1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 /* ethtool support for igb */
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
41 char stat_string[ETH_GSTRING_LEN];
46 #define IGB_STAT(m) FIELD_SIZEOF(struct igb_adapter, m), \
47 offsetof(struct igb_adapter, m)
48 static const struct igb_stats igb_gstrings_stats[] = {
49 { "rx_packets", IGB_STAT(stats.gprc) },
50 { "tx_packets", IGB_STAT(stats.gptc) },
51 { "rx_bytes", IGB_STAT(stats.gorc) },
52 { "tx_bytes", IGB_STAT(stats.gotc) },
53 { "rx_broadcast", IGB_STAT(stats.bprc) },
54 { "tx_broadcast", IGB_STAT(stats.bptc) },
55 { "rx_multicast", IGB_STAT(stats.mprc) },
56 { "tx_multicast", IGB_STAT(stats.mptc) },
57 { "rx_errors", IGB_STAT(net_stats.rx_errors) },
58 { "tx_errors", IGB_STAT(net_stats.tx_errors) },
59 { "tx_dropped", IGB_STAT(net_stats.tx_dropped) },
60 { "multicast", IGB_STAT(stats.mprc) },
61 { "collisions", IGB_STAT(stats.colc) },
62 { "rx_length_errors", IGB_STAT(net_stats.rx_length_errors) },
63 { "rx_over_errors", IGB_STAT(net_stats.rx_over_errors) },
64 { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
65 { "rx_frame_errors", IGB_STAT(net_stats.rx_frame_errors) },
66 { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
67 { "rx_missed_errors", IGB_STAT(stats.mpc) },
68 { "tx_aborted_errors", IGB_STAT(stats.ecol) },
69 { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
70 { "tx_fifo_errors", IGB_STAT(net_stats.tx_fifo_errors) },
71 { "tx_heartbeat_errors", IGB_STAT(net_stats.tx_heartbeat_errors) },
72 { "tx_window_errors", IGB_STAT(stats.latecol) },
73 { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
74 { "tx_deferred_ok", IGB_STAT(stats.dc) },
75 { "tx_single_coll_ok", IGB_STAT(stats.scc) },
76 { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
77 { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
78 { "tx_restart_queue", IGB_STAT(restart_queue) },
79 { "rx_long_length_errors", IGB_STAT(stats.roc) },
80 { "rx_short_length_errors", IGB_STAT(stats.ruc) },
81 { "rx_align_errors", IGB_STAT(stats.algnerrc) },
82 { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
83 { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
84 { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
85 { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
86 { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
87 { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
88 { "rx_long_byte_count", IGB_STAT(stats.gorc) },
89 { "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
90 { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
91 { "rx_header_split", IGB_STAT(rx_hdr_split) },
92 { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
93 { "tx_smbus", IGB_STAT(stats.mgptc) },
94 { "rx_smbus", IGB_STAT(stats.mgprc) },
95 { "dropped_smbus", IGB_STAT(stats.mgpdc) },
98 #define IGB_QUEUE_STATS_LEN \
99 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues + \
100 ((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues) * \
101 (sizeof(struct igb_queue_stats) / sizeof(u64)))
102 #define IGB_GLOBAL_STATS_LEN \
103 sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
104 #define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
105 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
106 "Register test (offline)", "Eeprom test (offline)",
107 "Interrupt test (offline)", "Loopback test (offline)",
108 "Link test (on/offline)"
110 #define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
112 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
114 struct igb_adapter *adapter = netdev_priv(netdev);
115 struct e1000_hw *hw = &adapter->hw;
117 if (hw->phy.media_type == e1000_media_type_copper) {
119 ecmd->supported = (SUPPORTED_10baseT_Half |
120 SUPPORTED_10baseT_Full |
121 SUPPORTED_100baseT_Half |
122 SUPPORTED_100baseT_Full |
123 SUPPORTED_1000baseT_Full|
126 ecmd->advertising = ADVERTISED_TP;
128 if (hw->mac.autoneg == 1) {
129 ecmd->advertising |= ADVERTISED_Autoneg;
130 /* the e1000 autoneg seems to match ethtool nicely */
131 ecmd->advertising |= hw->phy.autoneg_advertised;
134 ecmd->port = PORT_TP;
135 ecmd->phy_address = hw->phy.addr;
137 ecmd->supported = (SUPPORTED_1000baseT_Full |
141 ecmd->advertising = (ADVERTISED_1000baseT_Full |
145 ecmd->port = PORT_FIBRE;
148 ecmd->transceiver = XCVR_INTERNAL;
150 if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
152 adapter->hw.mac.ops.get_speed_and_duplex(hw,
153 &adapter->link_speed,
154 &adapter->link_duplex);
155 ecmd->speed = adapter->link_speed;
157 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
158 * and HALF_DUPLEX != DUPLEX_HALF */
160 if (adapter->link_duplex == FULL_DUPLEX)
161 ecmd->duplex = DUPLEX_FULL;
163 ecmd->duplex = DUPLEX_HALF;
169 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
170 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
174 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
176 struct igb_adapter *adapter = netdev_priv(netdev);
177 struct e1000_hw *hw = &adapter->hw;
179 /* When SoL/IDER sessions are active, autoneg/speed/duplex
180 * cannot be changed */
181 if (igb_check_reset_block(hw)) {
182 dev_err(&adapter->pdev->dev, "Cannot change link "
183 "characteristics when SoL/IDER is active.\n");
187 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
190 if (ecmd->autoneg == AUTONEG_ENABLE) {
192 if (hw->phy.media_type == e1000_media_type_fiber)
193 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
197 hw->phy.autoneg_advertised = ecmd->advertising |
200 ecmd->advertising = hw->phy.autoneg_advertised;
202 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
203 clear_bit(__IGB_RESETTING, &adapter->state);
209 if (netif_running(adapter->netdev)) {
215 clear_bit(__IGB_RESETTING, &adapter->state);
219 static void igb_get_pauseparam(struct net_device *netdev,
220 struct ethtool_pauseparam *pause)
222 struct igb_adapter *adapter = netdev_priv(netdev);
223 struct e1000_hw *hw = &adapter->hw;
226 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
228 if (hw->fc.type == e1000_fc_rx_pause)
230 else if (hw->fc.type == e1000_fc_tx_pause)
232 else if (hw->fc.type == e1000_fc_full) {
238 static int igb_set_pauseparam(struct net_device *netdev,
239 struct ethtool_pauseparam *pause)
241 struct igb_adapter *adapter = netdev_priv(netdev);
242 struct e1000_hw *hw = &adapter->hw;
245 adapter->fc_autoneg = pause->autoneg;
247 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
250 if (pause->rx_pause && pause->tx_pause)
251 hw->fc.type = e1000_fc_full;
252 else if (pause->rx_pause && !pause->tx_pause)
253 hw->fc.type = e1000_fc_rx_pause;
254 else if (!pause->rx_pause && pause->tx_pause)
255 hw->fc.type = e1000_fc_tx_pause;
256 else if (!pause->rx_pause && !pause->tx_pause)
257 hw->fc.type = e1000_fc_none;
259 hw->fc.original_type = hw->fc.type;
261 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
262 if (netif_running(adapter->netdev)) {
268 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
269 igb_setup_link(hw) : igb_force_mac_fc(hw));
271 clear_bit(__IGB_RESETTING, &adapter->state);
275 static u32 igb_get_rx_csum(struct net_device *netdev)
277 struct igb_adapter *adapter = netdev_priv(netdev);
278 return adapter->rx_csum;
281 static int igb_set_rx_csum(struct net_device *netdev, u32 data)
283 struct igb_adapter *adapter = netdev_priv(netdev);
284 adapter->rx_csum = data;
289 static u32 igb_get_tx_csum(struct net_device *netdev)
291 return (netdev->features & NETIF_F_HW_CSUM) != 0;
294 static int igb_set_tx_csum(struct net_device *netdev, u32 data)
297 netdev->features |= NETIF_F_HW_CSUM;
299 netdev->features &= ~NETIF_F_HW_CSUM;
304 static int igb_set_tso(struct net_device *netdev, u32 data)
306 struct igb_adapter *adapter = netdev_priv(netdev);
309 netdev->features |= NETIF_F_TSO;
311 netdev->features &= ~NETIF_F_TSO;
314 netdev->features |= NETIF_F_TSO6;
316 netdev->features &= ~NETIF_F_TSO6;
318 dev_info(&adapter->pdev->dev, "TSO is %s\n",
319 data ? "Enabled" : "Disabled");
323 static u32 igb_get_msglevel(struct net_device *netdev)
325 struct igb_adapter *adapter = netdev_priv(netdev);
326 return adapter->msg_enable;
329 static void igb_set_msglevel(struct net_device *netdev, u32 data)
331 struct igb_adapter *adapter = netdev_priv(netdev);
332 adapter->msg_enable = data;
335 static int igb_get_regs_len(struct net_device *netdev)
337 #define IGB_REGS_LEN 551
338 return IGB_REGS_LEN * sizeof(u32);
341 static void igb_get_regs(struct net_device *netdev,
342 struct ethtool_regs *regs, void *p)
344 struct igb_adapter *adapter = netdev_priv(netdev);
345 struct e1000_hw *hw = &adapter->hw;
349 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
351 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
353 /* General Registers */
354 regs_buff[0] = rd32(E1000_CTRL);
355 regs_buff[1] = rd32(E1000_STATUS);
356 regs_buff[2] = rd32(E1000_CTRL_EXT);
357 regs_buff[3] = rd32(E1000_MDIC);
358 regs_buff[4] = rd32(E1000_SCTL);
359 regs_buff[5] = rd32(E1000_CONNSW);
360 regs_buff[6] = rd32(E1000_VET);
361 regs_buff[7] = rd32(E1000_LEDCTL);
362 regs_buff[8] = rd32(E1000_PBA);
363 regs_buff[9] = rd32(E1000_PBS);
364 regs_buff[10] = rd32(E1000_FRTIMER);
365 regs_buff[11] = rd32(E1000_TCPTIMER);
368 regs_buff[12] = rd32(E1000_EECD);
371 /* Reading EICS for EICR because they read the
372 * same but EICS does not clear on read */
373 regs_buff[13] = rd32(E1000_EICS);
374 regs_buff[14] = rd32(E1000_EICS);
375 regs_buff[15] = rd32(E1000_EIMS);
376 regs_buff[16] = rd32(E1000_EIMC);
377 regs_buff[17] = rd32(E1000_EIAC);
378 regs_buff[18] = rd32(E1000_EIAM);
379 /* Reading ICS for ICR because they read the
380 * same but ICS does not clear on read */
381 regs_buff[19] = rd32(E1000_ICS);
382 regs_buff[20] = rd32(E1000_ICS);
383 regs_buff[21] = rd32(E1000_IMS);
384 regs_buff[22] = rd32(E1000_IMC);
385 regs_buff[23] = rd32(E1000_IAC);
386 regs_buff[24] = rd32(E1000_IAM);
387 regs_buff[25] = rd32(E1000_IMIRVP);
390 regs_buff[26] = rd32(E1000_FCAL);
391 regs_buff[27] = rd32(E1000_FCAH);
392 regs_buff[28] = rd32(E1000_FCTTV);
393 regs_buff[29] = rd32(E1000_FCRTL);
394 regs_buff[30] = rd32(E1000_FCRTH);
395 regs_buff[31] = rd32(E1000_FCRTV);
398 regs_buff[32] = rd32(E1000_RCTL);
399 regs_buff[33] = rd32(E1000_RXCSUM);
400 regs_buff[34] = rd32(E1000_RLPML);
401 regs_buff[35] = rd32(E1000_RFCTL);
402 regs_buff[36] = rd32(E1000_MRQC);
403 regs_buff[37] = rd32(E1000_VMD_CTL);
406 regs_buff[38] = rd32(E1000_TCTL);
407 regs_buff[39] = rd32(E1000_TCTL_EXT);
408 regs_buff[40] = rd32(E1000_TIPG);
409 regs_buff[41] = rd32(E1000_DTXCTL);
412 regs_buff[42] = rd32(E1000_WUC);
413 regs_buff[43] = rd32(E1000_WUFC);
414 regs_buff[44] = rd32(E1000_WUS);
415 regs_buff[45] = rd32(E1000_IPAV);
416 regs_buff[46] = rd32(E1000_WUPL);
419 regs_buff[47] = rd32(E1000_PCS_CFG0);
420 regs_buff[48] = rd32(E1000_PCS_LCTL);
421 regs_buff[49] = rd32(E1000_PCS_LSTAT);
422 regs_buff[50] = rd32(E1000_PCS_ANADV);
423 regs_buff[51] = rd32(E1000_PCS_LPAB);
424 regs_buff[52] = rd32(E1000_PCS_NPTX);
425 regs_buff[53] = rd32(E1000_PCS_LPABNP);
428 regs_buff[54] = adapter->stats.crcerrs;
429 regs_buff[55] = adapter->stats.algnerrc;
430 regs_buff[56] = adapter->stats.symerrs;
431 regs_buff[57] = adapter->stats.rxerrc;
432 regs_buff[58] = adapter->stats.mpc;
433 regs_buff[59] = adapter->stats.scc;
434 regs_buff[60] = adapter->stats.ecol;
435 regs_buff[61] = adapter->stats.mcc;
436 regs_buff[62] = adapter->stats.latecol;
437 regs_buff[63] = adapter->stats.colc;
438 regs_buff[64] = adapter->stats.dc;
439 regs_buff[65] = adapter->stats.tncrs;
440 regs_buff[66] = adapter->stats.sec;
441 regs_buff[67] = adapter->stats.htdpmc;
442 regs_buff[68] = adapter->stats.rlec;
443 regs_buff[69] = adapter->stats.xonrxc;
444 regs_buff[70] = adapter->stats.xontxc;
445 regs_buff[71] = adapter->stats.xoffrxc;
446 regs_buff[72] = adapter->stats.xofftxc;
447 regs_buff[73] = adapter->stats.fcruc;
448 regs_buff[74] = adapter->stats.prc64;
449 regs_buff[75] = adapter->stats.prc127;
450 regs_buff[76] = adapter->stats.prc255;
451 regs_buff[77] = adapter->stats.prc511;
452 regs_buff[78] = adapter->stats.prc1023;
453 regs_buff[79] = adapter->stats.prc1522;
454 regs_buff[80] = adapter->stats.gprc;
455 regs_buff[81] = adapter->stats.bprc;
456 regs_buff[82] = adapter->stats.mprc;
457 regs_buff[83] = adapter->stats.gptc;
458 regs_buff[84] = adapter->stats.gorc;
459 regs_buff[86] = adapter->stats.gotc;
460 regs_buff[88] = adapter->stats.rnbc;
461 regs_buff[89] = adapter->stats.ruc;
462 regs_buff[90] = adapter->stats.rfc;
463 regs_buff[91] = adapter->stats.roc;
464 regs_buff[92] = adapter->stats.rjc;
465 regs_buff[93] = adapter->stats.mgprc;
466 regs_buff[94] = adapter->stats.mgpdc;
467 regs_buff[95] = adapter->stats.mgptc;
468 regs_buff[96] = adapter->stats.tor;
469 regs_buff[98] = adapter->stats.tot;
470 regs_buff[100] = adapter->stats.tpr;
471 regs_buff[101] = adapter->stats.tpt;
472 regs_buff[102] = adapter->stats.ptc64;
473 regs_buff[103] = adapter->stats.ptc127;
474 regs_buff[104] = adapter->stats.ptc255;
475 regs_buff[105] = adapter->stats.ptc511;
476 regs_buff[106] = adapter->stats.ptc1023;
477 regs_buff[107] = adapter->stats.ptc1522;
478 regs_buff[108] = adapter->stats.mptc;
479 regs_buff[109] = adapter->stats.bptc;
480 regs_buff[110] = adapter->stats.tsctc;
481 regs_buff[111] = adapter->stats.iac;
482 regs_buff[112] = adapter->stats.rpthc;
483 regs_buff[113] = adapter->stats.hgptc;
484 regs_buff[114] = adapter->stats.hgorc;
485 regs_buff[116] = adapter->stats.hgotc;
486 regs_buff[118] = adapter->stats.lenerrs;
487 regs_buff[119] = adapter->stats.scvpc;
488 regs_buff[120] = adapter->stats.hrmpc;
490 /* These should probably be added to e1000_regs.h instead */
491 #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
492 #define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
493 #define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
494 #define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
495 #define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
496 #define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
497 #define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
499 for (i = 0; i < 4; i++)
500 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
501 for (i = 0; i < 4; i++)
502 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
503 for (i = 0; i < 4; i++)
504 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
505 for (i = 0; i < 4; i++)
506 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
507 for (i = 0; i < 4; i++)
508 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
509 for (i = 0; i < 4; i++)
510 regs_buff[141 + i] = rd32(E1000_RDH(i));
511 for (i = 0; i < 4; i++)
512 regs_buff[145 + i] = rd32(E1000_RDT(i));
513 for (i = 0; i < 4; i++)
514 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
516 for (i = 0; i < 10; i++)
517 regs_buff[153 + i] = rd32(E1000_EITR(i));
518 for (i = 0; i < 8; i++)
519 regs_buff[163 + i] = rd32(E1000_IMIR(i));
520 for (i = 0; i < 8; i++)
521 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
522 for (i = 0; i < 16; i++)
523 regs_buff[179 + i] = rd32(E1000_RAL(i));
524 for (i = 0; i < 16; i++)
525 regs_buff[195 + i] = rd32(E1000_RAH(i));
527 for (i = 0; i < 4; i++)
528 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
529 for (i = 0; i < 4; i++)
530 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
531 for (i = 0; i < 4; i++)
532 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
533 for (i = 0; i < 4; i++)
534 regs_buff[223 + i] = rd32(E1000_TDH(i));
535 for (i = 0; i < 4; i++)
536 regs_buff[227 + i] = rd32(E1000_TDT(i));
537 for (i = 0; i < 4; i++)
538 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
539 for (i = 0; i < 4; i++)
540 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
541 for (i = 0; i < 4; i++)
542 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
543 for (i = 0; i < 4; i++)
544 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
546 for (i = 0; i < 4; i++)
547 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
548 for (i = 0; i < 4; i++)
549 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
550 for (i = 0; i < 32; i++)
551 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
552 for (i = 0; i < 128; i++)
553 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
554 for (i = 0; i < 128; i++)
555 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
556 for (i = 0; i < 4; i++)
557 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
559 regs_buff[547] = rd32(E1000_TDFH);
560 regs_buff[548] = rd32(E1000_TDFT);
561 regs_buff[549] = rd32(E1000_TDFHS);
562 regs_buff[550] = rd32(E1000_TDFPC);
566 static int igb_get_eeprom_len(struct net_device *netdev)
568 struct igb_adapter *adapter = netdev_priv(netdev);
569 return adapter->hw.nvm.word_size * 2;
572 static int igb_get_eeprom(struct net_device *netdev,
573 struct ethtool_eeprom *eeprom, u8 *bytes)
575 struct igb_adapter *adapter = netdev_priv(netdev);
576 struct e1000_hw *hw = &adapter->hw;
578 int first_word, last_word;
582 if (eeprom->len == 0)
585 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
587 first_word = eeprom->offset >> 1;
588 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
590 eeprom_buff = kmalloc(sizeof(u16) *
591 (last_word - first_word + 1), GFP_KERNEL);
595 if (hw->nvm.type == e1000_nvm_eeprom_spi)
596 ret_val = hw->nvm.ops.read_nvm(hw, first_word,
597 last_word - first_word + 1,
600 for (i = 0; i < last_word - first_word + 1; i++) {
601 ret_val = hw->nvm.ops.read_nvm(hw, first_word + i, 1,
608 /* Device's eeprom is always little-endian, word addressable */
609 for (i = 0; i < last_word - first_word + 1; i++)
610 le16_to_cpus(&eeprom_buff[i]);
612 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
619 static int igb_set_eeprom(struct net_device *netdev,
620 struct ethtool_eeprom *eeprom, u8 *bytes)
622 struct igb_adapter *adapter = netdev_priv(netdev);
623 struct e1000_hw *hw = &adapter->hw;
626 int max_len, first_word, last_word, ret_val = 0;
629 if (eeprom->len == 0)
632 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
635 max_len = hw->nvm.word_size * 2;
637 first_word = eeprom->offset >> 1;
638 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
639 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
643 ptr = (void *)eeprom_buff;
645 if (eeprom->offset & 1) {
646 /* need read/modify/write of first changed EEPROM word */
647 /* only the second byte of the word is being modified */
648 ret_val = hw->nvm.ops.read_nvm(hw, first_word, 1,
652 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
653 /* need read/modify/write of last changed EEPROM word */
654 /* only the first byte of the word is being modified */
655 ret_val = hw->nvm.ops.read_nvm(hw, last_word, 1,
656 &eeprom_buff[last_word - first_word]);
659 /* Device's eeprom is always little-endian, word addressable */
660 for (i = 0; i < last_word - first_word + 1; i++)
661 le16_to_cpus(&eeprom_buff[i]);
663 memcpy(ptr, bytes, eeprom->len);
665 for (i = 0; i < last_word - first_word + 1; i++)
666 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
668 ret_val = hw->nvm.ops.write_nvm(hw, first_word,
669 last_word - first_word + 1, eeprom_buff);
671 /* Update the checksum over the first part of the EEPROM if needed
672 * and flush shadow RAM for 82573 controllers */
673 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
674 igb_update_nvm_checksum(hw);
680 static void igb_get_drvinfo(struct net_device *netdev,
681 struct ethtool_drvinfo *drvinfo)
683 struct igb_adapter *adapter = netdev_priv(netdev);
684 char firmware_version[32];
687 strncpy(drvinfo->driver, igb_driver_name, 32);
688 strncpy(drvinfo->version, igb_driver_version, 32);
690 /* EEPROM image version # is reported as firmware version # for
691 * 82575 controllers */
692 adapter->hw.nvm.ops.read_nvm(&adapter->hw, 5, 1, &eeprom_data);
693 sprintf(firmware_version, "%d.%d-%d",
694 (eeprom_data & 0xF000) >> 12,
695 (eeprom_data & 0x0FF0) >> 4,
696 eeprom_data & 0x000F);
698 strncpy(drvinfo->fw_version, firmware_version, 32);
699 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
700 drvinfo->n_stats = IGB_STATS_LEN;
701 drvinfo->testinfo_len = IGB_TEST_LEN;
702 drvinfo->regdump_len = igb_get_regs_len(netdev);
703 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
706 static void igb_get_ringparam(struct net_device *netdev,
707 struct ethtool_ringparam *ring)
709 struct igb_adapter *adapter = netdev_priv(netdev);
711 ring->rx_max_pending = IGB_MAX_RXD;
712 ring->tx_max_pending = IGB_MAX_TXD;
713 ring->rx_mini_max_pending = 0;
714 ring->rx_jumbo_max_pending = 0;
715 ring->rx_pending = adapter->rx_ring_count;
716 ring->tx_pending = adapter->tx_ring_count;
717 ring->rx_mini_pending = 0;
718 ring->rx_jumbo_pending = 0;
721 static int igb_set_ringparam(struct net_device *netdev,
722 struct ethtool_ringparam *ring)
724 struct igb_adapter *adapter = netdev_priv(netdev);
725 struct igb_ring *temp_ring;
727 u32 new_rx_count, new_tx_count;
729 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
732 new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
733 new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
734 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
736 new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
737 new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
738 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
740 if ((new_tx_count == adapter->tx_ring_count) &&
741 (new_rx_count == adapter->rx_ring_count)) {
746 if (adapter->num_tx_queues > adapter->num_rx_queues)
747 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
749 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
753 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
756 if (netif_running(adapter->netdev))
760 * We can't just free everything and then setup again,
761 * because the ISRs in MSI-X mode get passed pointers
762 * to the tx and rx ring structs.
764 if (new_tx_count != adapter->tx_ring_count) {
765 memcpy(temp_ring, adapter->tx_ring,
766 adapter->num_tx_queues * sizeof(struct igb_ring));
768 for (i = 0; i < adapter->num_tx_queues; i++) {
769 temp_ring[i].count = new_tx_count;
770 err = igb_setup_tx_resources(adapter, &temp_ring[i]);
774 igb_free_tx_resources(&temp_ring[i]);
780 for (i = 0; i < adapter->num_tx_queues; i++)
781 igb_free_tx_resources(&adapter->tx_ring[i]);
783 memcpy(adapter->tx_ring, temp_ring,
784 adapter->num_tx_queues * sizeof(struct igb_ring));
786 adapter->tx_ring_count = new_tx_count;
789 if (new_rx_count != adapter->rx_ring->count) {
790 memcpy(temp_ring, adapter->rx_ring,
791 adapter->num_rx_queues * sizeof(struct igb_ring));
793 for (i = 0; i < adapter->num_rx_queues; i++) {
794 temp_ring[i].count = new_rx_count;
795 err = igb_setup_rx_resources(adapter, &temp_ring[i]);
799 igb_free_rx_resources(&temp_ring[i]);
806 for (i = 0; i < adapter->num_rx_queues; i++)
807 igb_free_rx_resources(&adapter->rx_ring[i]);
809 memcpy(adapter->rx_ring, temp_ring,
810 adapter->num_rx_queues * sizeof(struct igb_ring));
812 adapter->rx_ring_count = new_rx_count;
817 if (netif_running(adapter->netdev))
820 clear_bit(__IGB_RESETTING, &adapter->state);
825 /* ethtool register test data */
826 struct igb_reg_test {
835 /* In the hardware, registers are laid out either singly, in arrays
836 * spaced 0x100 bytes apart, or in contiguous tables. We assume
837 * most tests take place on arrays or single registers (handled
838 * as a single-element array) and special-case the tables.
839 * Table tests are always pattern tests.
841 * We also make provision for some required setup steps by specifying
842 * registers to be written without any read-back testing.
845 #define PATTERN_TEST 1
846 #define SET_READ_TEST 2
847 #define WRITE_NO_TEST 3
848 #define TABLE32_TEST 4
849 #define TABLE64_TEST_LO 5
850 #define TABLE64_TEST_HI 6
853 static struct igb_reg_test reg_test_82576[] = {
854 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
855 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
856 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
857 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
858 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
859 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
860 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
861 { E1000_RDBAL(4), 0x40, 8, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
862 { E1000_RDBAH(4), 0x40, 8, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
863 { E1000_RDLEN(4), 0x40, 8, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
864 /* Enable all four RX queues before testing. */
865 { E1000_RXDCTL(0), 0x100, 1, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
866 /* RDH is read-only for 82576, only test RDT. */
867 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
868 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
869 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
870 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
871 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
872 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
873 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
874 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
875 { E1000_TDBAL(4), 0x40, 8, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
876 { E1000_TDBAH(4), 0x40, 8, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
877 { E1000_TDLEN(4), 0x40, 8, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
878 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
879 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
880 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
881 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
882 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
883 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
884 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
885 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
886 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
890 /* 82575 register test */
891 static struct igb_reg_test reg_test_82575[] = {
892 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
893 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
894 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
895 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
896 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
897 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
898 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
899 /* Enable all four RX queues before testing. */
900 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
901 /* RDH is read-only for 82575, only test RDT. */
902 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
903 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
904 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
905 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
906 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
907 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
908 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
909 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
910 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
911 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
912 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
913 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
914 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
915 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
916 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
917 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
921 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
922 int reg, u32 mask, u32 write)
926 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
927 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
928 writel((_test[pat] & write), (adapter->hw.hw_addr + reg));
929 val = readl(adapter->hw.hw_addr + reg);
930 if (val != (_test[pat] & write & mask)) {
931 dev_err(&adapter->pdev->dev, "pattern test reg %04X "
932 "failed: got 0x%08X expected 0x%08X\n",
933 reg, val, (_test[pat] & write & mask));
941 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
942 int reg, u32 mask, u32 write)
945 writel((write & mask), (adapter->hw.hw_addr + reg));
946 val = readl(adapter->hw.hw_addr + reg);
947 if ((write & mask) != (val & mask)) {
948 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
949 " got 0x%08X expected 0x%08X\n", reg,
950 (val & mask), (write & mask));
957 #define REG_PATTERN_TEST(reg, mask, write) \
959 if (reg_pattern_test(adapter, data, reg, mask, write)) \
963 #define REG_SET_AND_CHECK(reg, mask, write) \
965 if (reg_set_and_check(adapter, data, reg, mask, write)) \
969 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
971 struct e1000_hw *hw = &adapter->hw;
972 struct igb_reg_test *test;
973 u32 value, before, after;
978 switch (adapter->hw.mac.type) {
980 test = reg_test_82576;
983 test = reg_test_82575;
987 /* Because the status register is such a special case,
988 * we handle it separately from the rest of the register
989 * tests. Some bits are read-only, some toggle, and some
990 * are writable on newer MACs.
992 before = rd32(E1000_STATUS);
993 value = (rd32(E1000_STATUS) & toggle);
994 wr32(E1000_STATUS, toggle);
995 after = rd32(E1000_STATUS) & toggle;
996 if (value != after) {
997 dev_err(&adapter->pdev->dev, "failed STATUS register test "
998 "got: 0x%08X expected: 0x%08X\n", after, value);
1002 /* restore previous status */
1003 wr32(E1000_STATUS, before);
1005 /* Perform the remainder of the register test, looping through
1006 * the test table until we either fail or reach the null entry.
1009 for (i = 0; i < test->array_len; i++) {
1010 switch (test->test_type) {
1012 REG_PATTERN_TEST(test->reg + (i * test->reg_offset),
1017 REG_SET_AND_CHECK(test->reg + (i * test->reg_offset),
1023 (adapter->hw.hw_addr + test->reg)
1024 + (i * test->reg_offset));
1027 REG_PATTERN_TEST(test->reg + (i * 4),
1031 case TABLE64_TEST_LO:
1032 REG_PATTERN_TEST(test->reg + (i * 8),
1036 case TABLE64_TEST_HI:
1037 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1050 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1057 /* Read and add up the contents of the EEPROM */
1058 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1059 if ((adapter->hw.nvm.ops.read_nvm(&adapter->hw, i, 1, &temp))
1067 /* If Checksum is not Correct return error else test passed */
1068 if ((checksum != (u16) NVM_SUM) && !(*data))
1074 static irqreturn_t igb_test_intr(int irq, void *data)
1076 struct net_device *netdev = (struct net_device *) data;
1077 struct igb_adapter *adapter = netdev_priv(netdev);
1078 struct e1000_hw *hw = &adapter->hw;
1080 adapter->test_icr |= rd32(E1000_ICR);
1085 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1087 struct e1000_hw *hw = &adapter->hw;
1088 struct net_device *netdev = adapter->netdev;
1089 u32 mask, i = 0, shared_int = true;
1090 u32 irq = adapter->pdev->irq;
1094 /* Hook up test interrupt handler just for this test */
1095 if (adapter->msix_entries) {
1096 /* NOTE: we don't test MSI-X interrupts here, yet */
1098 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1100 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1104 } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1105 netdev->name, netdev)) {
1107 } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1108 netdev->name, netdev)) {
1112 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1113 (shared_int ? "shared" : "unshared"));
1115 /* Disable all the interrupts */
1116 wr32(E1000_IMC, 0xFFFFFFFF);
1119 /* Test each interrupt */
1120 for (; i < 10; i++) {
1121 /* Interrupt to test */
1125 /* Disable the interrupt to be reported in
1126 * the cause register and then force the same
1127 * interrupt and see if one gets posted. If
1128 * an interrupt was posted to the bus, the
1131 adapter->test_icr = 0;
1132 wr32(E1000_IMC, ~mask & 0x00007FFF);
1133 wr32(E1000_ICS, ~mask & 0x00007FFF);
1136 if (adapter->test_icr & mask) {
1142 /* Enable the interrupt to be reported in
1143 * the cause register and then force the same
1144 * interrupt and see if one gets posted. If
1145 * an interrupt was not posted to the bus, the
1148 adapter->test_icr = 0;
1149 wr32(E1000_IMS, mask);
1150 wr32(E1000_ICS, mask);
1153 if (!(adapter->test_icr & mask)) {
1159 /* Disable the other interrupts to be reported in
1160 * the cause register and then force the other
1161 * interrupts and see if any get posted. If
1162 * an interrupt was posted to the bus, the
1165 adapter->test_icr = 0;
1166 wr32(E1000_IMC, ~mask & 0x00007FFF);
1167 wr32(E1000_ICS, ~mask & 0x00007FFF);
1170 if (adapter->test_icr) {
1177 /* Disable all the interrupts */
1178 wr32(E1000_IMC, 0xFFFFFFFF);
1181 /* Unhook test interrupt handler */
1182 free_irq(irq, netdev);
1187 static void igb_free_desc_rings(struct igb_adapter *adapter)
1189 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1190 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1191 struct pci_dev *pdev = adapter->pdev;
1194 if (tx_ring->desc && tx_ring->buffer_info) {
1195 for (i = 0; i < tx_ring->count; i++) {
1196 struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
1198 pci_unmap_single(pdev, buf->dma, buf->length,
1201 dev_kfree_skb(buf->skb);
1205 if (rx_ring->desc && rx_ring->buffer_info) {
1206 for (i = 0; i < rx_ring->count; i++) {
1207 struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
1209 pci_unmap_single(pdev, buf->dma,
1211 PCI_DMA_FROMDEVICE);
1213 dev_kfree_skb(buf->skb);
1217 if (tx_ring->desc) {
1218 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
1220 tx_ring->desc = NULL;
1222 if (rx_ring->desc) {
1223 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
1225 rx_ring->desc = NULL;
1228 kfree(tx_ring->buffer_info);
1229 tx_ring->buffer_info = NULL;
1230 kfree(rx_ring->buffer_info);
1231 rx_ring->buffer_info = NULL;
1236 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1238 struct e1000_hw *hw = &adapter->hw;
1239 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1240 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1241 struct pci_dev *pdev = adapter->pdev;
1245 /* Setup Tx descriptor ring and Tx buffers */
1247 if (!tx_ring->count)
1248 tx_ring->count = IGB_DEFAULT_TXD;
1250 tx_ring->buffer_info = kcalloc(tx_ring->count,
1251 sizeof(struct igb_buffer),
1253 if (!tx_ring->buffer_info) {
1258 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1259 tx_ring->size = ALIGN(tx_ring->size, 4096);
1260 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1262 if (!tx_ring->desc) {
1266 tx_ring->next_to_use = tx_ring->next_to_clean = 0;
1268 wr32(E1000_TDBAL(0),
1269 ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1270 wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
1271 wr32(E1000_TDLEN(0),
1272 tx_ring->count * sizeof(struct e1000_tx_desc));
1273 wr32(E1000_TDH(0), 0);
1274 wr32(E1000_TDT(0), 0);
1276 E1000_TCTL_PSP | E1000_TCTL_EN |
1277 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1278 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1280 for (i = 0; i < tx_ring->count; i++) {
1281 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1282 struct sk_buff *skb;
1283 unsigned int size = 1024;
1285 skb = alloc_skb(size, GFP_KERNEL);
1291 tx_ring->buffer_info[i].skb = skb;
1292 tx_ring->buffer_info[i].length = skb->len;
1293 tx_ring->buffer_info[i].dma =
1294 pci_map_single(pdev, skb->data, skb->len,
1296 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1297 tx_desc->lower.data = cpu_to_le32(skb->len);
1298 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1299 E1000_TXD_CMD_IFCS |
1301 tx_desc->upper.data = 0;
1304 /* Setup Rx descriptor ring and Rx buffers */
1306 if (!rx_ring->count)
1307 rx_ring->count = IGB_DEFAULT_RXD;
1309 rx_ring->buffer_info = kcalloc(rx_ring->count,
1310 sizeof(struct igb_buffer),
1312 if (!rx_ring->buffer_info) {
1317 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1318 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1320 if (!rx_ring->desc) {
1324 rx_ring->next_to_use = rx_ring->next_to_clean = 0;
1326 rctl = rd32(E1000_RCTL);
1327 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1328 wr32(E1000_RDBAL(0),
1329 ((u64) rx_ring->dma & 0xFFFFFFFF));
1330 wr32(E1000_RDBAH(0),
1331 ((u64) rx_ring->dma >> 32));
1332 wr32(E1000_RDLEN(0), rx_ring->size);
1333 wr32(E1000_RDH(0), 0);
1334 wr32(E1000_RDT(0), 0);
1335 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1336 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1337 E1000_RCTL_RDMTS_HALF |
1338 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1339 wr32(E1000_RCTL, rctl);
1340 wr32(E1000_SRRCTL(0), 0);
1342 for (i = 0; i < rx_ring->count; i++) {
1343 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1344 struct sk_buff *skb;
1346 skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
1352 skb_reserve(skb, NET_IP_ALIGN);
1353 rx_ring->buffer_info[i].skb = skb;
1354 rx_ring->buffer_info[i].dma =
1355 pci_map_single(pdev, skb->data, IGB_RXBUFFER_2048,
1356 PCI_DMA_FROMDEVICE);
1357 rx_desc->buffer_addr = cpu_to_le64(rx_ring->buffer_info[i].dma);
1358 memset(skb->data, 0x00, skb->len);
1364 igb_free_desc_rings(adapter);
1368 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1370 struct e1000_hw *hw = &adapter->hw;
1372 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1373 igb_write_phy_reg(hw, 29, 0x001F);
1374 igb_write_phy_reg(hw, 30, 0x8FFC);
1375 igb_write_phy_reg(hw, 29, 0x001A);
1376 igb_write_phy_reg(hw, 30, 0x8FF0);
1379 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1381 struct e1000_hw *hw = &adapter->hw;
1385 hw->mac.autoneg = false;
1387 if (hw->phy.type == e1000_phy_m88) {
1388 /* Auto-MDI/MDIX Off */
1389 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1390 /* reset to update Auto-MDI/MDIX */
1391 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1393 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1396 ctrl_reg = rd32(E1000_CTRL);
1398 /* force 1000, set loopback */
1399 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1401 /* Now set up the MAC to the same speed/duplex as the PHY. */
1402 ctrl_reg = rd32(E1000_CTRL);
1403 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1404 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1405 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1406 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1407 E1000_CTRL_FD); /* Force Duplex to FULL */
1409 if (hw->phy.media_type == e1000_media_type_copper &&
1410 hw->phy.type == e1000_phy_m88)
1411 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1413 /* Set the ILOS bit on the fiber Nic if half duplex link is
1415 stat_reg = rd32(E1000_STATUS);
1416 if ((stat_reg & E1000_STATUS_FD) == 0)
1417 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1420 wr32(E1000_CTRL, ctrl_reg);
1422 /* Disable the receiver on the PHY so when a cable is plugged in, the
1423 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1425 if (hw->phy.type == e1000_phy_m88)
1426 igb_phy_disable_receiver(adapter);
1433 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1435 return igb_integrated_phy_loopback(adapter);
1438 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1440 struct e1000_hw *hw = &adapter->hw;
1443 if (hw->phy.media_type == e1000_media_type_fiber ||
1444 hw->phy.media_type == e1000_media_type_internal_serdes) {
1445 reg = rd32(E1000_RCTL);
1446 reg |= E1000_RCTL_LBM_TCVR;
1447 wr32(E1000_RCTL, reg);
1449 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1451 reg = rd32(E1000_CTRL);
1452 reg &= ~(E1000_CTRL_RFCE |
1455 reg |= E1000_CTRL_SLU |
1457 wr32(E1000_CTRL, reg);
1459 /* Unset switch control to serdes energy detect */
1460 reg = rd32(E1000_CONNSW);
1461 reg &= ~E1000_CONNSW_ENRGSRC;
1462 wr32(E1000_CONNSW, reg);
1464 /* Set PCS register for forced speed */
1465 reg = rd32(E1000_PCS_LCTL);
1466 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1467 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1468 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1469 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1470 E1000_PCS_LCTL_FSD | /* Force Speed */
1471 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1472 wr32(E1000_PCS_LCTL, reg);
1475 } else if (hw->phy.media_type == e1000_media_type_copper) {
1476 return igb_set_phy_loopback(adapter);
1482 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1484 struct e1000_hw *hw = &adapter->hw;
1488 rctl = rd32(E1000_RCTL);
1489 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1490 wr32(E1000_RCTL, rctl);
1492 hw->mac.autoneg = true;
1493 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1494 if (phy_reg & MII_CR_LOOPBACK) {
1495 phy_reg &= ~MII_CR_LOOPBACK;
1496 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1497 igb_phy_sw_reset(hw);
1501 static void igb_create_lbtest_frame(struct sk_buff *skb,
1502 unsigned int frame_size)
1504 memset(skb->data, 0xFF, frame_size);
1506 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1507 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1508 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1511 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1514 if (*(skb->data + 3) == 0xFF)
1515 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1516 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1521 static int igb_run_loopback_test(struct igb_adapter *adapter)
1523 struct e1000_hw *hw = &adapter->hw;
1524 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1525 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1526 struct pci_dev *pdev = adapter->pdev;
1527 int i, j, k, l, lc, good_cnt;
1531 wr32(E1000_RDT(0), rx_ring->count - 1);
1533 /* Calculate the loop count based on the largest descriptor ring
1534 * The idea is to wrap the largest ring a number of times using 64
1535 * send/receive pairs during each loop
1538 if (rx_ring->count <= tx_ring->count)
1539 lc = ((tx_ring->count / 64) * 2) + 1;
1541 lc = ((rx_ring->count / 64) * 2) + 1;
1544 for (j = 0; j <= lc; j++) { /* loop count loop */
1545 for (i = 0; i < 64; i++) { /* send the packets */
1546 igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1548 pci_dma_sync_single_for_device(pdev,
1549 tx_ring->buffer_info[k].dma,
1550 tx_ring->buffer_info[k].length,
1553 if (k == tx_ring->count)
1556 wr32(E1000_TDT(0), k);
1558 time = jiffies; /* set the start time for the receive */
1560 do { /* receive the sent packets */
1561 pci_dma_sync_single_for_cpu(pdev,
1562 rx_ring->buffer_info[l].dma,
1564 PCI_DMA_FROMDEVICE);
1566 ret_val = igb_check_lbtest_frame(
1567 rx_ring->buffer_info[l].skb, 1024);
1571 if (l == rx_ring->count)
1573 /* time + 20 msecs (200 msecs on 2.4) is more than
1574 * enough time to complete the receives, if it's
1575 * exceeded, break and error off
1577 } while (good_cnt < 64 && jiffies < (time + 20));
1578 if (good_cnt != 64) {
1579 ret_val = 13; /* ret_val is the same as mis-compare */
1582 if (jiffies >= (time + 20)) {
1583 ret_val = 14; /* error code for time out error */
1586 } /* end loop count loop */
1590 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1592 /* PHY loopback cannot be performed if SoL/IDER
1593 * sessions are active */
1594 if (igb_check_reset_block(&adapter->hw)) {
1595 dev_err(&adapter->pdev->dev,
1596 "Cannot do PHY loopback test "
1597 "when SoL/IDER is active.\n");
1601 *data = igb_setup_desc_rings(adapter);
1604 *data = igb_setup_loopback_test(adapter);
1607 *data = igb_run_loopback_test(adapter);
1608 igb_loopback_cleanup(adapter);
1611 igb_free_desc_rings(adapter);
1616 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1618 struct e1000_hw *hw = &adapter->hw;
1620 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1622 hw->mac.serdes_has_link = false;
1624 /* On some blade server designs, link establishment
1625 * could take as long as 2-3 minutes */
1627 hw->mac.ops.check_for_link(&adapter->hw);
1628 if (hw->mac.serdes_has_link)
1631 } while (i++ < 3750);
1635 hw->mac.ops.check_for_link(&adapter->hw);
1636 if (hw->mac.autoneg)
1639 if (!(rd32(E1000_STATUS) &
1646 static void igb_diag_test(struct net_device *netdev,
1647 struct ethtool_test *eth_test, u64 *data)
1649 struct igb_adapter *adapter = netdev_priv(netdev);
1650 u16 autoneg_advertised;
1651 u8 forced_speed_duplex, autoneg;
1652 bool if_running = netif_running(netdev);
1654 set_bit(__IGB_TESTING, &adapter->state);
1655 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1658 /* save speed, duplex, autoneg settings */
1659 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1660 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1661 autoneg = adapter->hw.mac.autoneg;
1663 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1665 /* Link test performed before hardware reset so autoneg doesn't
1666 * interfere with test result */
1667 if (igb_link_test(adapter, &data[4]))
1668 eth_test->flags |= ETH_TEST_FL_FAILED;
1671 /* indicate we're in test mode */
1676 if (igb_reg_test(adapter, &data[0]))
1677 eth_test->flags |= ETH_TEST_FL_FAILED;
1680 if (igb_eeprom_test(adapter, &data[1]))
1681 eth_test->flags |= ETH_TEST_FL_FAILED;
1684 if (igb_intr_test(adapter, &data[2]))
1685 eth_test->flags |= ETH_TEST_FL_FAILED;
1688 if (igb_loopback_test(adapter, &data[3]))
1689 eth_test->flags |= ETH_TEST_FL_FAILED;
1691 /* restore speed, duplex, autoneg settings */
1692 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1693 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1694 adapter->hw.mac.autoneg = autoneg;
1696 /* force this routine to wait until autoneg complete/timeout */
1697 adapter->hw.phy.autoneg_wait_to_complete = true;
1699 adapter->hw.phy.autoneg_wait_to_complete = false;
1701 clear_bit(__IGB_TESTING, &adapter->state);
1705 dev_info(&adapter->pdev->dev, "online testing starting\n");
1707 if (igb_link_test(adapter, &data[4]))
1708 eth_test->flags |= ETH_TEST_FL_FAILED;
1710 /* Online tests aren't run; pass by default */
1716 clear_bit(__IGB_TESTING, &adapter->state);
1718 msleep_interruptible(4 * 1000);
1721 static int igb_wol_exclusion(struct igb_adapter *adapter,
1722 struct ethtool_wolinfo *wol)
1724 struct e1000_hw *hw = &adapter->hw;
1725 int retval = 1; /* fail by default */
1727 switch (hw->device_id) {
1728 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1729 /* WoL not supported */
1732 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1733 case E1000_DEV_ID_82576_FIBER:
1734 case E1000_DEV_ID_82576_SERDES:
1735 /* Wake events not supported on port B */
1736 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1740 /* return success for non excluded adapter ports */
1744 /* dual port cards only support WoL on port A from now on
1745 * unless it was enabled in the eeprom for port B
1746 * so exclude FUNC_1 ports from having WoL enabled */
1747 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1748 !adapter->eeprom_wol) {
1759 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1761 struct igb_adapter *adapter = netdev_priv(netdev);
1763 wol->supported = WAKE_UCAST | WAKE_MCAST |
1764 WAKE_BCAST | WAKE_MAGIC;
1767 /* this function will set ->supported = 0 and return 1 if wol is not
1768 * supported by this hardware */
1769 if (igb_wol_exclusion(adapter, wol) ||
1770 !device_can_wakeup(&adapter->pdev->dev))
1773 /* apply any specific unsupported masks here */
1774 switch (adapter->hw.device_id) {
1779 if (adapter->wol & E1000_WUFC_EX)
1780 wol->wolopts |= WAKE_UCAST;
1781 if (adapter->wol & E1000_WUFC_MC)
1782 wol->wolopts |= WAKE_MCAST;
1783 if (adapter->wol & E1000_WUFC_BC)
1784 wol->wolopts |= WAKE_BCAST;
1785 if (adapter->wol & E1000_WUFC_MAG)
1786 wol->wolopts |= WAKE_MAGIC;
1791 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1793 struct igb_adapter *adapter = netdev_priv(netdev);
1794 struct e1000_hw *hw = &adapter->hw;
1796 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1799 if (igb_wol_exclusion(adapter, wol) ||
1800 !device_can_wakeup(&adapter->pdev->dev))
1801 return wol->wolopts ? -EOPNOTSUPP : 0;
1803 switch (hw->device_id) {
1808 /* these settings will always override what we currently have */
1811 if (wol->wolopts & WAKE_UCAST)
1812 adapter->wol |= E1000_WUFC_EX;
1813 if (wol->wolopts & WAKE_MCAST)
1814 adapter->wol |= E1000_WUFC_MC;
1815 if (wol->wolopts & WAKE_BCAST)
1816 adapter->wol |= E1000_WUFC_BC;
1817 if (wol->wolopts & WAKE_MAGIC)
1818 adapter->wol |= E1000_WUFC_MAG;
1820 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1825 /* toggle LED 4 times per second = 2 "blinks" per second */
1826 #define IGB_ID_INTERVAL (HZ/4)
1828 /* bit defines for adapter->led_status */
1829 #define IGB_LED_ON 0
1831 static int igb_phys_id(struct net_device *netdev, u32 data)
1833 struct igb_adapter *adapter = netdev_priv(netdev);
1834 struct e1000_hw *hw = &adapter->hw;
1836 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1837 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1840 msleep_interruptible(data * 1000);
1843 clear_bit(IGB_LED_ON, &adapter->led_status);
1844 igb_cleanup_led(hw);
1849 static int igb_set_coalesce(struct net_device *netdev,
1850 struct ethtool_coalesce *ec)
1852 struct igb_adapter *adapter = netdev_priv(netdev);
1853 struct e1000_hw *hw = &adapter->hw;
1856 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1857 ((ec->rx_coalesce_usecs > 3) &&
1858 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1859 (ec->rx_coalesce_usecs == 2))
1862 /* convert to rate of irq's per second */
1863 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
1864 adapter->itr_setting = ec->rx_coalesce_usecs;
1865 adapter->itr = IGB_START_ITR;
1867 adapter->itr_setting = ec->rx_coalesce_usecs << 2;
1868 adapter->itr = adapter->itr_setting;
1871 for (i = 0; i < adapter->num_rx_queues; i++)
1872 wr32(adapter->rx_ring[i].itr_register, adapter->itr);
1877 static int igb_get_coalesce(struct net_device *netdev,
1878 struct ethtool_coalesce *ec)
1880 struct igb_adapter *adapter = netdev_priv(netdev);
1882 if (adapter->itr_setting <= 3)
1883 ec->rx_coalesce_usecs = adapter->itr_setting;
1885 ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
1891 static int igb_nway_reset(struct net_device *netdev)
1893 struct igb_adapter *adapter = netdev_priv(netdev);
1894 if (netif_running(netdev))
1895 igb_reinit_locked(adapter);
1899 static int igb_get_sset_count(struct net_device *netdev, int sset)
1903 return IGB_STATS_LEN;
1905 return IGB_TEST_LEN;
1911 static void igb_get_ethtool_stats(struct net_device *netdev,
1912 struct ethtool_stats *stats, u64 *data)
1914 struct igb_adapter *adapter = netdev_priv(netdev);
1916 int stat_count = sizeof(struct igb_queue_stats) / sizeof(u64);
1920 igb_update_stats(adapter);
1921 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1922 char *p = (char *)adapter+igb_gstrings_stats[i].stat_offset;
1923 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1924 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1926 for (j = 0; j < adapter->num_tx_queues; j++) {
1928 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
1929 for (k = 0; k < stat_count; k++)
1930 data[i + k] = queue_stat[k];
1933 for (j = 0; j < adapter->num_rx_queues; j++) {
1935 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
1936 for (k = 0; k < stat_count; k++)
1937 data[i + k] = queue_stat[k];
1942 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1944 struct igb_adapter *adapter = netdev_priv(netdev);
1948 switch (stringset) {
1950 memcpy(data, *igb_gstrings_test,
1951 IGB_TEST_LEN*ETH_GSTRING_LEN);
1954 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1955 memcpy(p, igb_gstrings_stats[i].stat_string,
1957 p += ETH_GSTRING_LEN;
1959 for (i = 0; i < adapter->num_tx_queues; i++) {
1960 sprintf(p, "tx_queue_%u_packets", i);
1961 p += ETH_GSTRING_LEN;
1962 sprintf(p, "tx_queue_%u_bytes", i);
1963 p += ETH_GSTRING_LEN;
1965 for (i = 0; i < adapter->num_rx_queues; i++) {
1966 sprintf(p, "rx_queue_%u_packets", i);
1967 p += ETH_GSTRING_LEN;
1968 sprintf(p, "rx_queue_%u_bytes", i);
1969 p += ETH_GSTRING_LEN;
1971 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
1976 static struct ethtool_ops igb_ethtool_ops = {
1977 .get_settings = igb_get_settings,
1978 .set_settings = igb_set_settings,
1979 .get_drvinfo = igb_get_drvinfo,
1980 .get_regs_len = igb_get_regs_len,
1981 .get_regs = igb_get_regs,
1982 .get_wol = igb_get_wol,
1983 .set_wol = igb_set_wol,
1984 .get_msglevel = igb_get_msglevel,
1985 .set_msglevel = igb_set_msglevel,
1986 .nway_reset = igb_nway_reset,
1987 .get_link = ethtool_op_get_link,
1988 .get_eeprom_len = igb_get_eeprom_len,
1989 .get_eeprom = igb_get_eeprom,
1990 .set_eeprom = igb_set_eeprom,
1991 .get_ringparam = igb_get_ringparam,
1992 .set_ringparam = igb_set_ringparam,
1993 .get_pauseparam = igb_get_pauseparam,
1994 .set_pauseparam = igb_set_pauseparam,
1995 .get_rx_csum = igb_get_rx_csum,
1996 .set_rx_csum = igb_set_rx_csum,
1997 .get_tx_csum = igb_get_tx_csum,
1998 .set_tx_csum = igb_set_tx_csum,
1999 .get_sg = ethtool_op_get_sg,
2000 .set_sg = ethtool_op_set_sg,
2001 .get_tso = ethtool_op_get_tso,
2002 .set_tso = igb_set_tso,
2003 .self_test = igb_diag_test,
2004 .get_strings = igb_get_strings,
2005 .phys_id = igb_phys_id,
2006 .get_sset_count = igb_get_sset_count,
2007 .get_ethtool_stats = igb_get_ethtool_stats,
2008 .get_coalesce = igb_get_coalesce,
2009 .set_coalesce = igb_set_coalesce,
2012 void igb_set_ethtool_ops(struct net_device *netdev)
2014 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);