powerpc: Use new printk extension %pS to print symbols on oops
[linux-2.6] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43 #include <asm/prom.h>
44 #include <asm/machdep.h>
45 #include <asm/time.h>
46 #include <asm/syscalls.h>
47 #ifdef CONFIG_PPC64
48 #include <asm/firmware.h>
49 #endif
50
51 extern unsigned long _get_SP(void);
52
53 #ifndef CONFIG_SMP
54 struct task_struct *last_task_used_math = NULL;
55 struct task_struct *last_task_used_altivec = NULL;
56 struct task_struct *last_task_used_vsx = NULL;
57 struct task_struct *last_task_used_spe = NULL;
58 #endif
59
60 /*
61  * Make sure the floating-point register state in the
62  * the thread_struct is up to date for task tsk.
63  */
64 void flush_fp_to_thread(struct task_struct *tsk)
65 {
66         if (tsk->thread.regs) {
67                 /*
68                  * We need to disable preemption here because if we didn't,
69                  * another process could get scheduled after the regs->msr
70                  * test but before we have finished saving the FP registers
71                  * to the thread_struct.  That process could take over the
72                  * FPU, and then when we get scheduled again we would store
73                  * bogus values for the remaining FP registers.
74                  */
75                 preempt_disable();
76                 if (tsk->thread.regs->msr & MSR_FP) {
77 #ifdef CONFIG_SMP
78                         /*
79                          * This should only ever be called for current or
80                          * for a stopped child process.  Since we save away
81                          * the FP register state on context switch on SMP,
82                          * there is something wrong if a stopped child appears
83                          * to still have its FP state in the CPU registers.
84                          */
85                         BUG_ON(tsk != current);
86 #endif
87                         giveup_fpu(tsk);
88                 }
89                 preempt_enable();
90         }
91 }
92
93 void enable_kernel_fp(void)
94 {
95         WARN_ON(preemptible());
96
97 #ifdef CONFIG_SMP
98         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
99                 giveup_fpu(current);
100         else
101                 giveup_fpu(NULL);       /* just enables FP for kernel */
102 #else
103         giveup_fpu(last_task_used_math);
104 #endif /* CONFIG_SMP */
105 }
106 EXPORT_SYMBOL(enable_kernel_fp);
107
108 #ifdef CONFIG_ALTIVEC
109 void enable_kernel_altivec(void)
110 {
111         WARN_ON(preemptible());
112
113 #ifdef CONFIG_SMP
114         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
115                 giveup_altivec(current);
116         else
117                 giveup_altivec(NULL);   /* just enable AltiVec for kernel - force */
118 #else
119         giveup_altivec(last_task_used_altivec);
120 #endif /* CONFIG_SMP */
121 }
122 EXPORT_SYMBOL(enable_kernel_altivec);
123
124 /*
125  * Make sure the VMX/Altivec register state in the
126  * the thread_struct is up to date for task tsk.
127  */
128 void flush_altivec_to_thread(struct task_struct *tsk)
129 {
130         if (tsk->thread.regs) {
131                 preempt_disable();
132                 if (tsk->thread.regs->msr & MSR_VEC) {
133 #ifdef CONFIG_SMP
134                         BUG_ON(tsk != current);
135 #endif
136                         giveup_altivec(tsk);
137                 }
138                 preempt_enable();
139         }
140 }
141 #endif /* CONFIG_ALTIVEC */
142
143 #ifdef CONFIG_VSX
144 #if 0
145 /* not currently used, but some crazy RAID module might want to later */
146 void enable_kernel_vsx(void)
147 {
148         WARN_ON(preemptible());
149
150 #ifdef CONFIG_SMP
151         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
152                 giveup_vsx(current);
153         else
154                 giveup_vsx(NULL);       /* just enable vsx for kernel - force */
155 #else
156         giveup_vsx(last_task_used_vsx);
157 #endif /* CONFIG_SMP */
158 }
159 EXPORT_SYMBOL(enable_kernel_vsx);
160 #endif
161
162 void flush_vsx_to_thread(struct task_struct *tsk)
163 {
164         if (tsk->thread.regs) {
165                 preempt_disable();
166                 if (tsk->thread.regs->msr & MSR_VSX) {
167 #ifdef CONFIG_SMP
168                         BUG_ON(tsk != current);
169 #endif
170                         giveup_vsx(tsk);
171                 }
172                 preempt_enable();
173         }
174 }
175 #endif /* CONFIG_VSX */
176
177 #ifdef CONFIG_SPE
178
179 void enable_kernel_spe(void)
180 {
181         WARN_ON(preemptible());
182
183 #ifdef CONFIG_SMP
184         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
185                 giveup_spe(current);
186         else
187                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
188 #else
189         giveup_spe(last_task_used_spe);
190 #endif /* __SMP __ */
191 }
192 EXPORT_SYMBOL(enable_kernel_spe);
193
194 void flush_spe_to_thread(struct task_struct *tsk)
195 {
196         if (tsk->thread.regs) {
197                 preempt_disable();
198                 if (tsk->thread.regs->msr & MSR_SPE) {
199 #ifdef CONFIG_SMP
200                         BUG_ON(tsk != current);
201 #endif
202                         giveup_spe(tsk);
203                 }
204                 preempt_enable();
205         }
206 }
207 #endif /* CONFIG_SPE */
208
209 #ifndef CONFIG_SMP
210 /*
211  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
212  * and the current task has some state, discard it.
213  */
214 void discard_lazy_cpu_state(void)
215 {
216         preempt_disable();
217         if (last_task_used_math == current)
218                 last_task_used_math = NULL;
219 #ifdef CONFIG_ALTIVEC
220         if (last_task_used_altivec == current)
221                 last_task_used_altivec = NULL;
222 #endif /* CONFIG_ALTIVEC */
223 #ifdef CONFIG_VSX
224         if (last_task_used_vsx == current)
225                 last_task_used_vsx = NULL;
226 #endif /* CONFIG_VSX */
227 #ifdef CONFIG_SPE
228         if (last_task_used_spe == current)
229                 last_task_used_spe = NULL;
230 #endif
231         preempt_enable();
232 }
233 #endif /* CONFIG_SMP */
234
235 static DEFINE_PER_CPU(unsigned long, current_dabr);
236
237 int set_dabr(unsigned long dabr)
238 {
239         __get_cpu_var(current_dabr) = dabr;
240
241 #ifdef CONFIG_PPC_MERGE         /* XXX for now */
242         if (ppc_md.set_dabr)
243                 return ppc_md.set_dabr(dabr);
244 #endif
245
246         /* XXX should we have a CPU_FTR_HAS_DABR ? */
247 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
248         mtspr(SPRN_DABR, dabr);
249 #endif
250         return 0;
251 }
252
253 #ifdef CONFIG_PPC64
254 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
255 #endif
256
257 struct task_struct *__switch_to(struct task_struct *prev,
258         struct task_struct *new)
259 {
260         struct thread_struct *new_thread, *old_thread;
261         unsigned long flags;
262         struct task_struct *last;
263
264 #ifdef CONFIG_SMP
265         /* avoid complexity of lazy save/restore of fpu
266          * by just saving it every time we switch out if
267          * this task used the fpu during the last quantum.
268          *
269          * If it tries to use the fpu again, it'll trap and
270          * reload its fp regs.  So we don't have to do a restore
271          * every switch, just a save.
272          *  -- Cort
273          */
274         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
275                 giveup_fpu(prev);
276 #ifdef CONFIG_ALTIVEC
277         /*
278          * If the previous thread used altivec in the last quantum
279          * (thus changing altivec regs) then save them.
280          * We used to check the VRSAVE register but not all apps
281          * set it, so we don't rely on it now (and in fact we need
282          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
283          *
284          * On SMP we always save/restore altivec regs just to avoid the
285          * complexity of changing processors.
286          *  -- Cort
287          */
288         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
289                 giveup_altivec(prev);
290 #endif /* CONFIG_ALTIVEC */
291 #ifdef CONFIG_VSX
292         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
293                 giveup_vsx(prev);
294 #endif /* CONFIG_VSX */
295 #ifdef CONFIG_SPE
296         /*
297          * If the previous thread used spe in the last quantum
298          * (thus changing spe regs) then save them.
299          *
300          * On SMP we always save/restore spe regs just to avoid the
301          * complexity of changing processors.
302          */
303         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
304                 giveup_spe(prev);
305 #endif /* CONFIG_SPE */
306
307 #else  /* CONFIG_SMP */
308 #ifdef CONFIG_ALTIVEC
309         /* Avoid the trap.  On smp this this never happens since
310          * we don't set last_task_used_altivec -- Cort
311          */
312         if (new->thread.regs && last_task_used_altivec == new)
313                 new->thread.regs->msr |= MSR_VEC;
314 #endif /* CONFIG_ALTIVEC */
315 #ifdef CONFIG_VSX
316         if (new->thread.regs && last_task_used_vsx == new)
317                 new->thread.regs->msr |= MSR_VSX;
318 #endif /* CONFIG_VSX */
319 #ifdef CONFIG_SPE
320         /* Avoid the trap.  On smp this this never happens since
321          * we don't set last_task_used_spe
322          */
323         if (new->thread.regs && last_task_used_spe == new)
324                 new->thread.regs->msr |= MSR_SPE;
325 #endif /* CONFIG_SPE */
326
327 #endif /* CONFIG_SMP */
328
329         if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
330                 set_dabr(new->thread.dabr);
331
332         new_thread = &new->thread;
333         old_thread = &current->thread;
334
335 #ifdef CONFIG_PPC64
336         /*
337          * Collect processor utilization data per process
338          */
339         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
340                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
341                 long unsigned start_tb, current_tb;
342                 start_tb = old_thread->start_tb;
343                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
344                 old_thread->accum_tb += (current_tb - start_tb);
345                 new_thread->start_tb = current_tb;
346         }
347 #endif
348
349         local_irq_save(flags);
350
351         account_system_vtime(current);
352         account_process_vtime(current);
353         calculate_steal_time();
354
355         /*
356          * We can't take a PMU exception inside _switch() since there is a
357          * window where the kernel stack SLB and the kernel stack are out
358          * of sync. Hard disable here.
359          */
360         hard_irq_disable();
361         last = _switch(old_thread, new_thread);
362
363         local_irq_restore(flags);
364
365         return last;
366 }
367
368 static int instructions_to_print = 16;
369
370 static void show_instructions(struct pt_regs *regs)
371 {
372         int i;
373         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
374                         sizeof(int));
375
376         printk("Instruction dump:");
377
378         for (i = 0; i < instructions_to_print; i++) {
379                 int instr;
380
381                 if (!(i % 8))
382                         printk("\n");
383
384 #if !defined(CONFIG_BOOKE)
385                 /* If executing with the IMMU off, adjust pc rather
386                  * than print XXXXXXXX.
387                  */
388                 if (!(regs->msr & MSR_IR))
389                         pc = (unsigned long)phys_to_virt(pc);
390 #endif
391
392                 /* We use __get_user here *only* to avoid an OOPS on a
393                  * bad address because the pc *should* only be a
394                  * kernel address.
395                  */
396                 if (!__kernel_text_address(pc) ||
397                      __get_user(instr, (unsigned int __user *)pc)) {
398                         printk("XXXXXXXX ");
399                 } else {
400                         if (regs->nip == pc)
401                                 printk("<%08x> ", instr);
402                         else
403                                 printk("%08x ", instr);
404                 }
405
406                 pc += sizeof(int);
407         }
408
409         printk("\n");
410 }
411
412 static struct regbit {
413         unsigned long bit;
414         const char *name;
415 } msr_bits[] = {
416         {MSR_EE,        "EE"},
417         {MSR_PR,        "PR"},
418         {MSR_FP,        "FP"},
419         {MSR_VEC,       "VEC"},
420         {MSR_VSX,       "VSX"},
421         {MSR_ME,        "ME"},
422         {MSR_IR,        "IR"},
423         {MSR_DR,        "DR"},
424         {0,             NULL}
425 };
426
427 static void printbits(unsigned long val, struct regbit *bits)
428 {
429         const char *sep = "";
430
431         printk("<");
432         for (; bits->bit; ++bits)
433                 if (val & bits->bit) {
434                         printk("%s%s", sep, bits->name);
435                         sep = ",";
436                 }
437         printk(">");
438 }
439
440 #ifdef CONFIG_PPC64
441 #define REG             "%016lx"
442 #define REGS_PER_LINE   4
443 #define LAST_VOLATILE   13
444 #else
445 #define REG             "%08lx"
446 #define REGS_PER_LINE   8
447 #define LAST_VOLATILE   12
448 #endif
449
450 void show_regs(struct pt_regs * regs)
451 {
452         int i, trap;
453
454         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
455                regs->nip, regs->link, regs->ctr);
456         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
457                regs, regs->trap, print_tainted(), init_utsname()->release);
458         printk("MSR: "REG" ", regs->msr);
459         printbits(regs->msr, msr_bits);
460         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
461         trap = TRAP(regs);
462         if (trap == 0x300 || trap == 0x600)
463 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
464                 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
465 #else
466                 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
467 #endif
468         printk("TASK = %p[%d] '%s' THREAD: %p",
469                current, task_pid_nr(current), current->comm, task_thread_info(current));
470
471 #ifdef CONFIG_SMP
472         printk(" CPU: %d", raw_smp_processor_id());
473 #endif /* CONFIG_SMP */
474
475         for (i = 0;  i < 32;  i++) {
476                 if ((i % REGS_PER_LINE) == 0)
477                         printk("\n" KERN_INFO "GPR%02d: ", i);
478                 printk(REG " ", regs->gpr[i]);
479                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
480                         break;
481         }
482         printk("\n");
483 #ifdef CONFIG_KALLSYMS
484         /*
485          * Lookup NIP late so we have the best change of getting the
486          * above info out without failing
487          */
488         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
489         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
490 #endif
491         show_stack(current, (unsigned long *) regs->gpr[1]);
492         if (!user_mode(regs))
493                 show_instructions(regs);
494 }
495
496 void exit_thread(void)
497 {
498         discard_lazy_cpu_state();
499 }
500
501 void flush_thread(void)
502 {
503 #ifdef CONFIG_PPC64
504         struct thread_info *t = current_thread_info();
505
506         if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
507                 clear_ti_thread_flag(t, TIF_ABI_PENDING);
508                 if (test_ti_thread_flag(t, TIF_32BIT))
509                         clear_ti_thread_flag(t, TIF_32BIT);
510                 else
511                         set_ti_thread_flag(t, TIF_32BIT);
512         }
513 #endif
514
515         discard_lazy_cpu_state();
516
517         if (current->thread.dabr) {
518                 current->thread.dabr = 0;
519                 set_dabr(0);
520         }
521 }
522
523 void
524 release_thread(struct task_struct *t)
525 {
526 }
527
528 /*
529  * This gets called before we allocate a new thread and copy
530  * the current task into it.
531  */
532 void prepare_to_copy(struct task_struct *tsk)
533 {
534         flush_fp_to_thread(current);
535         flush_altivec_to_thread(current);
536         flush_vsx_to_thread(current);
537         flush_spe_to_thread(current);
538 }
539
540 /*
541  * Copy a thread..
542  */
543 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
544                 unsigned long unused, struct task_struct *p,
545                 struct pt_regs *regs)
546 {
547         struct pt_regs *childregs, *kregs;
548         extern void ret_from_fork(void);
549         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
550
551         CHECK_FULL_REGS(regs);
552         /* Copy registers */
553         sp -= sizeof(struct pt_regs);
554         childregs = (struct pt_regs *) sp;
555         *childregs = *regs;
556         if ((childregs->msr & MSR_PR) == 0) {
557                 /* for kernel thread, set `current' and stackptr in new task */
558                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
559 #ifdef CONFIG_PPC32
560                 childregs->gpr[2] = (unsigned long) p;
561 #else
562                 clear_tsk_thread_flag(p, TIF_32BIT);
563 #endif
564                 p->thread.regs = NULL;  /* no user register state */
565         } else {
566                 childregs->gpr[1] = usp;
567                 p->thread.regs = childregs;
568                 if (clone_flags & CLONE_SETTLS) {
569 #ifdef CONFIG_PPC64
570                         if (!test_thread_flag(TIF_32BIT))
571                                 childregs->gpr[13] = childregs->gpr[6];
572                         else
573 #endif
574                                 childregs->gpr[2] = childregs->gpr[6];
575                 }
576         }
577         childregs->gpr[3] = 0;  /* Result from fork() */
578         sp -= STACK_FRAME_OVERHEAD;
579
580         /*
581          * The way this works is that at some point in the future
582          * some task will call _switch to switch to the new task.
583          * That will pop off the stack frame created below and start
584          * the new task running at ret_from_fork.  The new task will
585          * do some house keeping and then return from the fork or clone
586          * system call, using the stack frame created above.
587          */
588         sp -= sizeof(struct pt_regs);
589         kregs = (struct pt_regs *) sp;
590         sp -= STACK_FRAME_OVERHEAD;
591         p->thread.ksp = sp;
592         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
593                                 _ALIGN_UP(sizeof(struct thread_info), 16);
594
595 #ifdef CONFIG_PPC64
596         if (cpu_has_feature(CPU_FTR_SLB)) {
597                 unsigned long sp_vsid;
598                 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
599
600                 if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
601                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
602                                 << SLB_VSID_SHIFT_1T;
603                 else
604                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
605                                 << SLB_VSID_SHIFT;
606                 sp_vsid |= SLB_VSID_KERNEL | llp;
607                 p->thread.ksp_vsid = sp_vsid;
608         }
609
610         /*
611          * The PPC64 ABI makes use of a TOC to contain function 
612          * pointers.  The function (ret_from_except) is actually a pointer
613          * to the TOC entry.  The first entry is a pointer to the actual
614          * function.
615          */
616         kregs->nip = *((unsigned long *)ret_from_fork);
617 #else
618         kregs->nip = (unsigned long)ret_from_fork;
619 #endif
620
621         return 0;
622 }
623
624 /*
625  * Set up a thread for executing a new program
626  */
627 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
628 {
629 #ifdef CONFIG_PPC64
630         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
631 #endif
632
633         set_fs(USER_DS);
634
635         /*
636          * If we exec out of a kernel thread then thread.regs will not be
637          * set.  Do it now.
638          */
639         if (!current->thread.regs) {
640                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
641                 current->thread.regs = regs - 1;
642         }
643
644         memset(regs->gpr, 0, sizeof(regs->gpr));
645         regs->ctr = 0;
646         regs->link = 0;
647         regs->xer = 0;
648         regs->ccr = 0;
649         regs->gpr[1] = sp;
650
651         /*
652          * We have just cleared all the nonvolatile GPRs, so make
653          * FULL_REGS(regs) return true.  This is necessary to allow
654          * ptrace to examine the thread immediately after exec.
655          */
656         regs->trap &= ~1UL;
657
658 #ifdef CONFIG_PPC32
659         regs->mq = 0;
660         regs->nip = start;
661         regs->msr = MSR_USER;
662 #else
663         if (!test_thread_flag(TIF_32BIT)) {
664                 unsigned long entry, toc;
665
666                 /* start is a relocated pointer to the function descriptor for
667                  * the elf _start routine.  The first entry in the function
668                  * descriptor is the entry address of _start and the second
669                  * entry is the TOC value we need to use.
670                  */
671                 __get_user(entry, (unsigned long __user *)start);
672                 __get_user(toc, (unsigned long __user *)start+1);
673
674                 /* Check whether the e_entry function descriptor entries
675                  * need to be relocated before we can use them.
676                  */
677                 if (load_addr != 0) {
678                         entry += load_addr;
679                         toc   += load_addr;
680                 }
681                 regs->nip = entry;
682                 regs->gpr[2] = toc;
683                 regs->msr = MSR_USER64;
684         } else {
685                 regs->nip = start;
686                 regs->gpr[2] = 0;
687                 regs->msr = MSR_USER32;
688         }
689 #endif
690
691         discard_lazy_cpu_state();
692 #ifdef CONFIG_VSX
693         current->thread.used_vsr = 0;
694 #endif
695         memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
696         current->thread.fpscr.val = 0;
697 #ifdef CONFIG_ALTIVEC
698         memset(current->thread.vr, 0, sizeof(current->thread.vr));
699         memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
700         current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
701         current->thread.vrsave = 0;
702         current->thread.used_vr = 0;
703 #endif /* CONFIG_ALTIVEC */
704 #ifdef CONFIG_SPE
705         memset(current->thread.evr, 0, sizeof(current->thread.evr));
706         current->thread.acc = 0;
707         current->thread.spefscr = 0;
708         current->thread.used_spe = 0;
709 #endif /* CONFIG_SPE */
710 }
711
712 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
713                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
714
715 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
716 {
717         struct pt_regs *regs = tsk->thread.regs;
718
719         /* This is a bit hairy.  If we are an SPE enabled  processor
720          * (have embedded fp) we store the IEEE exception enable flags in
721          * fpexc_mode.  fpexc_mode is also used for setting FP exception
722          * mode (asyn, precise, disabled) for 'Classic' FP. */
723         if (val & PR_FP_EXC_SW_ENABLE) {
724 #ifdef CONFIG_SPE
725                 if (cpu_has_feature(CPU_FTR_SPE)) {
726                         tsk->thread.fpexc_mode = val &
727                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
728                         return 0;
729                 } else {
730                         return -EINVAL;
731                 }
732 #else
733                 return -EINVAL;
734 #endif
735         }
736
737         /* on a CONFIG_SPE this does not hurt us.  The bits that
738          * __pack_fe01 use do not overlap with bits used for
739          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
740          * on CONFIG_SPE implementations are reserved so writing to
741          * them does not change anything */
742         if (val > PR_FP_EXC_PRECISE)
743                 return -EINVAL;
744         tsk->thread.fpexc_mode = __pack_fe01(val);
745         if (regs != NULL && (regs->msr & MSR_FP) != 0)
746                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
747                         | tsk->thread.fpexc_mode;
748         return 0;
749 }
750
751 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
752 {
753         unsigned int val;
754
755         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
756 #ifdef CONFIG_SPE
757                 if (cpu_has_feature(CPU_FTR_SPE))
758                         val = tsk->thread.fpexc_mode;
759                 else
760                         return -EINVAL;
761 #else
762                 return -EINVAL;
763 #endif
764         else
765                 val = __unpack_fe01(tsk->thread.fpexc_mode);
766         return put_user(val, (unsigned int __user *) adr);
767 }
768
769 int set_endian(struct task_struct *tsk, unsigned int val)
770 {
771         struct pt_regs *regs = tsk->thread.regs;
772
773         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
774             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
775                 return -EINVAL;
776
777         if (regs == NULL)
778                 return -EINVAL;
779
780         if (val == PR_ENDIAN_BIG)
781                 regs->msr &= ~MSR_LE;
782         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
783                 regs->msr |= MSR_LE;
784         else
785                 return -EINVAL;
786
787         return 0;
788 }
789
790 int get_endian(struct task_struct *tsk, unsigned long adr)
791 {
792         struct pt_regs *regs = tsk->thread.regs;
793         unsigned int val;
794
795         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
796             !cpu_has_feature(CPU_FTR_REAL_LE))
797                 return -EINVAL;
798
799         if (regs == NULL)
800                 return -EINVAL;
801
802         if (regs->msr & MSR_LE) {
803                 if (cpu_has_feature(CPU_FTR_REAL_LE))
804                         val = PR_ENDIAN_LITTLE;
805                 else
806                         val = PR_ENDIAN_PPC_LITTLE;
807         } else
808                 val = PR_ENDIAN_BIG;
809
810         return put_user(val, (unsigned int __user *)adr);
811 }
812
813 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
814 {
815         tsk->thread.align_ctl = val;
816         return 0;
817 }
818
819 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
820 {
821         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
822 }
823
824 #define TRUNC_PTR(x)    ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
825
826 int sys_clone(unsigned long clone_flags, unsigned long usp,
827               int __user *parent_tidp, void __user *child_threadptr,
828               int __user *child_tidp, int p6,
829               struct pt_regs *regs)
830 {
831         CHECK_FULL_REGS(regs);
832         if (usp == 0)
833                 usp = regs->gpr[1];     /* stack pointer for child */
834 #ifdef CONFIG_PPC64
835         if (test_thread_flag(TIF_32BIT)) {
836                 parent_tidp = TRUNC_PTR(parent_tidp);
837                 child_tidp = TRUNC_PTR(child_tidp);
838         }
839 #endif
840         return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
841 }
842
843 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
844              unsigned long p4, unsigned long p5, unsigned long p6,
845              struct pt_regs *regs)
846 {
847         CHECK_FULL_REGS(regs);
848         return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
849 }
850
851 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
852               unsigned long p4, unsigned long p5, unsigned long p6,
853               struct pt_regs *regs)
854 {
855         CHECK_FULL_REGS(regs);
856         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
857                         regs, 0, NULL, NULL);
858 }
859
860 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
861                unsigned long a3, unsigned long a4, unsigned long a5,
862                struct pt_regs *regs)
863 {
864         int error;
865         char *filename;
866
867         filename = getname((char __user *) a0);
868         error = PTR_ERR(filename);
869         if (IS_ERR(filename))
870                 goto out;
871         flush_fp_to_thread(current);
872         flush_altivec_to_thread(current);
873         flush_spe_to_thread(current);
874         error = do_execve(filename, (char __user * __user *) a1,
875                           (char __user * __user *) a2, regs);
876         putname(filename);
877 out:
878         return error;
879 }
880
881 #ifdef CONFIG_IRQSTACKS
882 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
883                                   unsigned long nbytes)
884 {
885         unsigned long stack_page;
886         unsigned long cpu = task_cpu(p);
887
888         /*
889          * Avoid crashing if the stack has overflowed and corrupted
890          * task_cpu(p), which is in the thread_info struct.
891          */
892         if (cpu < NR_CPUS && cpu_possible(cpu)) {
893                 stack_page = (unsigned long) hardirq_ctx[cpu];
894                 if (sp >= stack_page + sizeof(struct thread_struct)
895                     && sp <= stack_page + THREAD_SIZE - nbytes)
896                         return 1;
897
898                 stack_page = (unsigned long) softirq_ctx[cpu];
899                 if (sp >= stack_page + sizeof(struct thread_struct)
900                     && sp <= stack_page + THREAD_SIZE - nbytes)
901                         return 1;
902         }
903         return 0;
904 }
905
906 #else
907 #define valid_irq_stack(sp, p, nb)      0
908 #endif /* CONFIG_IRQSTACKS */
909
910 int validate_sp(unsigned long sp, struct task_struct *p,
911                        unsigned long nbytes)
912 {
913         unsigned long stack_page = (unsigned long)task_stack_page(p);
914
915         if (sp >= stack_page + sizeof(struct thread_struct)
916             && sp <= stack_page + THREAD_SIZE - nbytes)
917                 return 1;
918
919         return valid_irq_stack(sp, p, nbytes);
920 }
921
922 EXPORT_SYMBOL(validate_sp);
923
924 unsigned long get_wchan(struct task_struct *p)
925 {
926         unsigned long ip, sp;
927         int count = 0;
928
929         if (!p || p == current || p->state == TASK_RUNNING)
930                 return 0;
931
932         sp = p->thread.ksp;
933         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
934                 return 0;
935
936         do {
937                 sp = *(unsigned long *)sp;
938                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
939                         return 0;
940                 if (count > 0) {
941                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
942                         if (!in_sched_functions(ip))
943                                 return ip;
944                 }
945         } while (count++ < 16);
946         return 0;
947 }
948
949 static int kstack_depth_to_print = 64;
950
951 void show_stack(struct task_struct *tsk, unsigned long *stack)
952 {
953         unsigned long sp, ip, lr, newsp;
954         int count = 0;
955         int firstframe = 1;
956
957         sp = (unsigned long) stack;
958         if (tsk == NULL)
959                 tsk = current;
960         if (sp == 0) {
961                 if (tsk == current)
962                         asm("mr %0,1" : "=r" (sp));
963                 else
964                         sp = tsk->thread.ksp;
965         }
966
967         lr = 0;
968         printk("Call Trace:\n");
969         do {
970                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
971                         return;
972
973                 stack = (unsigned long *) sp;
974                 newsp = stack[0];
975                 ip = stack[STACK_FRAME_LR_SAVE];
976                 if (!firstframe || ip != lr) {
977                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
978                         if (firstframe)
979                                 printk(" (unreliable)");
980                         printk("\n");
981                 }
982                 firstframe = 0;
983
984                 /*
985                  * See if this is an exception frame.
986                  * We look for the "regshere" marker in the current frame.
987                  */
988                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
989                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
990                         struct pt_regs *regs = (struct pt_regs *)
991                                 (sp + STACK_FRAME_OVERHEAD);
992                         lr = regs->link;
993                         printk("--- Exception: %lx at %pS\n    LR = %pS\n",
994                                regs->trap, (void *)regs->nip, (void *)lr);
995                         firstframe = 1;
996                 }
997
998                 sp = newsp;
999         } while (count++ < kstack_depth_to_print);
1000 }
1001
1002 void dump_stack(void)
1003 {
1004         show_stack(current, NULL);
1005 }
1006 EXPORT_SYMBOL(dump_stack);
1007
1008 #ifdef CONFIG_PPC64
1009 void ppc64_runlatch_on(void)
1010 {
1011         unsigned long ctrl;
1012
1013         if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1014                 HMT_medium();
1015
1016                 ctrl = mfspr(SPRN_CTRLF);
1017                 ctrl |= CTRL_RUNLATCH;
1018                 mtspr(SPRN_CTRLT, ctrl);
1019
1020                 set_thread_flag(TIF_RUNLATCH);
1021         }
1022 }
1023
1024 void ppc64_runlatch_off(void)
1025 {
1026         unsigned long ctrl;
1027
1028         if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1029                 HMT_medium();
1030
1031                 clear_thread_flag(TIF_RUNLATCH);
1032
1033                 ctrl = mfspr(SPRN_CTRLF);
1034                 ctrl &= ~CTRL_RUNLATCH;
1035                 mtspr(SPRN_CTRLT, ctrl);
1036         }
1037 }
1038 #endif
1039
1040 #if THREAD_SHIFT < PAGE_SHIFT
1041
1042 static struct kmem_cache *thread_info_cache;
1043
1044 struct thread_info *alloc_thread_info(struct task_struct *tsk)
1045 {
1046         struct thread_info *ti;
1047
1048         ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
1049         if (unlikely(ti == NULL))
1050                 return NULL;
1051 #ifdef CONFIG_DEBUG_STACK_USAGE
1052         memset(ti, 0, THREAD_SIZE);
1053 #endif
1054         return ti;
1055 }
1056
1057 void free_thread_info(struct thread_info *ti)
1058 {
1059         kmem_cache_free(thread_info_cache, ti);
1060 }
1061
1062 void thread_info_cache_init(void)
1063 {
1064         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1065                                               THREAD_SIZE, 0, NULL);
1066         BUG_ON(thread_info_cache == NULL);
1067 }
1068
1069 #endif /* THREAD_SHIFT < PAGE_SHIFT */