2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * IPv4 specific functions
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
16 * See tcp.c for author information
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
54 #include <linux/types.h>
55 #include <linux/fcntl.h>
56 #include <linux/module.h>
57 #include <linux/random.h>
58 #include <linux/cache.h>
59 #include <linux/jhash.h>
60 #include <linux/init.h>
61 #include <linux/times.h>
63 #include <net/net_namespace.h>
65 #include <net/inet_hashtables.h>
67 #include <net/transp_v6.h>
69 #include <net/inet_common.h>
70 #include <net/timewait_sock.h>
72 #include <net/netdma.h>
74 #include <linux/inet.h>
75 #include <linux/ipv6.h>
76 #include <linux/stddef.h>
77 #include <linux/proc_fs.h>
78 #include <linux/seq_file.h>
80 #include <linux/crypto.h>
81 #include <linux/scatterlist.h>
83 int sysctl_tcp_tw_reuse __read_mostly;
84 int sysctl_tcp_low_latency __read_mostly;
87 #ifdef CONFIG_TCP_MD5SIG
88 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
90 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
91 __be32 daddr, __be32 saddr, struct tcphdr *th);
94 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
100 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
101 .lhash_lock = __RW_LOCK_UNLOCKED(tcp_hashinfo.lhash_lock),
102 .lhash_users = ATOMIC_INIT(0),
103 .lhash_wait = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
106 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
108 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
111 tcp_hdr(skb)->source);
114 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
116 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
117 struct tcp_sock *tp = tcp_sk(sk);
119 /* With PAWS, it is safe from the viewpoint
120 of data integrity. Even without PAWS it is safe provided sequence
121 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
123 Actually, the idea is close to VJ's one, only timestamp cache is
124 held not per host, but per port pair and TW bucket is used as state
127 If TW bucket has been already destroyed we fall back to VJ's scheme
128 and use initial timestamp retrieved from peer table.
130 if (tcptw->tw_ts_recent_stamp &&
131 (twp == NULL || (sysctl_tcp_tw_reuse &&
132 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
133 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
134 if (tp->write_seq == 0)
136 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
137 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
145 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
147 /* This will initiate an outgoing connection. */
148 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
150 struct inet_sock *inet = inet_sk(sk);
151 struct tcp_sock *tp = tcp_sk(sk);
152 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
154 __be32 daddr, nexthop;
158 if (addr_len < sizeof(struct sockaddr_in))
161 if (usin->sin_family != AF_INET)
162 return -EAFNOSUPPORT;
164 nexthop = daddr = usin->sin_addr.s_addr;
165 if (inet->opt && inet->opt->srr) {
168 nexthop = inet->opt->faddr;
171 tmp = ip_route_connect(&rt, nexthop, inet->saddr,
172 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174 inet->sport, usin->sin_port, sk, 1);
176 if (tmp == -ENETUNREACH)
177 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
181 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
186 if (!inet->opt || !inet->opt->srr)
190 inet->saddr = rt->rt_src;
191 inet->rcv_saddr = inet->saddr;
193 if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
194 /* Reset inherited state */
195 tp->rx_opt.ts_recent = 0;
196 tp->rx_opt.ts_recent_stamp = 0;
200 if (tcp_death_row.sysctl_tw_recycle &&
201 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
202 struct inet_peer *peer = rt_get_peer(rt);
204 * VJ's idea. We save last timestamp seen from
205 * the destination in peer table, when entering state
206 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
207 * when trying new connection.
210 peer->tcp_ts_stamp + TCP_PAWS_MSL >= get_seconds()) {
211 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
212 tp->rx_opt.ts_recent = peer->tcp_ts;
216 inet->dport = usin->sin_port;
219 inet_csk(sk)->icsk_ext_hdr_len = 0;
221 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
223 tp->rx_opt.mss_clamp = 536;
225 /* Socket identity is still unknown (sport may be zero).
226 * However we set state to SYN-SENT and not releasing socket
227 * lock select source port, enter ourselves into the hash tables and
228 * complete initialization after this.
230 tcp_set_state(sk, TCP_SYN_SENT);
231 err = inet_hash_connect(&tcp_death_row, sk);
235 err = ip_route_newports(&rt, IPPROTO_TCP,
236 inet->sport, inet->dport, sk);
240 /* OK, now commit destination to socket. */
241 sk->sk_gso_type = SKB_GSO_TCPV4;
242 sk_setup_caps(sk, &rt->u.dst);
245 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
250 inet->id = tp->write_seq ^ jiffies;
252 err = tcp_connect(sk);
261 * This unhashes the socket and releases the local port,
264 tcp_set_state(sk, TCP_CLOSE);
266 sk->sk_route_caps = 0;
272 * This routine does path mtu discovery as defined in RFC1191.
274 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
276 struct dst_entry *dst;
277 struct inet_sock *inet = inet_sk(sk);
279 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
280 * send out by Linux are always <576bytes so they should go through
283 if (sk->sk_state == TCP_LISTEN)
286 /* We don't check in the destentry if pmtu discovery is forbidden
287 * on this route. We just assume that no packet_to_big packets
288 * are send back when pmtu discovery is not active.
289 * There is a small race when the user changes this flag in the
290 * route, but I think that's acceptable.
292 if ((dst = __sk_dst_check(sk, 0)) == NULL)
295 dst->ops->update_pmtu(dst, mtu);
297 /* Something is about to be wrong... Remember soft error
298 * for the case, if this connection will not able to recover.
300 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
301 sk->sk_err_soft = EMSGSIZE;
305 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
306 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
307 tcp_sync_mss(sk, mtu);
309 /* Resend the TCP packet because it's
310 * clear that the old packet has been
311 * dropped. This is the new "fast" path mtu
314 tcp_simple_retransmit(sk);
315 } /* else let the usual retransmit timer handle it */
319 * This routine is called by the ICMP module when it gets some
320 * sort of error condition. If err < 0 then the socket should
321 * be closed and the error returned to the user. If err > 0
322 * it's just the icmp type << 8 | icmp code. After adjustment
323 * header points to the first 8 bytes of the tcp header. We need
324 * to find the appropriate port.
326 * The locking strategy used here is very "optimistic". When
327 * someone else accesses the socket the ICMP is just dropped
328 * and for some paths there is no check at all.
329 * A more general error queue to queue errors for later handling
330 * is probably better.
334 void tcp_v4_err(struct sk_buff *skb, u32 info)
336 struct iphdr *iph = (struct iphdr *)skb->data;
337 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
339 struct inet_sock *inet;
340 const int type = icmp_hdr(skb)->type;
341 const int code = icmp_hdr(skb)->code;
345 struct net *net = dev_net(skb->dev);
347 if (skb->len < (iph->ihl << 2) + 8) {
348 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
352 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
353 iph->saddr, th->source, inet_iif(skb));
355 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
358 if (sk->sk_state == TCP_TIME_WAIT) {
359 inet_twsk_put(inet_twsk(sk));
364 /* If too many ICMPs get dropped on busy
365 * servers this needs to be solved differently.
367 if (sock_owned_by_user(sk))
368 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
370 if (sk->sk_state == TCP_CLOSE)
374 seq = ntohl(th->seq);
375 if (sk->sk_state != TCP_LISTEN &&
376 !between(seq, tp->snd_una, tp->snd_nxt)) {
377 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
382 case ICMP_SOURCE_QUENCH:
383 /* Just silently ignore these. */
385 case ICMP_PARAMETERPROB:
388 case ICMP_DEST_UNREACH:
389 if (code > NR_ICMP_UNREACH)
392 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
393 if (!sock_owned_by_user(sk))
394 do_pmtu_discovery(sk, iph, info);
398 err = icmp_err_convert[code].errno;
400 case ICMP_TIME_EXCEEDED:
407 switch (sk->sk_state) {
408 struct request_sock *req, **prev;
410 if (sock_owned_by_user(sk))
413 req = inet_csk_search_req(sk, &prev, th->dest,
414 iph->daddr, iph->saddr);
418 /* ICMPs are not backlogged, hence we cannot get
419 an established socket here.
423 if (seq != tcp_rsk(req)->snt_isn) {
424 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
429 * Still in SYN_RECV, just remove it silently.
430 * There is no good way to pass the error to the newly
431 * created socket, and POSIX does not want network
432 * errors returned from accept().
434 inet_csk_reqsk_queue_drop(sk, req, prev);
438 case TCP_SYN_RECV: /* Cannot happen.
439 It can f.e. if SYNs crossed.
441 if (!sock_owned_by_user(sk)) {
444 sk->sk_error_report(sk);
448 sk->sk_err_soft = err;
453 /* If we've already connected we will keep trying
454 * until we time out, or the user gives up.
456 * rfc1122 4.2.3.9 allows to consider as hard errors
457 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
458 * but it is obsoleted by pmtu discovery).
460 * Note, that in modern internet, where routing is unreliable
461 * and in each dark corner broken firewalls sit, sending random
462 * errors ordered by their masters even this two messages finally lose
463 * their original sense (even Linux sends invalid PORT_UNREACHs)
465 * Now we are in compliance with RFCs.
470 if (!sock_owned_by_user(sk) && inet->recverr) {
472 sk->sk_error_report(sk);
473 } else { /* Only an error on timeout */
474 sk->sk_err_soft = err;
482 /* This routine computes an IPv4 TCP checksum. */
483 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
485 struct inet_sock *inet = inet_sk(sk);
486 struct tcphdr *th = tcp_hdr(skb);
488 if (skb->ip_summed == CHECKSUM_PARTIAL) {
489 th->check = ~tcp_v4_check(len, inet->saddr,
491 skb->csum_start = skb_transport_header(skb) - skb->head;
492 skb->csum_offset = offsetof(struct tcphdr, check);
494 th->check = tcp_v4_check(len, inet->saddr, inet->daddr,
495 csum_partial((char *)th,
501 int tcp_v4_gso_send_check(struct sk_buff *skb)
503 const struct iphdr *iph;
506 if (!pskb_may_pull(skb, sizeof(*th)))
513 th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
514 skb->csum_start = skb_transport_header(skb) - skb->head;
515 skb->csum_offset = offsetof(struct tcphdr, check);
516 skb->ip_summed = CHECKSUM_PARTIAL;
521 * This routine will send an RST to the other tcp.
523 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
525 * Answer: if a packet caused RST, it is not for a socket
526 * existing in our system, if it is matched to a socket,
527 * it is just duplicate segment or bug in other side's TCP.
528 * So that we build reply only basing on parameters
529 * arrived with segment.
530 * Exception: precedence violation. We do not implement it in any case.
533 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
535 struct tcphdr *th = tcp_hdr(skb);
538 #ifdef CONFIG_TCP_MD5SIG
539 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
542 struct ip_reply_arg arg;
543 #ifdef CONFIG_TCP_MD5SIG
544 struct tcp_md5sig_key *key;
548 /* Never send a reset in response to a reset. */
552 if (skb->rtable->rt_type != RTN_LOCAL)
555 /* Swap the send and the receive. */
556 memset(&rep, 0, sizeof(rep));
557 rep.th.dest = th->source;
558 rep.th.source = th->dest;
559 rep.th.doff = sizeof(struct tcphdr) / 4;
563 rep.th.seq = th->ack_seq;
566 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
567 skb->len - (th->doff << 2));
570 memset(&arg, 0, sizeof(arg));
571 arg.iov[0].iov_base = (unsigned char *)&rep;
572 arg.iov[0].iov_len = sizeof(rep.th);
574 #ifdef CONFIG_TCP_MD5SIG
575 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
577 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
579 (TCPOPT_MD5SIG << 8) |
581 /* Update length and the length the header thinks exists */
582 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
583 rep.th.doff = arg.iov[0].iov_len / 4;
585 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
586 key, ip_hdr(skb)->saddr,
587 ip_hdr(skb)->daddr, &rep.th);
590 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
591 ip_hdr(skb)->saddr, /* XXX */
592 arg.iov[0].iov_len, IPPROTO_TCP, 0);
593 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
594 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
596 net = dev_net(skb->dst->dev);
597 ip_send_reply(net->ipv4.tcp_sock, skb,
598 &arg, arg.iov[0].iov_len);
600 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
601 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
604 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
605 outside socket context is ugly, certainly. What can I do?
608 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
609 u32 win, u32 ts, int oif,
610 struct tcp_md5sig_key *key,
613 struct tcphdr *th = tcp_hdr(skb);
616 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
617 #ifdef CONFIG_TCP_MD5SIG
618 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
622 struct ip_reply_arg arg;
623 struct net *net = dev_net(skb->dst->dev);
625 memset(&rep.th, 0, sizeof(struct tcphdr));
626 memset(&arg, 0, sizeof(arg));
628 arg.iov[0].iov_base = (unsigned char *)&rep;
629 arg.iov[0].iov_len = sizeof(rep.th);
631 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
632 (TCPOPT_TIMESTAMP << 8) |
634 rep.opt[1] = htonl(tcp_time_stamp);
635 rep.opt[2] = htonl(ts);
636 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
639 /* Swap the send and the receive. */
640 rep.th.dest = th->source;
641 rep.th.source = th->dest;
642 rep.th.doff = arg.iov[0].iov_len / 4;
643 rep.th.seq = htonl(seq);
644 rep.th.ack_seq = htonl(ack);
646 rep.th.window = htons(win);
648 #ifdef CONFIG_TCP_MD5SIG
650 int offset = (ts) ? 3 : 0;
652 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
654 (TCPOPT_MD5SIG << 8) |
656 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
657 rep.th.doff = arg.iov[0].iov_len/4;
659 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
660 key, ip_hdr(skb)->saddr,
661 ip_hdr(skb)->daddr, &rep.th);
664 arg.flags = reply_flags;
665 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
666 ip_hdr(skb)->saddr, /* XXX */
667 arg.iov[0].iov_len, IPPROTO_TCP, 0);
668 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
670 arg.bound_dev_if = oif;
672 ip_send_reply(net->ipv4.tcp_sock, skb,
673 &arg, arg.iov[0].iov_len);
675 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
678 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
680 struct inet_timewait_sock *tw = inet_twsk(sk);
681 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
683 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
684 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
687 tcp_twsk_md5_key(tcptw),
688 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
694 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
695 struct request_sock *req)
697 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
698 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
701 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
702 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
706 * Send a SYN-ACK after having received a SYN.
707 * This still operates on a request_sock only, not on a big
710 static int __tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
711 struct dst_entry *dst)
713 const struct inet_request_sock *ireq = inet_rsk(req);
715 struct sk_buff * skb;
717 /* First, grab a route. */
718 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
721 skb = tcp_make_synack(sk, dst, req);
724 struct tcphdr *th = tcp_hdr(skb);
726 th->check = tcp_v4_check(skb->len,
729 csum_partial((char *)th, skb->len,
732 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
735 err = net_xmit_eval(err);
742 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req)
744 return __tcp_v4_send_synack(sk, req, NULL);
748 * IPv4 request_sock destructor.
750 static void tcp_v4_reqsk_destructor(struct request_sock *req)
752 kfree(inet_rsk(req)->opt);
755 #ifdef CONFIG_SYN_COOKIES
756 static void syn_flood_warning(struct sk_buff *skb)
758 static unsigned long warntime;
760 if (time_after(jiffies, (warntime + HZ * 60))) {
763 "possible SYN flooding on port %d. Sending cookies.\n",
764 ntohs(tcp_hdr(skb)->dest));
770 * Save and compile IPv4 options into the request_sock if needed.
772 static struct ip_options *tcp_v4_save_options(struct sock *sk,
775 struct ip_options *opt = &(IPCB(skb)->opt);
776 struct ip_options *dopt = NULL;
778 if (opt && opt->optlen) {
779 int opt_size = optlength(opt);
780 dopt = kmalloc(opt_size, GFP_ATOMIC);
782 if (ip_options_echo(dopt, skb)) {
791 #ifdef CONFIG_TCP_MD5SIG
793 * RFC2385 MD5 checksumming requires a mapping of
794 * IP address->MD5 Key.
795 * We need to maintain these in the sk structure.
798 /* Find the Key structure for an address. */
799 static struct tcp_md5sig_key *
800 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
802 struct tcp_sock *tp = tcp_sk(sk);
805 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
807 for (i = 0; i < tp->md5sig_info->entries4; i++) {
808 if (tp->md5sig_info->keys4[i].addr == addr)
809 return &tp->md5sig_info->keys4[i].base;
814 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
815 struct sock *addr_sk)
817 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->daddr);
820 EXPORT_SYMBOL(tcp_v4_md5_lookup);
822 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
823 struct request_sock *req)
825 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
828 /* This can be called on a newly created socket, from other files */
829 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
830 u8 *newkey, u8 newkeylen)
832 /* Add Key to the list */
833 struct tcp_md5sig_key *key;
834 struct tcp_sock *tp = tcp_sk(sk);
835 struct tcp4_md5sig_key *keys;
837 key = tcp_v4_md5_do_lookup(sk, addr);
839 /* Pre-existing entry - just update that one. */
842 key->keylen = newkeylen;
844 struct tcp_md5sig_info *md5sig;
846 if (!tp->md5sig_info) {
847 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
849 if (!tp->md5sig_info) {
853 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
855 if (tcp_alloc_md5sig_pool() == NULL) {
859 md5sig = tp->md5sig_info;
861 if (md5sig->alloced4 == md5sig->entries4) {
862 keys = kmalloc((sizeof(*keys) *
863 (md5sig->entries4 + 1)), GFP_ATOMIC);
866 tcp_free_md5sig_pool();
870 if (md5sig->entries4)
871 memcpy(keys, md5sig->keys4,
872 sizeof(*keys) * md5sig->entries4);
874 /* Free old key list, and reference new one */
875 kfree(md5sig->keys4);
876 md5sig->keys4 = keys;
880 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
881 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
882 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
887 EXPORT_SYMBOL(tcp_v4_md5_do_add);
889 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
890 u8 *newkey, u8 newkeylen)
892 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->daddr,
896 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
898 struct tcp_sock *tp = tcp_sk(sk);
901 for (i = 0; i < tp->md5sig_info->entries4; i++) {
902 if (tp->md5sig_info->keys4[i].addr == addr) {
904 kfree(tp->md5sig_info->keys4[i].base.key);
905 tp->md5sig_info->entries4--;
907 if (tp->md5sig_info->entries4 == 0) {
908 kfree(tp->md5sig_info->keys4);
909 tp->md5sig_info->keys4 = NULL;
910 tp->md5sig_info->alloced4 = 0;
911 } else if (tp->md5sig_info->entries4 != i) {
912 /* Need to do some manipulation */
913 memmove(&tp->md5sig_info->keys4[i],
914 &tp->md5sig_info->keys4[i+1],
915 (tp->md5sig_info->entries4 - i) *
916 sizeof(struct tcp4_md5sig_key));
918 tcp_free_md5sig_pool();
925 EXPORT_SYMBOL(tcp_v4_md5_do_del);
927 static void tcp_v4_clear_md5_list(struct sock *sk)
929 struct tcp_sock *tp = tcp_sk(sk);
931 /* Free each key, then the set of key keys,
932 * the crypto element, and then decrement our
933 * hold on the last resort crypto.
935 if (tp->md5sig_info->entries4) {
937 for (i = 0; i < tp->md5sig_info->entries4; i++)
938 kfree(tp->md5sig_info->keys4[i].base.key);
939 tp->md5sig_info->entries4 = 0;
940 tcp_free_md5sig_pool();
942 if (tp->md5sig_info->keys4) {
943 kfree(tp->md5sig_info->keys4);
944 tp->md5sig_info->keys4 = NULL;
945 tp->md5sig_info->alloced4 = 0;
949 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
952 struct tcp_md5sig cmd;
953 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
956 if (optlen < sizeof(cmd))
959 if (copy_from_user(&cmd, optval, sizeof(cmd)))
962 if (sin->sin_family != AF_INET)
965 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
966 if (!tcp_sk(sk)->md5sig_info)
968 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
971 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
974 if (!tcp_sk(sk)->md5sig_info) {
975 struct tcp_sock *tp = tcp_sk(sk);
976 struct tcp_md5sig_info *p = kzalloc(sizeof(*p), GFP_KERNEL);
982 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
985 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
988 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
989 newkey, cmd.tcpm_keylen);
992 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
993 __be32 daddr, __be32 saddr, int nbytes)
995 struct tcp4_pseudohdr *bp;
996 struct scatterlist sg;
998 bp = &hp->md5_blk.ip4;
1001 * 1. the TCP pseudo-header (in the order: source IP address,
1002 * destination IP address, zero-padded protocol number, and
1008 bp->protocol = IPPROTO_TCP;
1009 bp->len = cpu_to_be16(nbytes);
1011 sg_init_one(&sg, bp, sizeof(*bp));
1012 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1015 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1016 __be32 daddr, __be32 saddr, struct tcphdr *th)
1018 struct tcp_md5sig_pool *hp;
1019 struct hash_desc *desc;
1021 hp = tcp_get_md5sig_pool();
1023 goto clear_hash_noput;
1024 desc = &hp->md5_desc;
1026 if (crypto_hash_init(desc))
1028 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1030 if (tcp_md5_hash_header(hp, th))
1032 if (tcp_md5_hash_key(hp, key))
1034 if (crypto_hash_final(desc, md5_hash))
1037 tcp_put_md5sig_pool();
1041 tcp_put_md5sig_pool();
1043 memset(md5_hash, 0, 16);
1047 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1048 struct sock *sk, struct request_sock *req,
1049 struct sk_buff *skb)
1051 struct tcp_md5sig_pool *hp;
1052 struct hash_desc *desc;
1053 struct tcphdr *th = tcp_hdr(skb);
1054 __be32 saddr, daddr;
1057 saddr = inet_sk(sk)->saddr;
1058 daddr = inet_sk(sk)->daddr;
1060 saddr = inet_rsk(req)->loc_addr;
1061 daddr = inet_rsk(req)->rmt_addr;
1063 const struct iphdr *iph = ip_hdr(skb);
1068 hp = tcp_get_md5sig_pool();
1070 goto clear_hash_noput;
1071 desc = &hp->md5_desc;
1073 if (crypto_hash_init(desc))
1076 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1078 if (tcp_md5_hash_header(hp, th))
1080 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1082 if (tcp_md5_hash_key(hp, key))
1084 if (crypto_hash_final(desc, md5_hash))
1087 tcp_put_md5sig_pool();
1091 tcp_put_md5sig_pool();
1093 memset(md5_hash, 0, 16);
1097 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1099 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1102 * This gets called for each TCP segment that arrives
1103 * so we want to be efficient.
1104 * We have 3 drop cases:
1105 * o No MD5 hash and one expected.
1106 * o MD5 hash and we're not expecting one.
1107 * o MD5 hash and its wrong.
1109 __u8 *hash_location = NULL;
1110 struct tcp_md5sig_key *hash_expected;
1111 const struct iphdr *iph = ip_hdr(skb);
1112 struct tcphdr *th = tcp_hdr(skb);
1114 unsigned char newhash[16];
1116 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1117 hash_location = tcp_parse_md5sig_option(th);
1119 /* We've parsed the options - do we have a hash? */
1120 if (!hash_expected && !hash_location)
1123 if (hash_expected && !hash_location) {
1124 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1128 if (!hash_expected && hash_location) {
1129 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1133 /* Okay, so this is hash_expected and hash_location -
1134 * so we need to calculate the checksum.
1136 genhash = tcp_v4_md5_hash_skb(newhash,
1140 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1141 if (net_ratelimit()) {
1142 printk(KERN_INFO "MD5 Hash failed for "
1143 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)%s\n",
1144 NIPQUAD(iph->saddr), ntohs(th->source),
1145 NIPQUAD(iph->daddr), ntohs(th->dest),
1146 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1155 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1157 .obj_size = sizeof(struct tcp_request_sock),
1158 .rtx_syn_ack = tcp_v4_send_synack,
1159 .send_ack = tcp_v4_reqsk_send_ack,
1160 .destructor = tcp_v4_reqsk_destructor,
1161 .send_reset = tcp_v4_send_reset,
1164 #ifdef CONFIG_TCP_MD5SIG
1165 static struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1166 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1170 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1171 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1172 .twsk_unique = tcp_twsk_unique,
1173 .twsk_destructor= tcp_twsk_destructor,
1176 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1178 struct inet_request_sock *ireq;
1179 struct tcp_options_received tmp_opt;
1180 struct request_sock *req;
1181 __be32 saddr = ip_hdr(skb)->saddr;
1182 __be32 daddr = ip_hdr(skb)->daddr;
1183 __u32 isn = TCP_SKB_CB(skb)->when;
1184 struct dst_entry *dst = NULL;
1185 #ifdef CONFIG_SYN_COOKIES
1186 int want_cookie = 0;
1188 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1191 /* Never answer to SYNs send to broadcast or multicast */
1192 if (skb->rtable->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1195 /* TW buckets are converted to open requests without
1196 * limitations, they conserve resources and peer is
1197 * evidently real one.
1199 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1200 #ifdef CONFIG_SYN_COOKIES
1201 if (sysctl_tcp_syncookies) {
1208 /* Accept backlog is full. If we have already queued enough
1209 * of warm entries in syn queue, drop request. It is better than
1210 * clogging syn queue with openreqs with exponentially increasing
1213 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1216 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1220 #ifdef CONFIG_TCP_MD5SIG
1221 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1224 tcp_clear_options(&tmp_opt);
1225 tmp_opt.mss_clamp = 536;
1226 tmp_opt.user_mss = tcp_sk(sk)->rx_opt.user_mss;
1228 tcp_parse_options(skb, &tmp_opt, 0);
1230 if (want_cookie && !tmp_opt.saw_tstamp)
1231 tcp_clear_options(&tmp_opt);
1233 if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
1234 /* Some OSes (unknown ones, but I see them on web server, which
1235 * contains information interesting only for windows'
1236 * users) do not send their stamp in SYN. It is easy case.
1237 * We simply do not advertise TS support.
1239 tmp_opt.saw_tstamp = 0;
1240 tmp_opt.tstamp_ok = 0;
1242 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1244 tcp_openreq_init(req, &tmp_opt, skb);
1246 if (security_inet_conn_request(sk, skb, req))
1249 ireq = inet_rsk(req);
1250 ireq->loc_addr = daddr;
1251 ireq->rmt_addr = saddr;
1252 ireq->no_srccheck = inet_sk(sk)->transparent;
1253 ireq->opt = tcp_v4_save_options(sk, skb);
1255 TCP_ECN_create_request(req, tcp_hdr(skb));
1258 #ifdef CONFIG_SYN_COOKIES
1259 syn_flood_warning(skb);
1260 req->cookie_ts = tmp_opt.tstamp_ok;
1262 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1264 struct inet_peer *peer = NULL;
1266 /* VJ's idea. We save last timestamp seen
1267 * from the destination in peer table, when entering
1268 * state TIME-WAIT, and check against it before
1269 * accepting new connection request.
1271 * If "isn" is not zero, this request hit alive
1272 * timewait bucket, so that all the necessary checks
1273 * are made in the function processing timewait state.
1275 if (tmp_opt.saw_tstamp &&
1276 tcp_death_row.sysctl_tw_recycle &&
1277 (dst = inet_csk_route_req(sk, req)) != NULL &&
1278 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1279 peer->v4daddr == saddr) {
1280 if (get_seconds() < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
1281 (s32)(peer->tcp_ts - req->ts_recent) >
1283 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1284 goto drop_and_release;
1287 /* Kill the following clause, if you dislike this way. */
1288 else if (!sysctl_tcp_syncookies &&
1289 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1290 (sysctl_max_syn_backlog >> 2)) &&
1291 (!peer || !peer->tcp_ts_stamp) &&
1292 (!dst || !dst_metric(dst, RTAX_RTT))) {
1293 /* Without syncookies last quarter of
1294 * backlog is filled with destinations,
1295 * proven to be alive.
1296 * It means that we continue to communicate
1297 * to destinations, already remembered
1298 * to the moment of synflood.
1300 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
1301 "request from " NIPQUAD_FMT "/%u\n",
1303 ntohs(tcp_hdr(skb)->source));
1304 goto drop_and_release;
1307 isn = tcp_v4_init_sequence(skb);
1309 tcp_rsk(req)->snt_isn = isn;
1311 if (__tcp_v4_send_synack(sk, req, dst) || want_cookie)
1314 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1327 * The three way handshake has completed - we got a valid synack -
1328 * now create the new socket.
1330 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1331 struct request_sock *req,
1332 struct dst_entry *dst)
1334 struct inet_request_sock *ireq;
1335 struct inet_sock *newinet;
1336 struct tcp_sock *newtp;
1338 #ifdef CONFIG_TCP_MD5SIG
1339 struct tcp_md5sig_key *key;
1342 if (sk_acceptq_is_full(sk))
1345 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1348 newsk = tcp_create_openreq_child(sk, req, skb);
1352 newsk->sk_gso_type = SKB_GSO_TCPV4;
1353 sk_setup_caps(newsk, dst);
1355 newtp = tcp_sk(newsk);
1356 newinet = inet_sk(newsk);
1357 ireq = inet_rsk(req);
1358 newinet->daddr = ireq->rmt_addr;
1359 newinet->rcv_saddr = ireq->loc_addr;
1360 newinet->saddr = ireq->loc_addr;
1361 newinet->opt = ireq->opt;
1363 newinet->mc_index = inet_iif(skb);
1364 newinet->mc_ttl = ip_hdr(skb)->ttl;
1365 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1367 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1368 newinet->id = newtp->write_seq ^ jiffies;
1370 tcp_mtup_init(newsk);
1371 tcp_sync_mss(newsk, dst_mtu(dst));
1372 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1373 if (tcp_sk(sk)->rx_opt.user_mss &&
1374 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1375 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1377 tcp_initialize_rcv_mss(newsk);
1379 #ifdef CONFIG_TCP_MD5SIG
1380 /* Copy over the MD5 key from the original socket */
1381 if ((key = tcp_v4_md5_do_lookup(sk, newinet->daddr)) != NULL) {
1383 * We're using one, so create a matching key
1384 * on the newsk structure. If we fail to get
1385 * memory, then we end up not copying the key
1388 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1390 tcp_v4_md5_do_add(newsk, inet_sk(sk)->daddr,
1391 newkey, key->keylen);
1392 newsk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1396 __inet_hash_nolisten(newsk);
1397 __inet_inherit_port(sk, newsk);
1402 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1404 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1409 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1411 struct tcphdr *th = tcp_hdr(skb);
1412 const struct iphdr *iph = ip_hdr(skb);
1414 struct request_sock **prev;
1415 /* Find possible connection requests. */
1416 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1417 iph->saddr, iph->daddr);
1419 return tcp_check_req(sk, skb, req, prev);
1421 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1422 th->source, iph->daddr, th->dest, inet_iif(skb));
1425 if (nsk->sk_state != TCP_TIME_WAIT) {
1429 inet_twsk_put(inet_twsk(nsk));
1433 #ifdef CONFIG_SYN_COOKIES
1434 if (!th->rst && !th->syn && th->ack)
1435 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1440 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1442 const struct iphdr *iph = ip_hdr(skb);
1444 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1445 if (!tcp_v4_check(skb->len, iph->saddr,
1446 iph->daddr, skb->csum)) {
1447 skb->ip_summed = CHECKSUM_UNNECESSARY;
1452 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1453 skb->len, IPPROTO_TCP, 0);
1455 if (skb->len <= 76) {
1456 return __skb_checksum_complete(skb);
1462 /* The socket must have it's spinlock held when we get
1465 * We have a potential double-lock case here, so even when
1466 * doing backlog processing we use the BH locking scheme.
1467 * This is because we cannot sleep with the original spinlock
1470 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1473 #ifdef CONFIG_TCP_MD5SIG
1475 * We really want to reject the packet as early as possible
1477 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1478 * o There is an MD5 option and we're not expecting one
1480 if (tcp_v4_inbound_md5_hash(sk, skb))
1484 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1485 TCP_CHECK_TIMER(sk);
1486 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1490 TCP_CHECK_TIMER(sk);
1494 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1497 if (sk->sk_state == TCP_LISTEN) {
1498 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1503 if (tcp_child_process(sk, nsk, skb)) {
1511 TCP_CHECK_TIMER(sk);
1512 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1516 TCP_CHECK_TIMER(sk);
1520 tcp_v4_send_reset(rsk, skb);
1523 /* Be careful here. If this function gets more complicated and
1524 * gcc suffers from register pressure on the x86, sk (in %ebx)
1525 * might be destroyed here. This current version compiles correctly,
1526 * but you have been warned.
1531 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1539 int tcp_v4_rcv(struct sk_buff *skb)
1541 const struct iphdr *iph;
1545 struct net *net = dev_net(skb->dev);
1547 if (skb->pkt_type != PACKET_HOST)
1550 /* Count it even if it's bad */
1551 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1553 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1558 if (th->doff < sizeof(struct tcphdr) / 4)
1560 if (!pskb_may_pull(skb, th->doff * 4))
1563 /* An explanation is required here, I think.
1564 * Packet length and doff are validated by header prediction,
1565 * provided case of th->doff==0 is eliminated.
1566 * So, we defer the checks. */
1567 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1572 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1573 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1574 skb->len - th->doff * 4);
1575 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1576 TCP_SKB_CB(skb)->when = 0;
1577 TCP_SKB_CB(skb)->flags = iph->tos;
1578 TCP_SKB_CB(skb)->sacked = 0;
1580 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1585 if (sk->sk_state == TCP_TIME_WAIT)
1588 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1589 goto discard_and_relse;
1592 if (sk_filter(sk, skb))
1593 goto discard_and_relse;
1597 bh_lock_sock_nested(sk);
1599 if (!sock_owned_by_user(sk)) {
1600 #ifdef CONFIG_NET_DMA
1601 struct tcp_sock *tp = tcp_sk(sk);
1602 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1603 tp->ucopy.dma_chan = get_softnet_dma();
1604 if (tp->ucopy.dma_chan)
1605 ret = tcp_v4_do_rcv(sk, skb);
1609 if (!tcp_prequeue(sk, skb))
1610 ret = tcp_v4_do_rcv(sk, skb);
1613 sk_add_backlog(sk, skb);
1621 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1624 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1626 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1628 tcp_v4_send_reset(NULL, skb);
1632 /* Discard frame. */
1641 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1642 inet_twsk_put(inet_twsk(sk));
1646 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1647 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1648 inet_twsk_put(inet_twsk(sk));
1651 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1653 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1655 iph->daddr, th->dest,
1658 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1659 inet_twsk_put(inet_twsk(sk));
1663 /* Fall through to ACK */
1666 tcp_v4_timewait_ack(sk, skb);
1670 case TCP_TW_SUCCESS:;
1675 /* VJ's idea. Save last timestamp seen from this destination
1676 * and hold it at least for normal timewait interval to use for duplicate
1677 * segment detection in subsequent connections, before they enter synchronized
1681 int tcp_v4_remember_stamp(struct sock *sk)
1683 struct inet_sock *inet = inet_sk(sk);
1684 struct tcp_sock *tp = tcp_sk(sk);
1685 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1686 struct inet_peer *peer = NULL;
1689 if (!rt || rt->rt_dst != inet->daddr) {
1690 peer = inet_getpeer(inet->daddr, 1);
1694 rt_bind_peer(rt, 1);
1699 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1700 (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1701 peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1702 peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1703 peer->tcp_ts = tp->rx_opt.ts_recent;
1713 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1715 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1718 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1720 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1721 (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1722 peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1723 peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1724 peer->tcp_ts = tcptw->tw_ts_recent;
1733 struct inet_connection_sock_af_ops ipv4_specific = {
1734 .queue_xmit = ip_queue_xmit,
1735 .send_check = tcp_v4_send_check,
1736 .rebuild_header = inet_sk_rebuild_header,
1737 .conn_request = tcp_v4_conn_request,
1738 .syn_recv_sock = tcp_v4_syn_recv_sock,
1739 .remember_stamp = tcp_v4_remember_stamp,
1740 .net_header_len = sizeof(struct iphdr),
1741 .setsockopt = ip_setsockopt,
1742 .getsockopt = ip_getsockopt,
1743 .addr2sockaddr = inet_csk_addr2sockaddr,
1744 .sockaddr_len = sizeof(struct sockaddr_in),
1745 .bind_conflict = inet_csk_bind_conflict,
1746 #ifdef CONFIG_COMPAT
1747 .compat_setsockopt = compat_ip_setsockopt,
1748 .compat_getsockopt = compat_ip_getsockopt,
1752 #ifdef CONFIG_TCP_MD5SIG
1753 static struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1754 .md5_lookup = tcp_v4_md5_lookup,
1755 .calc_md5_hash = tcp_v4_md5_hash_skb,
1756 .md5_add = tcp_v4_md5_add_func,
1757 .md5_parse = tcp_v4_parse_md5_keys,
1761 /* NOTE: A lot of things set to zero explicitly by call to
1762 * sk_alloc() so need not be done here.
1764 static int tcp_v4_init_sock(struct sock *sk)
1766 struct inet_connection_sock *icsk = inet_csk(sk);
1767 struct tcp_sock *tp = tcp_sk(sk);
1769 skb_queue_head_init(&tp->out_of_order_queue);
1770 tcp_init_xmit_timers(sk);
1771 tcp_prequeue_init(tp);
1773 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1774 tp->mdev = TCP_TIMEOUT_INIT;
1776 /* So many TCP implementations out there (incorrectly) count the
1777 * initial SYN frame in their delayed-ACK and congestion control
1778 * algorithms that we must have the following bandaid to talk
1779 * efficiently to them. -DaveM
1783 /* See draft-stevens-tcpca-spec-01 for discussion of the
1784 * initialization of these values.
1786 tp->snd_ssthresh = 0x7fffffff; /* Infinity */
1787 tp->snd_cwnd_clamp = ~0;
1788 tp->mss_cache = 536;
1790 tp->reordering = sysctl_tcp_reordering;
1791 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1793 sk->sk_state = TCP_CLOSE;
1795 sk->sk_write_space = sk_stream_write_space;
1796 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1798 icsk->icsk_af_ops = &ipv4_specific;
1799 icsk->icsk_sync_mss = tcp_sync_mss;
1800 #ifdef CONFIG_TCP_MD5SIG
1801 tp->af_specific = &tcp_sock_ipv4_specific;
1804 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1805 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1807 atomic_inc(&tcp_sockets_allocated);
1812 void tcp_v4_destroy_sock(struct sock *sk)
1814 struct tcp_sock *tp = tcp_sk(sk);
1816 tcp_clear_xmit_timers(sk);
1818 tcp_cleanup_congestion_control(sk);
1820 /* Cleanup up the write buffer. */
1821 tcp_write_queue_purge(sk);
1823 /* Cleans up our, hopefully empty, out_of_order_queue. */
1824 __skb_queue_purge(&tp->out_of_order_queue);
1826 #ifdef CONFIG_TCP_MD5SIG
1827 /* Clean up the MD5 key list, if any */
1828 if (tp->md5sig_info) {
1829 tcp_v4_clear_md5_list(sk);
1830 kfree(tp->md5sig_info);
1831 tp->md5sig_info = NULL;
1835 #ifdef CONFIG_NET_DMA
1836 /* Cleans up our sk_async_wait_queue */
1837 __skb_queue_purge(&sk->sk_async_wait_queue);
1840 /* Clean prequeue, it must be empty really */
1841 __skb_queue_purge(&tp->ucopy.prequeue);
1843 /* Clean up a referenced TCP bind bucket. */
1844 if (inet_csk(sk)->icsk_bind_hash)
1848 * If sendmsg cached page exists, toss it.
1850 if (sk->sk_sndmsg_page) {
1851 __free_page(sk->sk_sndmsg_page);
1852 sk->sk_sndmsg_page = NULL;
1855 atomic_dec(&tcp_sockets_allocated);
1858 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1860 #ifdef CONFIG_PROC_FS
1861 /* Proc filesystem TCP sock list dumping. */
1863 static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1865 return hlist_empty(head) ? NULL :
1866 list_entry(head->first, struct inet_timewait_sock, tw_node);
1869 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1871 return tw->tw_node.next ?
1872 hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1875 static void *listening_get_next(struct seq_file *seq, void *cur)
1877 struct inet_connection_sock *icsk;
1878 struct hlist_node *node;
1879 struct sock *sk = cur;
1880 struct tcp_iter_state* st = seq->private;
1881 struct net *net = seq_file_net(seq);
1885 sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1891 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1892 struct request_sock *req = cur;
1894 icsk = inet_csk(st->syn_wait_sk);
1898 if (req->rsk_ops->family == st->family) {
1904 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1907 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1909 sk = sk_next(st->syn_wait_sk);
1910 st->state = TCP_SEQ_STATE_LISTENING;
1911 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1913 icsk = inet_csk(sk);
1914 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1915 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1917 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1921 sk_for_each_from(sk, node) {
1922 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
1926 icsk = inet_csk(sk);
1927 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1928 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1930 st->uid = sock_i_uid(sk);
1931 st->syn_wait_sk = sk;
1932 st->state = TCP_SEQ_STATE_OPENREQ;
1936 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1938 if (++st->bucket < INET_LHTABLE_SIZE) {
1939 sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
1947 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1949 void *rc = listening_get_next(seq, NULL);
1951 while (rc && *pos) {
1952 rc = listening_get_next(seq, rc);
1958 static inline int empty_bucket(struct tcp_iter_state *st)
1960 return hlist_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
1961 hlist_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
1964 static void *established_get_first(struct seq_file *seq)
1966 struct tcp_iter_state* st = seq->private;
1967 struct net *net = seq_file_net(seq);
1970 for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
1972 struct hlist_node *node;
1973 struct inet_timewait_sock *tw;
1974 rwlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1976 /* Lockless fast path for the common case of empty buckets */
1977 if (empty_bucket(st))
1981 sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1982 if (sk->sk_family != st->family ||
1983 !net_eq(sock_net(sk), net)) {
1989 st->state = TCP_SEQ_STATE_TIME_WAIT;
1990 inet_twsk_for_each(tw, node,
1991 &tcp_hashinfo.ehash[st->bucket].twchain) {
1992 if (tw->tw_family != st->family ||
1993 !net_eq(twsk_net(tw), net)) {
1999 read_unlock_bh(lock);
2000 st->state = TCP_SEQ_STATE_ESTABLISHED;
2006 static void *established_get_next(struct seq_file *seq, void *cur)
2008 struct sock *sk = cur;
2009 struct inet_timewait_sock *tw;
2010 struct hlist_node *node;
2011 struct tcp_iter_state* st = seq->private;
2012 struct net *net = seq_file_net(seq);
2016 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2020 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2027 read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2028 st->state = TCP_SEQ_STATE_ESTABLISHED;
2030 /* Look for next non empty bucket */
2031 while (++st->bucket < tcp_hashinfo.ehash_size &&
2034 if (st->bucket >= tcp_hashinfo.ehash_size)
2037 read_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2038 sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
2042 sk_for_each_from(sk, node) {
2043 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2047 st->state = TCP_SEQ_STATE_TIME_WAIT;
2048 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2056 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2058 void *rc = established_get_first(seq);
2061 rc = established_get_next(seq, rc);
2067 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2070 struct tcp_iter_state* st = seq->private;
2072 inet_listen_lock(&tcp_hashinfo);
2073 st->state = TCP_SEQ_STATE_LISTENING;
2074 rc = listening_get_idx(seq, &pos);
2077 inet_listen_unlock(&tcp_hashinfo);
2078 st->state = TCP_SEQ_STATE_ESTABLISHED;
2079 rc = established_get_idx(seq, pos);
2085 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2087 struct tcp_iter_state* st = seq->private;
2088 st->state = TCP_SEQ_STATE_LISTENING;
2090 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2093 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2096 struct tcp_iter_state* st;
2098 if (v == SEQ_START_TOKEN) {
2099 rc = tcp_get_idx(seq, 0);
2104 switch (st->state) {
2105 case TCP_SEQ_STATE_OPENREQ:
2106 case TCP_SEQ_STATE_LISTENING:
2107 rc = listening_get_next(seq, v);
2109 inet_listen_unlock(&tcp_hashinfo);
2110 st->state = TCP_SEQ_STATE_ESTABLISHED;
2111 rc = established_get_first(seq);
2114 case TCP_SEQ_STATE_ESTABLISHED:
2115 case TCP_SEQ_STATE_TIME_WAIT:
2116 rc = established_get_next(seq, v);
2124 static void tcp_seq_stop(struct seq_file *seq, void *v)
2126 struct tcp_iter_state* st = seq->private;
2128 switch (st->state) {
2129 case TCP_SEQ_STATE_OPENREQ:
2131 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2132 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2134 case TCP_SEQ_STATE_LISTENING:
2135 if (v != SEQ_START_TOKEN)
2136 inet_listen_unlock(&tcp_hashinfo);
2138 case TCP_SEQ_STATE_TIME_WAIT:
2139 case TCP_SEQ_STATE_ESTABLISHED:
2141 read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2146 static int tcp_seq_open(struct inode *inode, struct file *file)
2148 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2149 struct tcp_iter_state *s;
2152 err = seq_open_net(inode, file, &afinfo->seq_ops,
2153 sizeof(struct tcp_iter_state));
2157 s = ((struct seq_file *)file->private_data)->private;
2158 s->family = afinfo->family;
2162 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2165 struct proc_dir_entry *p;
2167 afinfo->seq_fops.open = tcp_seq_open;
2168 afinfo->seq_fops.read = seq_read;
2169 afinfo->seq_fops.llseek = seq_lseek;
2170 afinfo->seq_fops.release = seq_release_net;
2172 afinfo->seq_ops.start = tcp_seq_start;
2173 afinfo->seq_ops.next = tcp_seq_next;
2174 afinfo->seq_ops.stop = tcp_seq_stop;
2176 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2177 &afinfo->seq_fops, afinfo);
2183 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2185 proc_net_remove(net, afinfo->name);
2188 static void get_openreq4(struct sock *sk, struct request_sock *req,
2189 struct seq_file *f, int i, int uid, int *len)
2191 const struct inet_request_sock *ireq = inet_rsk(req);
2192 int ttd = req->expires - jiffies;
2194 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2195 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2198 ntohs(inet_sk(sk)->sport),
2200 ntohs(ireq->rmt_port),
2202 0, 0, /* could print option size, but that is af dependent. */
2203 1, /* timers active (only the expire timer) */
2204 jiffies_to_clock_t(ttd),
2207 0, /* non standard timer */
2208 0, /* open_requests have no inode */
2209 atomic_read(&sk->sk_refcnt),
2214 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2217 unsigned long timer_expires;
2218 struct tcp_sock *tp = tcp_sk(sk);
2219 const struct inet_connection_sock *icsk = inet_csk(sk);
2220 struct inet_sock *inet = inet_sk(sk);
2221 __be32 dest = inet->daddr;
2222 __be32 src = inet->rcv_saddr;
2223 __u16 destp = ntohs(inet->dport);
2224 __u16 srcp = ntohs(inet->sport);
2226 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2228 timer_expires = icsk->icsk_timeout;
2229 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2231 timer_expires = icsk->icsk_timeout;
2232 } else if (timer_pending(&sk->sk_timer)) {
2234 timer_expires = sk->sk_timer.expires;
2237 timer_expires = jiffies;
2240 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2241 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2242 i, src, srcp, dest, destp, sk->sk_state,
2243 tp->write_seq - tp->snd_una,
2244 sk->sk_state == TCP_LISTEN ? sk->sk_ack_backlog :
2245 (tp->rcv_nxt - tp->copied_seq),
2247 jiffies_to_clock_t(timer_expires - jiffies),
2248 icsk->icsk_retransmits,
2250 icsk->icsk_probes_out,
2252 atomic_read(&sk->sk_refcnt), sk,
2253 jiffies_to_clock_t(icsk->icsk_rto),
2254 jiffies_to_clock_t(icsk->icsk_ack.ato),
2255 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2257 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh,
2261 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2262 struct seq_file *f, int i, int *len)
2266 int ttd = tw->tw_ttd - jiffies;
2271 dest = tw->tw_daddr;
2272 src = tw->tw_rcv_saddr;
2273 destp = ntohs(tw->tw_dport);
2274 srcp = ntohs(tw->tw_sport);
2276 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2277 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2278 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2279 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2280 atomic_read(&tw->tw_refcnt), tw, len);
2285 static int tcp4_seq_show(struct seq_file *seq, void *v)
2287 struct tcp_iter_state* st;
2290 if (v == SEQ_START_TOKEN) {
2291 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2292 " sl local_address rem_address st tx_queue "
2293 "rx_queue tr tm->when retrnsmt uid timeout "
2299 switch (st->state) {
2300 case TCP_SEQ_STATE_LISTENING:
2301 case TCP_SEQ_STATE_ESTABLISHED:
2302 get_tcp4_sock(v, seq, st->num, &len);
2304 case TCP_SEQ_STATE_OPENREQ:
2305 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2307 case TCP_SEQ_STATE_TIME_WAIT:
2308 get_timewait4_sock(v, seq, st->num, &len);
2311 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2316 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2320 .owner = THIS_MODULE,
2323 .show = tcp4_seq_show,
2327 static int tcp4_proc_init_net(struct net *net)
2329 return tcp_proc_register(net, &tcp4_seq_afinfo);
2332 static void tcp4_proc_exit_net(struct net *net)
2334 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2337 static struct pernet_operations tcp4_net_ops = {
2338 .init = tcp4_proc_init_net,
2339 .exit = tcp4_proc_exit_net,
2342 int __init tcp4_proc_init(void)
2344 return register_pernet_subsys(&tcp4_net_ops);
2347 void tcp4_proc_exit(void)
2349 unregister_pernet_subsys(&tcp4_net_ops);
2351 #endif /* CONFIG_PROC_FS */
2353 struct proto tcp_prot = {
2355 .owner = THIS_MODULE,
2357 .connect = tcp_v4_connect,
2358 .disconnect = tcp_disconnect,
2359 .accept = inet_csk_accept,
2361 .init = tcp_v4_init_sock,
2362 .destroy = tcp_v4_destroy_sock,
2363 .shutdown = tcp_shutdown,
2364 .setsockopt = tcp_setsockopt,
2365 .getsockopt = tcp_getsockopt,
2366 .recvmsg = tcp_recvmsg,
2367 .backlog_rcv = tcp_v4_do_rcv,
2369 .unhash = inet_unhash,
2370 .get_port = inet_csk_get_port,
2371 .enter_memory_pressure = tcp_enter_memory_pressure,
2372 .sockets_allocated = &tcp_sockets_allocated,
2373 .orphan_count = &tcp_orphan_count,
2374 .memory_allocated = &tcp_memory_allocated,
2375 .memory_pressure = &tcp_memory_pressure,
2376 .sysctl_mem = sysctl_tcp_mem,
2377 .sysctl_wmem = sysctl_tcp_wmem,
2378 .sysctl_rmem = sysctl_tcp_rmem,
2379 .max_header = MAX_TCP_HEADER,
2380 .obj_size = sizeof(struct tcp_sock),
2381 .twsk_prot = &tcp_timewait_sock_ops,
2382 .rsk_prot = &tcp_request_sock_ops,
2383 .h.hashinfo = &tcp_hashinfo,
2384 #ifdef CONFIG_COMPAT
2385 .compat_setsockopt = compat_tcp_setsockopt,
2386 .compat_getsockopt = compat_tcp_getsockopt,
2391 static int __net_init tcp_sk_init(struct net *net)
2393 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2394 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2397 static void __net_exit tcp_sk_exit(struct net *net)
2399 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2400 inet_twsk_purge(net, &tcp_hashinfo, &tcp_death_row, AF_INET);
2403 static struct pernet_operations __net_initdata tcp_sk_ops = {
2404 .init = tcp_sk_init,
2405 .exit = tcp_sk_exit,
2408 void __init tcp_v4_init(void)
2410 if (register_pernet_device(&tcp_sk_ops))
2411 panic("Failed to create the TCP control socket.\n");
2414 EXPORT_SYMBOL(ipv4_specific);
2415 EXPORT_SYMBOL(tcp_hashinfo);
2416 EXPORT_SYMBOL(tcp_prot);
2417 EXPORT_SYMBOL(tcp_v4_conn_request);
2418 EXPORT_SYMBOL(tcp_v4_connect);
2419 EXPORT_SYMBOL(tcp_v4_do_rcv);
2420 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2421 EXPORT_SYMBOL(tcp_v4_send_check);
2422 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2424 #ifdef CONFIG_PROC_FS
2425 EXPORT_SYMBOL(tcp_proc_register);
2426 EXPORT_SYMBOL(tcp_proc_unregister);
2428 EXPORT_SYMBOL(sysctl_tcp_low_latency);