG_PM */
2028 static void __devexit starfire_remove_one (struct pci_dev *pdev)
2030 struct net_device *dev = pci_get_drvdata(pdev);
2031 struct netdev_private *np = netdev_priv(dev);
2035 unregister_netdev(dev);
2038 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2041 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2042 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2043 pci_disable_device(pdev);
2046 pci_release_regions(pdev);
2048 pci_set_drvdata(pdev, NULL);
2049 free_netdev(dev); /* Will also free np!! */
2053 static struct pci_driver starfire_driver = {
2055 .probe = starfire_init_one,
2056 .remove = __devexit_p(starfire_remove_one),
2058 .suspend = starfire_suspend,
2059 .resume = starfire_resume,
2060 #endif /* CONFIG_PM */
2061 .id_table = starfire_pci_tbl,
2065 static int __init starfire_init (void)
2067 /* when a module, this is printed whether or not devices are found in probe */
2071 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2074 /* we can do this test only at run-time... sigh */
2075 if (sizeof(dma_addr_t) != sizeof(netdrv_addr_t)) {
2076 printk("This driver has dma_addr_t issues, please send email to maintainer\n");
2080 return pci_register_driver(&starfire_driver);
2084 static void __exit starfire_cleanup (void)
2086 pci_unregister_driver (&starfire_driver);
2090 module_init(starfire_init);
2091 module_exit(starfire_cleanup);