[PATCH] KVM: Replace __x86_64__ with CONFIG_X86_64
[linux-2.6] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/pci.h>
26 #include <linux/scatterlist.h>
27
28 #include "sas_internal.h"
29
30 #include <scsi/scsi_transport.h>
31 #include <scsi/scsi_transport_sas.h>
32 #include "../scsi_sas_internal.h"
33
34 static int sas_discover_expander(struct domain_device *dev);
35 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
36 static int sas_configure_phy(struct domain_device *dev, int phy_id,
37                              u8 *sas_addr, int include);
38 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
39
40 #if 0
41 /* FIXME: smp needs to migrate into the sas class */
42 static ssize_t smp_portal_read(struct kobject *, char *, loff_t, size_t);
43 static ssize_t smp_portal_write(struct kobject *, char *, loff_t, size_t);
44 #endif
45
46 /* ---------- SMP task management ---------- */
47
48 static void smp_task_timedout(unsigned long _task)
49 {
50         struct sas_task *task = (void *) _task;
51         unsigned long flags;
52
53         spin_lock_irqsave(&task->task_state_lock, flags);
54         if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
55                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
56         spin_unlock_irqrestore(&task->task_state_lock, flags);
57
58         complete(&task->completion);
59 }
60
61 static void smp_task_done(struct sas_task *task)
62 {
63         if (!del_timer(&task->timer))
64                 return;
65         complete(&task->completion);
66 }
67
68 /* Give it some long enough timeout. In seconds. */
69 #define SMP_TIMEOUT 10
70
71 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
72                             void *resp, int resp_size)
73 {
74         int res, retry;
75         struct sas_task *task = NULL;
76         struct sas_internal *i =
77                 to_sas_internal(dev->port->ha->core.shost->transportt);
78
79         for (retry = 0; retry < 3; retry++) {
80                 task = sas_alloc_task(GFP_KERNEL);
81                 if (!task)
82                         return -ENOMEM;
83
84                 task->dev = dev;
85                 task->task_proto = dev->tproto;
86                 sg_init_one(&task->smp_task.smp_req, req, req_size);
87                 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
88
89                 task->task_done = smp_task_done;
90
91                 task->timer.data = (unsigned long) task;
92                 task->timer.function = smp_task_timedout;
93                 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
94                 add_timer(&task->timer);
95
96                 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
97
98                 if (res) {
99                         del_timer(&task->timer);
100                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
101                         goto ex_err;
102                 }
103
104                 wait_for_completion(&task->completion);
105                 res = -ETASK;
106                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
107                         SAS_DPRINTK("smp task timed out or aborted\n");
108                         i->dft->lldd_abort_task(task);
109                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
110                                 SAS_DPRINTK("SMP task aborted and not done\n");
111                                 goto ex_err;
112                         }
113                 }
114                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
115                     task->task_status.stat == SAM_GOOD) {
116                         res = 0;
117                         break;
118                 } else {
119                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
120                                     "status 0x%x\n", __FUNCTION__,
121                                     SAS_ADDR(dev->sas_addr),
122                                     task->task_status.resp,
123                                     task->task_status.stat);
124                         sas_free_task(task);
125                         task = NULL;
126                 }
127         }
128 ex_err:
129         BUG_ON(retry == 3 && task != NULL);
130         if (task != NULL) {
131                 sas_free_task(task);
132         }
133         return res;
134 }
135
136 /* ---------- Allocations ---------- */
137
138 static inline void *alloc_smp_req(int size)
139 {
140         u8 *p = kzalloc(size, GFP_KERNEL);
141         if (p)
142                 p[0] = SMP_REQUEST;
143         return p;
144 }
145
146 static inline void *alloc_smp_resp(int size)
147 {
148         return kzalloc(size, GFP_KERNEL);
149 }
150
151 /* ---------- Expander configuration ---------- */
152
153 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
154                            void *disc_resp)
155 {
156         struct expander_device *ex = &dev->ex_dev;
157         struct ex_phy *phy = &ex->ex_phy[phy_id];
158         struct smp_resp *resp = disc_resp;
159         struct discover_resp *dr = &resp->disc;
160         struct sas_rphy *rphy = dev->rphy;
161         int rediscover = (phy->phy != NULL);
162
163         if (!rediscover) {
164                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
165
166                 /* FIXME: error_handling */
167                 BUG_ON(!phy->phy);
168         }
169
170         switch (resp->result) {
171         case SMP_RESP_PHY_VACANT:
172                 phy->phy_state = PHY_VACANT;
173                 return;
174         default:
175                 phy->phy_state = PHY_NOT_PRESENT;
176                 return;
177         case SMP_RESP_FUNC_ACC:
178                 phy->phy_state = PHY_EMPTY; /* do not know yet */
179                 break;
180         }
181
182         phy->phy_id = phy_id;
183         phy->attached_dev_type = dr->attached_dev_type;
184         phy->linkrate = dr->linkrate;
185         phy->attached_sata_host = dr->attached_sata_host;
186         phy->attached_sata_dev  = dr->attached_sata_dev;
187         phy->attached_sata_ps   = dr->attached_sata_ps;
188         phy->attached_iproto = dr->iproto << 1;
189         phy->attached_tproto = dr->tproto << 1;
190         memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
191         phy->attached_phy_id = dr->attached_phy_id;
192         phy->phy_change_count = dr->change_count;
193         phy->routing_attr = dr->routing_attr;
194         phy->virtual = dr->virtual;
195         phy->last_da_index = -1;
196
197         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
198         phy->phy->identify.target_port_protocols = phy->attached_tproto;
199         phy->phy->identify.phy_identifier = phy_id;
200         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
201         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
202         phy->phy->minimum_linkrate = dr->pmin_linkrate;
203         phy->phy->maximum_linkrate = dr->pmax_linkrate;
204         phy->phy->negotiated_linkrate = phy->linkrate;
205
206         if (!rediscover)
207                 sas_phy_add(phy->phy);
208
209         SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
210                     SAS_ADDR(dev->sas_addr), phy->phy_id,
211                     phy->routing_attr == TABLE_ROUTING ? 'T' :
212                     phy->routing_attr == DIRECT_ROUTING ? 'D' :
213                     phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
214                     SAS_ADDR(phy->attached_sas_addr));
215
216         return;
217 }
218
219 #define DISCOVER_REQ_SIZE  16
220 #define DISCOVER_RESP_SIZE 56
221
222 static int sas_ex_phy_discover(struct domain_device *dev, int single)
223 {
224         struct expander_device *ex = &dev->ex_dev;
225         int  res = 0;
226         u8   *disc_req;
227         u8   *disc_resp;
228
229         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
230         if (!disc_req)
231                 return -ENOMEM;
232
233         disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
234         if (!disc_resp) {
235                 kfree(disc_req);
236                 return -ENOMEM;
237         }
238
239         disc_req[1] = SMP_DISCOVER;
240
241         if (0 <= single && single < ex->num_phys) {
242                 disc_req[9] = single;
243                 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
244                                        disc_resp, DISCOVER_RESP_SIZE);
245                 if (res)
246                         goto out_err;
247                 sas_set_ex_phy(dev, single, disc_resp);
248         } else {
249                 int i;
250
251                 for (i = 0; i < ex->num_phys; i++) {
252                         disc_req[9] = i;
253                         res = smp_execute_task(dev, disc_req,
254                                                DISCOVER_REQ_SIZE, disc_resp,
255                                                DISCOVER_RESP_SIZE);
256                         if (res)
257                                 goto out_err;
258                         sas_set_ex_phy(dev, i, disc_resp);
259                 }
260         }
261 out_err:
262         kfree(disc_resp);
263         kfree(disc_req);
264         return res;
265 }
266
267 static int sas_expander_discover(struct domain_device *dev)
268 {
269         struct expander_device *ex = &dev->ex_dev;
270         int res = -ENOMEM;
271
272         ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
273         if (!ex->ex_phy)
274                 return -ENOMEM;
275
276         res = sas_ex_phy_discover(dev, -1);
277         if (res)
278                 goto out_err;
279
280         return 0;
281  out_err:
282         kfree(ex->ex_phy);
283         ex->ex_phy = NULL;
284         return res;
285 }
286
287 #define MAX_EXPANDER_PHYS 128
288
289 static void ex_assign_report_general(struct domain_device *dev,
290                                             struct smp_resp *resp)
291 {
292         struct report_general_resp *rg = &resp->rg;
293
294         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
295         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
296         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
297         dev->ex_dev.conf_route_table = rg->conf_route_table;
298         dev->ex_dev.configuring = rg->configuring;
299         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
300 }
301
302 #define RG_REQ_SIZE   8
303 #define RG_RESP_SIZE 32
304
305 static int sas_ex_general(struct domain_device *dev)
306 {
307         u8 *rg_req;
308         struct smp_resp *rg_resp;
309         int res;
310         int i;
311
312         rg_req = alloc_smp_req(RG_REQ_SIZE);
313         if (!rg_req)
314                 return -ENOMEM;
315
316         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
317         if (!rg_resp) {
318                 kfree(rg_req);
319                 return -ENOMEM;
320         }
321
322         rg_req[1] = SMP_REPORT_GENERAL;
323
324         for (i = 0; i < 5; i++) {
325                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
326                                        RG_RESP_SIZE);
327
328                 if (res) {
329                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
330                                     SAS_ADDR(dev->sas_addr), res);
331                         goto out;
332                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
333                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
334                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
335                         res = rg_resp->result;
336                         goto out;
337                 }
338
339                 ex_assign_report_general(dev, rg_resp);
340
341                 if (dev->ex_dev.configuring) {
342                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
343                                     SAS_ADDR(dev->sas_addr));
344                         schedule_timeout_interruptible(5*HZ);
345                 } else
346                         break;
347         }
348 out:
349         kfree(rg_req);
350         kfree(rg_resp);
351         return res;
352 }
353
354 static void ex_assign_manuf_info(struct domain_device *dev, void
355                                         *_mi_resp)
356 {
357         u8 *mi_resp = _mi_resp;
358         struct sas_rphy *rphy = dev->rphy;
359         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
360
361         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
362         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
363         memcpy(edev->product_rev, mi_resp + 36,
364                SAS_EXPANDER_PRODUCT_REV_LEN);
365
366         if (mi_resp[8] & 1) {
367                 memcpy(edev->component_vendor_id, mi_resp + 40,
368                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
369                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
370                 edev->component_revision_id = mi_resp[50];
371         }
372 }
373
374 #define MI_REQ_SIZE   8
375 #define MI_RESP_SIZE 64
376
377 static int sas_ex_manuf_info(struct domain_device *dev)
378 {
379         u8 *mi_req;
380         u8 *mi_resp;
381         int res;
382
383         mi_req = alloc_smp_req(MI_REQ_SIZE);
384         if (!mi_req)
385                 return -ENOMEM;
386
387         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
388         if (!mi_resp) {
389                 kfree(mi_req);
390                 return -ENOMEM;
391         }
392
393         mi_req[1] = SMP_REPORT_MANUF_INFO;
394
395         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
396         if (res) {
397                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
398                             SAS_ADDR(dev->sas_addr), res);
399                 goto out;
400         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
401                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
402                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
403                 goto out;
404         }
405
406         ex_assign_manuf_info(dev, mi_resp);
407 out:
408         kfree(mi_req);
409         kfree(mi_resp);
410         return res;
411 }
412
413 #define PC_REQ_SIZE  44
414 #define PC_RESP_SIZE 8
415
416 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
417                         enum phy_func phy_func,
418                         struct sas_phy_linkrates *rates)
419 {
420         u8 *pc_req;
421         u8 *pc_resp;
422         int res;
423
424         pc_req = alloc_smp_req(PC_REQ_SIZE);
425         if (!pc_req)
426                 return -ENOMEM;
427
428         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
429         if (!pc_resp) {
430                 kfree(pc_req);
431                 return -ENOMEM;
432         }
433
434         pc_req[1] = SMP_PHY_CONTROL;
435         pc_req[9] = phy_id;
436         pc_req[10]= phy_func;
437         if (rates) {
438                 pc_req[32] = rates->minimum_linkrate << 4;
439                 pc_req[33] = rates->maximum_linkrate << 4;
440         }
441
442         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
443
444         kfree(pc_resp);
445         kfree(pc_req);
446         return res;
447 }
448
449 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
450 {
451         struct expander_device *ex = &dev->ex_dev;
452         struct ex_phy *phy = &ex->ex_phy[phy_id];
453
454         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
455         phy->linkrate = SAS_PHY_DISABLED;
456 }
457
458 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
459 {
460         struct expander_device *ex = &dev->ex_dev;
461         int i;
462
463         for (i = 0; i < ex->num_phys; i++) {
464                 struct ex_phy *phy = &ex->ex_phy[i];
465
466                 if (phy->phy_state == PHY_VACANT ||
467                     phy->phy_state == PHY_NOT_PRESENT)
468                         continue;
469
470                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
471                         sas_ex_disable_phy(dev, i);
472         }
473 }
474
475 static int sas_dev_present_in_domain(struct asd_sas_port *port,
476                                             u8 *sas_addr)
477 {
478         struct domain_device *dev;
479
480         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
481                 return 1;
482         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
483                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
484                         return 1;
485         }
486         return 0;
487 }
488
489 #define RPEL_REQ_SIZE   16
490 #define RPEL_RESP_SIZE  32
491 int sas_smp_get_phy_events(struct sas_phy *phy)
492 {
493         int res;
494         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
495         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
496         u8 *req = alloc_smp_req(RPEL_REQ_SIZE);
497         u8 *resp = kzalloc(RPEL_RESP_SIZE, GFP_KERNEL);
498
499         if (!resp)
500                 return -ENOMEM;
501
502         req[1] = SMP_REPORT_PHY_ERR_LOG;
503         req[9] = phy->number;
504
505         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
506                                     resp, RPEL_RESP_SIZE);
507
508         if (!res)
509                 goto out;
510
511         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
512         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
513         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
514         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
515
516  out:
517         kfree(resp);
518         return res;
519
520 }
521
522 #define RPS_REQ_SIZE  16
523 #define RPS_RESP_SIZE 60
524
525 static int sas_get_report_phy_sata(struct domain_device *dev,
526                                           int phy_id,
527                                           struct smp_resp *rps_resp)
528 {
529         int res;
530         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
531
532         if (!rps_req)
533                 return -ENOMEM;
534
535         rps_req[1] = SMP_REPORT_PHY_SATA;
536         rps_req[9] = phy_id;
537
538         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
539                                     rps_resp, RPS_RESP_SIZE);
540
541         kfree(rps_req);
542         return 0;
543 }
544
545 static void sas_ex_get_linkrate(struct domain_device *parent,
546                                        struct domain_device *child,
547                                        struct ex_phy *parent_phy)
548 {
549         struct expander_device *parent_ex = &parent->ex_dev;
550         struct sas_port *port;
551         int i;
552
553         child->pathways = 0;
554
555         port = parent_phy->port;
556
557         for (i = 0; i < parent_ex->num_phys; i++) {
558                 struct ex_phy *phy = &parent_ex->ex_phy[i];
559
560                 if (phy->phy_state == PHY_VACANT ||
561                     phy->phy_state == PHY_NOT_PRESENT)
562                         continue;
563
564                 if (SAS_ADDR(phy->attached_sas_addr) ==
565                     SAS_ADDR(child->sas_addr)) {
566
567                         child->min_linkrate = min(parent->min_linkrate,
568                                                   phy->linkrate);
569                         child->max_linkrate = max(parent->max_linkrate,
570                                                   phy->linkrate);
571                         child->pathways++;
572                         sas_port_add_phy(port, phy->phy);
573                 }
574         }
575         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
576         child->pathways = min(child->pathways, parent->pathways);
577 }
578
579 static struct domain_device *sas_ex_discover_end_dev(
580         struct domain_device *parent, int phy_id)
581 {
582         struct expander_device *parent_ex = &parent->ex_dev;
583         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
584         struct domain_device *child = NULL;
585         struct sas_rphy *rphy;
586         int res;
587
588         if (phy->attached_sata_host || phy->attached_sata_ps)
589                 return NULL;
590
591         child = kzalloc(sizeof(*child), GFP_KERNEL);
592         if (!child)
593                 return NULL;
594
595         child->parent = parent;
596         child->port   = parent->port;
597         child->iproto = phy->attached_iproto;
598         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
599         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
600         if (!phy->port) {
601                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
602                 if (unlikely(!phy->port))
603                         goto out_err;
604                 if (unlikely(sas_port_add(phy->port) != 0)) {
605                         sas_port_free(phy->port);
606                         goto out_err;
607                 }
608         }
609         sas_ex_get_linkrate(parent, child, phy);
610
611         if ((phy->attached_tproto & SAS_PROTO_STP) || phy->attached_sata_dev) {
612                 child->dev_type = SATA_DEV;
613                 if (phy->attached_tproto & SAS_PROTO_STP)
614                         child->tproto = phy->attached_tproto;
615                 if (phy->attached_sata_dev)
616                         child->tproto |= SATA_DEV;
617                 res = sas_get_report_phy_sata(parent, phy_id,
618                                               &child->sata_dev.rps_resp);
619                 if (res) {
620                         SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
621                                     "0x%x\n", SAS_ADDR(parent->sas_addr),
622                                     phy_id, res);
623                         goto out_free;
624                 }
625                 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
626                        sizeof(struct dev_to_host_fis));
627                 sas_init_dev(child);
628                 res = sas_discover_sata(child);
629                 if (res) {
630                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
631                                     "%016llx:0x%x returned 0x%x\n",
632                                     SAS_ADDR(child->sas_addr),
633                                     SAS_ADDR(parent->sas_addr), phy_id, res);
634                         goto out_free;
635                 }
636         } else if (phy->attached_tproto & SAS_PROTO_SSP) {
637                 child->dev_type = SAS_END_DEV;
638                 rphy = sas_end_device_alloc(phy->port);
639                 /* FIXME: error handling */
640                 if (unlikely(!rphy))
641                         goto out_free;
642                 child->tproto = phy->attached_tproto;
643                 sas_init_dev(child);
644
645                 child->rphy = rphy;
646                 sas_fill_in_rphy(child, rphy);
647
648                 spin_lock(&parent->port->dev_list_lock);
649                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
650                 spin_unlock(&parent->port->dev_list_lock);
651
652                 res = sas_discover_end_dev(child);
653                 if (res) {
654                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
655                                     "at %016llx:0x%x returned 0x%x\n",
656                                     SAS_ADDR(child->sas_addr),
657                                     SAS_ADDR(parent->sas_addr), phy_id, res);
658                         goto out_list_del;
659                 }
660         } else {
661                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
662                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
663                             phy_id);
664         }
665
666         list_add_tail(&child->siblings, &parent_ex->children);
667         return child;
668
669  out_list_del:
670         list_del(&child->dev_list_node);
671         sas_rphy_free(rphy);
672  out_free:
673         sas_port_delete(phy->port);
674  out_err:
675         phy->port = NULL;
676         kfree(child);
677         return NULL;
678 }
679
680 static struct domain_device *sas_ex_discover_expander(
681         struct domain_device *parent, int phy_id)
682 {
683         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
684         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
685         struct domain_device *child = NULL;
686         struct sas_rphy *rphy;
687         struct sas_expander_device *edev;
688         struct asd_sas_port *port;
689         int res;
690
691         if (phy->routing_attr == DIRECT_ROUTING) {
692                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
693                             "allowed\n",
694                             SAS_ADDR(parent->sas_addr), phy_id,
695                             SAS_ADDR(phy->attached_sas_addr),
696                             phy->attached_phy_id);
697                 return NULL;
698         }
699         child = kzalloc(sizeof(*child), GFP_KERNEL);
700         if (!child)
701                 return NULL;
702
703         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
704         /* FIXME: better error handling */
705         BUG_ON(sas_port_add(phy->port) != 0);
706
707
708         switch (phy->attached_dev_type) {
709         case EDGE_DEV:
710                 rphy = sas_expander_alloc(phy->port,
711                                           SAS_EDGE_EXPANDER_DEVICE);
712                 break;
713         case FANOUT_DEV:
714                 rphy = sas_expander_alloc(phy->port,
715                                           SAS_FANOUT_EXPANDER_DEVICE);
716                 break;
717         default:
718                 rphy = NULL;    /* shut gcc up */
719                 BUG();
720         }
721         port = parent->port;
722         child->rphy = rphy;
723         edev = rphy_to_expander_device(rphy);
724         child->dev_type = phy->attached_dev_type;
725         child->parent = parent;
726         child->port = port;
727         child->iproto = phy->attached_iproto;
728         child->tproto = phy->attached_tproto;
729         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
730         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
731         sas_ex_get_linkrate(parent, child, phy);
732         edev->level = parent_ex->level + 1;
733         parent->port->disc.max_level = max(parent->port->disc.max_level,
734                                            edev->level);
735         sas_init_dev(child);
736         sas_fill_in_rphy(child, rphy);
737         sas_rphy_add(rphy);
738
739         spin_lock(&parent->port->dev_list_lock);
740         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
741         spin_unlock(&parent->port->dev_list_lock);
742
743         res = sas_discover_expander(child);
744         if (res) {
745                 kfree(child);
746                 return NULL;
747         }
748         list_add_tail(&child->siblings, &parent->ex_dev.children);
749         return child;
750 }
751
752 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
753 {
754         struct expander_device *ex = &dev->ex_dev;
755         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
756         struct domain_device *child = NULL;
757         int res = 0;
758
759         /* Phy state */
760         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
761                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
762                         res = sas_ex_phy_discover(dev, phy_id);
763                 if (res)
764                         return res;
765         }
766
767         /* Parent and domain coherency */
768         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
769                              SAS_ADDR(dev->port->sas_addr))) {
770                 sas_add_parent_port(dev, phy_id);
771                 return 0;
772         }
773         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
774                             SAS_ADDR(dev->parent->sas_addr))) {
775                 sas_add_parent_port(dev, phy_id);
776                 if (ex_phy->routing_attr == TABLE_ROUTING)
777                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
778                 return 0;
779         }
780
781         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
782                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
783
784         if (ex_phy->attached_dev_type == NO_DEVICE) {
785                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
786                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
787                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
788                 }
789                 return 0;
790         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
791                 return 0;
792
793         if (ex_phy->attached_dev_type != SAS_END_DEV &&
794             ex_phy->attached_dev_type != FANOUT_DEV &&
795             ex_phy->attached_dev_type != EDGE_DEV) {
796                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
797                             "phy 0x%x\n", ex_phy->attached_dev_type,
798                             SAS_ADDR(dev->sas_addr),
799                             phy_id);
800                 return 0;
801         }
802
803         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
804         if (res) {
805                 SAS_DPRINTK("configure routing for dev %016llx "
806                             "reported 0x%x. Forgotten\n",
807                             SAS_ADDR(ex_phy->attached_sas_addr), res);
808                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
809                 return res;
810         }
811
812         switch (ex_phy->attached_dev_type) {
813         case SAS_END_DEV:
814                 child = sas_ex_discover_end_dev(dev, phy_id);
815                 break;
816         case FANOUT_DEV:
817                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
818                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
819                                     "attached to ex %016llx phy 0x%x\n",
820                                     SAS_ADDR(ex_phy->attached_sas_addr),
821                                     ex_phy->attached_phy_id,
822                                     SAS_ADDR(dev->sas_addr),
823                                     phy_id);
824                         sas_ex_disable_phy(dev, phy_id);
825                         break;
826                 } else
827                         memcpy(dev->port->disc.fanout_sas_addr,
828                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
829                 /* fallthrough */
830         case EDGE_DEV:
831                 child = sas_ex_discover_expander(dev, phy_id);
832                 break;
833         default:
834                 break;
835         }
836
837         if (child) {
838                 int i;
839
840                 for (i = 0; i < ex->num_phys; i++) {
841                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
842                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
843                                 continue;
844
845                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
846                             SAS_ADDR(child->sas_addr))
847                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
848                 }
849         }
850
851         return res;
852 }
853
854 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
855 {
856         struct expander_device *ex = &dev->ex_dev;
857         int i;
858
859         for (i = 0; i < ex->num_phys; i++) {
860                 struct ex_phy *phy = &ex->ex_phy[i];
861
862                 if (phy->phy_state == PHY_VACANT ||
863                     phy->phy_state == PHY_NOT_PRESENT)
864                         continue;
865
866                 if ((phy->attached_dev_type == EDGE_DEV ||
867                      phy->attached_dev_type == FANOUT_DEV) &&
868                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
869
870                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
871
872                         return 1;
873                 }
874         }
875         return 0;
876 }
877
878 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
879 {
880         struct expander_device *ex = &dev->ex_dev;
881         struct domain_device *child;
882         u8 sub_addr[8] = {0, };
883
884         list_for_each_entry(child, &ex->children, siblings) {
885                 if (child->dev_type != EDGE_DEV &&
886                     child->dev_type != FANOUT_DEV)
887                         continue;
888                 if (sub_addr[0] == 0) {
889                         sas_find_sub_addr(child, sub_addr);
890                         continue;
891                 } else {
892                         u8 s2[8];
893
894                         if (sas_find_sub_addr(child, s2) &&
895                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
896
897                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
898                                             "diverges from subtractive "
899                                             "boundary %016llx\n",
900                                             SAS_ADDR(dev->sas_addr),
901                                             SAS_ADDR(child->sas_addr),
902                                             SAS_ADDR(s2),
903                                             SAS_ADDR(sub_addr));
904
905                                 sas_ex_disable_port(child, s2);
906                         }
907                 }
908         }
909         return 0;
910 }
911 /**
912  * sas_ex_discover_devices -- discover devices attached to this expander
913  * dev: pointer to the expander domain device
914  * single: if you want to do a single phy, else set to -1;
915  *
916  * Configure this expander for use with its devices and register the
917  * devices of this expander.
918  */
919 static int sas_ex_discover_devices(struct domain_device *dev, int single)
920 {
921         struct expander_device *ex = &dev->ex_dev;
922         int i = 0, end = ex->num_phys;
923         int res = 0;
924
925         if (0 <= single && single < end) {
926                 i = single;
927                 end = i+1;
928         }
929
930         for ( ; i < end; i++) {
931                 struct ex_phy *ex_phy = &ex->ex_phy[i];
932
933                 if (ex_phy->phy_state == PHY_VACANT ||
934                     ex_phy->phy_state == PHY_NOT_PRESENT ||
935                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
936                         continue;
937
938                 switch (ex_phy->linkrate) {
939                 case SAS_PHY_DISABLED:
940                 case SAS_PHY_RESET_PROBLEM:
941                 case SAS_SATA_PORT_SELECTOR:
942                         continue;
943                 default:
944                         res = sas_ex_discover_dev(dev, i);
945                         if (res)
946                                 break;
947                         continue;
948                 }
949         }
950
951         if (!res)
952                 sas_check_level_subtractive_boundary(dev);
953
954         return res;
955 }
956
957 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
958 {
959         struct expander_device *ex = &dev->ex_dev;
960         int i;
961         u8  *sub_sas_addr = NULL;
962
963         if (dev->dev_type != EDGE_DEV)
964                 return 0;
965
966         for (i = 0; i < ex->num_phys; i++) {
967                 struct ex_phy *phy = &ex->ex_phy[i];
968
969                 if (phy->phy_state == PHY_VACANT ||
970                     phy->phy_state == PHY_NOT_PRESENT)
971                         continue;
972
973                 if ((phy->attached_dev_type == FANOUT_DEV ||
974                      phy->attached_dev_type == EDGE_DEV) &&
975                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
976
977                         if (!sub_sas_addr)
978                                 sub_sas_addr = &phy->attached_sas_addr[0];
979                         else if (SAS_ADDR(sub_sas_addr) !=
980                                  SAS_ADDR(phy->attached_sas_addr)) {
981
982                                 SAS_DPRINTK("ex %016llx phy 0x%x "
983                                             "diverges(%016llx) on subtractive "
984                                             "boundary(%016llx). Disabled\n",
985                                             SAS_ADDR(dev->sas_addr), i,
986                                             SAS_ADDR(phy->attached_sas_addr),
987                                             SAS_ADDR(sub_sas_addr));
988                                 sas_ex_disable_phy(dev, i);
989                         }
990                 }
991         }
992         return 0;
993 }
994
995 static void sas_print_parent_topology_bug(struct domain_device *child,
996                                                  struct ex_phy *parent_phy,
997                                                  struct ex_phy *child_phy)
998 {
999         static const char ra_char[] = {
1000                 [DIRECT_ROUTING] = 'D',
1001                 [SUBTRACTIVE_ROUTING] = 'S',
1002                 [TABLE_ROUTING] = 'T',
1003         };
1004         static const char *ex_type[] = {
1005                 [EDGE_DEV] = "edge",
1006                 [FANOUT_DEV] = "fanout",
1007         };
1008         struct domain_device *parent = child->parent;
1009
1010         sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1011                    "has %c:%c routing link!\n",
1012
1013                    ex_type[parent->dev_type],
1014                    SAS_ADDR(parent->sas_addr),
1015                    parent_phy->phy_id,
1016
1017                    ex_type[child->dev_type],
1018                    SAS_ADDR(child->sas_addr),
1019                    child_phy->phy_id,
1020
1021                    ra_char[parent_phy->routing_attr],
1022                    ra_char[child_phy->routing_attr]);
1023 }
1024
1025 static int sas_check_eeds(struct domain_device *child,
1026                                  struct ex_phy *parent_phy,
1027                                  struct ex_phy *child_phy)
1028 {
1029         int res = 0;
1030         struct domain_device *parent = child->parent;
1031
1032         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1033                 res = -ENODEV;
1034                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1035                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1036                             SAS_ADDR(parent->sas_addr),
1037                             parent_phy->phy_id,
1038                             SAS_ADDR(child->sas_addr),
1039                             child_phy->phy_id,
1040                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1041         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1042                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1043                        SAS_ADDR_SIZE);
1044                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1045                        SAS_ADDR_SIZE);
1046         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1047                     SAS_ADDR(parent->sas_addr)) ||
1048                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1049                     SAS_ADDR(child->sas_addr)))
1050                    &&
1051                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1052                      SAS_ADDR(parent->sas_addr)) ||
1053                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1054                      SAS_ADDR(child->sas_addr))))
1055                 ;
1056         else {
1057                 res = -ENODEV;
1058                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1059                             "phy 0x%x link forms a third EEDS!\n",
1060                             SAS_ADDR(parent->sas_addr),
1061                             parent_phy->phy_id,
1062                             SAS_ADDR(child->sas_addr),
1063                             child_phy->phy_id);
1064         }
1065
1066         return res;
1067 }
1068
1069 /* Here we spill over 80 columns.  It is intentional.
1070  */
1071 static int sas_check_parent_topology(struct domain_device *child)
1072 {
1073         struct expander_device *child_ex = &child->ex_dev;
1074         struct expander_device *parent_ex;
1075         int i;
1076         int res = 0;
1077
1078         if (!child->parent)
1079                 return 0;
1080
1081         if (child->parent->dev_type != EDGE_DEV &&
1082             child->parent->dev_type != FANOUT_DEV)
1083                 return 0;
1084
1085         parent_ex = &child->parent->ex_dev;
1086
1087         for (i = 0; i < parent_ex->num_phys; i++) {
1088                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1089                 struct ex_phy *child_phy;
1090
1091                 if (parent_phy->phy_state == PHY_VACANT ||
1092                     parent_phy->phy_state == PHY_NOT_PRESENT)
1093                         continue;
1094
1095                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1096                         continue;
1097
1098                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1099
1100                 switch (child->parent->dev_type) {
1101                 case EDGE_DEV:
1102                         if (child->dev_type == FANOUT_DEV) {
1103                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1104                                     child_phy->routing_attr != TABLE_ROUTING) {
1105                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1106                                         res = -ENODEV;
1107                                 }
1108                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1109                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1110                                         res = sas_check_eeds(child, parent_phy, child_phy);
1111                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1112                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1113                                         res = -ENODEV;
1114                                 }
1115                         } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1116                                    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1117                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1118                                 res = -ENODEV;
1119                         }
1120                         break;
1121                 case FANOUT_DEV:
1122                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1123                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1124                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1125                                 res = -ENODEV;
1126                         }
1127                         break;
1128                 default:
1129                         break;
1130                 }
1131         }
1132
1133         return res;
1134 }
1135
1136 #define RRI_REQ_SIZE  16
1137 #define RRI_RESP_SIZE 44
1138
1139 static int sas_configure_present(struct domain_device *dev, int phy_id,
1140                                  u8 *sas_addr, int *index, int *present)
1141 {
1142         int i, res = 0;
1143         struct expander_device *ex = &dev->ex_dev;
1144         struct ex_phy *phy = &ex->ex_phy[phy_id];
1145         u8 *rri_req;
1146         u8 *rri_resp;
1147
1148         *present = 0;
1149         *index = 0;
1150
1151         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1152         if (!rri_req)
1153                 return -ENOMEM;
1154
1155         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1156         if (!rri_resp) {
1157                 kfree(rri_req);
1158                 return -ENOMEM;
1159         }
1160
1161         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1162         rri_req[9] = phy_id;
1163
1164         for (i = 0; i < ex->max_route_indexes ; i++) {
1165                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1166                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1167                                        RRI_RESP_SIZE);
1168                 if (res)
1169                         goto out;
1170                 res = rri_resp[2];
1171                 if (res == SMP_RESP_NO_INDEX) {
1172                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1173                                     "phy 0x%x index 0x%x\n",
1174                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1175                         goto out;
1176                 } else if (res != SMP_RESP_FUNC_ACC) {
1177                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1178                                     "result 0x%x\n", __FUNCTION__,
1179                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1180                         goto out;
1181                 }
1182                 if (SAS_ADDR(sas_addr) != 0) {
1183                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1184                                 *index = i;
1185                                 if ((rri_resp[12] & 0x80) == 0x80)
1186                                         *present = 0;
1187                                 else
1188                                         *present = 1;
1189                                 goto out;
1190                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1191                                 *index = i;
1192                                 *present = 0;
1193                                 goto out;
1194                         }
1195                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1196                            phy->last_da_index < i) {
1197                         phy->last_da_index = i;
1198                         *index = i;
1199                         *present = 0;
1200                         goto out;
1201                 }
1202         }
1203         res = -1;
1204 out:
1205         kfree(rri_req);
1206         kfree(rri_resp);
1207         return res;
1208 }
1209
1210 #define CRI_REQ_SIZE  44
1211 #define CRI_RESP_SIZE  8
1212
1213 static int sas_configure_set(struct domain_device *dev, int phy_id,
1214                              u8 *sas_addr, int index, int include)
1215 {
1216         int res;
1217         u8 *cri_req;
1218         u8 *cri_resp;
1219
1220         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1221         if (!cri_req)
1222                 return -ENOMEM;
1223
1224         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1225         if (!cri_resp) {
1226                 kfree(cri_req);
1227                 return -ENOMEM;
1228         }
1229
1230         cri_req[1] = SMP_CONF_ROUTE_INFO;
1231         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1232         cri_req[9] = phy_id;
1233         if (SAS_ADDR(sas_addr) == 0 || !include)
1234                 cri_req[12] |= 0x80;
1235         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1236
1237         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1238                                CRI_RESP_SIZE);
1239         if (res)
1240                 goto out;
1241         res = cri_resp[2];
1242         if (res == SMP_RESP_NO_INDEX) {
1243                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1244                             "index 0x%x\n",
1245                             SAS_ADDR(dev->sas_addr), phy_id, index);
1246         }
1247 out:
1248         kfree(cri_req);
1249         kfree(cri_resp);
1250         return res;
1251 }
1252
1253 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1254                                     u8 *sas_addr, int include)
1255 {
1256         int index;
1257         int present;
1258         int res;
1259
1260         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1261         if (res)
1262                 return res;
1263         if (include ^ present)
1264                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1265
1266         return res;
1267 }
1268
1269 /**
1270  * sas_configure_parent -- configure routing table of parent
1271  * parent: parent expander
1272  * child: child expander
1273  * sas_addr: SAS port identifier of device directly attached to child
1274  */
1275 static int sas_configure_parent(struct domain_device *parent,
1276                                 struct domain_device *child,
1277                                 u8 *sas_addr, int include)
1278 {
1279         struct expander_device *ex_parent = &parent->ex_dev;
1280         int res = 0;
1281         int i;
1282
1283         if (parent->parent) {
1284                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1285                                            include);
1286                 if (res)
1287                         return res;
1288         }
1289
1290         if (ex_parent->conf_route_table == 0) {
1291                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1292                             SAS_ADDR(parent->sas_addr));
1293                 return 0;
1294         }
1295
1296         for (i = 0; i < ex_parent->num_phys; i++) {
1297                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1298
1299                 if ((phy->routing_attr == TABLE_ROUTING) &&
1300                     (SAS_ADDR(phy->attached_sas_addr) ==
1301                      SAS_ADDR(child->sas_addr))) {
1302                         res = sas_configure_phy(parent, i, sas_addr, include);
1303                         if (res)
1304                                 return res;
1305                 }
1306         }
1307
1308         return res;
1309 }
1310
1311 /**
1312  * sas_configure_routing -- configure routing
1313  * dev: expander device
1314  * sas_addr: port identifier of device directly attached to the expander device
1315  */
1316 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1317 {
1318         if (dev->parent)
1319                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1320         return 0;
1321 }
1322
1323 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1324 {
1325         if (dev->parent)
1326                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1327         return 0;
1328 }
1329
1330 #if 0
1331 #define SMP_BIN_ATTR_NAME "smp_portal"
1332
1333 static void sas_ex_smp_hook(struct domain_device *dev)
1334 {
1335         struct expander_device *ex_dev = &dev->ex_dev;
1336         struct bin_attribute *bin_attr = &ex_dev->smp_bin_attr;
1337
1338         memset(bin_attr, 0, sizeof(*bin_attr));
1339
1340         bin_attr->attr.name = SMP_BIN_ATTR_NAME;
1341         bin_attr->attr.owner = THIS_MODULE;
1342         bin_attr->attr.mode = 0600;
1343
1344         bin_attr->size = 0;
1345         bin_attr->private = NULL;
1346         bin_attr->read = smp_portal_read;
1347         bin_attr->write= smp_portal_write;
1348         bin_attr->mmap = NULL;
1349
1350         ex_dev->smp_portal_pid = -1;
1351         init_MUTEX(&ex_dev->smp_sema);
1352 }
1353 #endif
1354
1355 /**
1356  * sas_discover_expander -- expander discovery
1357  * @ex: pointer to expander domain device
1358  *
1359  * See comment in sas_discover_sata().
1360  */
1361 static int sas_discover_expander(struct domain_device *dev)
1362 {
1363         int res;
1364
1365         res = sas_notify_lldd_dev_found(dev);
1366         if (res)
1367                 return res;
1368
1369         res = sas_ex_general(dev);
1370         if (res)
1371                 goto out_err;
1372         res = sas_ex_manuf_info(dev);
1373         if (res)
1374                 goto out_err;
1375
1376         res = sas_expander_discover(dev);
1377         if (res) {
1378                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1379                             SAS_ADDR(dev->sas_addr), res);
1380                 goto out_err;
1381         }
1382
1383         sas_check_ex_subtractive_boundary(dev);
1384         res = sas_check_parent_topology(dev);
1385         if (res)
1386                 goto out_err;
1387         return 0;
1388 out_err:
1389         sas_notify_lldd_dev_gone(dev);
1390         return res;
1391 }
1392
1393 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1394 {
1395         int res = 0;
1396         struct domain_device *dev;
1397
1398         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1399                 if (dev->dev_type == EDGE_DEV ||
1400                     dev->dev_type == FANOUT_DEV) {
1401                         struct sas_expander_device *ex =
1402                                 rphy_to_expander_device(dev->rphy);
1403
1404                         if (level == ex->level)
1405                                 res = sas_ex_discover_devices(dev, -1);
1406                         else if (level > 0)
1407                                 res = sas_ex_discover_devices(port->port_dev, -1);
1408
1409                 }
1410         }
1411
1412         return res;
1413 }
1414
1415 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1416 {
1417         int res;
1418         int level;
1419
1420         do {
1421                 level = port->disc.max_level;
1422                 res = sas_ex_level_discovery(port, level);
1423                 mb();
1424         } while (level < port->disc.max_level);
1425
1426         return res;
1427 }
1428
1429 int sas_discover_root_expander(struct domain_device *dev)
1430 {
1431         int res;
1432         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1433
1434         sas_rphy_add(dev->rphy);
1435
1436         ex->level = dev->port->disc.max_level; /* 0 */
1437         res = sas_discover_expander(dev);
1438         if (!res)
1439                 sas_ex_bfs_disc(dev->port);
1440
1441         return res;
1442 }
1443
1444 /* ---------- Domain revalidation ---------- */
1445
1446 static int sas_get_phy_discover(struct domain_device *dev,
1447                                 int phy_id, struct smp_resp *disc_resp)
1448 {
1449         int res;
1450         u8 *disc_req;
1451
1452         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1453         if (!disc_req)
1454                 return -ENOMEM;
1455
1456         disc_req[1] = SMP_DISCOVER;
1457         disc_req[9] = phy_id;
1458
1459         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1460                                disc_resp, DISCOVER_RESP_SIZE);
1461         if (res)
1462                 goto out;
1463         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1464                 res = disc_resp->result;
1465                 goto out;
1466         }
1467 out:
1468         kfree(disc_req);
1469         return res;
1470 }
1471
1472 static int sas_get_phy_change_count(struct domain_device *dev,
1473                                     int phy_id, int *pcc)
1474 {
1475         int res;
1476         struct smp_resp *disc_resp;
1477
1478         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1479         if (!disc_resp)
1480                 return -ENOMEM;
1481
1482         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1483         if (!res)
1484                 *pcc = disc_resp->disc.change_count;
1485
1486         kfree(disc_resp);
1487         return res;
1488 }
1489
1490 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1491                                          int phy_id, u8 *attached_sas_addr)
1492 {
1493         int res;
1494         struct smp_resp *disc_resp;
1495         struct discover_resp *dr;
1496
1497         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1498         if (!disc_resp)
1499                 return -ENOMEM;
1500         dr = &disc_resp->disc;
1501
1502         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1503         if (!res) {
1504                 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1505                 if (dr->attached_dev_type == 0)
1506                         memset(attached_sas_addr, 0, 8);
1507         }
1508         kfree(disc_resp);
1509         return res;
1510 }
1511
1512 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1513                               int from_phy)
1514 {
1515         struct expander_device *ex = &dev->ex_dev;
1516         int res = 0;
1517         int i;
1518
1519         for (i = from_phy; i < ex->num_phys; i++) {
1520                 int phy_change_count = 0;
1521
1522                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1523                 if (res)
1524                         goto out;
1525                 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1526                         ex->ex_phy[i].phy_change_count = phy_change_count;
1527                         *phy_id = i;
1528                         return 0;
1529                 }
1530         }
1531 out:
1532         return res;
1533 }
1534
1535 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1536 {
1537         int res;
1538         u8  *rg_req;
1539         struct smp_resp  *rg_resp;
1540
1541         rg_req = alloc_smp_req(RG_REQ_SIZE);
1542         if (!rg_req)
1543                 return -ENOMEM;
1544
1545         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1546         if (!rg_resp) {
1547                 kfree(rg_req);
1548                 return -ENOMEM;
1549         }
1550
1551         rg_req[1] = SMP_REPORT_GENERAL;
1552
1553         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1554                                RG_RESP_SIZE);
1555         if (res)
1556                 goto out;
1557         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1558                 res = rg_resp->result;
1559                 goto out;
1560         }
1561
1562         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1563 out:
1564         kfree(rg_resp);
1565         kfree(rg_req);
1566         return res;
1567 }
1568
1569 static int sas_find_bcast_dev(struct domain_device *dev,
1570                               struct domain_device **src_dev)
1571 {
1572         struct expander_device *ex = &dev->ex_dev;
1573         int ex_change_count = -1;
1574         int res;
1575
1576         res = sas_get_ex_change_count(dev, &ex_change_count);
1577         if (res)
1578                 goto out;
1579         if (ex_change_count != -1 &&
1580             ex_change_count != ex->ex_change_count) {
1581                 *src_dev = dev;
1582                 ex->ex_change_count = ex_change_count;
1583         } else {
1584                 struct domain_device *ch;
1585
1586                 list_for_each_entry(ch, &ex->children, siblings) {
1587                         if (ch->dev_type == EDGE_DEV ||
1588                             ch->dev_type == FANOUT_DEV) {
1589                                 res = sas_find_bcast_dev(ch, src_dev);
1590                                 if (src_dev)
1591                                         return res;
1592                         }
1593                 }
1594         }
1595 out:
1596         return res;
1597 }
1598
1599 static void sas_unregister_ex_tree(struct domain_device *dev)
1600 {
1601         struct expander_device *ex = &dev->ex_dev;
1602         struct domain_device *child, *n;
1603
1604         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1605                 if (child->dev_type == EDGE_DEV ||
1606                     child->dev_type == FANOUT_DEV)
1607                         sas_unregister_ex_tree(child);
1608                 else
1609                         sas_unregister_dev(child);
1610         }
1611         sas_unregister_dev(dev);
1612 }
1613
1614 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1615                                          int phy_id)
1616 {
1617         struct expander_device *ex_dev = &parent->ex_dev;
1618         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1619         struct domain_device *child, *n;
1620
1621         list_for_each_entry_safe(child, n, &ex_dev->children, siblings) {
1622                 if (SAS_ADDR(child->sas_addr) ==
1623                     SAS_ADDR(phy->attached_sas_addr)) {
1624                         if (child->dev_type == EDGE_DEV ||
1625                             child->dev_type == FANOUT_DEV)
1626                                 sas_unregister_ex_tree(child);
1627                         else
1628                                 sas_unregister_dev(child);
1629                         break;
1630                 }
1631         }
1632         sas_disable_routing(parent, phy->attached_sas_addr);
1633         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1634         sas_port_delete_phy(phy->port, phy->phy);
1635         if (phy->port->num_phys == 0)
1636                 sas_port_delete(phy->port);
1637         phy->port = NULL;
1638 }
1639
1640 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1641                                           const int level)
1642 {
1643         struct expander_device *ex_root = &root->ex_dev;
1644         struct domain_device *child;
1645         int res = 0;
1646
1647         list_for_each_entry(child, &ex_root->children, siblings) {
1648                 if (child->dev_type == EDGE_DEV ||
1649                     child->dev_type == FANOUT_DEV) {
1650                         struct sas_expander_device *ex =
1651                                 rphy_to_expander_device(child->rphy);
1652
1653                         if (level > ex->level)
1654                                 res = sas_discover_bfs_by_root_level(child,
1655                                                                      level);
1656                         else if (level == ex->level)
1657                                 res = sas_ex_discover_devices(child, -1);
1658                 }
1659         }
1660         return res;
1661 }
1662
1663 static int sas_discover_bfs_by_root(struct domain_device *dev)
1664 {
1665         int res;
1666         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1667         int level = ex->level+1;
1668
1669         res = sas_ex_discover_devices(dev, -1);
1670         if (res)
1671                 goto out;
1672         do {
1673                 res = sas_discover_bfs_by_root_level(dev, level);
1674                 mb();
1675                 level += 1;
1676         } while (level <= dev->port->disc.max_level);
1677 out:
1678         return res;
1679 }
1680
1681 static int sas_discover_new(struct domain_device *dev, int phy_id)
1682 {
1683         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1684         struct domain_device *child;
1685         int res;
1686
1687         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1688                     SAS_ADDR(dev->sas_addr), phy_id);
1689         res = sas_ex_phy_discover(dev, phy_id);
1690         if (res)
1691                 goto out;
1692         res = sas_ex_discover_devices(dev, phy_id);
1693         if (res)
1694                 goto out;
1695         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1696                 if (SAS_ADDR(child->sas_addr) ==
1697                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1698                         if (child->dev_type == EDGE_DEV ||
1699                             child->dev_type == FANOUT_DEV)
1700                                 res = sas_discover_bfs_by_root(child);
1701                         break;
1702                 }
1703         }
1704 out:
1705         return res;
1706 }
1707
1708 static int sas_rediscover_dev(struct domain_device *dev, int phy_id)
1709 {
1710         struct expander_device *ex = &dev->ex_dev;
1711         struct ex_phy *phy = &ex->ex_phy[phy_id];
1712         u8 attached_sas_addr[8];
1713         int res;
1714
1715         res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1716         switch (res) {
1717         case SMP_RESP_NO_PHY:
1718                 phy->phy_state = PHY_NOT_PRESENT;
1719                 sas_unregister_devs_sas_addr(dev, phy_id);
1720                 goto out; break;
1721         case SMP_RESP_PHY_VACANT:
1722                 phy->phy_state = PHY_VACANT;
1723                 sas_unregister_devs_sas_addr(dev, phy_id);
1724                 goto out; break;
1725         case SMP_RESP_FUNC_ACC:
1726                 break;
1727         }
1728
1729         if (SAS_ADDR(attached_sas_addr) == 0) {
1730                 phy->phy_state = PHY_EMPTY;
1731                 sas_unregister_devs_sas_addr(dev, phy_id);
1732         } else if (SAS_ADDR(attached_sas_addr) ==
1733                    SAS_ADDR(phy->attached_sas_addr)) {
1734                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1735                             SAS_ADDR(dev->sas_addr), phy_id);
1736                 sas_ex_phy_discover(dev, phy_id);
1737         } else
1738                 res = sas_discover_new(dev, phy_id);
1739 out:
1740         return res;
1741 }
1742
1743 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1744 {
1745         struct expander_device *ex = &dev->ex_dev;
1746         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1747         int res = 0;
1748         int i;
1749
1750         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1751                     SAS_ADDR(dev->sas_addr), phy_id);
1752
1753         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1754                 for (i = 0; i < ex->num_phys; i++) {
1755                         struct ex_phy *phy = &ex->ex_phy[i];
1756
1757                         if (i == phy_id)
1758                                 continue;
1759                         if (SAS_ADDR(phy->attached_sas_addr) ==
1760                             SAS_ADDR(changed_phy->attached_sas_addr)) {
1761                                 SAS_DPRINTK("phy%d part of wide port with "
1762                                             "phy%d\n", phy_id, i);
1763                                 goto out;
1764                         }
1765                 }
1766                 res = sas_rediscover_dev(dev, phy_id);
1767         } else
1768                 res = sas_discover_new(dev, phy_id);
1769 out:
1770         return res;
1771 }
1772
1773 /**
1774  * sas_revalidate_domain -- revalidate the domain
1775  * @port: port to the domain of interest
1776  *
1777  * NOTE: this process _must_ quit (return) as soon as any connection
1778  * errors are encountered.  Connection recovery is done elsewhere.
1779  * Discover process only interrogates devices in order to discover the
1780  * domain.
1781  */
1782 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1783 {
1784         int res;
1785         struct domain_device *dev = NULL;
1786
1787         res = sas_find_bcast_dev(port_dev, &dev);
1788         if (res)
1789                 goto out;
1790         if (dev) {
1791                 struct expander_device *ex = &dev->ex_dev;
1792                 int i = 0, phy_id;
1793
1794                 do {
1795                         phy_id = -1;
1796                         res = sas_find_bcast_phy(dev, &phy_id, i);
1797                         if (phy_id == -1)
1798                                 break;
1799                         res = sas_rediscover(dev, phy_id);
1800                         i = phy_id + 1;
1801                 } while (i < ex->num_phys);
1802         }
1803 out:
1804         return res;
1805 }
1806
1807 #if 0
1808 /* ---------- SMP portal ---------- */
1809
1810 static ssize_t smp_portal_write(struct kobject *kobj, char *buf, loff_t offs,
1811                                 size_t size)
1812 {
1813         struct domain_device *dev = to_dom_device(kobj);
1814         struct expander_device *ex = &dev->ex_dev;
1815
1816         if (offs != 0)
1817                 return -EFBIG;
1818         else if (size == 0)
1819                 return 0;
1820
1821         down_interruptible(&ex->smp_sema);
1822         if (ex->smp_req)
1823                 kfree(ex->smp_req);
1824         ex->smp_req = kzalloc(size, GFP_USER);
1825         if (!ex->smp_req) {
1826                 up(&ex->smp_sema);
1827                 return -ENOMEM;
1828         }
1829         memcpy(ex->smp_req, buf, size);
1830         ex->smp_req_size = size;
1831         ex->smp_portal_pid = current->pid;
1832         up(&ex->smp_sema);
1833
1834         return size;
1835 }
1836
1837 static ssize_t smp_portal_read(struct kobject *kobj, char *buf, loff_t offs,
1838                                size_t size)
1839 {
1840         struct domain_device *dev = to_dom_device(kobj);
1841         struct expander_device *ex = &dev->ex_dev;
1842         u8 *smp_resp;
1843         int res = -EINVAL;
1844
1845         /* XXX: sysfs gives us an offset of 0x10 or 0x8 while in fact
1846          *  it should be 0.
1847          */
1848
1849         down_interruptible(&ex->smp_sema);
1850         if (!ex->smp_req || ex->smp_portal_pid != current->pid)
1851                 goto out;
1852
1853         res = 0;
1854         if (size == 0)
1855                 goto out;
1856
1857         res = -ENOMEM;
1858         smp_resp = alloc_smp_resp(size);
1859         if (!smp_resp)
1860                 goto out;
1861         res = smp_execute_task(dev, ex->smp_req, ex->smp_req_size,
1862                                smp_resp, size);
1863         if (!res) {
1864                 memcpy(buf, smp_resp, size);
1865                 res = size;
1866         }
1867
1868         kfree(smp_resp);
1869 out:
1870         kfree(ex->smp_req);
1871         ex->smp_req = NULL;
1872         ex->smp_req_size = 0;
1873         ex->smp_portal_pid = -1;
1874         up(&ex->smp_sema);
1875         return res;
1876 }
1877 #endif