2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
80 * Overloading of page flags that are otherwise used for LRU management.
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
103 #define FROZEN (1 << PG_active)
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
111 static inline int SlabFrozen(struct page *page)
113 return page->flags & FROZEN;
116 static inline void SetSlabFrozen(struct page *page)
118 page->flags |= FROZEN;
121 static inline void ClearSlabFrozen(struct page *page)
123 page->flags &= ~FROZEN;
126 static inline int SlabDebug(struct page *page)
128 return page->flags & SLABDEBUG;
131 static inline void SetSlabDebug(struct page *page)
133 page->flags |= SLABDEBUG;
136 static inline void ClearSlabDebug(struct page *page)
138 page->flags &= ~SLABDEBUG;
142 * Issues still to be resolved:
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
146 * - Variable sizing of the per node arrays
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
155 * Small page size. Make sure that we do not fragment memory
157 #define DEFAULT_MAX_ORDER 1
158 #define DEFAULT_MIN_OBJECTS 4
163 * Large page machines are customarily able to handle larger
166 #define DEFAULT_MAX_ORDER 2
167 #define DEFAULT_MIN_OBJECTS 8
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
175 #define MIN_PARTIAL 2
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
182 #define MAX_PARTIAL 10
184 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
188 * Set of flags that will prevent slab merging
190 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
193 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
196 #ifndef ARCH_KMALLOC_MINALIGN
197 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
200 #ifndef ARCH_SLAB_MINALIGN
201 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
204 /* Internal SLUB flags */
205 #define __OBJECT_POISON 0x80000000 /* Poison object */
206 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
208 /* Not all arches define cache_line_size */
209 #ifndef cache_line_size
210 #define cache_line_size() L1_CACHE_BYTES
213 static int kmem_size = sizeof(struct kmem_cache);
216 static struct notifier_block slab_notifier;
220 DOWN, /* No slab functionality available */
221 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
222 UP, /* Everything works but does not show up in sysfs */
226 /* A list of all slab caches on the system */
227 static DECLARE_RWSEM(slub_lock);
228 static LIST_HEAD(slab_caches);
231 * Tracking user of a slab.
234 void *addr; /* Called from address */
235 int cpu; /* Was running on cpu */
236 int pid; /* Pid context */
237 unsigned long when; /* When did the operation occur */
240 enum track_item { TRACK_ALLOC, TRACK_FREE };
242 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
243 static int sysfs_slab_add(struct kmem_cache *);
244 static int sysfs_slab_alias(struct kmem_cache *, const char *);
245 static void sysfs_slab_remove(struct kmem_cache *);
247 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
248 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
250 static inline void sysfs_slab_remove(struct kmem_cache *s) {}
253 /********************************************************************
254 * Core slab cache functions
255 *******************************************************************/
257 int slab_is_available(void)
259 return slab_state >= UP;
262 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
265 return s->node[node];
267 return &s->local_node;
271 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
274 return s->cpu_slab[cpu];
280 static inline int check_valid_pointer(struct kmem_cache *s,
281 struct page *page, const void *object)
288 base = page_address(page);
289 if (object < base || object >= base + s->objects * s->size ||
290 (object - base) % s->size) {
298 * Slow version of get and set free pointer.
300 * This version requires touching the cache lines of kmem_cache which
301 * we avoid to do in the fast alloc free paths. There we obtain the offset
302 * from the page struct.
304 static inline void *get_freepointer(struct kmem_cache *s, void *object)
306 return *(void **)(object + s->offset);
309 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
311 *(void **)(object + s->offset) = fp;
314 /* Loop over all objects in a slab */
315 #define for_each_object(__p, __s, __addr) \
316 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
320 #define for_each_free_object(__p, __s, __free) \
321 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
323 /* Determine object index from a given position */
324 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
326 return (p - addr) / s->size;
329 #ifdef CONFIG_SLUB_DEBUG
333 #ifdef CONFIG_SLUB_DEBUG_ON
334 static int slub_debug = DEBUG_DEFAULT_FLAGS;
336 static int slub_debug;
339 static char *slub_debug_slabs;
344 static void print_section(char *text, u8 *addr, unsigned int length)
352 for (i = 0; i < length; i++) {
354 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
357 printk(" %02x", addr[i]);
359 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
361 printk(" %s\n",ascii);
372 printk(" %s\n", ascii);
376 static struct track *get_track(struct kmem_cache *s, void *object,
377 enum track_item alloc)
382 p = object + s->offset + sizeof(void *);
384 p = object + s->inuse;
389 static void set_track(struct kmem_cache *s, void *object,
390 enum track_item alloc, void *addr)
395 p = object + s->offset + sizeof(void *);
397 p = object + s->inuse;
402 p->cpu = smp_processor_id();
403 p->pid = current ? current->pid : -1;
406 memset(p, 0, sizeof(struct track));
409 static void init_tracking(struct kmem_cache *s, void *object)
411 if (!(s->flags & SLAB_STORE_USER))
414 set_track(s, object, TRACK_FREE, NULL);
415 set_track(s, object, TRACK_ALLOC, NULL);
418 static void print_track(const char *s, struct track *t)
423 printk(KERN_ERR "INFO: %s in ", s);
424 __print_symbol("%s", (unsigned long)t->addr);
425 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
428 static void print_tracking(struct kmem_cache *s, void *object)
430 if (!(s->flags & SLAB_STORE_USER))
433 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
434 print_track("Freed", get_track(s, object, TRACK_FREE));
437 static void print_page_info(struct page *page)
439 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
440 page, page->inuse, page->freelist, page->flags);
444 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
450 vsnprintf(buf, sizeof(buf), fmt, args);
452 printk(KERN_ERR "========================================"
453 "=====================================\n");
454 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
455 printk(KERN_ERR "----------------------------------------"
456 "-------------------------------------\n\n");
459 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
465 vsnprintf(buf, sizeof(buf), fmt, args);
467 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
470 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
472 unsigned int off; /* Offset of last byte */
473 u8 *addr = page_address(page);
475 print_tracking(s, p);
477 print_page_info(page);
479 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
480 p, p - addr, get_freepointer(s, p));
483 print_section("Bytes b4", p - 16, 16);
485 print_section("Object", p, min(s->objsize, 128));
487 if (s->flags & SLAB_RED_ZONE)
488 print_section("Redzone", p + s->objsize,
489 s->inuse - s->objsize);
492 off = s->offset + sizeof(void *);
496 if (s->flags & SLAB_STORE_USER)
497 off += 2 * sizeof(struct track);
500 /* Beginning of the filler is the free pointer */
501 print_section("Padding", p + off, s->size - off);
506 static void object_err(struct kmem_cache *s, struct page *page,
507 u8 *object, char *reason)
510 print_trailer(s, page, object);
513 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
519 vsnprintf(buf, sizeof(buf), fmt, args);
522 print_page_info(page);
526 static void init_object(struct kmem_cache *s, void *object, int active)
530 if (s->flags & __OBJECT_POISON) {
531 memset(p, POISON_FREE, s->objsize - 1);
532 p[s->objsize -1] = POISON_END;
535 if (s->flags & SLAB_RED_ZONE)
536 memset(p + s->objsize,
537 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
538 s->inuse - s->objsize);
541 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
544 if (*start != (u8)value)
552 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
553 void *from, void *to)
555 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
556 memset(from, data, to - from);
559 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
560 u8 *object, char *what,
561 u8* start, unsigned int value, unsigned int bytes)
566 fault = check_bytes(start, value, bytes);
571 while (end > fault && end[-1] == value)
574 slab_bug(s, "%s overwritten", what);
575 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
576 fault, end - 1, fault[0], value);
577 print_trailer(s, page, object);
579 restore_bytes(s, what, value, fault, end);
587 * Bytes of the object to be managed.
588 * If the freepointer may overlay the object then the free
589 * pointer is the first word of the object.
591 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
594 * object + s->objsize
595 * Padding to reach word boundary. This is also used for Redzoning.
596 * Padding is extended by another word if Redzoning is enabled and
599 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
600 * 0xcc (RED_ACTIVE) for objects in use.
603 * Meta data starts here.
605 * A. Free pointer (if we cannot overwrite object on free)
606 * B. Tracking data for SLAB_STORE_USER
607 * C. Padding to reach required alignment boundary or at mininum
608 * one word if debuggin is on to be able to detect writes
609 * before the word boundary.
611 * Padding is done using 0x5a (POISON_INUSE)
614 * Nothing is used beyond s->size.
616 * If slabcaches are merged then the objsize and inuse boundaries are mostly
617 * ignored. And therefore no slab options that rely on these boundaries
618 * may be used with merged slabcaches.
621 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
623 unsigned long off = s->inuse; /* The end of info */
626 /* Freepointer is placed after the object. */
627 off += sizeof(void *);
629 if (s->flags & SLAB_STORE_USER)
630 /* We also have user information there */
631 off += 2 * sizeof(struct track);
636 return check_bytes_and_report(s, page, p, "Object padding",
637 p + off, POISON_INUSE, s->size - off);
640 static int slab_pad_check(struct kmem_cache *s, struct page *page)
648 if (!(s->flags & SLAB_POISON))
651 start = page_address(page);
652 end = start + (PAGE_SIZE << s->order);
653 length = s->objects * s->size;
654 remainder = end - (start + length);
658 fault = check_bytes(start + length, POISON_INUSE, remainder);
661 while (end > fault && end[-1] == POISON_INUSE)
664 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
665 print_section("Padding", start, length);
667 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
671 static int check_object(struct kmem_cache *s, struct page *page,
672 void *object, int active)
675 u8 *endobject = object + s->objsize;
677 if (s->flags & SLAB_RED_ZONE) {
679 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
681 if (!check_bytes_and_report(s, page, object, "Redzone",
682 endobject, red, s->inuse - s->objsize))
685 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
686 check_bytes_and_report(s, page, p, "Alignment padding", endobject,
687 POISON_INUSE, s->inuse - s->objsize);
690 if (s->flags & SLAB_POISON) {
691 if (!active && (s->flags & __OBJECT_POISON) &&
692 (!check_bytes_and_report(s, page, p, "Poison", p,
693 POISON_FREE, s->objsize - 1) ||
694 !check_bytes_and_report(s, page, p, "Poison",
695 p + s->objsize -1, POISON_END, 1)))
698 * check_pad_bytes cleans up on its own.
700 check_pad_bytes(s, page, p);
703 if (!s->offset && active)
705 * Object and freepointer overlap. Cannot check
706 * freepointer while object is allocated.
710 /* Check free pointer validity */
711 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
712 object_err(s, page, p, "Freepointer corrupt");
714 * No choice but to zap it and thus loose the remainder
715 * of the free objects in this slab. May cause
716 * another error because the object count is now wrong.
718 set_freepointer(s, p, NULL);
724 static int check_slab(struct kmem_cache *s, struct page *page)
726 VM_BUG_ON(!irqs_disabled());
728 if (!PageSlab(page)) {
729 slab_err(s, page, "Not a valid slab page");
732 if (page->inuse > s->objects) {
733 slab_err(s, page, "inuse %u > max %u",
734 s->name, page->inuse, s->objects);
737 /* Slab_pad_check fixes things up after itself */
738 slab_pad_check(s, page);
743 * Determine if a certain object on a page is on the freelist. Must hold the
744 * slab lock to guarantee that the chains are in a consistent state.
746 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
749 void *fp = page->freelist;
752 while (fp && nr <= s->objects) {
755 if (!check_valid_pointer(s, page, fp)) {
757 object_err(s, page, object,
758 "Freechain corrupt");
759 set_freepointer(s, object, NULL);
762 slab_err(s, page, "Freepointer corrupt");
763 page->freelist = NULL;
764 page->inuse = s->objects;
765 slab_fix(s, "Freelist cleared");
771 fp = get_freepointer(s, object);
775 if (page->inuse != s->objects - nr) {
776 slab_err(s, page, "Wrong object count. Counter is %d but "
777 "counted were %d", page->inuse, s->objects - nr);
778 page->inuse = s->objects - nr;
779 slab_fix(s, "Object count adjusted.");
781 return search == NULL;
784 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
786 if (s->flags & SLAB_TRACE) {
787 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
789 alloc ? "alloc" : "free",
794 print_section("Object", (void *)object, s->objsize);
801 * Tracking of fully allocated slabs for debugging purposes.
803 static void add_full(struct kmem_cache_node *n, struct page *page)
805 spin_lock(&n->list_lock);
806 list_add(&page->lru, &n->full);
807 spin_unlock(&n->list_lock);
810 static void remove_full(struct kmem_cache *s, struct page *page)
812 struct kmem_cache_node *n;
814 if (!(s->flags & SLAB_STORE_USER))
817 n = get_node(s, page_to_nid(page));
819 spin_lock(&n->list_lock);
820 list_del(&page->lru);
821 spin_unlock(&n->list_lock);
824 static void setup_object_debug(struct kmem_cache *s, struct page *page,
827 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
830 init_object(s, object, 0);
831 init_tracking(s, object);
834 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
835 void *object, void *addr)
837 if (!check_slab(s, page))
840 if (object && !on_freelist(s, page, object)) {
841 object_err(s, page, object, "Object already allocated");
845 if (!check_valid_pointer(s, page, object)) {
846 object_err(s, page, object, "Freelist Pointer check fails");
850 if (object && !check_object(s, page, object, 0))
853 /* Success perform special debug activities for allocs */
854 if (s->flags & SLAB_STORE_USER)
855 set_track(s, object, TRACK_ALLOC, addr);
856 trace(s, page, object, 1);
857 init_object(s, object, 1);
861 if (PageSlab(page)) {
863 * If this is a slab page then lets do the best we can
864 * to avoid issues in the future. Marking all objects
865 * as used avoids touching the remaining objects.
867 slab_fix(s, "Marking all objects used");
868 page->inuse = s->objects;
869 page->freelist = NULL;
874 static int free_debug_processing(struct kmem_cache *s, struct page *page,
875 void *object, void *addr)
877 if (!check_slab(s, page))
880 if (!check_valid_pointer(s, page, object)) {
881 slab_err(s, page, "Invalid object pointer 0x%p", object);
885 if (on_freelist(s, page, object)) {
886 object_err(s, page, object, "Object already free");
890 if (!check_object(s, page, object, 1))
893 if (unlikely(s != page->slab)) {
895 slab_err(s, page, "Attempt to free object(0x%p) "
896 "outside of slab", object);
900 "SLUB <none>: no slab for object 0x%p.\n",
905 object_err(s, page, object,
906 "page slab pointer corrupt.");
910 /* Special debug activities for freeing objects */
911 if (!SlabFrozen(page) && !page->freelist)
912 remove_full(s, page);
913 if (s->flags & SLAB_STORE_USER)
914 set_track(s, object, TRACK_FREE, addr);
915 trace(s, page, object, 0);
916 init_object(s, object, 0);
920 slab_fix(s, "Object at 0x%p not freed", object);
924 static int __init setup_slub_debug(char *str)
926 slub_debug = DEBUG_DEFAULT_FLAGS;
927 if (*str++ != '=' || !*str)
929 * No options specified. Switch on full debugging.
935 * No options but restriction on slabs. This means full
936 * debugging for slabs matching a pattern.
943 * Switch off all debugging measures.
948 * Determine which debug features should be switched on
950 for ( ;*str && *str != ','; str++) {
951 switch (tolower(*str)) {
953 slub_debug |= SLAB_DEBUG_FREE;
956 slub_debug |= SLAB_RED_ZONE;
959 slub_debug |= SLAB_POISON;
962 slub_debug |= SLAB_STORE_USER;
965 slub_debug |= SLAB_TRACE;
968 printk(KERN_ERR "slub_debug option '%c' "
969 "unknown. skipped\n",*str);
975 slub_debug_slabs = str + 1;
980 __setup("slub_debug", setup_slub_debug);
982 static unsigned long kmem_cache_flags(unsigned long objsize,
983 unsigned long flags, const char *name,
984 void (*ctor)(struct kmem_cache *, void *))
987 * The page->offset field is only 16 bit wide. This is an offset
988 * in units of words from the beginning of an object. If the slab
989 * size is bigger then we cannot move the free pointer behind the
992 * On 32 bit platforms the limit is 256k. On 64bit platforms
995 * Debugging or ctor may create a need to move the free
996 * pointer. Fail if this happens.
998 if (objsize >= 65535 * sizeof(void *)) {
999 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1000 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1004 * Enable debugging if selected on the kernel commandline.
1006 if (slub_debug && (!slub_debug_slabs ||
1007 strncmp(slub_debug_slabs, name,
1008 strlen(slub_debug_slabs)) == 0))
1009 flags |= slub_debug;
1015 static inline void setup_object_debug(struct kmem_cache *s,
1016 struct page *page, void *object) {}
1018 static inline int alloc_debug_processing(struct kmem_cache *s,
1019 struct page *page, void *object, void *addr) { return 0; }
1021 static inline int free_debug_processing(struct kmem_cache *s,
1022 struct page *page, void *object, void *addr) { return 0; }
1024 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1026 static inline int check_object(struct kmem_cache *s, struct page *page,
1027 void *object, int active) { return 1; }
1028 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1029 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1030 unsigned long flags, const char *name,
1031 void (*ctor)(struct kmem_cache *, void *))
1035 #define slub_debug 0
1038 * Slab allocation and freeing
1040 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1043 int pages = 1 << s->order;
1046 flags |= __GFP_COMP;
1048 if (s->flags & SLAB_CACHE_DMA)
1051 if (s->flags & SLAB_RECLAIM_ACCOUNT)
1052 flags |= __GFP_RECLAIMABLE;
1055 page = alloc_pages(flags, s->order);
1057 page = alloc_pages_node(node, flags, s->order);
1062 mod_zone_page_state(page_zone(page),
1063 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1064 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1070 static void setup_object(struct kmem_cache *s, struct page *page,
1073 setup_object_debug(s, page, object);
1074 if (unlikely(s->ctor))
1078 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1081 struct kmem_cache_node *n;
1087 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1089 page = allocate_slab(s,
1090 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1094 n = get_node(s, page_to_nid(page));
1096 atomic_long_inc(&n->nr_slabs);
1098 page->flags |= 1 << PG_slab;
1099 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1100 SLAB_STORE_USER | SLAB_TRACE))
1103 start = page_address(page);
1104 end = start + s->objects * s->size;
1106 if (unlikely(s->flags & SLAB_POISON))
1107 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1110 for_each_object(p, s, start) {
1111 setup_object(s, page, last);
1112 set_freepointer(s, last, p);
1115 setup_object(s, page, last);
1116 set_freepointer(s, last, NULL);
1118 page->freelist = start;
1124 static void __free_slab(struct kmem_cache *s, struct page *page)
1126 int pages = 1 << s->order;
1128 if (unlikely(SlabDebug(page))) {
1131 slab_pad_check(s, page);
1132 for_each_object(p, s, page_address(page))
1133 check_object(s, page, p, 0);
1134 ClearSlabDebug(page);
1137 mod_zone_page_state(page_zone(page),
1138 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1139 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1142 __free_pages(page, s->order);
1145 static void rcu_free_slab(struct rcu_head *h)
1149 page = container_of((struct list_head *)h, struct page, lru);
1150 __free_slab(page->slab, page);
1153 static void free_slab(struct kmem_cache *s, struct page *page)
1155 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1157 * RCU free overloads the RCU head over the LRU
1159 struct rcu_head *head = (void *)&page->lru;
1161 call_rcu(head, rcu_free_slab);
1163 __free_slab(s, page);
1166 static void discard_slab(struct kmem_cache *s, struct page *page)
1168 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1170 atomic_long_dec(&n->nr_slabs);
1171 reset_page_mapcount(page);
1172 __ClearPageSlab(page);
1177 * Per slab locking using the pagelock
1179 static __always_inline void slab_lock(struct page *page)
1181 bit_spin_lock(PG_locked, &page->flags);
1184 static __always_inline void slab_unlock(struct page *page)
1186 bit_spin_unlock(PG_locked, &page->flags);
1189 static __always_inline int slab_trylock(struct page *page)
1193 rc = bit_spin_trylock(PG_locked, &page->flags);
1198 * Management of partially allocated slabs
1200 static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1202 spin_lock(&n->list_lock);
1204 list_add_tail(&page->lru, &n->partial);
1205 spin_unlock(&n->list_lock);
1208 static void add_partial(struct kmem_cache_node *n, struct page *page)
1210 spin_lock(&n->list_lock);
1212 list_add(&page->lru, &n->partial);
1213 spin_unlock(&n->list_lock);
1216 static void remove_partial(struct kmem_cache *s,
1219 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1221 spin_lock(&n->list_lock);
1222 list_del(&page->lru);
1224 spin_unlock(&n->list_lock);
1228 * Lock slab and remove from the partial list.
1230 * Must hold list_lock.
1232 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1234 if (slab_trylock(page)) {
1235 list_del(&page->lru);
1237 SetSlabFrozen(page);
1244 * Try to allocate a partial slab from a specific node.
1246 static struct page *get_partial_node(struct kmem_cache_node *n)
1251 * Racy check. If we mistakenly see no partial slabs then we
1252 * just allocate an empty slab. If we mistakenly try to get a
1253 * partial slab and there is none available then get_partials()
1256 if (!n || !n->nr_partial)
1259 spin_lock(&n->list_lock);
1260 list_for_each_entry(page, &n->partial, lru)
1261 if (lock_and_freeze_slab(n, page))
1265 spin_unlock(&n->list_lock);
1270 * Get a page from somewhere. Search in increasing NUMA distances.
1272 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1275 struct zonelist *zonelist;
1280 * The defrag ratio allows a configuration of the tradeoffs between
1281 * inter node defragmentation and node local allocations. A lower
1282 * defrag_ratio increases the tendency to do local allocations
1283 * instead of attempting to obtain partial slabs from other nodes.
1285 * If the defrag_ratio is set to 0 then kmalloc() always
1286 * returns node local objects. If the ratio is higher then kmalloc()
1287 * may return off node objects because partial slabs are obtained
1288 * from other nodes and filled up.
1290 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1291 * defrag_ratio = 1000) then every (well almost) allocation will
1292 * first attempt to defrag slab caches on other nodes. This means
1293 * scanning over all nodes to look for partial slabs which may be
1294 * expensive if we do it every time we are trying to find a slab
1295 * with available objects.
1297 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1300 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1301 ->node_zonelists[gfp_zone(flags)];
1302 for (z = zonelist->zones; *z; z++) {
1303 struct kmem_cache_node *n;
1305 n = get_node(s, zone_to_nid(*z));
1307 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1308 n->nr_partial > MIN_PARTIAL) {
1309 page = get_partial_node(n);
1319 * Get a partial page, lock it and return it.
1321 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1324 int searchnode = (node == -1) ? numa_node_id() : node;
1326 page = get_partial_node(get_node(s, searchnode));
1327 if (page || (flags & __GFP_THISNODE))
1330 return get_any_partial(s, flags);
1334 * Move a page back to the lists.
1336 * Must be called with the slab lock held.
1338 * On exit the slab lock will have been dropped.
1340 static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1342 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1344 ClearSlabFrozen(page);
1348 add_partial(n, page);
1349 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1354 if (n->nr_partial < MIN_PARTIAL) {
1356 * Adding an empty slab to the partial slabs in order
1357 * to avoid page allocator overhead. This slab needs
1358 * to come after the other slabs with objects in
1359 * order to fill them up. That way the size of the
1360 * partial list stays small. kmem_cache_shrink can
1361 * reclaim empty slabs from the partial list.
1363 add_partial_tail(n, page);
1367 discard_slab(s, page);
1373 * Remove the cpu slab
1375 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1377 struct page *page = c->page;
1379 * Merge cpu freelist into freelist. Typically we get here
1380 * because both freelists are empty. So this is unlikely
1383 while (unlikely(c->freelist)) {
1386 /* Retrieve object from cpu_freelist */
1387 object = c->freelist;
1388 c->freelist = c->freelist[c->offset];
1390 /* And put onto the regular freelist */
1391 object[c->offset] = page->freelist;
1392 page->freelist = object;
1396 unfreeze_slab(s, page);
1399 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1402 deactivate_slab(s, c);
1407 * Called from IPI handler with interrupts disabled.
1409 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1411 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1413 if (likely(c && c->page))
1417 static void flush_cpu_slab(void *d)
1419 struct kmem_cache *s = d;
1421 __flush_cpu_slab(s, smp_processor_id());
1424 static void flush_all(struct kmem_cache *s)
1427 on_each_cpu(flush_cpu_slab, s, 1, 1);
1429 unsigned long flags;
1431 local_irq_save(flags);
1433 local_irq_restore(flags);
1438 * Check if the objects in a per cpu structure fit numa
1439 * locality expectations.
1441 static inline int node_match(struct kmem_cache_cpu *c, int node)
1444 if (node != -1 && c->node != node)
1451 * Slow path. The lockless freelist is empty or we need to perform
1454 * Interrupts are disabled.
1456 * Processing is still very fast if new objects have been freed to the
1457 * regular freelist. In that case we simply take over the regular freelist
1458 * as the lockless freelist and zap the regular freelist.
1460 * If that is not working then we fall back to the partial lists. We take the
1461 * first element of the freelist as the object to allocate now and move the
1462 * rest of the freelist to the lockless freelist.
1464 * And if we were unable to get a new slab from the partial slab lists then
1465 * we need to allocate a new slab. This is slowest path since we may sleep.
1467 static void *__slab_alloc(struct kmem_cache *s,
1468 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1477 if (unlikely(!node_match(c, node)))
1480 object = c->page->freelist;
1481 if (unlikely(!object))
1483 if (unlikely(SlabDebug(c->page)))
1486 object = c->page->freelist;
1487 c->freelist = object[c->offset];
1488 c->page->inuse = s->objects;
1489 c->page->freelist = NULL;
1490 c->node = page_to_nid(c->page);
1491 slab_unlock(c->page);
1495 deactivate_slab(s, c);
1498 new = get_partial(s, gfpflags, node);
1504 if (gfpflags & __GFP_WAIT)
1507 new = new_slab(s, gfpflags, node);
1509 if (gfpflags & __GFP_WAIT)
1510 local_irq_disable();
1513 c = get_cpu_slab(s, smp_processor_id());
1523 object = c->page->freelist;
1524 if (!alloc_debug_processing(s, c->page, object, addr))
1528 c->page->freelist = object[c->offset];
1530 slab_unlock(c->page);
1535 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1536 * have the fastpath folded into their functions. So no function call
1537 * overhead for requests that can be satisfied on the fastpath.
1539 * The fastpath works by first checking if the lockless freelist can be used.
1540 * If not then __slab_alloc is called for slow processing.
1542 * Otherwise we can simply pick the next object from the lockless free list.
1544 static void __always_inline *slab_alloc(struct kmem_cache *s,
1545 gfp_t gfpflags, int node, void *addr)
1548 unsigned long flags;
1549 struct kmem_cache_cpu *c;
1551 local_irq_save(flags);
1552 c = get_cpu_slab(s, smp_processor_id());
1553 if (unlikely(!c->freelist || !node_match(c, node)))
1555 object = __slab_alloc(s, gfpflags, node, addr, c);
1558 object = c->freelist;
1559 c->freelist = object[c->offset];
1561 local_irq_restore(flags);
1563 if (unlikely((gfpflags & __GFP_ZERO) && object))
1564 memset(object, 0, c->objsize);
1569 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1571 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1573 EXPORT_SYMBOL(kmem_cache_alloc);
1576 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1578 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1580 EXPORT_SYMBOL(kmem_cache_alloc_node);
1584 * Slow patch handling. This may still be called frequently since objects
1585 * have a longer lifetime than the cpu slabs in most processing loads.
1587 * So we still attempt to reduce cache line usage. Just take the slab
1588 * lock and free the item. If there is no additional partial page
1589 * handling required then we can return immediately.
1591 static void __slab_free(struct kmem_cache *s, struct page *page,
1592 void *x, void *addr, unsigned int offset)
1595 void **object = (void *)x;
1599 if (unlikely(SlabDebug(page)))
1602 prior = object[offset] = page->freelist;
1603 page->freelist = object;
1606 if (unlikely(SlabFrozen(page)))
1609 if (unlikely(!page->inuse))
1613 * Objects left in the slab. If it
1614 * was not on the partial list before
1617 if (unlikely(!prior))
1618 add_partial(get_node(s, page_to_nid(page)), page);
1627 * Slab still on the partial list.
1629 remove_partial(s, page);
1632 discard_slab(s, page);
1636 if (!free_debug_processing(s, page, x, addr))
1642 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1643 * can perform fastpath freeing without additional function calls.
1645 * The fastpath is only possible if we are freeing to the current cpu slab
1646 * of this processor. This typically the case if we have just allocated
1649 * If fastpath is not possible then fall back to __slab_free where we deal
1650 * with all sorts of special processing.
1652 static void __always_inline slab_free(struct kmem_cache *s,
1653 struct page *page, void *x, void *addr)
1655 void **object = (void *)x;
1656 unsigned long flags;
1657 struct kmem_cache_cpu *c;
1659 local_irq_save(flags);
1660 debug_check_no_locks_freed(object, s->objsize);
1661 c = get_cpu_slab(s, smp_processor_id());
1662 if (likely(page == c->page && c->node >= 0)) {
1663 object[c->offset] = c->freelist;
1664 c->freelist = object;
1666 __slab_free(s, page, x, addr, c->offset);
1668 local_irq_restore(flags);
1671 void kmem_cache_free(struct kmem_cache *s, void *x)
1675 page = virt_to_head_page(x);
1677 slab_free(s, page, x, __builtin_return_address(0));
1679 EXPORT_SYMBOL(kmem_cache_free);
1681 /* Figure out on which slab object the object resides */
1682 static struct page *get_object_page(const void *x)
1684 struct page *page = virt_to_head_page(x);
1686 if (!PageSlab(page))
1693 * Object placement in a slab is made very easy because we always start at
1694 * offset 0. If we tune the size of the object to the alignment then we can
1695 * get the required alignment by putting one properly sized object after
1698 * Notice that the allocation order determines the sizes of the per cpu
1699 * caches. Each processor has always one slab available for allocations.
1700 * Increasing the allocation order reduces the number of times that slabs
1701 * must be moved on and off the partial lists and is therefore a factor in
1706 * Mininum / Maximum order of slab pages. This influences locking overhead
1707 * and slab fragmentation. A higher order reduces the number of partial slabs
1708 * and increases the number of allocations possible without having to
1709 * take the list_lock.
1711 static int slub_min_order;
1712 static int slub_max_order = DEFAULT_MAX_ORDER;
1713 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1716 * Merge control. If this is set then no merging of slab caches will occur.
1717 * (Could be removed. This was introduced to pacify the merge skeptics.)
1719 static int slub_nomerge;
1722 * Calculate the order of allocation given an slab object size.
1724 * The order of allocation has significant impact on performance and other
1725 * system components. Generally order 0 allocations should be preferred since
1726 * order 0 does not cause fragmentation in the page allocator. Larger objects
1727 * be problematic to put into order 0 slabs because there may be too much
1728 * unused space left. We go to a higher order if more than 1/8th of the slab
1731 * In order to reach satisfactory performance we must ensure that a minimum
1732 * number of objects is in one slab. Otherwise we may generate too much
1733 * activity on the partial lists which requires taking the list_lock. This is
1734 * less a concern for large slabs though which are rarely used.
1736 * slub_max_order specifies the order where we begin to stop considering the
1737 * number of objects in a slab as critical. If we reach slub_max_order then
1738 * we try to keep the page order as low as possible. So we accept more waste
1739 * of space in favor of a small page order.
1741 * Higher order allocations also allow the placement of more objects in a
1742 * slab and thereby reduce object handling overhead. If the user has
1743 * requested a higher mininum order then we start with that one instead of
1744 * the smallest order which will fit the object.
1746 static inline int slab_order(int size, int min_objects,
1747 int max_order, int fract_leftover)
1751 int min_order = slub_min_order;
1753 for (order = max(min_order,
1754 fls(min_objects * size - 1) - PAGE_SHIFT);
1755 order <= max_order; order++) {
1757 unsigned long slab_size = PAGE_SIZE << order;
1759 if (slab_size < min_objects * size)
1762 rem = slab_size % size;
1764 if (rem <= slab_size / fract_leftover)
1772 static inline int calculate_order(int size)
1779 * Attempt to find best configuration for a slab. This
1780 * works by first attempting to generate a layout with
1781 * the best configuration and backing off gradually.
1783 * First we reduce the acceptable waste in a slab. Then
1784 * we reduce the minimum objects required in a slab.
1786 min_objects = slub_min_objects;
1787 while (min_objects > 1) {
1789 while (fraction >= 4) {
1790 order = slab_order(size, min_objects,
1791 slub_max_order, fraction);
1792 if (order <= slub_max_order)
1800 * We were unable to place multiple objects in a slab. Now
1801 * lets see if we can place a single object there.
1803 order = slab_order(size, 1, slub_max_order, 1);
1804 if (order <= slub_max_order)
1808 * Doh this slab cannot be placed using slub_max_order.
1810 order = slab_order(size, 1, MAX_ORDER, 1);
1811 if (order <= MAX_ORDER)
1817 * Figure out what the alignment of the objects will be.
1819 static unsigned long calculate_alignment(unsigned long flags,
1820 unsigned long align, unsigned long size)
1823 * If the user wants hardware cache aligned objects then
1824 * follow that suggestion if the object is sufficiently
1827 * The hardware cache alignment cannot override the
1828 * specified alignment though. If that is greater
1831 if ((flags & SLAB_HWCACHE_ALIGN) &&
1832 size > cache_line_size() / 2)
1833 return max_t(unsigned long, align, cache_line_size());
1835 if (align < ARCH_SLAB_MINALIGN)
1836 return ARCH_SLAB_MINALIGN;
1838 return ALIGN(align, sizeof(void *));
1841 static void init_kmem_cache_cpu(struct kmem_cache *s,
1842 struct kmem_cache_cpu *c)
1847 c->offset = s->offset / sizeof(void *);
1848 c->objsize = s->objsize;
1851 static void init_kmem_cache_node(struct kmem_cache_node *n)
1854 atomic_long_set(&n->nr_slabs, 0);
1855 spin_lock_init(&n->list_lock);
1856 INIT_LIST_HEAD(&n->partial);
1857 #ifdef CONFIG_SLUB_DEBUG
1858 INIT_LIST_HEAD(&n->full);
1864 * Per cpu array for per cpu structures.
1866 * The per cpu array places all kmem_cache_cpu structures from one processor
1867 * close together meaning that it becomes possible that multiple per cpu
1868 * structures are contained in one cacheline. This may be particularly
1869 * beneficial for the kmalloc caches.
1871 * A desktop system typically has around 60-80 slabs. With 100 here we are
1872 * likely able to get per cpu structures for all caches from the array defined
1873 * here. We must be able to cover all kmalloc caches during bootstrap.
1875 * If the per cpu array is exhausted then fall back to kmalloc
1876 * of individual cachelines. No sharing is possible then.
1878 #define NR_KMEM_CACHE_CPU 100
1880 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1881 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1883 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1884 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1886 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1887 int cpu, gfp_t flags)
1889 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1892 per_cpu(kmem_cache_cpu_free, cpu) =
1893 (void *)c->freelist;
1895 /* Table overflow: So allocate ourselves */
1897 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1898 flags, cpu_to_node(cpu));
1903 init_kmem_cache_cpu(s, c);
1907 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1909 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1910 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1914 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1915 per_cpu(kmem_cache_cpu_free, cpu) = c;
1918 static void free_kmem_cache_cpus(struct kmem_cache *s)
1922 for_each_online_cpu(cpu) {
1923 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1926 s->cpu_slab[cpu] = NULL;
1927 free_kmem_cache_cpu(c, cpu);
1932 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1936 for_each_online_cpu(cpu) {
1937 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1942 c = alloc_kmem_cache_cpu(s, cpu, flags);
1944 free_kmem_cache_cpus(s);
1947 s->cpu_slab[cpu] = c;
1953 * Initialize the per cpu array.
1955 static void init_alloc_cpu_cpu(int cpu)
1959 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
1962 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
1963 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
1965 cpu_set(cpu, kmem_cach_cpu_free_init_once);
1968 static void __init init_alloc_cpu(void)
1972 for_each_online_cpu(cpu)
1973 init_alloc_cpu_cpu(cpu);
1977 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
1978 static inline void init_alloc_cpu(void) {}
1980 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1982 init_kmem_cache_cpu(s, &s->cpu_slab);
1989 * No kmalloc_node yet so do it by hand. We know that this is the first
1990 * slab on the node for this slabcache. There are no concurrent accesses
1993 * Note that this function only works on the kmalloc_node_cache
1994 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
1995 * memory on a fresh node that has no slab structures yet.
1997 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2001 struct kmem_cache_node *n;
2003 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2005 page = new_slab(kmalloc_caches, gfpflags, node);
2008 if (page_to_nid(page) != node) {
2009 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2011 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2012 "in order to be able to continue\n");
2017 page->freelist = get_freepointer(kmalloc_caches, n);
2019 kmalloc_caches->node[node] = n;
2020 #ifdef CONFIG_SLUB_DEBUG
2021 init_object(kmalloc_caches, n, 1);
2022 init_tracking(kmalloc_caches, n);
2024 init_kmem_cache_node(n);
2025 atomic_long_inc(&n->nr_slabs);
2026 add_partial(n, page);
2030 static void free_kmem_cache_nodes(struct kmem_cache *s)
2034 for_each_node_state(node, N_NORMAL_MEMORY) {
2035 struct kmem_cache_node *n = s->node[node];
2036 if (n && n != &s->local_node)
2037 kmem_cache_free(kmalloc_caches, n);
2038 s->node[node] = NULL;
2042 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2047 if (slab_state >= UP)
2048 local_node = page_to_nid(virt_to_page(s));
2052 for_each_node_state(node, N_NORMAL_MEMORY) {
2053 struct kmem_cache_node *n;
2055 if (local_node == node)
2058 if (slab_state == DOWN) {
2059 n = early_kmem_cache_node_alloc(gfpflags,
2063 n = kmem_cache_alloc_node(kmalloc_caches,
2067 free_kmem_cache_nodes(s);
2073 init_kmem_cache_node(n);
2078 static void free_kmem_cache_nodes(struct kmem_cache *s)
2082 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2084 init_kmem_cache_node(&s->local_node);
2090 * calculate_sizes() determines the order and the distribution of data within
2093 static int calculate_sizes(struct kmem_cache *s)
2095 unsigned long flags = s->flags;
2096 unsigned long size = s->objsize;
2097 unsigned long align = s->align;
2100 * Determine if we can poison the object itself. If the user of
2101 * the slab may touch the object after free or before allocation
2102 * then we should never poison the object itself.
2104 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2106 s->flags |= __OBJECT_POISON;
2108 s->flags &= ~__OBJECT_POISON;
2111 * Round up object size to the next word boundary. We can only
2112 * place the free pointer at word boundaries and this determines
2113 * the possible location of the free pointer.
2115 size = ALIGN(size, sizeof(void *));
2117 #ifdef CONFIG_SLUB_DEBUG
2119 * If we are Redzoning then check if there is some space between the
2120 * end of the object and the free pointer. If not then add an
2121 * additional word to have some bytes to store Redzone information.
2123 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2124 size += sizeof(void *);
2128 * With that we have determined the number of bytes in actual use
2129 * by the object. This is the potential offset to the free pointer.
2133 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2136 * Relocate free pointer after the object if it is not
2137 * permitted to overwrite the first word of the object on
2140 * This is the case if we do RCU, have a constructor or
2141 * destructor or are poisoning the objects.
2144 size += sizeof(void *);
2147 #ifdef CONFIG_SLUB_DEBUG
2148 if (flags & SLAB_STORE_USER)
2150 * Need to store information about allocs and frees after
2153 size += 2 * sizeof(struct track);
2155 if (flags & SLAB_RED_ZONE)
2157 * Add some empty padding so that we can catch
2158 * overwrites from earlier objects rather than let
2159 * tracking information or the free pointer be
2160 * corrupted if an user writes before the start
2163 size += sizeof(void *);
2167 * Determine the alignment based on various parameters that the
2168 * user specified and the dynamic determination of cache line size
2171 align = calculate_alignment(flags, align, s->objsize);
2174 * SLUB stores one object immediately after another beginning from
2175 * offset 0. In order to align the objects we have to simply size
2176 * each object to conform to the alignment.
2178 size = ALIGN(size, align);
2181 s->order = calculate_order(size);
2186 * Determine the number of objects per slab
2188 s->objects = (PAGE_SIZE << s->order) / size;
2190 return !!s->objects;
2194 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2195 const char *name, size_t size,
2196 size_t align, unsigned long flags,
2197 void (*ctor)(struct kmem_cache *, void *))
2199 memset(s, 0, kmem_size);
2204 s->flags = kmem_cache_flags(size, flags, name, ctor);
2206 if (!calculate_sizes(s))
2211 s->defrag_ratio = 100;
2213 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2216 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2218 free_kmem_cache_nodes(s);
2220 if (flags & SLAB_PANIC)
2221 panic("Cannot create slab %s size=%lu realsize=%u "
2222 "order=%u offset=%u flags=%lx\n",
2223 s->name, (unsigned long)size, s->size, s->order,
2229 * Check if a given pointer is valid
2231 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2235 page = get_object_page(object);
2237 if (!page || s != page->slab)
2238 /* No slab or wrong slab */
2241 if (!check_valid_pointer(s, page, object))
2245 * We could also check if the object is on the slabs freelist.
2246 * But this would be too expensive and it seems that the main
2247 * purpose of kmem_ptr_valid is to check if the object belongs
2248 * to a certain slab.
2252 EXPORT_SYMBOL(kmem_ptr_validate);
2255 * Determine the size of a slab object
2257 unsigned int kmem_cache_size(struct kmem_cache *s)
2261 EXPORT_SYMBOL(kmem_cache_size);
2263 const char *kmem_cache_name(struct kmem_cache *s)
2267 EXPORT_SYMBOL(kmem_cache_name);
2270 * Attempt to free all slabs on a node. Return the number of slabs we
2271 * were unable to free.
2273 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2274 struct list_head *list)
2276 int slabs_inuse = 0;
2277 unsigned long flags;
2278 struct page *page, *h;
2280 spin_lock_irqsave(&n->list_lock, flags);
2281 list_for_each_entry_safe(page, h, list, lru)
2283 list_del(&page->lru);
2284 discard_slab(s, page);
2287 spin_unlock_irqrestore(&n->list_lock, flags);
2292 * Release all resources used by a slab cache.
2294 static inline int kmem_cache_close(struct kmem_cache *s)
2300 /* Attempt to free all objects */
2301 free_kmem_cache_cpus(s);
2302 for_each_node_state(node, N_NORMAL_MEMORY) {
2303 struct kmem_cache_node *n = get_node(s, node);
2305 n->nr_partial -= free_list(s, n, &n->partial);
2306 if (atomic_long_read(&n->nr_slabs))
2309 free_kmem_cache_nodes(s);
2314 * Close a cache and release the kmem_cache structure
2315 * (must be used for caches created using kmem_cache_create)
2317 void kmem_cache_destroy(struct kmem_cache *s)
2319 down_write(&slub_lock);
2323 up_write(&slub_lock);
2324 if (kmem_cache_close(s))
2326 sysfs_slab_remove(s);
2329 up_write(&slub_lock);
2331 EXPORT_SYMBOL(kmem_cache_destroy);
2333 /********************************************************************
2335 *******************************************************************/
2337 struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
2338 EXPORT_SYMBOL(kmalloc_caches);
2340 #ifdef CONFIG_ZONE_DMA
2341 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
2344 static int __init setup_slub_min_order(char *str)
2346 get_option (&str, &slub_min_order);
2351 __setup("slub_min_order=", setup_slub_min_order);
2353 static int __init setup_slub_max_order(char *str)
2355 get_option (&str, &slub_max_order);
2360 __setup("slub_max_order=", setup_slub_max_order);
2362 static int __init setup_slub_min_objects(char *str)
2364 get_option (&str, &slub_min_objects);
2369 __setup("slub_min_objects=", setup_slub_min_objects);
2371 static int __init setup_slub_nomerge(char *str)
2377 __setup("slub_nomerge", setup_slub_nomerge);
2379 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2380 const char *name, int size, gfp_t gfp_flags)
2382 unsigned int flags = 0;
2384 if (gfp_flags & SLUB_DMA)
2385 flags = SLAB_CACHE_DMA;
2387 down_write(&slub_lock);
2388 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2392 list_add(&s->list, &slab_caches);
2393 up_write(&slub_lock);
2394 if (sysfs_slab_add(s))
2399 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2402 #ifdef CONFIG_ZONE_DMA
2404 static void sysfs_add_func(struct work_struct *w)
2406 struct kmem_cache *s;
2408 down_write(&slub_lock);
2409 list_for_each_entry(s, &slab_caches, list) {
2410 if (s->flags & __SYSFS_ADD_DEFERRED) {
2411 s->flags &= ~__SYSFS_ADD_DEFERRED;
2415 up_write(&slub_lock);
2418 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2420 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2422 struct kmem_cache *s;
2426 s = kmalloc_caches_dma[index];
2430 /* Dynamically create dma cache */
2431 if (flags & __GFP_WAIT)
2432 down_write(&slub_lock);
2434 if (!down_write_trylock(&slub_lock))
2438 if (kmalloc_caches_dma[index])
2441 realsize = kmalloc_caches[index].objsize;
2442 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2443 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2445 if (!s || !text || !kmem_cache_open(s, flags, text,
2446 realsize, ARCH_KMALLOC_MINALIGN,
2447 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2453 list_add(&s->list, &slab_caches);
2454 kmalloc_caches_dma[index] = s;
2456 schedule_work(&sysfs_add_work);
2459 up_write(&slub_lock);
2461 return kmalloc_caches_dma[index];
2466 * Conversion table for small slabs sizes / 8 to the index in the
2467 * kmalloc array. This is necessary for slabs < 192 since we have non power
2468 * of two cache sizes there. The size of larger slabs can be determined using
2471 static s8 size_index[24] = {
2498 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2504 return ZERO_SIZE_PTR;
2506 index = size_index[(size - 1) / 8];
2508 index = fls(size - 1);
2510 #ifdef CONFIG_ZONE_DMA
2511 if (unlikely((flags & SLUB_DMA)))
2512 return dma_kmalloc_cache(index, flags);
2515 return &kmalloc_caches[index];
2518 void *__kmalloc(size_t size, gfp_t flags)
2520 struct kmem_cache *s;
2522 if (unlikely(size > PAGE_SIZE / 2))
2523 return (void *)__get_free_pages(flags | __GFP_COMP,
2526 s = get_slab(size, flags);
2528 if (unlikely(ZERO_OR_NULL_PTR(s)))
2531 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2533 EXPORT_SYMBOL(__kmalloc);
2536 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2538 struct kmem_cache *s;
2540 if (unlikely(size > PAGE_SIZE / 2))
2541 return (void *)__get_free_pages(flags | __GFP_COMP,
2544 s = get_slab(size, flags);
2546 if (unlikely(ZERO_OR_NULL_PTR(s)))
2549 return slab_alloc(s, flags, node, __builtin_return_address(0));
2551 EXPORT_SYMBOL(__kmalloc_node);
2554 size_t ksize(const void *object)
2557 struct kmem_cache *s;
2560 if (unlikely(object == ZERO_SIZE_PTR))
2563 page = get_object_page(object);
2569 * Debugging requires use of the padding between object
2570 * and whatever may come after it.
2572 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2576 * If we have the need to store the freelist pointer
2577 * back there or track user information then we can
2578 * only use the space before that information.
2580 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2584 * Else we can use all the padding etc for the allocation
2588 EXPORT_SYMBOL(ksize);
2590 void kfree(const void *x)
2594 if (unlikely(ZERO_OR_NULL_PTR(x)))
2597 page = virt_to_head_page(x);
2598 if (unlikely(!PageSlab(page))) {
2602 slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
2604 EXPORT_SYMBOL(kfree);
2607 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2608 * the remaining slabs by the number of items in use. The slabs with the
2609 * most items in use come first. New allocations will then fill those up
2610 * and thus they can be removed from the partial lists.
2612 * The slabs with the least items are placed last. This results in them
2613 * being allocated from last increasing the chance that the last objects
2614 * are freed in them.
2616 int kmem_cache_shrink(struct kmem_cache *s)
2620 struct kmem_cache_node *n;
2623 struct list_head *slabs_by_inuse =
2624 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2625 unsigned long flags;
2627 if (!slabs_by_inuse)
2631 for_each_node_state(node, N_NORMAL_MEMORY) {
2632 n = get_node(s, node);
2637 for (i = 0; i < s->objects; i++)
2638 INIT_LIST_HEAD(slabs_by_inuse + i);
2640 spin_lock_irqsave(&n->list_lock, flags);
2643 * Build lists indexed by the items in use in each slab.
2645 * Note that concurrent frees may occur while we hold the
2646 * list_lock. page->inuse here is the upper limit.
2648 list_for_each_entry_safe(page, t, &n->partial, lru) {
2649 if (!page->inuse && slab_trylock(page)) {
2651 * Must hold slab lock here because slab_free
2652 * may have freed the last object and be
2653 * waiting to release the slab.
2655 list_del(&page->lru);
2658 discard_slab(s, page);
2660 list_move(&page->lru,
2661 slabs_by_inuse + page->inuse);
2666 * Rebuild the partial list with the slabs filled up most
2667 * first and the least used slabs at the end.
2669 for (i = s->objects - 1; i >= 0; i--)
2670 list_splice(slabs_by_inuse + i, n->partial.prev);
2672 spin_unlock_irqrestore(&n->list_lock, flags);
2675 kfree(slabs_by_inuse);
2678 EXPORT_SYMBOL(kmem_cache_shrink);
2680 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2681 static int slab_mem_going_offline_callback(void *arg)
2683 struct kmem_cache *s;
2685 down_read(&slub_lock);
2686 list_for_each_entry(s, &slab_caches, list)
2687 kmem_cache_shrink(s);
2688 up_read(&slub_lock);
2693 static void slab_mem_offline_callback(void *arg)
2695 struct kmem_cache_node *n;
2696 struct kmem_cache *s;
2697 struct memory_notify *marg = arg;
2700 offline_node = marg->status_change_nid;
2703 * If the node still has available memory. we need kmem_cache_node
2706 if (offline_node < 0)
2709 down_read(&slub_lock);
2710 list_for_each_entry(s, &slab_caches, list) {
2711 n = get_node(s, offline_node);
2714 * if n->nr_slabs > 0, slabs still exist on the node
2715 * that is going down. We were unable to free them,
2716 * and offline_pages() function shoudn't call this
2717 * callback. So, we must fail.
2719 BUG_ON(atomic_long_read(&n->nr_slabs));
2721 s->node[offline_node] = NULL;
2722 kmem_cache_free(kmalloc_caches, n);
2725 up_read(&slub_lock);
2728 static int slab_mem_going_online_callback(void *arg)
2730 struct kmem_cache_node *n;
2731 struct kmem_cache *s;
2732 struct memory_notify *marg = arg;
2733 int nid = marg->status_change_nid;
2737 * If the node's memory is already available, then kmem_cache_node is
2738 * already created. Nothing to do.
2744 * We are bringing a node online. No memory is availabe yet. We must
2745 * allocate a kmem_cache_node structure in order to bring the node
2748 down_read(&slub_lock);
2749 list_for_each_entry(s, &slab_caches, list) {
2751 * XXX: kmem_cache_alloc_node will fallback to other nodes
2752 * since memory is not yet available from the node that
2755 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2760 init_kmem_cache_node(n);
2764 up_read(&slub_lock);
2768 static int slab_memory_callback(struct notifier_block *self,
2769 unsigned long action, void *arg)
2774 case MEM_GOING_ONLINE:
2775 ret = slab_mem_going_online_callback(arg);
2777 case MEM_GOING_OFFLINE:
2778 ret = slab_mem_going_offline_callback(arg);
2781 case MEM_CANCEL_ONLINE:
2782 slab_mem_offline_callback(arg);
2785 case MEM_CANCEL_OFFLINE:
2789 ret = notifier_from_errno(ret);
2793 #endif /* CONFIG_MEMORY_HOTPLUG */
2795 /********************************************************************
2796 * Basic setup of slabs
2797 *******************************************************************/
2799 void __init kmem_cache_init(void)
2808 * Must first have the slab cache available for the allocations of the
2809 * struct kmem_cache_node's. There is special bootstrap code in
2810 * kmem_cache_open for slab_state == DOWN.
2812 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2813 sizeof(struct kmem_cache_node), GFP_KERNEL);
2814 kmalloc_caches[0].refcount = -1;
2817 hotplug_memory_notifier(slab_memory_callback, 1);
2820 /* Able to allocate the per node structures */
2821 slab_state = PARTIAL;
2823 /* Caches that are not of the two-to-the-power-of size */
2824 if (KMALLOC_MIN_SIZE <= 64) {
2825 create_kmalloc_cache(&kmalloc_caches[1],
2826 "kmalloc-96", 96, GFP_KERNEL);
2829 if (KMALLOC_MIN_SIZE <= 128) {
2830 create_kmalloc_cache(&kmalloc_caches[2],
2831 "kmalloc-192", 192, GFP_KERNEL);
2835 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
2836 create_kmalloc_cache(&kmalloc_caches[i],
2837 "kmalloc", 1 << i, GFP_KERNEL);
2843 * Patch up the size_index table if we have strange large alignment
2844 * requirements for the kmalloc array. This is only the case for
2845 * mips it seems. The standard arches will not generate any code here.
2847 * Largest permitted alignment is 256 bytes due to the way we
2848 * handle the index determination for the smaller caches.
2850 * Make sure that nothing crazy happens if someone starts tinkering
2851 * around with ARCH_KMALLOC_MINALIGN
2853 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2854 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2856 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2857 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2861 /* Provide the correct kmalloc names now that the caches are up */
2862 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
2863 kmalloc_caches[i]. name =
2864 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2867 register_cpu_notifier(&slab_notifier);
2868 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2869 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2871 kmem_size = sizeof(struct kmem_cache);
2875 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2876 " CPUs=%d, Nodes=%d\n",
2877 caches, cache_line_size(),
2878 slub_min_order, slub_max_order, slub_min_objects,
2879 nr_cpu_ids, nr_node_ids);
2883 * Find a mergeable slab cache
2885 static int slab_unmergeable(struct kmem_cache *s)
2887 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2894 * We may have set a slab to be unmergeable during bootstrap.
2896 if (s->refcount < 0)
2902 static struct kmem_cache *find_mergeable(size_t size,
2903 size_t align, unsigned long flags, const char *name,
2904 void (*ctor)(struct kmem_cache *, void *))
2906 struct kmem_cache *s;
2908 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2914 size = ALIGN(size, sizeof(void *));
2915 align = calculate_alignment(flags, align, size);
2916 size = ALIGN(size, align);
2917 flags = kmem_cache_flags(size, flags, name, NULL);
2919 list_for_each_entry(s, &slab_caches, list) {
2920 if (slab_unmergeable(s))
2926 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
2929 * Check if alignment is compatible.
2930 * Courtesy of Adrian Drzewiecki
2932 if ((s->size & ~(align -1)) != s->size)
2935 if (s->size - size >= sizeof(void *))
2943 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2944 size_t align, unsigned long flags,
2945 void (*ctor)(struct kmem_cache *, void *))
2947 struct kmem_cache *s;
2949 down_write(&slub_lock);
2950 s = find_mergeable(size, align, flags, name, ctor);
2956 * Adjust the object sizes so that we clear
2957 * the complete object on kzalloc.
2959 s->objsize = max(s->objsize, (int)size);
2962 * And then we need to update the object size in the
2963 * per cpu structures
2965 for_each_online_cpu(cpu)
2966 get_cpu_slab(s, cpu)->objsize = s->objsize;
2967 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2968 up_write(&slub_lock);
2969 if (sysfs_slab_alias(s, name))
2973 s = kmalloc(kmem_size, GFP_KERNEL);
2975 if (kmem_cache_open(s, GFP_KERNEL, name,
2976 size, align, flags, ctor)) {
2977 list_add(&s->list, &slab_caches);
2978 up_write(&slub_lock);
2979 if (sysfs_slab_add(s))
2985 up_write(&slub_lock);
2988 if (flags & SLAB_PANIC)
2989 panic("Cannot create slabcache %s\n", name);
2994 EXPORT_SYMBOL(kmem_cache_create);
2998 * Use the cpu notifier to insure that the cpu slabs are flushed when
3001 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3002 unsigned long action, void *hcpu)
3004 long cpu = (long)hcpu;
3005 struct kmem_cache *s;
3006 unsigned long flags;
3009 case CPU_UP_PREPARE:
3010 case CPU_UP_PREPARE_FROZEN:
3011 init_alloc_cpu_cpu(cpu);
3012 down_read(&slub_lock);
3013 list_for_each_entry(s, &slab_caches, list)
3014 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3016 up_read(&slub_lock);
3019 case CPU_UP_CANCELED:
3020 case CPU_UP_CANCELED_FROZEN:
3022 case CPU_DEAD_FROZEN:
3023 down_read(&slub_lock);
3024 list_for_each_entry(s, &slab_caches, list) {
3025 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3027 local_irq_save(flags);
3028 __flush_cpu_slab(s, cpu);
3029 local_irq_restore(flags);
3030 free_kmem_cache_cpu(c, cpu);
3031 s->cpu_slab[cpu] = NULL;
3033 up_read(&slub_lock);
3041 static struct notifier_block __cpuinitdata slab_notifier =
3042 { &slab_cpuup_callback, NULL, 0 };
3046 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3048 struct kmem_cache *s;
3050 if (unlikely(size > PAGE_SIZE / 2))
3051 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3053 s = get_slab(size, gfpflags);
3055 if (unlikely(ZERO_OR_NULL_PTR(s)))
3058 return slab_alloc(s, gfpflags, -1, caller);
3061 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3062 int node, void *caller)
3064 struct kmem_cache *s;
3066 if (unlikely(size > PAGE_SIZE / 2))
3067 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3069 s = get_slab(size, gfpflags);
3071 if (unlikely(ZERO_OR_NULL_PTR(s)))
3074 return slab_alloc(s, gfpflags, node, caller);
3077 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3078 static int validate_slab(struct kmem_cache *s, struct page *page,
3082 void *addr = page_address(page);
3084 if (!check_slab(s, page) ||
3085 !on_freelist(s, page, NULL))
3088 /* Now we know that a valid freelist exists */
3089 bitmap_zero(map, s->objects);
3091 for_each_free_object(p, s, page->freelist) {
3092 set_bit(slab_index(p, s, addr), map);
3093 if (!check_object(s, page, p, 0))
3097 for_each_object(p, s, addr)
3098 if (!test_bit(slab_index(p, s, addr), map))
3099 if (!check_object(s, page, p, 1))
3104 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3107 if (slab_trylock(page)) {
3108 validate_slab(s, page, map);
3111 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3114 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3115 if (!SlabDebug(page))
3116 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3117 "on slab 0x%p\n", s->name, page);
3119 if (SlabDebug(page))
3120 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3121 "slab 0x%p\n", s->name, page);
3125 static int validate_slab_node(struct kmem_cache *s,
3126 struct kmem_cache_node *n, unsigned long *map)
3128 unsigned long count = 0;
3130 unsigned long flags;
3132 spin_lock_irqsave(&n->list_lock, flags);
3134 list_for_each_entry(page, &n->partial, lru) {
3135 validate_slab_slab(s, page, map);
3138 if (count != n->nr_partial)
3139 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3140 "counter=%ld\n", s->name, count, n->nr_partial);
3142 if (!(s->flags & SLAB_STORE_USER))
3145 list_for_each_entry(page, &n->full, lru) {
3146 validate_slab_slab(s, page, map);
3149 if (count != atomic_long_read(&n->nr_slabs))
3150 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3151 "counter=%ld\n", s->name, count,
3152 atomic_long_read(&n->nr_slabs));
3155 spin_unlock_irqrestore(&n->list_lock, flags);
3159 static long validate_slab_cache(struct kmem_cache *s)
3162 unsigned long count = 0;
3163 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3164 sizeof(unsigned long), GFP_KERNEL);
3170 for_each_node_state(node, N_NORMAL_MEMORY) {
3171 struct kmem_cache_node *n = get_node(s, node);
3173 count += validate_slab_node(s, n, map);
3179 #ifdef SLUB_RESILIENCY_TEST
3180 static void resiliency_test(void)
3184 printk(KERN_ERR "SLUB resiliency testing\n");
3185 printk(KERN_ERR "-----------------------\n");
3186 printk(KERN_ERR "A. Corruption after allocation\n");
3188 p = kzalloc(16, GFP_KERNEL);
3190 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3191 " 0x12->0x%p\n\n", p + 16);
3193 validate_slab_cache(kmalloc_caches + 4);
3195 /* Hmmm... The next two are dangerous */
3196 p = kzalloc(32, GFP_KERNEL);
3197 p[32 + sizeof(void *)] = 0x34;
3198 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3199 " 0x34 -> -0x%p\n", p);
3200 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3202 validate_slab_cache(kmalloc_caches + 5);
3203 p = kzalloc(64, GFP_KERNEL);
3204 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3206 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3208 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3209 validate_slab_cache(kmalloc_caches + 6);
3211 printk(KERN_ERR "\nB. Corruption after free\n");
3212 p = kzalloc(128, GFP_KERNEL);
3215 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3216 validate_slab_cache(kmalloc_caches + 7);
3218 p = kzalloc(256, GFP_KERNEL);
3221 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
3222 validate_slab_cache(kmalloc_caches + 8);
3224 p = kzalloc(512, GFP_KERNEL);
3227 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3228 validate_slab_cache(kmalloc_caches + 9);
3231 static void resiliency_test(void) {};
3235 * Generate lists of code addresses where slabcache objects are allocated
3240 unsigned long count;
3253 unsigned long count;
3254 struct location *loc;
3257 static void free_loc_track(struct loc_track *t)
3260 free_pages((unsigned long)t->loc,
3261 get_order(sizeof(struct location) * t->max));
3264 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3269 order = get_order(sizeof(struct location) * max);
3271 l = (void *)__get_free_pages(flags, order);
3276 memcpy(l, t->loc, sizeof(struct location) * t->count);
3284 static int add_location(struct loc_track *t, struct kmem_cache *s,
3285 const struct track *track)
3287 long start, end, pos;
3290 unsigned long age = jiffies - track->when;
3296 pos = start + (end - start + 1) / 2;
3299 * There is nothing at "end". If we end up there
3300 * we need to add something to before end.
3305 caddr = t->loc[pos].addr;
3306 if (track->addr == caddr) {
3312 if (age < l->min_time)
3314 if (age > l->max_time)
3317 if (track->pid < l->min_pid)
3318 l->min_pid = track->pid;
3319 if (track->pid > l->max_pid)
3320 l->max_pid = track->pid;
3322 cpu_set(track->cpu, l->cpus);
3324 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3328 if (track->addr < caddr)
3335 * Not found. Insert new tracking element.
3337 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3343 (t->count - pos) * sizeof(struct location));
3346 l->addr = track->addr;
3350 l->min_pid = track->pid;
3351 l->max_pid = track->pid;
3352 cpus_clear(l->cpus);
3353 cpu_set(track->cpu, l->cpus);
3354 nodes_clear(l->nodes);
3355 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3359 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3360 struct page *page, enum track_item alloc)
3362 void *addr = page_address(page);
3363 DECLARE_BITMAP(map, s->objects);
3366 bitmap_zero(map, s->objects);
3367 for_each_free_object(p, s, page->freelist)
3368 set_bit(slab_index(p, s, addr), map);
3370 for_each_object(p, s, addr)
3371 if (!test_bit(slab_index(p, s, addr), map))
3372 add_location(t, s, get_track(s, p, alloc));
3375 static int list_locations(struct kmem_cache *s, char *buf,
3376 enum track_item alloc)
3380 struct loc_track t = { 0, 0, NULL };
3383 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3385 return sprintf(buf, "Out of memory\n");
3387 /* Push back cpu slabs */
3390 for_each_node_state(node, N_NORMAL_MEMORY) {
3391 struct kmem_cache_node *n = get_node(s, node);
3392 unsigned long flags;
3395 if (!atomic_long_read(&n->nr_slabs))
3398 spin_lock_irqsave(&n->list_lock, flags);
3399 list_for_each_entry(page, &n->partial, lru)
3400 process_slab(&t, s, page, alloc);
3401 list_for_each_entry(page, &n->full, lru)
3402 process_slab(&t, s, page, alloc);
3403 spin_unlock_irqrestore(&n->list_lock, flags);
3406 for (i = 0; i < t.count; i++) {
3407 struct location *l = &t.loc[i];
3409 if (n > PAGE_SIZE - 100)
3411 n += sprintf(buf + n, "%7ld ", l->count);
3414 n += sprint_symbol(buf + n, (unsigned long)l->addr);
3416 n += sprintf(buf + n, "<not-available>");
3418 if (l->sum_time != l->min_time) {
3419 unsigned long remainder;
3421 n += sprintf(buf + n, " age=%ld/%ld/%ld",
3423 div_long_long_rem(l->sum_time, l->count, &remainder),
3426 n += sprintf(buf + n, " age=%ld",
3429 if (l->min_pid != l->max_pid)
3430 n += sprintf(buf + n, " pid=%ld-%ld",
3431 l->min_pid, l->max_pid);
3433 n += sprintf(buf + n, " pid=%ld",
3436 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3437 n < PAGE_SIZE - 60) {
3438 n += sprintf(buf + n, " cpus=");
3439 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3443 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3444 n < PAGE_SIZE - 60) {
3445 n += sprintf(buf + n, " nodes=");
3446 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3450 n += sprintf(buf + n, "\n");
3455 n += sprintf(buf, "No data\n");
3459 static unsigned long count_partial(struct kmem_cache_node *n)
3461 unsigned long flags;
3462 unsigned long x = 0;
3465 spin_lock_irqsave(&n->list_lock, flags);
3466 list_for_each_entry(page, &n->partial, lru)
3468 spin_unlock_irqrestore(&n->list_lock, flags);
3472 enum slab_stat_type {
3479 #define SO_FULL (1 << SL_FULL)
3480 #define SO_PARTIAL (1 << SL_PARTIAL)
3481 #define SO_CPU (1 << SL_CPU)
3482 #define SO_OBJECTS (1 << SL_OBJECTS)
3484 static unsigned long slab_objects(struct kmem_cache *s,
3485 char *buf, unsigned long flags)
3487 unsigned long total = 0;
3491 unsigned long *nodes;
3492 unsigned long *per_cpu;
3494 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3495 per_cpu = nodes + nr_node_ids;
3497 for_each_possible_cpu(cpu) {
3500 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3510 if (flags & SO_CPU) {
3513 if (flags & SO_OBJECTS)
3524 for_each_node_state(node, N_NORMAL_MEMORY) {
3525 struct kmem_cache_node *n = get_node(s, node);
3527 if (flags & SO_PARTIAL) {
3528 if (flags & SO_OBJECTS)
3529 x = count_partial(n);
3536 if (flags & SO_FULL) {
3537 int full_slabs = atomic_long_read(&n->nr_slabs)
3541 if (flags & SO_OBJECTS)
3542 x = full_slabs * s->objects;
3550 x = sprintf(buf, "%lu", total);
3552 for_each_node_state(node, N_NORMAL_MEMORY)
3554 x += sprintf(buf + x, " N%d=%lu",
3558 return x + sprintf(buf + x, "\n");
3561 static int any_slab_objects(struct kmem_cache *s)
3566 for_each_possible_cpu(cpu) {
3567 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3573 for_each_online_node(node) {
3574 struct kmem_cache_node *n = get_node(s, node);
3579 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3585 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3586 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3588 struct slab_attribute {
3589 struct attribute attr;
3590 ssize_t (*show)(struct kmem_cache *s, char *buf);
3591 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3594 #define SLAB_ATTR_RO(_name) \
3595 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3597 #define SLAB_ATTR(_name) \
3598 static struct slab_attribute _name##_attr = \
3599 __ATTR(_name, 0644, _name##_show, _name##_store)
3601 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3603 return sprintf(buf, "%d\n", s->size);
3605 SLAB_ATTR_RO(slab_size);
3607 static ssize_t align_show(struct kmem_cache *s, char *buf)
3609 return sprintf(buf, "%d\n", s->align);
3611 SLAB_ATTR_RO(align);
3613 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3615 return sprintf(buf, "%d\n", s->objsize);
3617 SLAB_ATTR_RO(object_size);
3619 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3621 return sprintf(buf, "%d\n", s->objects);
3623 SLAB_ATTR_RO(objs_per_slab);
3625 static ssize_t order_show(struct kmem_cache *s, char *buf)
3627 return sprintf(buf, "%d\n", s->order);
3629 SLAB_ATTR_RO(order);
3631 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3634 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3636 return n + sprintf(buf + n, "\n");
3642 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3644 return sprintf(buf, "%d\n", s->refcount - 1);
3646 SLAB_ATTR_RO(aliases);
3648 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3650 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3652 SLAB_ATTR_RO(slabs);
3654 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3656 return slab_objects(s, buf, SO_PARTIAL);
3658 SLAB_ATTR_RO(partial);
3660 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3662 return slab_objects(s, buf, SO_CPU);
3664 SLAB_ATTR_RO(cpu_slabs);
3666 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3668 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3670 SLAB_ATTR_RO(objects);
3672 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3674 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3677 static ssize_t sanity_checks_store(struct kmem_cache *s,
3678 const char *buf, size_t length)
3680 s->flags &= ~SLAB_DEBUG_FREE;
3682 s->flags |= SLAB_DEBUG_FREE;
3685 SLAB_ATTR(sanity_checks);
3687 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3689 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3692 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3695 s->flags &= ~SLAB_TRACE;
3697 s->flags |= SLAB_TRACE;
3702 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3704 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3707 static ssize_t reclaim_account_store(struct kmem_cache *s,
3708 const char *buf, size_t length)
3710 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3712 s->flags |= SLAB_RECLAIM_ACCOUNT;
3715 SLAB_ATTR(reclaim_account);
3717 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3719 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3721 SLAB_ATTR_RO(hwcache_align);
3723 #ifdef CONFIG_ZONE_DMA
3724 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3726 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3728 SLAB_ATTR_RO(cache_dma);
3731 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3733 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3735 SLAB_ATTR_RO(destroy_by_rcu);
3737 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3739 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3742 static ssize_t red_zone_store(struct kmem_cache *s,
3743 const char *buf, size_t length)
3745 if (any_slab_objects(s))
3748 s->flags &= ~SLAB_RED_ZONE;
3750 s->flags |= SLAB_RED_ZONE;
3754 SLAB_ATTR(red_zone);
3756 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3758 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3761 static ssize_t poison_store(struct kmem_cache *s,
3762 const char *buf, size_t length)
3764 if (any_slab_objects(s))
3767 s->flags &= ~SLAB_POISON;
3769 s->flags |= SLAB_POISON;
3775 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3777 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3780 static ssize_t store_user_store(struct kmem_cache *s,
3781 const char *buf, size_t length)
3783 if (any_slab_objects(s))
3786 s->flags &= ~SLAB_STORE_USER;
3788 s->flags |= SLAB_STORE_USER;
3792 SLAB_ATTR(store_user);
3794 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3799 static ssize_t validate_store(struct kmem_cache *s,
3800 const char *buf, size_t length)
3804 if (buf[0] == '1') {
3805 ret = validate_slab_cache(s);
3811 SLAB_ATTR(validate);
3813 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3818 static ssize_t shrink_store(struct kmem_cache *s,
3819 const char *buf, size_t length)
3821 if (buf[0] == '1') {
3822 int rc = kmem_cache_shrink(s);
3832 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3834 if (!(s->flags & SLAB_STORE_USER))
3836 return list_locations(s, buf, TRACK_ALLOC);
3838 SLAB_ATTR_RO(alloc_calls);
3840 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3842 if (!(s->flags & SLAB_STORE_USER))
3844 return list_locations(s, buf, TRACK_FREE);
3846 SLAB_ATTR_RO(free_calls);
3849 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3851 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3854 static ssize_t defrag_ratio_store(struct kmem_cache *s,
3855 const char *buf, size_t length)
3857 int n = simple_strtoul(buf, NULL, 10);
3860 s->defrag_ratio = n * 10;
3863 SLAB_ATTR(defrag_ratio);
3866 static struct attribute * slab_attrs[] = {
3867 &slab_size_attr.attr,
3868 &object_size_attr.attr,
3869 &objs_per_slab_attr.attr,
3874 &cpu_slabs_attr.attr,
3878 &sanity_checks_attr.attr,
3880 &hwcache_align_attr.attr,
3881 &reclaim_account_attr.attr,
3882 &destroy_by_rcu_attr.attr,
3883 &red_zone_attr.attr,
3885 &store_user_attr.attr,
3886 &validate_attr.attr,
3888 &alloc_calls_attr.attr,
3889 &free_calls_attr.attr,
3890 #ifdef CONFIG_ZONE_DMA
3891 &cache_dma_attr.attr,
3894 &defrag_ratio_attr.attr,
3899 static struct attribute_group slab_attr_group = {
3900 .attrs = slab_attrs,
3903 static ssize_t slab_attr_show(struct kobject *kobj,
3904 struct attribute *attr,
3907 struct slab_attribute *attribute;
3908 struct kmem_cache *s;
3911 attribute = to_slab_attr(attr);
3914 if (!attribute->show)
3917 err = attribute->show(s, buf);
3922 static ssize_t slab_attr_store(struct kobject *kobj,
3923 struct attribute *attr,
3924 const char *buf, size_t len)
3926 struct slab_attribute *attribute;
3927 struct kmem_cache *s;
3930 attribute = to_slab_attr(attr);
3933 if (!attribute->store)
3936 err = attribute->store(s, buf, len);
3941 static struct sysfs_ops slab_sysfs_ops = {
3942 .show = slab_attr_show,
3943 .store = slab_attr_store,
3946 static struct kobj_type slab_ktype = {
3947 .sysfs_ops = &slab_sysfs_ops,
3950 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3952 struct kobj_type *ktype = get_ktype(kobj);
3954 if (ktype == &slab_ktype)
3959 static struct kset_uevent_ops slab_uevent_ops = {
3960 .filter = uevent_filter,
3963 static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3965 #define ID_STR_LENGTH 64
3967 /* Create a unique string id for a slab cache:
3969 * :[flags-]size:[memory address of kmemcache]
3971 static char *create_unique_id(struct kmem_cache *s)
3973 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3980 * First flags affecting slabcache operations. We will only
3981 * get here for aliasable slabs so we do not need to support
3982 * too many flags. The flags here must cover all flags that
3983 * are matched during merging to guarantee that the id is
3986 if (s->flags & SLAB_CACHE_DMA)
3988 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3990 if (s->flags & SLAB_DEBUG_FREE)
3994 p += sprintf(p, "%07d", s->size);
3995 BUG_ON(p > name + ID_STR_LENGTH - 1);
3999 static int sysfs_slab_add(struct kmem_cache *s)
4005 if (slab_state < SYSFS)
4006 /* Defer until later */
4009 unmergeable = slab_unmergeable(s);
4012 * Slabcache can never be merged so we can use the name proper.
4013 * This is typically the case for debug situations. In that
4014 * case we can catch duplicate names easily.
4016 sysfs_remove_link(&slab_subsys.kobj, s->name);
4020 * Create a unique name for the slab as a target
4023 name = create_unique_id(s);
4026 kobj_set_kset_s(s, slab_subsys);
4027 kobject_set_name(&s->kobj, name);
4028 kobject_init(&s->kobj);
4029 err = kobject_add(&s->kobj);
4033 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4036 kobject_uevent(&s->kobj, KOBJ_ADD);
4038 /* Setup first alias */
4039 sysfs_slab_alias(s, s->name);
4045 static void sysfs_slab_remove(struct kmem_cache *s)
4047 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4048 kobject_del(&s->kobj);
4052 * Need to buffer aliases during bootup until sysfs becomes
4053 * available lest we loose that information.
4055 struct saved_alias {
4056 struct kmem_cache *s;
4058 struct saved_alias *next;
4061 static struct saved_alias *alias_list;
4063 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4065 struct saved_alias *al;
4067 if (slab_state == SYSFS) {
4069 * If we have a leftover link then remove it.
4071 sysfs_remove_link(&slab_subsys.kobj, name);
4072 return sysfs_create_link(&slab_subsys.kobj,
4076 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4082 al->next = alias_list;
4087 static int __init slab_sysfs_init(void)
4089 struct kmem_cache *s;
4092 err = subsystem_register(&slab_subsys);
4094 printk(KERN_ERR "Cannot register slab subsystem.\n");
4100 list_for_each_entry(s, &slab_caches, list) {
4101 err = sysfs_slab_add(s);
4103 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4104 " to sysfs\n", s->name);
4107 while (alias_list) {
4108 struct saved_alias *al = alias_list;
4110 alias_list = alias_list->next;
4111 err = sysfs_slab_alias(al->s, al->name);
4113 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4114 " %s to sysfs\n", s->name);
4122 __initcall(slab_sysfs_init);