2 * Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved.
3 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
34 #include <linux/spinlock.h>
35 #include <linux/idr.h>
36 #include <linux/pci.h>
38 #include <linux/delay.h>
39 #include <linux/netdevice.h>
40 #include <linux/vmalloc.h>
42 #include "ipath_kernel.h"
43 #include "ipath_verbs.h"
45 static void ipath_update_pio_bufs(struct ipath_devdata *);
47 const char *ipath_get_unit_name(int unit)
49 static char iname[16];
50 snprintf(iname, sizeof iname, "infinipath%u", unit);
54 #define DRIVER_LOAD_MSG "QLogic " IPATH_DRV_NAME " loaded: "
55 #define PFX IPATH_DRV_NAME ": "
58 * The size has to be longer than this string, so we can append
59 * board/chip information to it in the init code.
61 const char ib_ipath_version[] = IPATH_IDSTR "\n";
63 static struct idr unit_table;
64 DEFINE_SPINLOCK(ipath_devs_lock);
65 LIST_HEAD(ipath_dev_list);
67 wait_queue_head_t ipath_state_wait;
69 unsigned ipath_debug = __IPATH_INFO;
71 module_param_named(debug, ipath_debug, uint, S_IWUSR | S_IRUGO);
72 MODULE_PARM_DESC(debug, "mask for debug prints");
73 EXPORT_SYMBOL_GPL(ipath_debug);
75 unsigned ipath_mtu4096 = 1; /* max 4KB IB mtu by default, if supported */
76 module_param_named(mtu4096, ipath_mtu4096, uint, S_IRUGO);
77 MODULE_PARM_DESC(mtu4096, "enable MTU of 4096 bytes, if supported");
79 static unsigned ipath_hol_timeout_ms = 13000;
80 module_param_named(hol_timeout_ms, ipath_hol_timeout_ms, uint, S_IRUGO);
81 MODULE_PARM_DESC(hol_timeout_ms,
82 "duration of user app suspension after link failure");
84 unsigned ipath_linkrecovery = 1;
85 module_param_named(linkrecovery, ipath_linkrecovery, uint, S_IWUSR | S_IRUGO);
86 MODULE_PARM_DESC(linkrecovery, "enable workaround for link recovery issue");
88 MODULE_LICENSE("GPL");
89 MODULE_AUTHOR("QLogic <support@qlogic.com>");
90 MODULE_DESCRIPTION("QLogic InfiniPath driver");
93 * Table to translate the LINKTRAININGSTATE portion of
94 * IBCStatus to a human-readable form.
96 const char *ipath_ibcstatus_str[] = {
103 "LState6", /* unused */
104 "LState7", /* unused */
110 "CfgTxRevLane", /* unused before IBA7220 */
113 /* below were added for IBA7220 */
117 "CfgWaitCfgEnhanced",
122 "LTState18", "LTState19", "LTState1A", "LTState1B",
123 "LTState1C", "LTState1D", "LTState1E", "LTState1F"
126 static void __devexit ipath_remove_one(struct pci_dev *);
127 static int __devinit ipath_init_one(struct pci_dev *,
128 const struct pci_device_id *);
130 /* Only needed for registration, nothing else needs this info */
131 #define PCI_VENDOR_ID_PATHSCALE 0x1fc1
132 #define PCI_VENDOR_ID_QLOGIC 0x1077
133 #define PCI_DEVICE_ID_INFINIPATH_HT 0xd
134 #define PCI_DEVICE_ID_INFINIPATH_PE800 0x10
135 #define PCI_DEVICE_ID_INFINIPATH_7220 0x7220
137 /* Number of seconds before our card status check... */
138 #define STATUS_TIMEOUT 60
140 static const struct pci_device_id ipath_pci_tbl[] = {
141 { PCI_DEVICE(PCI_VENDOR_ID_PATHSCALE, PCI_DEVICE_ID_INFINIPATH_HT) },
142 { PCI_DEVICE(PCI_VENDOR_ID_PATHSCALE, PCI_DEVICE_ID_INFINIPATH_PE800) },
143 { PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_INFINIPATH_7220) },
147 MODULE_DEVICE_TABLE(pci, ipath_pci_tbl);
149 static struct pci_driver ipath_driver = {
150 .name = IPATH_DRV_NAME,
151 .probe = ipath_init_one,
152 .remove = __devexit_p(ipath_remove_one),
153 .id_table = ipath_pci_tbl,
155 .groups = ipath_driver_attr_groups,
159 static inline void read_bars(struct ipath_devdata *dd, struct pci_dev *dev,
160 u32 *bar0, u32 *bar1)
164 ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_0, bar0);
166 ipath_dev_err(dd, "failed to read bar0 before enable: "
169 ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, bar1);
171 ipath_dev_err(dd, "failed to read bar1 before enable: "
174 ipath_dbg("Read bar0 %x bar1 %x\n", *bar0, *bar1);
177 static void ipath_free_devdata(struct pci_dev *pdev,
178 struct ipath_devdata *dd)
182 pci_set_drvdata(pdev, NULL);
184 if (dd->ipath_unit != -1) {
185 spin_lock_irqsave(&ipath_devs_lock, flags);
186 idr_remove(&unit_table, dd->ipath_unit);
187 list_del(&dd->ipath_list);
188 spin_unlock_irqrestore(&ipath_devs_lock, flags);
193 static struct ipath_devdata *ipath_alloc_devdata(struct pci_dev *pdev)
196 struct ipath_devdata *dd;
199 if (!idr_pre_get(&unit_table, GFP_KERNEL)) {
200 dd = ERR_PTR(-ENOMEM);
204 dd = vmalloc(sizeof(*dd));
206 dd = ERR_PTR(-ENOMEM);
209 memset(dd, 0, sizeof(*dd));
212 spin_lock_irqsave(&ipath_devs_lock, flags);
214 ret = idr_get_new(&unit_table, dd, &dd->ipath_unit);
216 printk(KERN_ERR IPATH_DRV_NAME
217 ": Could not allocate unit ID: error %d\n", -ret);
218 ipath_free_devdata(pdev, dd);
224 pci_set_drvdata(pdev, dd);
226 list_add(&dd->ipath_list, &ipath_dev_list);
229 spin_unlock_irqrestore(&ipath_devs_lock, flags);
235 static inline struct ipath_devdata *__ipath_lookup(int unit)
237 return idr_find(&unit_table, unit);
240 struct ipath_devdata *ipath_lookup(int unit)
242 struct ipath_devdata *dd;
245 spin_lock_irqsave(&ipath_devs_lock, flags);
246 dd = __ipath_lookup(unit);
247 spin_unlock_irqrestore(&ipath_devs_lock, flags);
252 int ipath_count_units(int *npresentp, int *nupp, int *maxportsp)
254 int nunits, npresent, nup;
255 struct ipath_devdata *dd;
259 nunits = npresent = nup = maxports = 0;
261 spin_lock_irqsave(&ipath_devs_lock, flags);
263 list_for_each_entry(dd, &ipath_dev_list, ipath_list) {
265 if ((dd->ipath_flags & IPATH_PRESENT) && dd->ipath_kregbase)
268 !(dd->ipath_flags & (IPATH_DISABLED | IPATH_LINKDOWN
271 if (dd->ipath_cfgports > maxports)
272 maxports = dd->ipath_cfgports;
275 spin_unlock_irqrestore(&ipath_devs_lock, flags);
278 *npresentp = npresent;
282 *maxportsp = maxports;
288 * These next two routines are placeholders in case we don't have per-arch
289 * code for controlling write combining. If explicit control of write
290 * combining is not available, performance will probably be awful.
293 int __attribute__((weak)) ipath_enable_wc(struct ipath_devdata *dd)
298 void __attribute__((weak)) ipath_disable_wc(struct ipath_devdata *dd)
303 * Perform a PIO buffer bandwidth write test, to verify proper system
304 * configuration. Even when all the setup calls work, occasionally
305 * BIOS or other issues can prevent write combining from working, or
306 * can cause other bandwidth problems to the chip.
308 * This test simply writes the same buffer over and over again, and
309 * measures close to the peak bandwidth to the chip (not testing
310 * data bandwidth to the wire). On chips that use an address-based
311 * trigger to send packets to the wire, this is easy. On chips that
312 * use a count to trigger, we want to make sure that the packet doesn't
313 * go out on the wire, or trigger flow control checks.
315 static void ipath_verify_pioperf(struct ipath_devdata *dd)
317 u32 pbnum, cnt, lcnt;
322 piobuf = ipath_getpiobuf(dd, 0, &pbnum);
324 dev_info(&dd->pcidev->dev,
325 "No PIObufs for checking perf, skipping\n");
330 * Enough to give us a reasonable test, less than piobuf size, and
331 * likely multiple of store buffer length.
337 dev_info(&dd->pcidev->dev,
338 "Couldn't get memory for checking PIO perf,"
343 preempt_disable(); /* we want reasonably accurate elapsed time */
344 msecs = 1 + jiffies_to_msecs(jiffies);
345 for (lcnt = 0; lcnt < 10000U; lcnt++) {
346 /* wait until we cross msec boundary */
347 if (jiffies_to_msecs(jiffies) >= msecs)
352 ipath_disable_armlaunch(dd);
355 * length 0, no dwords actually sent, and mark as VL15
356 * on chips where that may matter (due to IB flowcontrol)
358 if ((dd->ipath_flags & IPATH_HAS_PBC_CNT))
359 writeq(1UL << 63, piobuf);
365 * this is only roughly accurate, since even with preempt we
366 * still take interrupts that could take a while. Running for
367 * >= 5 msec seems to get us "close enough" to accurate values
369 msecs = jiffies_to_msecs(jiffies);
370 for (emsecs = lcnt = 0; emsecs <= 5UL; lcnt++) {
371 __iowrite32_copy(piobuf + 64, addr, cnt >> 2);
372 emsecs = jiffies_to_msecs(jiffies) - msecs;
375 /* 1 GiB/sec, slightly over IB SDR line rate */
376 if (lcnt < (emsecs * 1024U))
378 "Performance problem: bandwidth to PIO buffers is "
380 lcnt / (u32) emsecs);
382 ipath_dbg("PIO buffer bandwidth %u MiB/sec is OK\n",
383 lcnt / (u32) emsecs);
390 /* disarm piobuf, so it's available again */
391 ipath_disarm_piobufs(dd, pbnum, 1);
392 ipath_enable_armlaunch(dd);
395 static int __devinit ipath_init_one(struct pci_dev *pdev,
396 const struct pci_device_id *ent)
399 struct ipath_devdata *dd;
400 unsigned long long addr;
401 u32 bar0 = 0, bar1 = 0;
404 dd = ipath_alloc_devdata(pdev);
407 printk(KERN_ERR IPATH_DRV_NAME
408 ": Could not allocate devdata: error %d\n", -ret);
412 ipath_cdbg(VERBOSE, "initializing unit #%u\n", dd->ipath_unit);
414 ret = pci_enable_device(pdev);
416 /* This can happen iff:
418 * We did a chip reset, and then failed to reprogram the
419 * BAR, or the chip reset due to an internal error. We then
420 * unloaded the driver and reloaded it.
422 * Both reset cases set the BAR back to initial state. For
423 * the latter case, the AER sticky error bit at offset 0x718
424 * should be set, but the Linux kernel doesn't yet know
425 * about that, it appears. If the original BAR was retained
426 * in the kernel data structures, this may be OK.
428 ipath_dev_err(dd, "enable unit %d failed: error %d\n",
429 dd->ipath_unit, -ret);
432 addr = pci_resource_start(pdev, 0);
433 len = pci_resource_len(pdev, 0);
434 ipath_cdbg(VERBOSE, "regbase (0) %llx len %d irq %d, vend %x/%x "
435 "driver_data %lx\n", addr, len, pdev->irq, ent->vendor,
436 ent->device, ent->driver_data);
438 read_bars(dd, pdev, &bar0, &bar1);
440 if (!bar1 && !(bar0 & ~0xf)) {
442 dev_info(&pdev->dev, "BAR is 0 (probable RESET), "
443 "rewriting as %llx\n", addr);
444 ret = pci_write_config_dword(
445 pdev, PCI_BASE_ADDRESS_0, addr);
447 ipath_dev_err(dd, "rewrite of BAR0 "
448 "failed: err %d\n", -ret);
451 ret = pci_write_config_dword(
452 pdev, PCI_BASE_ADDRESS_1, addr >> 32);
454 ipath_dev_err(dd, "rewrite of BAR1 "
455 "failed: err %d\n", -ret);
459 ipath_dev_err(dd, "BAR is 0 (probable RESET), "
460 "not usable until reboot\n");
466 ret = pci_request_regions(pdev, IPATH_DRV_NAME);
468 dev_info(&pdev->dev, "pci_request_regions unit %u fails: "
469 "err %d\n", dd->ipath_unit, -ret);
473 ret = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
476 * if the 64 bit setup fails, try 32 bit. Some systems
477 * do not setup 64 bit maps on systems with 2GB or less
480 ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
483 "Unable to set DMA mask for unit %u: %d\n",
484 dd->ipath_unit, ret);
488 ipath_dbg("No 64bit DMA mask, used 32 bit mask\n");
489 ret = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
492 "Unable to set DMA consistent mask "
494 dd->ipath_unit, ret);
499 ret = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
502 "Unable to set DMA consistent mask "
504 dd->ipath_unit, ret);
507 pci_set_master(pdev);
510 * Save BARs to rewrite after device reset. Save all 64 bits of
513 dd->ipath_pcibar0 = addr;
514 dd->ipath_pcibar1 = addr >> 32;
515 dd->ipath_deviceid = ent->device; /* save for later use */
516 dd->ipath_vendorid = ent->vendor;
518 /* setup the chip-specific functions, as early as possible. */
519 switch (ent->device) {
520 case PCI_DEVICE_ID_INFINIPATH_HT:
522 ipath_init_iba6110_funcs(dd);
525 ipath_dev_err(dd, "QLogic HT device 0x%x cannot work if "
526 "CONFIG_HT_IRQ is not enabled\n", ent->device);
529 case PCI_DEVICE_ID_INFINIPATH_PE800:
530 #ifdef CONFIG_PCI_MSI
531 ipath_init_iba6120_funcs(dd);
534 ipath_dev_err(dd, "QLogic PCIE device 0x%x cannot work if "
535 "CONFIG_PCI_MSI is not enabled\n", ent->device);
538 case PCI_DEVICE_ID_INFINIPATH_7220:
539 #ifndef CONFIG_PCI_MSI
540 ipath_dbg("CONFIG_PCI_MSI is not enabled, "
541 "using INTx for unit %u\n", dd->ipath_unit);
543 ipath_init_iba7220_funcs(dd);
546 ipath_dev_err(dd, "Found unknown QLogic deviceid 0x%x, "
547 "failing\n", ent->device);
551 for (j = 0; j < 6; j++) {
552 if (!pdev->resource[j].start)
554 ipath_cdbg(VERBOSE, "BAR %d start %llx, end %llx, len %llx\n",
555 j, (unsigned long long)pdev->resource[j].start,
556 (unsigned long long)pdev->resource[j].end,
557 (unsigned long long)pci_resource_len(pdev, j));
561 ipath_dev_err(dd, "No valid address in BAR 0!\n");
566 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, &rev);
568 ipath_dev_err(dd, "Failed to read PCI revision ID unit "
569 "%u: err %d\n", dd->ipath_unit, -ret);
570 goto bail_regions; /* shouldn't ever happen */
572 dd->ipath_pcirev = rev;
574 #if defined(__powerpc__)
575 /* There isn't a generic way to specify writethrough mappings */
576 dd->ipath_kregbase = __ioremap(addr, len,
577 (_PAGE_NO_CACHE|_PAGE_WRITETHRU));
579 dd->ipath_kregbase = ioremap_nocache(addr, len);
582 if (!dd->ipath_kregbase) {
583 ipath_dbg("Unable to map io addr %llx to kvirt, failing\n",
588 dd->ipath_kregend = (u64 __iomem *)
589 ((void __iomem *)dd->ipath_kregbase + len);
590 dd->ipath_physaddr = addr; /* used for io_remap, etc. */
592 ipath_cdbg(VERBOSE, "mapped io addr %llx to kregbase %p\n",
593 addr, dd->ipath_kregbase);
595 if (dd->ipath_f_bus(dd, pdev))
596 ipath_dev_err(dd, "Failed to setup config space; "
597 "continuing anyway\n");
600 * set up our interrupt handler; IRQF_SHARED probably not needed,
601 * since MSI interrupts shouldn't be shared but won't hurt for now.
602 * check 0 irq after we return from chip-specific bus setup, since
603 * that can affect this due to setup
606 ipath_dev_err(dd, "irq is 0, BIOS error? Interrupts won't "
609 ret = request_irq(dd->ipath_irq, ipath_intr, IRQF_SHARED,
612 ipath_dev_err(dd, "Couldn't setup irq handler, "
613 "irq=%d: %d\n", dd->ipath_irq, ret);
618 ret = ipath_init_chip(dd, 0); /* do the chip-specific init */
622 ret = ipath_enable_wc(dd);
625 ipath_dev_err(dd, "Write combining not enabled "
626 "(err %d): performance may be poor\n",
631 ipath_verify_pioperf(dd);
633 ipath_device_create_group(&pdev->dev, dd);
634 ipathfs_add_device(dd);
637 ipath_register_ib_device(dd);
643 free_irq(pdev->irq, dd);
646 iounmap((volatile void __iomem *) dd->ipath_kregbase);
649 pci_release_regions(pdev);
652 pci_disable_device(pdev);
655 ipath_free_devdata(pdev, dd);
661 static void __devexit cleanup_device(struct ipath_devdata *dd)
665 if (*dd->ipath_statusp & IPATH_STATUS_CHIP_PRESENT) {
666 /* can't do anything more with chip; needs re-init */
667 *dd->ipath_statusp &= ~IPATH_STATUS_CHIP_PRESENT;
668 if (dd->ipath_kregbase) {
670 * if we haven't already cleaned up before these are
671 * to ensure any register reads/writes "fail" until
674 dd->ipath_kregbase = NULL;
675 dd->ipath_uregbase = 0;
676 dd->ipath_sregbase = 0;
677 dd->ipath_cregbase = 0;
678 dd->ipath_kregsize = 0;
680 ipath_disable_wc(dd);
683 if (dd->ipath_spectriggerhit)
684 dev_info(&dd->pcidev->dev, "%lu special trigger hits\n",
685 dd->ipath_spectriggerhit);
687 if (dd->ipath_pioavailregs_dma) {
688 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
689 (void *) dd->ipath_pioavailregs_dma,
690 dd->ipath_pioavailregs_phys);
691 dd->ipath_pioavailregs_dma = NULL;
693 if (dd->ipath_dummy_hdrq) {
694 dma_free_coherent(&dd->pcidev->dev,
695 dd->ipath_pd[0]->port_rcvhdrq_size,
696 dd->ipath_dummy_hdrq, dd->ipath_dummy_hdrq_phys);
697 dd->ipath_dummy_hdrq = NULL;
700 if (dd->ipath_pageshadow) {
701 struct page **tmpp = dd->ipath_pageshadow;
702 dma_addr_t *tmpd = dd->ipath_physshadow;
705 ipath_cdbg(VERBOSE, "Unlocking any expTID pages still "
707 for (port = 0; port < dd->ipath_cfgports; port++) {
708 int port_tidbase = port * dd->ipath_rcvtidcnt;
709 int maxtid = port_tidbase + dd->ipath_rcvtidcnt;
710 for (i = port_tidbase; i < maxtid; i++) {
713 pci_unmap_page(dd->pcidev, tmpd[i],
714 PAGE_SIZE, PCI_DMA_FROMDEVICE);
715 ipath_release_user_pages(&tmpp[i], 1);
721 ipath_stats.sps_pageunlocks += cnt;
722 ipath_cdbg(VERBOSE, "There were still %u expTID "
723 "entries locked\n", cnt);
725 if (ipath_stats.sps_pagelocks ||
726 ipath_stats.sps_pageunlocks)
727 ipath_cdbg(VERBOSE, "%llu pages locked, %llu "
728 "unlocked via ipath_m{un}lock\n",
730 ipath_stats.sps_pagelocks,
732 ipath_stats.sps_pageunlocks);
734 ipath_cdbg(VERBOSE, "Free shadow page tid array at %p\n",
735 dd->ipath_pageshadow);
736 tmpp = dd->ipath_pageshadow;
737 dd->ipath_pageshadow = NULL;
740 dd->ipath_egrtidbase = NULL;
744 * free any resources still in use (usually just kernel ports)
745 * at unload; we do for portcnt, not cfgports, because cfgports
746 * could have changed while we were loaded.
748 for (port = 0; port < dd->ipath_portcnt; port++) {
749 struct ipath_portdata *pd = dd->ipath_pd[port];
750 dd->ipath_pd[port] = NULL;
751 ipath_free_pddata(dd, pd);
755 * debuggability, in case some cleanup path tries to use it
761 static void __devexit ipath_remove_one(struct pci_dev *pdev)
763 struct ipath_devdata *dd = pci_get_drvdata(pdev);
765 ipath_cdbg(VERBOSE, "removing, pdev=%p, dd=%p\n", pdev, dd);
768 * disable the IB link early, to be sure no new packets arrive, which
769 * complicates the shutdown process
771 ipath_shutdown_device(dd);
773 flush_scheduled_work();
776 ipath_unregister_ib_device(dd->verbs_dev);
778 ipath_diag_remove(dd);
779 ipath_user_remove(dd);
780 ipathfs_remove_device(dd);
781 ipath_device_remove_group(&pdev->dev, dd);
783 ipath_cdbg(VERBOSE, "Releasing pci memory regions, dd %p, "
784 "unit %u\n", dd, (u32) dd->ipath_unit);
789 * turn off rcv, send, and interrupts for all ports, all drivers
790 * should also hard reset the chip here?
791 * free up port 0 (kernel) rcvhdr, egr bufs, and eventually tid bufs
792 * for all versions of the driver, if they were allocated
795 ipath_cdbg(VERBOSE, "unit %u free irq %d\n",
796 dd->ipath_unit, dd->ipath_irq);
797 dd->ipath_f_free_irq(dd);
799 ipath_dbg("irq is 0, not doing free_irq "
800 "for unit %u\n", dd->ipath_unit);
802 * we check for NULL here, because it's outside
803 * the kregbase check, and we need to call it
804 * after the free_irq. Thus it's possible that
805 * the function pointers were never initialized.
807 if (dd->ipath_f_cleanup)
808 /* clean up chip-specific stuff */
809 dd->ipath_f_cleanup(dd);
811 ipath_cdbg(VERBOSE, "Unmapping kregbase %p\n", dd->ipath_kregbase);
812 iounmap((volatile void __iomem *) dd->ipath_kregbase);
813 pci_release_regions(pdev);
814 ipath_cdbg(VERBOSE, "calling pci_disable_device\n");
815 pci_disable_device(pdev);
817 ipath_free_devdata(pdev, dd);
820 /* general driver use */
821 DEFINE_MUTEX(ipath_mutex);
823 static DEFINE_SPINLOCK(ipath_pioavail_lock);
826 * ipath_disarm_piobufs - cancel a range of PIO buffers
827 * @dd: the infinipath device
828 * @first: the first PIO buffer to cancel
829 * @cnt: the number of PIO buffers to cancel
831 * cancel a range of PIO buffers, used when they might be armed, but
832 * not triggered. Used at init to ensure buffer state, and also user
833 * process close, in case it died while writing to a PIO buffer
836 void ipath_disarm_piobufs(struct ipath_devdata *dd, unsigned first,
839 unsigned i, last = first + cnt;
842 ipath_cdbg(PKT, "disarm %u PIObufs first=%u\n", cnt, first);
843 for (i = first; i < last; i++) {
844 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
846 * The disarm-related bits are write-only, so it
847 * is ok to OR them in with our copy of sendctrl
848 * while we hold the lock.
850 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
851 dd->ipath_sendctrl | INFINIPATH_S_DISARM |
852 (i << INFINIPATH_S_DISARMPIOBUF_SHIFT));
853 /* can't disarm bufs back-to-back per iba7220 spec */
854 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
855 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
857 /* on some older chips, update may not happen after cancel */
858 ipath_force_pio_avail_update(dd);
862 * ipath_wait_linkstate - wait for an IB link state change to occur
863 * @dd: the infinipath device
864 * @state: the state to wait for
865 * @msecs: the number of milliseconds to wait
867 * wait up to msecs milliseconds for IB link state change to occur for
868 * now, take the easy polling route. Currently used only by
869 * ipath_set_linkstate. Returns 0 if state reached, otherwise
870 * -ETIMEDOUT state can have multiple states set, for any of several
873 int ipath_wait_linkstate(struct ipath_devdata *dd, u32 state, int msecs)
875 dd->ipath_state_wanted = state;
876 wait_event_interruptible_timeout(ipath_state_wait,
877 (dd->ipath_flags & state),
878 msecs_to_jiffies(msecs));
879 dd->ipath_state_wanted = 0;
881 if (!(dd->ipath_flags & state)) {
883 ipath_cdbg(VERBOSE, "Didn't reach linkstate %s within %u"
885 /* test INIT ahead of DOWN, both can be set */
886 (state & IPATH_LINKINIT) ? "INIT" :
887 ((state & IPATH_LINKDOWN) ? "DOWN" :
888 ((state & IPATH_LINKARMED) ? "ARM" : "ACTIVE")),
890 val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
891 ipath_cdbg(VERBOSE, "ibcc=%llx ibcstatus=%llx (%s)\n",
892 (unsigned long long) ipath_read_kreg64(
893 dd, dd->ipath_kregs->kr_ibcctrl),
894 (unsigned long long) val,
895 ipath_ibcstatus_str[val & dd->ibcs_lts_mask]);
897 return (dd->ipath_flags & state) ? 0 : -ETIMEDOUT;
900 static void decode_sdma_errs(struct ipath_devdata *dd, ipath_err_t err,
901 char *buf, size_t blen)
903 static const struct {
907 { INFINIPATH_E_SDMAGENMISMATCH, "SDmaGenMismatch" },
908 { INFINIPATH_E_SDMAOUTOFBOUND, "SDmaOutOfBound" },
909 { INFINIPATH_E_SDMATAILOUTOFBOUND, "SDmaTailOutOfBound" },
910 { INFINIPATH_E_SDMABASE, "SDmaBase" },
911 { INFINIPATH_E_SDMA1STDESC, "SDma1stDesc" },
912 { INFINIPATH_E_SDMARPYTAG, "SDmaRpyTag" },
913 { INFINIPATH_E_SDMADWEN, "SDmaDwEn" },
914 { INFINIPATH_E_SDMAMISSINGDW, "SDmaMissingDw" },
915 { INFINIPATH_E_SDMAUNEXPDATA, "SDmaUnexpData" },
916 { INFINIPATH_E_SDMADESCADDRMISALIGN, "SDmaDescAddrMisalign" },
917 { INFINIPATH_E_SENDBUFMISUSE, "SendBufMisuse" },
918 { INFINIPATH_E_SDMADISABLED, "SDmaDisabled" },
924 for (i = 0; i < ARRAY_SIZE(errs); i++) {
925 expected = (errs[i].err != INFINIPATH_E_SDMADISABLED) ? 0 :
926 test_bit(IPATH_SDMA_ABORTING, &dd->ipath_sdma_status);
927 if ((err & errs[i].err) && !expected)
928 bidx += snprintf(buf + bidx, blen - bidx,
934 * Decode the error status into strings, deciding whether to always
935 * print * it or not depending on "normal packet errors" vs everything
936 * else. Return 1 if "real" errors, otherwise 0 if only packet
937 * errors, so caller can decide what to print with the string.
939 int ipath_decode_err(struct ipath_devdata *dd, char *buf, size_t blen,
944 if (err & INFINIPATH_E_PKTERRS) {
945 if (!(err & ~INFINIPATH_E_PKTERRS))
946 iserr = 0; // if only packet errors.
947 if (ipath_debug & __IPATH_ERRPKTDBG) {
948 if (err & INFINIPATH_E_REBP)
949 strlcat(buf, "EBP ", blen);
950 if (err & INFINIPATH_E_RVCRC)
951 strlcat(buf, "VCRC ", blen);
952 if (err & INFINIPATH_E_RICRC) {
953 strlcat(buf, "CRC ", blen);
954 // clear for check below, so only once
955 err &= INFINIPATH_E_RICRC;
957 if (err & INFINIPATH_E_RSHORTPKTLEN)
958 strlcat(buf, "rshortpktlen ", blen);
959 if (err & INFINIPATH_E_SDROPPEDDATAPKT)
960 strlcat(buf, "sdroppeddatapkt ", blen);
961 if (err & INFINIPATH_E_SPKTLEN)
962 strlcat(buf, "spktlen ", blen);
964 if ((err & INFINIPATH_E_RICRC) &&
965 !(err&(INFINIPATH_E_RVCRC|INFINIPATH_E_REBP)))
966 strlcat(buf, "CRC ", blen);
970 if (err & INFINIPATH_E_RHDRLEN)
971 strlcat(buf, "rhdrlen ", blen);
972 if (err & INFINIPATH_E_RBADTID)
973 strlcat(buf, "rbadtid ", blen);
974 if (err & INFINIPATH_E_RBADVERSION)
975 strlcat(buf, "rbadversion ", blen);
976 if (err & INFINIPATH_E_RHDR)
977 strlcat(buf, "rhdr ", blen);
978 if (err & INFINIPATH_E_SENDSPECIALTRIGGER)
979 strlcat(buf, "sendspecialtrigger ", blen);
980 if (err & INFINIPATH_E_RLONGPKTLEN)
981 strlcat(buf, "rlongpktlen ", blen);
982 if (err & INFINIPATH_E_RMAXPKTLEN)
983 strlcat(buf, "rmaxpktlen ", blen);
984 if (err & INFINIPATH_E_RMINPKTLEN)
985 strlcat(buf, "rminpktlen ", blen);
986 if (err & INFINIPATH_E_SMINPKTLEN)
987 strlcat(buf, "sminpktlen ", blen);
988 if (err & INFINIPATH_E_RFORMATERR)
989 strlcat(buf, "rformaterr ", blen);
990 if (err & INFINIPATH_E_RUNSUPVL)
991 strlcat(buf, "runsupvl ", blen);
992 if (err & INFINIPATH_E_RUNEXPCHAR)
993 strlcat(buf, "runexpchar ", blen);
994 if (err & INFINIPATH_E_RIBFLOW)
995 strlcat(buf, "ribflow ", blen);
996 if (err & INFINIPATH_E_SUNDERRUN)
997 strlcat(buf, "sunderrun ", blen);
998 if (err & INFINIPATH_E_SPIOARMLAUNCH)
999 strlcat(buf, "spioarmlaunch ", blen);
1000 if (err & INFINIPATH_E_SUNEXPERRPKTNUM)
1001 strlcat(buf, "sunexperrpktnum ", blen);
1002 if (err & INFINIPATH_E_SDROPPEDSMPPKT)
1003 strlcat(buf, "sdroppedsmppkt ", blen);
1004 if (err & INFINIPATH_E_SMAXPKTLEN)
1005 strlcat(buf, "smaxpktlen ", blen);
1006 if (err & INFINIPATH_E_SUNSUPVL)
1007 strlcat(buf, "sunsupVL ", blen);
1008 if (err & INFINIPATH_E_INVALIDADDR)
1009 strlcat(buf, "invalidaddr ", blen);
1010 if (err & INFINIPATH_E_RRCVEGRFULL)
1011 strlcat(buf, "rcvegrfull ", blen);
1012 if (err & INFINIPATH_E_RRCVHDRFULL)
1013 strlcat(buf, "rcvhdrfull ", blen);
1014 if (err & INFINIPATH_E_IBSTATUSCHANGED)
1015 strlcat(buf, "ibcstatuschg ", blen);
1016 if (err & INFINIPATH_E_RIBLOSTLINK)
1017 strlcat(buf, "riblostlink ", blen);
1018 if (err & INFINIPATH_E_HARDWARE)
1019 strlcat(buf, "hardware ", blen);
1020 if (err & INFINIPATH_E_RESET)
1021 strlcat(buf, "reset ", blen);
1022 if (err & INFINIPATH_E_SDMAERRS)
1023 decode_sdma_errs(dd, err, buf, blen);
1024 if (err & INFINIPATH_E_INVALIDEEPCMD)
1025 strlcat(buf, "invalideepromcmd ", blen);
1031 * get_rhf_errstring - decode RHF errors
1032 * @err: the err number
1033 * @msg: the output buffer
1034 * @len: the length of the output buffer
1036 * only used one place now, may want more later
1038 static void get_rhf_errstring(u32 err, char *msg, size_t len)
1040 /* if no errors, and so don't need to check what's first */
1043 if (err & INFINIPATH_RHF_H_ICRCERR)
1044 strlcat(msg, "icrcerr ", len);
1045 if (err & INFINIPATH_RHF_H_VCRCERR)
1046 strlcat(msg, "vcrcerr ", len);
1047 if (err & INFINIPATH_RHF_H_PARITYERR)
1048 strlcat(msg, "parityerr ", len);
1049 if (err & INFINIPATH_RHF_H_LENERR)
1050 strlcat(msg, "lenerr ", len);
1051 if (err & INFINIPATH_RHF_H_MTUERR)
1052 strlcat(msg, "mtuerr ", len);
1053 if (err & INFINIPATH_RHF_H_IHDRERR)
1054 /* infinipath hdr checksum error */
1055 strlcat(msg, "ipathhdrerr ", len);
1056 if (err & INFINIPATH_RHF_H_TIDERR)
1057 strlcat(msg, "tiderr ", len);
1058 if (err & INFINIPATH_RHF_H_MKERR)
1059 /* bad port, offset, etc. */
1060 strlcat(msg, "invalid ipathhdr ", len);
1061 if (err & INFINIPATH_RHF_H_IBERR)
1062 strlcat(msg, "iberr ", len);
1063 if (err & INFINIPATH_RHF_L_SWA)
1064 strlcat(msg, "swA ", len);
1065 if (err & INFINIPATH_RHF_L_SWB)
1066 strlcat(msg, "swB ", len);
1070 * ipath_get_egrbuf - get an eager buffer
1071 * @dd: the infinipath device
1072 * @bufnum: the eager buffer to get
1074 * must only be called if ipath_pd[port] is known to be allocated
1076 static inline void *ipath_get_egrbuf(struct ipath_devdata *dd, u32 bufnum)
1078 return dd->ipath_port0_skbinfo ?
1079 (void *) dd->ipath_port0_skbinfo[bufnum].skb->data : NULL;
1083 * ipath_alloc_skb - allocate an skb and buffer with possible constraints
1084 * @dd: the infinipath device
1085 * @gfp_mask: the sk_buff SFP mask
1087 struct sk_buff *ipath_alloc_skb(struct ipath_devdata *dd,
1090 struct sk_buff *skb;
1094 * Only fully supported way to handle this is to allocate lots
1095 * extra, align as needed, and then do skb_reserve(). That wastes
1096 * a lot of memory... I'll have to hack this into infinipath_copy
1101 * We need 2 extra bytes for ipath_ether data sent in the
1102 * key header. In order to keep everything dword aligned,
1103 * we'll reserve 4 bytes.
1105 len = dd->ipath_ibmaxlen + 4;
1107 if (dd->ipath_flags & IPATH_4BYTE_TID) {
1108 /* We need a 2KB multiple alignment, and there is no way
1109 * to do it except to allocate extra and then skb_reserve
1110 * enough to bring it up to the right alignment.
1115 skb = __dev_alloc_skb(len, gfp_mask);
1117 ipath_dev_err(dd, "Failed to allocate skbuff, length %u\n",
1122 skb_reserve(skb, 4);
1124 if (dd->ipath_flags & IPATH_4BYTE_TID) {
1125 u32 una = (unsigned long)skb->data & 2047;
1127 skb_reserve(skb, 2048 - una);
1134 static void ipath_rcv_hdrerr(struct ipath_devdata *dd,
1139 struct ipath_message_header *hdr)
1143 get_rhf_errstring(eflags, emsg, sizeof emsg);
1144 ipath_cdbg(PKT, "RHFerrs %x hdrqtail=%x typ=%u "
1145 "tlen=%x opcode=%x egridx=%x: %s\n",
1147 ipath_hdrget_rcv_type(rhf_addr),
1148 ipath_hdrget_length_in_bytes(rhf_addr),
1149 be32_to_cpu(hdr->bth[0]) >> 24,
1152 /* Count local link integrity errors. */
1153 if (eflags & (INFINIPATH_RHF_H_ICRCERR | INFINIPATH_RHF_H_VCRCERR)) {
1154 u8 n = (dd->ipath_ibcctrl >>
1155 INFINIPATH_IBCC_PHYERRTHRESHOLD_SHIFT) &
1156 INFINIPATH_IBCC_PHYERRTHRESHOLD_MASK;
1158 if (++dd->ipath_lli_counter > n) {
1159 dd->ipath_lli_counter = 0;
1160 dd->ipath_lli_errors++;
1166 * ipath_kreceive - receive a packet
1167 * @pd: the infinipath port
1169 * called from interrupt handler for errors or receive interrupt
1171 void ipath_kreceive(struct ipath_portdata *pd)
1173 struct ipath_devdata *dd = pd->port_dd;
1176 const u32 rsize = dd->ipath_rcvhdrentsize; /* words */
1177 const u32 maxcnt = dd->ipath_rcvhdrcnt * rsize; /* words */
1178 u32 etail = -1, l, hdrqtail;
1179 struct ipath_message_header *hdr;
1180 u32 eflags, i, etype, tlen, pkttot = 0, updegr = 0, reloop = 0;
1181 static u64 totcalls; /* stats, may eventually remove */
1185 rhf_addr = (__le32 *) pd->port_rcvhdrq + l + dd->ipath_rhf_offset;
1186 if (dd->ipath_flags & IPATH_NODMA_RTAIL) {
1187 u32 seq = ipath_hdrget_seq(rhf_addr);
1189 if (seq != pd->port_seq_cnt)
1193 hdrqtail = ipath_get_rcvhdrtail(pd);
1200 for (last = 0, i = 1; !last; i += !last) {
1201 hdr = dd->ipath_f_get_msgheader(dd, rhf_addr);
1202 eflags = ipath_hdrget_err_flags(rhf_addr);
1203 etype = ipath_hdrget_rcv_type(rhf_addr);
1205 tlen = ipath_hdrget_length_in_bytes(rhf_addr);
1207 if ((dd->ipath_flags & IPATH_NODMA_RTAIL) ?
1208 ipath_hdrget_use_egr_buf(rhf_addr) :
1209 (etype != RCVHQ_RCV_TYPE_EXPECTED)) {
1211 * It turns out that the chip uses an eager buffer
1212 * for all non-expected packets, whether it "needs"
1213 * one or not. So always get the index, but don't
1214 * set ebuf (so we try to copy data) unless the
1215 * length requires it.
1217 etail = ipath_hdrget_index(rhf_addr);
1219 if (tlen > sizeof(*hdr) ||
1220 etype == RCVHQ_RCV_TYPE_NON_KD)
1221 ebuf = ipath_get_egrbuf(dd, etail);
1225 * both tiderr and ipathhdrerr are set for all plain IB
1226 * packets; only ipathhdrerr should be set.
1229 if (etype != RCVHQ_RCV_TYPE_NON_KD &&
1230 etype != RCVHQ_RCV_TYPE_ERROR &&
1231 ipath_hdrget_ipath_ver(hdr->iph.ver_port_tid_offset) !=
1233 ipath_cdbg(PKT, "Bad InfiniPath protocol version "
1236 if (unlikely(eflags))
1237 ipath_rcv_hdrerr(dd, eflags, l, etail, rhf_addr, hdr);
1238 else if (etype == RCVHQ_RCV_TYPE_NON_KD) {
1239 ipath_ib_rcv(dd->verbs_dev, (u32 *)hdr, ebuf, tlen);
1240 if (dd->ipath_lli_counter)
1241 dd->ipath_lli_counter--;
1242 } else if (etype == RCVHQ_RCV_TYPE_EAGER) {
1243 u8 opcode = be32_to_cpu(hdr->bth[0]) >> 24;
1244 u32 qp = be32_to_cpu(hdr->bth[1]) & 0xffffff;
1245 ipath_cdbg(PKT, "typ %x, opcode %x (eager, "
1246 "qp=%x), len %x; ignored\n",
1247 etype, opcode, qp, tlen);
1249 else if (etype == RCVHQ_RCV_TYPE_EXPECTED)
1250 ipath_dbg("Bug: Expected TID, opcode %x; ignored\n",
1251 be32_to_cpu(hdr->bth[0]) >> 24);
1254 * error packet, type of error unknown.
1255 * Probably type 3, but we don't know, so don't
1256 * even try to print the opcode, etc.
1257 * Usually caused by a "bad packet", that has no
1258 * BTH, when the LRH says it should.
1260 ipath_cdbg(ERRPKT, "Error Pkt, but no eflags! egrbuf"
1261 " %x, len %x hdrq+%x rhf: %Lx\n",
1263 le64_to_cpu(*(__le64 *) rhf_addr));
1264 if (ipath_debug & __IPATH_ERRPKTDBG) {
1265 u32 j, *d, dw = rsize-2;
1266 if (rsize > (tlen>>2))
1269 printk(KERN_DEBUG "EPkt rcvhdr(%x dw):\n",
1271 for (j = 0; j < dw; j++)
1272 printk(KERN_DEBUG "%8x%s", d[j],
1273 (j%8) == 7 ? "\n" : " ");
1274 printk(KERN_DEBUG ".\n");
1280 rhf_addr = (__le32 *) pd->port_rcvhdrq +
1281 l + dd->ipath_rhf_offset;
1282 if (dd->ipath_flags & IPATH_NODMA_RTAIL) {
1283 u32 seq = ipath_hdrget_seq(rhf_addr);
1285 if (++pd->port_seq_cnt > 13)
1286 pd->port_seq_cnt = 1;
1287 if (seq != pd->port_seq_cnt)
1289 } else if (l == hdrqtail)
1292 * update head regs on last packet, and every 16 packets.
1293 * Reduce bus traffic, while still trying to prevent
1294 * rcvhdrq overflows, for when the queue is nearly full
1296 if (last || !(i & 0xf)) {
1299 /* request IBA6120 and 7220 interrupt only on last */
1301 lval |= dd->ipath_rhdrhead_intr_off;
1302 ipath_write_ureg(dd, ur_rcvhdrhead, lval,
1305 ipath_write_ureg(dd, ur_rcvegrindexhead,
1306 etail, pd->port_port);
1312 if (!dd->ipath_rhdrhead_intr_off && !reloop &&
1313 !(dd->ipath_flags & IPATH_NODMA_RTAIL)) {
1314 /* IBA6110 workaround; we can have a race clearing chip
1315 * interrupt with another interrupt about to be delivered,
1316 * and can clear it before it is delivered on the GPIO
1317 * workaround. By doing the extra check here for the
1318 * in-memory tail register updating while we were doing
1319 * earlier packets, we "almost" guarantee we have covered
1322 u32 hqtail = ipath_get_rcvhdrtail(pd);
1323 if (hqtail != hdrqtail) {
1325 reloop = 1; /* loop 1 extra time at most */
1334 if (pkttot > ipath_stats.sps_maxpkts_call)
1335 ipath_stats.sps_maxpkts_call = pkttot;
1336 ipath_stats.sps_port0pkts += pkttot;
1337 ipath_stats.sps_avgpkts_call =
1338 ipath_stats.sps_port0pkts / ++totcalls;
1344 * ipath_update_pio_bufs - update shadow copy of the PIO availability map
1345 * @dd: the infinipath device
1347 * called whenever our local copy indicates we have run out of send buffers
1348 * NOTE: This can be called from interrupt context by some code
1349 * and from non-interrupt context by ipath_getpiobuf().
1352 static void ipath_update_pio_bufs(struct ipath_devdata *dd)
1354 unsigned long flags;
1356 const unsigned piobregs = (unsigned)dd->ipath_pioavregs;
1358 /* If the generation (check) bits have changed, then we update the
1359 * busy bit for the corresponding PIO buffer. This algorithm will
1360 * modify positions to the value they already have in some cases
1361 * (i.e., no change), but it's faster than changing only the bits
1362 * that have changed.
1364 * We would like to do this atomicly, to avoid spinlocks in the
1365 * critical send path, but that's not really possible, given the
1366 * type of changes, and that this routine could be called on
1367 * multiple cpu's simultaneously, so we lock in this routine only,
1368 * to avoid conflicting updates; all we change is the shadow, and
1369 * it's a single 64 bit memory location, so by definition the update
1370 * is atomic in terms of what other cpu's can see in testing the
1371 * bits. The spin_lock overhead isn't too bad, since it only
1372 * happens when all buffers are in use, so only cpu overhead, not
1373 * latency or bandwidth is affected.
1375 if (!dd->ipath_pioavailregs_dma) {
1376 ipath_dbg("Update shadow pioavail, but regs_dma NULL!\n");
1379 if (ipath_debug & __IPATH_VERBDBG) {
1380 /* only if packet debug and verbose */
1381 volatile __le64 *dma = dd->ipath_pioavailregs_dma;
1382 unsigned long *shadow = dd->ipath_pioavailshadow;
1384 ipath_cdbg(PKT, "Refill avail, dma0=%llx shad0=%lx, "
1385 "d1=%llx s1=%lx, d2=%llx s2=%lx, d3=%llx "
1387 (unsigned long long) le64_to_cpu(dma[0]),
1389 (unsigned long long) le64_to_cpu(dma[1]),
1391 (unsigned long long) le64_to_cpu(dma[2]),
1393 (unsigned long long) le64_to_cpu(dma[3]),
1397 PKT, "2nd group, dma4=%llx shad4=%lx, "
1398 "d5=%llx s5=%lx, d6=%llx s6=%lx, "
1400 (unsigned long long) le64_to_cpu(dma[4]),
1402 (unsigned long long) le64_to_cpu(dma[5]),
1404 (unsigned long long) le64_to_cpu(dma[6]),
1406 (unsigned long long) le64_to_cpu(dma[7]),
1409 spin_lock_irqsave(&ipath_pioavail_lock, flags);
1410 for (i = 0; i < piobregs; i++) {
1411 u64 pchbusy, pchg, piov, pnew;
1413 * Chip Errata: bug 6641; even and odd qwords>3 are swapped
1415 if (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS))
1416 piov = le64_to_cpu(dd->ipath_pioavailregs_dma[i ^ 1]);
1418 piov = le64_to_cpu(dd->ipath_pioavailregs_dma[i]);
1419 pchg = dd->ipath_pioavailkernel[i] &
1420 ~(dd->ipath_pioavailshadow[i] ^ piov);
1421 pchbusy = pchg << INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT;
1422 if (pchg && (pchbusy & dd->ipath_pioavailshadow[i])) {
1423 pnew = dd->ipath_pioavailshadow[i] & ~pchbusy;
1424 pnew |= piov & pchbusy;
1425 dd->ipath_pioavailshadow[i] = pnew;
1428 spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1432 * used to force update of pioavailshadow if we can't get a pio buffer.
1433 * Needed primarily due to exitting freeze mode after recovering
1434 * from errors. Done lazily, because it's safer (known to not
1435 * be writing pio buffers).
1437 static void ipath_reset_availshadow(struct ipath_devdata *dd)
1440 unsigned long flags;
1442 spin_lock_irqsave(&ipath_pioavail_lock, flags);
1443 for (i = 0; i < dd->ipath_pioavregs; i++) {
1445 /* deal with 6110 chip bug on high register #s */
1446 im = (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS)) ?
1448 val = le64_to_cpu(dd->ipath_pioavailregs_dma[im]);
1450 * busy out the buffers not in the kernel avail list,
1451 * without changing the generation bits.
1453 oldval = dd->ipath_pioavailshadow[i];
1454 dd->ipath_pioavailshadow[i] = val |
1455 ((~dd->ipath_pioavailkernel[i] <<
1456 INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT) &
1457 0xaaaaaaaaaaaaaaaaULL); /* All BUSY bits in qword */
1458 if (oldval != dd->ipath_pioavailshadow[i])
1459 ipath_dbg("shadow[%d] was %Lx, now %lx\n",
1460 i, oldval, dd->ipath_pioavailshadow[i]);
1462 spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1466 * ipath_setrcvhdrsize - set the receive header size
1467 * @dd: the infinipath device
1468 * @rhdrsize: the receive header size
1470 * called from user init code, and also layered driver init
1472 int ipath_setrcvhdrsize(struct ipath_devdata *dd, unsigned rhdrsize)
1476 if (dd->ipath_flags & IPATH_RCVHDRSZ_SET) {
1477 if (dd->ipath_rcvhdrsize != rhdrsize) {
1478 dev_info(&dd->pcidev->dev,
1479 "Error: can't set protocol header "
1480 "size %u, already %u\n",
1481 rhdrsize, dd->ipath_rcvhdrsize);
1484 ipath_cdbg(VERBOSE, "Reuse same protocol header "
1485 "size %u\n", dd->ipath_rcvhdrsize);
1486 } else if (rhdrsize > (dd->ipath_rcvhdrentsize -
1487 (sizeof(u64) / sizeof(u32)))) {
1488 ipath_dbg("Error: can't set protocol header size %u "
1489 "(> max %u)\n", rhdrsize,
1490 dd->ipath_rcvhdrentsize -
1491 (u32) (sizeof(u64) / sizeof(u32)));
1494 dd->ipath_flags |= IPATH_RCVHDRSZ_SET;
1495 dd->ipath_rcvhdrsize = rhdrsize;
1496 ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvhdrsize,
1497 dd->ipath_rcvhdrsize);
1498 ipath_cdbg(VERBOSE, "Set protocol header size to %u\n",
1499 dd->ipath_rcvhdrsize);
1505 * debugging code and stats updates if no pio buffers available.
1507 static noinline void no_pio_bufs(struct ipath_devdata *dd)
1509 unsigned long *shadow = dd->ipath_pioavailshadow;
1510 __le64 *dma = (__le64 *)dd->ipath_pioavailregs_dma;
1512 dd->ipath_upd_pio_shadow = 1;
1515 * not atomic, but if we lose a stat count in a while, that's OK
1517 ipath_stats.sps_nopiobufs++;
1518 if (!(++dd->ipath_consec_nopiobuf % 100000)) {
1519 ipath_force_pio_avail_update(dd); /* at start */
1520 ipath_dbg("%u tries no piobufavail ts%lx; dmacopy: "
1521 "%llx %llx %llx %llx\n"
1522 "ipath shadow: %lx %lx %lx %lx\n",
1523 dd->ipath_consec_nopiobuf,
1524 (unsigned long)get_cycles(),
1525 (unsigned long long) le64_to_cpu(dma[0]),
1526 (unsigned long long) le64_to_cpu(dma[1]),
1527 (unsigned long long) le64_to_cpu(dma[2]),
1528 (unsigned long long) le64_to_cpu(dma[3]),
1529 shadow[0], shadow[1], shadow[2], shadow[3]);
1531 * 4 buffers per byte, 4 registers above, cover rest
1534 if ((dd->ipath_piobcnt2k + dd->ipath_piobcnt4k) >
1535 (sizeof(shadow[0]) * 4 * 4))
1536 ipath_dbg("2nd group: dmacopy: "
1537 "%llx %llx %llx %llx\n"
1538 "ipath shadow: %lx %lx %lx %lx\n",
1539 (unsigned long long)le64_to_cpu(dma[4]),
1540 (unsigned long long)le64_to_cpu(dma[5]),
1541 (unsigned long long)le64_to_cpu(dma[6]),
1542 (unsigned long long)le64_to_cpu(dma[7]),
1543 shadow[4], shadow[5], shadow[6], shadow[7]);
1545 /* at end, so update likely happened */
1546 ipath_reset_availshadow(dd);
1551 * common code for normal driver pio buffer allocation, and reserved
1554 * do appropriate marking as busy, etc.
1555 * returns buffer number if one found (>=0), negative number is error.
1557 static u32 __iomem *ipath_getpiobuf_range(struct ipath_devdata *dd,
1558 u32 *pbufnum, u32 first, u32 last, u32 firsti)
1560 int i, j, updated = 0;
1562 unsigned long flags;
1563 unsigned long *shadow = dd->ipath_pioavailshadow;
1566 piobcnt = last - first;
1567 if (dd->ipath_upd_pio_shadow) {
1569 * Minor optimization. If we had no buffers on last call,
1570 * start out by doing the update; continue and do scan even
1571 * if no buffers were updated, to be paranoid
1573 ipath_update_pio_bufs(dd);
1580 * while test_and_set_bit() is atomic, we do that and then the
1581 * change_bit(), and the pair is not. See if this is the cause
1582 * of the remaining armlaunch errors.
1584 spin_lock_irqsave(&ipath_pioavail_lock, flags);
1585 for (j = 0; j < piobcnt; j++, i++) {
1588 if (__test_and_set_bit((2 * i) + 1, shadow))
1590 /* flip generation bit */
1591 __change_bit(2 * i, shadow);
1594 spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1599 * first time through; shadow exhausted, but may be
1600 * buffers available, try an update and then rescan.
1602 ipath_update_pio_bufs(dd);
1606 } else if (updated == 1 && piobcnt <=
1607 ((dd->ipath_sendctrl
1608 >> INFINIPATH_S_UPDTHRESH_SHIFT) &
1609 INFINIPATH_S_UPDTHRESH_MASK)) {
1611 * for chips supporting and using the update
1612 * threshold we need to force an update of the
1613 * in-memory copy if the count is less than the
1614 * thershold, then check one more time.
1616 ipath_force_pio_avail_update(dd);
1617 ipath_update_pio_bufs(dd);
1626 if (i < dd->ipath_piobcnt2k)
1627 buf = (u32 __iomem *) (dd->ipath_pio2kbase +
1628 i * dd->ipath_palign);
1630 buf = (u32 __iomem *)
1631 (dd->ipath_pio4kbase +
1632 (i - dd->ipath_piobcnt2k) * dd->ipath_4kalign);
1641 * ipath_getpiobuf - find an available pio buffer
1642 * @dd: the infinipath device
1643 * @plen: the size of the PIO buffer needed in 32-bit words
1644 * @pbufnum: the buffer number is placed here
1646 u32 __iomem *ipath_getpiobuf(struct ipath_devdata *dd, u32 plen, u32 *pbufnum)
1652 if (plen + 1 >= IPATH_SMALLBUF_DWORDS) {
1653 first = dd->ipath_piobcnt2k;
1654 lasti = dd->ipath_lastpioindexl;
1657 lasti = dd->ipath_lastpioindex;
1659 nbufs = dd->ipath_piobcnt2k + dd->ipath_piobcnt4k;
1660 buf = ipath_getpiobuf_range(dd, &pnum, first, nbufs, lasti);
1664 * Set next starting place. It's just an optimization,
1665 * it doesn't matter who wins on this, so no locking
1667 if (plen + 1 >= IPATH_SMALLBUF_DWORDS)
1668 dd->ipath_lastpioindexl = pnum + 1;
1670 dd->ipath_lastpioindex = pnum + 1;
1671 if (dd->ipath_upd_pio_shadow)
1672 dd->ipath_upd_pio_shadow = 0;
1673 if (dd->ipath_consec_nopiobuf)
1674 dd->ipath_consec_nopiobuf = 0;
1675 ipath_cdbg(VERBOSE, "Return piobuf%u %uk @ %p\n",
1676 pnum, (pnum < dd->ipath_piobcnt2k) ? 2 : 4, buf);
1685 * ipath_chg_pioavailkernel - change which send buffers are available for kernel
1686 * @dd: the infinipath device
1687 * @start: the starting send buffer number
1688 * @len: the number of send buffers
1689 * @avail: true if the buffers are available for kernel use, false otherwise
1691 void ipath_chg_pioavailkernel(struct ipath_devdata *dd, unsigned start,
1692 unsigned len, int avail)
1694 unsigned long flags;
1695 unsigned end, cnt = 0, next;
1697 /* There are two bits per send buffer (busy and generation) */
1699 end = start + len * 2;
1701 spin_lock_irqsave(&ipath_pioavail_lock, flags);
1702 /* Set or clear the busy bit in the shadow. */
1703 while (start < end) {
1708 * the BUSY bit will never be set, because we disarm
1709 * the user buffers before we hand them back to the
1710 * kernel. We do have to make sure the generation
1711 * bit is set correctly in shadow, since it could
1712 * have changed many times while allocated to user.
1713 * We can't use the bitmap functions on the full
1714 * dma array because it is always little-endian, so
1715 * we have to flip to host-order first.
1716 * BITS_PER_LONG is slightly wrong, since it's
1717 * always 64 bits per register in chip...
1718 * We only work on 64 bit kernels, so that's OK.
1720 /* deal with 6110 chip bug on high register #s */
1721 i = start / BITS_PER_LONG;
1722 im = (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS)) ?
1724 __clear_bit(INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT
1725 + start, dd->ipath_pioavailshadow);
1726 dma = (unsigned long) le64_to_cpu(
1727 dd->ipath_pioavailregs_dma[im]);
1728 if (test_bit((INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT
1729 + start) % BITS_PER_LONG, &dma))
1730 __set_bit(INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT
1731 + start, dd->ipath_pioavailshadow);
1733 __clear_bit(INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT
1734 + start, dd->ipath_pioavailshadow);
1735 __set_bit(start, dd->ipath_pioavailkernel);
1737 __set_bit(start + INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT,
1738 dd->ipath_pioavailshadow);
1739 __clear_bit(start, dd->ipath_pioavailkernel);
1744 if (dd->ipath_pioupd_thresh) {
1745 end = 2 * (dd->ipath_piobcnt2k + dd->ipath_piobcnt4k);
1746 next = find_first_bit(dd->ipath_pioavailkernel, end);
1747 while (next < end) {
1749 next = find_next_bit(dd->ipath_pioavailkernel, end,
1753 spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1756 * When moving buffers from kernel to user, if number assigned to
1757 * the user is less than the pio update threshold, and threshold
1758 * is supported (cnt was computed > 0), drop the update threshold
1759 * so we update at least once per allocated number of buffers.
1760 * In any case, if the kernel buffers are less than the threshold,
1761 * drop the threshold. We don't bother increasing it, having once
1762 * decreased it, since it would typically just cycle back and forth.
1763 * If we don't decrease below buffers in use, we can wait a long
1764 * time for an update, until some other context uses PIO buffers.
1766 if (!avail && len < cnt)
1768 if (cnt < dd->ipath_pioupd_thresh) {
1769 dd->ipath_pioupd_thresh = cnt;
1770 ipath_dbg("Decreased pio update threshold to %u\n",
1771 dd->ipath_pioupd_thresh);
1772 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
1773 dd->ipath_sendctrl &= ~(INFINIPATH_S_UPDTHRESH_MASK
1774 << INFINIPATH_S_UPDTHRESH_SHIFT);
1775 dd->ipath_sendctrl |= dd->ipath_pioupd_thresh
1776 << INFINIPATH_S_UPDTHRESH_SHIFT;
1777 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1778 dd->ipath_sendctrl);
1779 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
1784 * ipath_create_rcvhdrq - create a receive header queue
1785 * @dd: the infinipath device
1786 * @pd: the port data
1788 * this must be contiguous memory (from an i/o perspective), and must be
1789 * DMA'able (which means for some systems, it will go through an IOMMU,
1790 * or be forced into a low address range).
1792 int ipath_create_rcvhdrq(struct ipath_devdata *dd,
1793 struct ipath_portdata *pd)
1797 if (!pd->port_rcvhdrq) {
1798 dma_addr_t phys_hdrqtail;
1799 gfp_t gfp_flags = GFP_USER | __GFP_COMP;
1800 int amt = ALIGN(dd->ipath_rcvhdrcnt * dd->ipath_rcvhdrentsize *
1801 sizeof(u32), PAGE_SIZE);
1803 pd->port_rcvhdrq = dma_alloc_coherent(
1804 &dd->pcidev->dev, amt, &pd->port_rcvhdrq_phys,
1807 if (!pd->port_rcvhdrq) {
1808 ipath_dev_err(dd, "attempt to allocate %d bytes "
1809 "for port %u rcvhdrq failed\n",
1810 amt, pd->port_port);
1815 if (!(dd->ipath_flags & IPATH_NODMA_RTAIL)) {
1816 pd->port_rcvhdrtail_kvaddr = dma_alloc_coherent(
1817 &dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail,
1819 if (!pd->port_rcvhdrtail_kvaddr) {
1820 ipath_dev_err(dd, "attempt to allocate 1 page "
1821 "for port %u rcvhdrqtailaddr "
1822 "failed\n", pd->port_port);
1824 dma_free_coherent(&dd->pcidev->dev, amt,
1826 pd->port_rcvhdrq_phys);
1827 pd->port_rcvhdrq = NULL;
1830 pd->port_rcvhdrqtailaddr_phys = phys_hdrqtail;
1831 ipath_cdbg(VERBOSE, "port %d hdrtailaddr, %llx "
1832 "physical\n", pd->port_port,
1833 (unsigned long long) phys_hdrqtail);
1836 pd->port_rcvhdrq_size = amt;
1838 ipath_cdbg(VERBOSE, "%d pages at %p (phys %lx) size=%lu "
1839 "for port %u rcvhdr Q\n",
1840 amt >> PAGE_SHIFT, pd->port_rcvhdrq,
1841 (unsigned long) pd->port_rcvhdrq_phys,
1842 (unsigned long) pd->port_rcvhdrq_size,
1846 ipath_cdbg(VERBOSE, "reuse port %d rcvhdrq @%p %llx phys; "
1847 "hdrtailaddr@%p %llx physical\n",
1848 pd->port_port, pd->port_rcvhdrq,
1849 (unsigned long long) pd->port_rcvhdrq_phys,
1850 pd->port_rcvhdrtail_kvaddr, (unsigned long long)
1851 pd->port_rcvhdrqtailaddr_phys);
1853 /* clear for security and sanity on each use */
1854 memset(pd->port_rcvhdrq, 0, pd->port_rcvhdrq_size);
1855 if (pd->port_rcvhdrtail_kvaddr)
1856 memset(pd->port_rcvhdrtail_kvaddr, 0, PAGE_SIZE);
1859 * tell chip each time we init it, even if we are re-using previous
1860 * memory (we zero the register at process close)
1862 ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdrtailaddr,
1863 pd->port_port, pd->port_rcvhdrqtailaddr_phys);
1864 ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdraddr,
1865 pd->port_port, pd->port_rcvhdrq_phys);
1873 * Flush all sends that might be in the ready to send state, as well as any
1874 * that are in the process of being sent. Used whenever we need to be
1875 * sure the send side is idle. Cleans up all buffer state by canceling
1876 * all pio buffers, and issuing an abort, which cleans up anything in the
1877 * launch fifo. The cancel is superfluous on some chip versions, but
1878 * it's safer to always do it.
1879 * PIOAvail bits are updated by the chip as if normal send had happened.
1881 void ipath_cancel_sends(struct ipath_devdata *dd, int restore_sendctrl)
1883 unsigned long flags;
1885 if (dd->ipath_flags & IPATH_IB_AUTONEG_INPROG) {
1886 ipath_cdbg(VERBOSE, "Ignore while in autonegotiation\n");
1890 * If we have SDMA, and it's not disabled, we have to kick off the
1891 * abort state machine, provided we aren't already aborting.
1892 * If we are in the process of aborting SDMA (!DISABLED, but ABORTING),
1893 * we skip the rest of this routine. It is already "in progress"
1895 if (dd->ipath_flags & IPATH_HAS_SEND_DMA) {
1897 unsigned long *statp = &dd->ipath_sdma_status;
1899 spin_lock_irqsave(&dd->ipath_sdma_lock, flags);
1901 test_and_set_bit(IPATH_SDMA_ABORTING, statp)
1902 && !test_bit(IPATH_SDMA_DISABLED, statp);
1903 spin_unlock_irqrestore(&dd->ipath_sdma_lock, flags);
1908 ipath_dbg("Cancelling all in-progress send buffers\n");
1910 /* skip armlaunch errs for a while */
1911 dd->ipath_lastcancel = jiffies + HZ / 2;
1914 * The abort bit is auto-clearing. We also don't want pioavail
1915 * update happening during this, and we don't want any other
1916 * sends going out, so turn those off for the duration. We read
1917 * the scratch register to be sure that cancels and the abort
1918 * have taken effect in the chip. Otherwise two parts are same
1919 * as ipath_force_pio_avail_update()
1921 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
1922 dd->ipath_sendctrl &= ~(INFINIPATH_S_PIOBUFAVAILUPD
1923 | INFINIPATH_S_PIOENABLE);
1924 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1925 dd->ipath_sendctrl | INFINIPATH_S_ABORT);
1926 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
1927 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
1929 /* disarm all send buffers */
1930 ipath_disarm_piobufs(dd, 0,
1931 dd->ipath_piobcnt2k + dd->ipath_piobcnt4k);
1933 if (dd->ipath_flags & IPATH_HAS_SEND_DMA)
1934 set_bit(IPATH_SDMA_DISARMED, &dd->ipath_sdma_status);
1936 if (restore_sendctrl) {
1937 /* else done by caller later if needed */
1938 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
1939 dd->ipath_sendctrl |= INFINIPATH_S_PIOBUFAVAILUPD |
1940 INFINIPATH_S_PIOENABLE;
1941 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1942 dd->ipath_sendctrl);
1943 /* and again, be sure all have hit the chip */
1944 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
1945 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
1948 if ((dd->ipath_flags & IPATH_HAS_SEND_DMA) &&
1949 !test_bit(IPATH_SDMA_DISABLED, &dd->ipath_sdma_status) &&
1950 test_bit(IPATH_SDMA_RUNNING, &dd->ipath_sdma_status)) {
1951 spin_lock_irqsave(&dd->ipath_sdma_lock, flags);
1952 /* only wait so long for intr */
1953 dd->ipath_sdma_abort_intr_timeout = jiffies + HZ;
1954 dd->ipath_sdma_reset_wait = 200;
1955 if (!test_bit(IPATH_SDMA_SHUTDOWN, &dd->ipath_sdma_status))
1956 tasklet_hi_schedule(&dd->ipath_sdma_abort_task);
1957 spin_unlock_irqrestore(&dd->ipath_sdma_lock, flags);
1963 * Force an update of in-memory copy of the pioavail registers, when
1964 * needed for any of a variety of reasons. We read the scratch register
1965 * to make it highly likely that the update will have happened by the
1966 * time we return. If already off (as in cancel_sends above), this
1967 * routine is a nop, on the assumption that the caller will "do the
1970 void ipath_force_pio_avail_update(struct ipath_devdata *dd)
1972 unsigned long flags;
1974 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
1975 if (dd->ipath_sendctrl & INFINIPATH_S_PIOBUFAVAILUPD) {
1976 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1977 dd->ipath_sendctrl & ~INFINIPATH_S_PIOBUFAVAILUPD);
1978 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
1979 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1980 dd->ipath_sendctrl);
1981 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
1983 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
1986 static void ipath_set_ib_lstate(struct ipath_devdata *dd, int linkcmd,
1990 static const char *what[4] = {
1992 [INFINIPATH_IBCC_LINKCMD_DOWN] = "DOWN",
1993 [INFINIPATH_IBCC_LINKCMD_ARMED] = "ARMED",
1994 [INFINIPATH_IBCC_LINKCMD_ACTIVE] = "ACTIVE"
1997 if (linitcmd == INFINIPATH_IBCC_LINKINITCMD_DISABLE) {
1999 * If we are told to disable, note that so link-recovery
2000 * code does not attempt to bring us back up.
2003 dd->ipath_flags |= IPATH_IB_LINK_DISABLED;
2005 } else if (linitcmd) {
2007 * Any other linkinitcmd will lead to LINKDOWN and then
2008 * to INIT (if all is well), so clear flag to let
2009 * link-recovery code attempt to bring us back up.
2012 dd->ipath_flags &= ~IPATH_IB_LINK_DISABLED;
2016 mod_wd = (linkcmd << dd->ibcc_lc_shift) |
2017 (linitcmd << INFINIPATH_IBCC_LINKINITCMD_SHIFT);
2019 "Moving unit %u to %s (initcmd=0x%x), current ltstate is %s\n",
2020 dd->ipath_unit, what[linkcmd], linitcmd,
2021 ipath_ibcstatus_str[ipath_ib_linktrstate(dd,
2022 ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus))]);
2024 ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
2025 dd->ipath_ibcctrl | mod_wd);
2026 /* read from chip so write is flushed */
2027 (void) ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
2030 int ipath_set_linkstate(struct ipath_devdata *dd, u8 newstate)
2036 case IPATH_IB_LINKDOWN_ONLY:
2037 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN, 0);
2042 case IPATH_IB_LINKDOWN:
2043 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN,
2044 INFINIPATH_IBCC_LINKINITCMD_POLL);
2049 case IPATH_IB_LINKDOWN_SLEEP:
2050 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN,
2051 INFINIPATH_IBCC_LINKINITCMD_SLEEP);
2056 case IPATH_IB_LINKDOWN_DISABLE:
2057 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN,
2058 INFINIPATH_IBCC_LINKINITCMD_DISABLE);
2063 case IPATH_IB_LINKARM:
2064 if (dd->ipath_flags & IPATH_LINKARMED) {
2068 if (!(dd->ipath_flags &
2069 (IPATH_LINKINIT | IPATH_LINKACTIVE))) {
2073 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_ARMED, 0);
2076 * Since the port can transition to ACTIVE by receiving
2077 * a non VL 15 packet, wait for either state.
2079 lstate = IPATH_LINKARMED | IPATH_LINKACTIVE;
2082 case IPATH_IB_LINKACTIVE:
2083 if (dd->ipath_flags & IPATH_LINKACTIVE) {
2087 if (!(dd->ipath_flags & IPATH_LINKARMED)) {
2091 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_ACTIVE, 0);
2092 lstate = IPATH_LINKACTIVE;
2095 case IPATH_IB_LINK_LOOPBACK:
2096 dev_info(&dd->pcidev->dev, "Enabling IB local loopback\n");
2097 dd->ipath_ibcctrl |= INFINIPATH_IBCC_LOOPBACK;
2098 ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
2101 /* turn heartbeat off, as it causes loopback to fail */
2102 dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
2103 IPATH_IB_HRTBT_OFF);
2108 case IPATH_IB_LINK_EXTERNAL:
2109 dev_info(&dd->pcidev->dev,
2110 "Disabling IB local loopback (normal)\n");
2111 dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
2113 dd->ipath_ibcctrl &= ~INFINIPATH_IBCC_LOOPBACK;
2114 ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
2121 * Heartbeat can be explicitly enabled by the user via
2122 * "hrtbt_enable" "file", and if disabled, trying to enable here
2123 * will have no effect. Implicit changes (heartbeat off when
2124 * loopback on, and vice versa) are included to ease testing.
2126 case IPATH_IB_LINK_HRTBT:
2127 ret = dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
2131 case IPATH_IB_LINK_NO_HRTBT:
2132 ret = dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
2133 IPATH_IB_HRTBT_OFF);
2137 ipath_dbg("Invalid linkstate 0x%x requested\n", newstate);
2141 ret = ipath_wait_linkstate(dd, lstate, 2000);
2148 * ipath_set_mtu - set the MTU
2149 * @dd: the infinipath device
2152 * we can handle "any" incoming size, the issue here is whether we
2153 * need to restrict our outgoing size. For now, we don't do any
2154 * sanity checking on this, and we don't deal with what happens to
2155 * programs that are already running when the size changes.
2156 * NOTE: changing the MTU will usually cause the IBC to go back to
2157 * link INIT state...
2159 int ipath_set_mtu(struct ipath_devdata *dd, u16 arg)
2166 * mtu is IB data payload max. It's the largest power of 2 less
2167 * than piosize (or even larger, since it only really controls the
2168 * largest we can receive; we can send the max of the mtu and
2169 * piosize). We check that it's one of the valid IB sizes.
2171 if (arg != 256 && arg != 512 && arg != 1024 && arg != 2048 &&
2172 (arg != 4096 || !ipath_mtu4096)) {
2173 ipath_dbg("Trying to set invalid mtu %u, failing\n", arg);
2177 if (dd->ipath_ibmtu == arg) {
2178 ret = 0; /* same as current */
2182 piosize = dd->ipath_ibmaxlen;
2183 dd->ipath_ibmtu = arg;
2185 if (arg >= (piosize - IPATH_PIO_MAXIBHDR)) {
2186 /* Only if it's not the initial value (or reset to it) */
2187 if (piosize != dd->ipath_init_ibmaxlen) {
2188 if (arg > piosize && arg <= dd->ipath_init_ibmaxlen)
2189 piosize = dd->ipath_init_ibmaxlen;
2190 dd->ipath_ibmaxlen = piosize;
2193 } else if ((arg + IPATH_PIO_MAXIBHDR) != dd->ipath_ibmaxlen) {
2194 piosize = arg + IPATH_PIO_MAXIBHDR;
2195 ipath_cdbg(VERBOSE, "ibmaxlen was 0x%x, setting to 0x%x "
2196 "(mtu 0x%x)\n", dd->ipath_ibmaxlen, piosize,
2198 dd->ipath_ibmaxlen = piosize;
2203 u64 ibc = dd->ipath_ibcctrl, ibdw;
2205 * update our housekeeping variables, and set IBC max
2206 * size, same as init code; max IBC is max we allow in
2207 * buffer, less the qword pbc, plus 1 for ICRC, in dwords
2209 dd->ipath_ibmaxlen = piosize - 2 * sizeof(u32);
2210 ibdw = (dd->ipath_ibmaxlen >> 2) + 1;
2211 ibc &= ~(INFINIPATH_IBCC_MAXPKTLEN_MASK <<
2212 dd->ibcc_mpl_shift);
2213 ibc |= ibdw << dd->ibcc_mpl_shift;
2214 dd->ipath_ibcctrl = ibc;
2215 ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
2217 dd->ipath_f_tidtemplate(dd);
2226 int ipath_set_lid(struct ipath_devdata *dd, u32 lid, u8 lmc)
2228 dd->ipath_lid = lid;
2229 dd->ipath_lmc = lmc;
2231 dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_LIDLMC, lid |
2232 (~((1U << lmc) - 1)) << 16);
2234 dev_info(&dd->pcidev->dev, "We got a lid: 0x%x\n", lid);
2241 * ipath_write_kreg_port - write a device's per-port 64-bit kernel register
2242 * @dd: the infinipath device
2243 * @regno: the register number to write
2244 * @port: the port containing the register
2245 * @value: the value to write
2247 * Registers that vary with the chip implementation constants (port)
2250 void ipath_write_kreg_port(const struct ipath_devdata *dd, ipath_kreg regno,
2251 unsigned port, u64 value)
2255 if (port < dd->ipath_portcnt &&
2256 (regno == dd->ipath_kregs->kr_rcvhdraddr ||
2257 regno == dd->ipath_kregs->kr_rcvhdrtailaddr))
2258 where = regno + port;
2262 ipath_write_kreg(dd, where, value);
2266 * Following deal with the "obviously simple" task of overriding the state
2267 * of the LEDS, which normally indicate link physical and logical status.
2268 * The complications arise in dealing with different hardware mappings
2269 * and the board-dependent routine being called from interrupts.
2270 * and then there's the requirement to _flash_ them.
2272 #define LED_OVER_FREQ_SHIFT 8
2273 #define LED_OVER_FREQ_MASK (0xFF<<LED_OVER_FREQ_SHIFT)
2274 /* Below is "non-zero" to force override, but both actual LEDs are off */
2275 #define LED_OVER_BOTH_OFF (8)
2277 static void ipath_run_led_override(unsigned long opaque)
2279 struct ipath_devdata *dd = (struct ipath_devdata *)opaque;
2282 u64 lstate, ltstate, val;
2284 if (!(dd->ipath_flags & IPATH_INITTED))
2287 pidx = dd->ipath_led_override_phase++ & 1;
2288 dd->ipath_led_override = dd->ipath_led_override_vals[pidx];
2289 timeoff = dd->ipath_led_override_timeoff;
2292 * below potentially restores the LED values per current status,
2293 * should also possibly setup the traffic-blink register,
2294 * but leave that to per-chip functions.
2296 val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
2297 ltstate = ipath_ib_linktrstate(dd, val);
2298 lstate = ipath_ib_linkstate(dd, val);
2300 dd->ipath_f_setextled(dd, lstate, ltstate);
2301 mod_timer(&dd->ipath_led_override_timer, jiffies + timeoff);
2304 void ipath_set_led_override(struct ipath_devdata *dd, unsigned int val)
2308 if (!(dd->ipath_flags & IPATH_INITTED))
2311 /* First check if we are blinking. If not, use 1HZ polling */
2313 freq = (val & LED_OVER_FREQ_MASK) >> LED_OVER_FREQ_SHIFT;
2316 /* For blink, set each phase from one nybble of val */
2317 dd->ipath_led_override_vals[0] = val & 0xF;
2318 dd->ipath_led_override_vals[1] = (val >> 4) & 0xF;
2319 timeoff = (HZ << 4)/freq;
2321 /* Non-blink set both phases the same. */
2322 dd->ipath_led_override_vals[0] = val & 0xF;
2323 dd->ipath_led_override_vals[1] = val & 0xF;
2325 dd->ipath_led_override_timeoff = timeoff;
2328 * If the timer has not already been started, do so. Use a "quick"
2329 * timeout so the function will be called soon, to look at our request.
2331 if (atomic_inc_return(&dd->ipath_led_override_timer_active) == 1) {
2332 /* Need to start timer */
2333 init_timer(&dd->ipath_led_override_timer);
2334 dd->ipath_led_override_timer.function =
2335 ipath_run_led_override;
2336 dd->ipath_led_override_timer.data = (unsigned long) dd;
2337 dd->ipath_led_override_timer.expires = jiffies + 1;
2338 add_timer(&dd->ipath_led_override_timer);
2340 atomic_dec(&dd->ipath_led_override_timer_active);
2344 * ipath_shutdown_device - shut down a device
2345 * @dd: the infinipath device
2347 * This is called to make the device quiet when we are about to
2348 * unload the driver, and also when the device is administratively
2349 * disabled. It does not free any data structures.
2350 * Everything it does has to be setup again by ipath_init_chip(dd,1)
2352 void ipath_shutdown_device(struct ipath_devdata *dd)
2354 unsigned long flags;
2356 ipath_dbg("Shutting down the device\n");
2358 ipath_hol_up(dd); /* make sure user processes aren't suspended */
2360 dd->ipath_flags |= IPATH_LINKUNK;
2361 dd->ipath_flags &= ~(IPATH_INITTED | IPATH_LINKDOWN |
2362 IPATH_LINKINIT | IPATH_LINKARMED |
2364 *dd->ipath_statusp &= ~(IPATH_STATUS_IB_CONF |
2365 IPATH_STATUS_IB_READY);
2367 /* mask interrupts, but not errors */
2368 ipath_write_kreg(dd, dd->ipath_kregs->kr_intmask, 0ULL);
2370 dd->ipath_rcvctrl = 0;
2371 ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl,
2374 if (dd->ipath_flags & IPATH_HAS_SEND_DMA)
2378 * gracefully stop all sends allowing any in progress to trickle out
2381 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
2382 dd->ipath_sendctrl = 0;
2383 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, dd->ipath_sendctrl);
2385 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
2386 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
2389 * enough for anything that's going to trickle out to have actually
2394 dd->ipath_f_setextled(dd, 0, 0); /* make sure LEDs are off */
2396 ipath_set_ib_lstate(dd, 0, INFINIPATH_IBCC_LINKINITCMD_DISABLE);
2397 ipath_cancel_sends(dd, 0);
2400 * we are shutting down, so tell components that care. We don't do
2401 * this on just a link state change, much like ethernet, a cable
2402 * unplug, etc. doesn't change driver state
2404 signal_ib_event(dd, IB_EVENT_PORT_ERR);
2407 dd->ipath_control &= ~INFINIPATH_C_LINKENABLE;
2408 ipath_write_kreg(dd, dd->ipath_kregs->kr_control,
2409 dd->ipath_control | INFINIPATH_C_FREEZEMODE);
2412 * clear SerdesEnable and turn the leds off; do this here because
2413 * we are unloading, so don't count on interrupts to move along
2414 * Turn the LEDs off explictly for the same reason.
2416 dd->ipath_f_quiet_serdes(dd);
2418 /* stop all the timers that might still be running */
2419 del_timer_sync(&dd->ipath_hol_timer);
2420 if (dd->ipath_stats_timer_active) {
2421 del_timer_sync(&dd->ipath_stats_timer);
2422 dd->ipath_stats_timer_active = 0;
2424 if (dd->ipath_intrchk_timer.data) {
2425 del_timer_sync(&dd->ipath_intrchk_timer);
2426 dd->ipath_intrchk_timer.data = 0;
2428 if (atomic_read(&dd->ipath_led_override_timer_active)) {
2429 del_timer_sync(&dd->ipath_led_override_timer);
2430 atomic_set(&dd->ipath_led_override_timer_active, 0);
2434 * clear all interrupts and errors, so that the next time the driver
2435 * is loaded or device is enabled, we know that whatever is set
2436 * happened while we were unloaded
2438 ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrclear,
2439 ~0ULL & ~INFINIPATH_HWE_MEMBISTFAILED);
2440 ipath_write_kreg(dd, dd->ipath_kregs->kr_errorclear, -1LL);
2441 ipath_write_kreg(dd, dd->ipath_kregs->kr_intclear, -1LL);
2443 ipath_cdbg(VERBOSE, "Flush time and errors to EEPROM\n");
2444 ipath_update_eeprom_log(dd);
2448 * ipath_free_pddata - free a port's allocated data
2449 * @dd: the infinipath device
2450 * @pd: the portdata structure
2452 * free up any allocated data for a port
2453 * This should not touch anything that would affect a simultaneous
2454 * re-allocation of port data, because it is called after ipath_mutex
2455 * is released (and can be called from reinit as well).
2456 * It should never change any chip state, or global driver state.
2457 * (The only exception to global state is freeing the port0 port0_skbs.)
2459 void ipath_free_pddata(struct ipath_devdata *dd, struct ipath_portdata *pd)
2464 if (pd->port_rcvhdrq) {
2465 ipath_cdbg(VERBOSE, "free closed port %d rcvhdrq @ %p "
2466 "(size=%lu)\n", pd->port_port, pd->port_rcvhdrq,
2467 (unsigned long) pd->port_rcvhdrq_size);
2468 dma_free_coherent(&dd->pcidev->dev, pd->port_rcvhdrq_size,
2469 pd->port_rcvhdrq, pd->port_rcvhdrq_phys);
2470 pd->port_rcvhdrq = NULL;
2471 if (pd->port_rcvhdrtail_kvaddr) {
2472 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
2473 pd->port_rcvhdrtail_kvaddr,
2474 pd->port_rcvhdrqtailaddr_phys);
2475 pd->port_rcvhdrtail_kvaddr = NULL;
2478 if (pd->port_port && pd->port_rcvegrbuf) {
2481 for (e = 0; e < pd->port_rcvegrbuf_chunks; e++) {
2482 void *base = pd->port_rcvegrbuf[e];
2483 size_t size = pd->port_rcvegrbuf_size;
2485 ipath_cdbg(VERBOSE, "egrbuf free(%p, %lu), "
2486 "chunk %u/%u\n", base,
2487 (unsigned long) size,
2488 e, pd->port_rcvegrbuf_chunks);
2489 dma_free_coherent(&dd->pcidev->dev, size,
2490 base, pd->port_rcvegrbuf_phys[e]);
2492 kfree(pd->port_rcvegrbuf);
2493 pd->port_rcvegrbuf = NULL;
2494 kfree(pd->port_rcvegrbuf_phys);
2495 pd->port_rcvegrbuf_phys = NULL;
2496 pd->port_rcvegrbuf_chunks = 0;
2497 } else if (pd->port_port == 0 && dd->ipath_port0_skbinfo) {
2499 struct ipath_skbinfo *skbinfo = dd->ipath_port0_skbinfo;
2501 dd->ipath_port0_skbinfo = NULL;
2502 ipath_cdbg(VERBOSE, "free closed port %d "
2503 "ipath_port0_skbinfo @ %p\n", pd->port_port,
2505 for (e = 0; e < dd->ipath_p0_rcvegrcnt; e++)
2506 if (skbinfo[e].skb) {
2507 pci_unmap_single(dd->pcidev, skbinfo[e].phys,
2509 PCI_DMA_FROMDEVICE);
2510 dev_kfree_skb(skbinfo[e].skb);
2514 kfree(pd->port_tid_pg_list);
2515 vfree(pd->subport_uregbase);
2516 vfree(pd->subport_rcvegrbuf);
2517 vfree(pd->subport_rcvhdr_base);
2521 static int __init infinipath_init(void)
2525 if (ipath_debug & __IPATH_DBG)
2526 printk(KERN_INFO DRIVER_LOAD_MSG "%s", ib_ipath_version);
2529 * These must be called before the driver is registered with
2530 * the PCI subsystem.
2532 idr_init(&unit_table);
2533 if (!idr_pre_get(&unit_table, GFP_KERNEL)) {
2534 printk(KERN_ERR IPATH_DRV_NAME ": idr_pre_get() failed\n");
2539 ret = pci_register_driver(&ipath_driver);
2541 printk(KERN_ERR IPATH_DRV_NAME
2542 ": Unable to register driver: error %d\n", -ret);
2546 ret = ipath_init_ipathfs();
2548 printk(KERN_ERR IPATH_DRV_NAME ": Unable to create "
2549 "ipathfs: error %d\n", -ret);
2556 pci_unregister_driver(&ipath_driver);
2559 idr_destroy(&unit_table);
2565 static void __exit infinipath_cleanup(void)
2567 ipath_exit_ipathfs();
2569 ipath_cdbg(VERBOSE, "Unregistering pci driver\n");
2570 pci_unregister_driver(&ipath_driver);
2572 idr_destroy(&unit_table);
2576 * ipath_reset_device - reset the chip if possible
2577 * @unit: the device to reset
2579 * Whether or not reset is successful, we attempt to re-initialize the chip
2580 * (that is, much like a driver unload/reload). We clear the INITTED flag
2581 * so that the various entry points will fail until we reinitialize. For
2582 * now, we only allow this if no user ports are open that use chip resources
2584 int ipath_reset_device(int unit)
2587 struct ipath_devdata *dd = ipath_lookup(unit);
2594 if (atomic_read(&dd->ipath_led_override_timer_active)) {
2595 /* Need to stop LED timer, _then_ shut off LEDs */
2596 del_timer_sync(&dd->ipath_led_override_timer);
2597 atomic_set(&dd->ipath_led_override_timer_active, 0);
2600 /* Shut off LEDs after we are sure timer is not running */
2601 dd->ipath_led_override = LED_OVER_BOTH_OFF;
2602 dd->ipath_f_setextled(dd, 0, 0);
2604 dev_info(&dd->pcidev->dev, "Reset on unit %u requested\n", unit);
2606 if (!dd->ipath_kregbase || !(dd->ipath_flags & IPATH_PRESENT)) {
2607 dev_info(&dd->pcidev->dev, "Invalid unit number %u or "
2608 "not initialized or not present\n", unit);
2614 for (i = 1; i < dd->ipath_cfgports; i++) {
2615 if (dd->ipath_pd[i] && dd->ipath_pd[i]->port_cnt) {
2616 ipath_dbg("unit %u port %d is in use "
2617 "(PID %u cmd %s), can't reset\n",
2619 pid_nr(dd->ipath_pd[i]->port_pid),
2620 dd->ipath_pd[i]->port_comm);
2626 if (dd->ipath_flags & IPATH_HAS_SEND_DMA)
2629 dd->ipath_flags &= ~IPATH_INITTED;
2630 ipath_write_kreg(dd, dd->ipath_kregs->kr_intmask, 0ULL);
2631 ret = dd->ipath_f_reset(dd);
2633 ipath_dbg("Reinitializing unit %u after reset attempt\n",
2635 ret = ipath_init_chip(dd, 1);
2639 ipath_dev_err(dd, "Reinitialize unit %u after "
2640 "reset failed with %d\n", unit, ret);
2642 dev_info(&dd->pcidev->dev, "Reinitialized unit %u after "
2643 "resetting\n", unit);
2650 * send a signal to all the processes that have the driver open
2651 * through the normal interfaces (i.e., everything other than diags
2652 * interface). Returns number of signalled processes.
2654 static int ipath_signal_procs(struct ipath_devdata *dd, int sig)
2656 int i, sub, any = 0;
2661 for (i = 1; i < dd->ipath_cfgports; i++) {
2662 if (!dd->ipath_pd[i] || !dd->ipath_pd[i]->port_cnt)
2664 pid = dd->ipath_pd[i]->port_pid;
2668 dev_info(&dd->pcidev->dev, "context %d in use "
2669 "(PID %u), sending signal %d\n",
2670 i, pid_nr(pid), sig);
2671 kill_pid(pid, sig, 1);
2673 for (sub = 0; sub < INFINIPATH_MAX_SUBPORT; sub++) {
2674 pid = dd->ipath_pd[i]->port_subpid[sub];
2677 dev_info(&dd->pcidev->dev, "sub-context "
2678 "%d:%d in use (PID %u), sending "
2679 "signal %d\n", i, sub, pid_nr(pid), sig);
2680 kill_pid(pid, sig, 1);
2687 static void ipath_hol_signal_down(struct ipath_devdata *dd)
2689 if (ipath_signal_procs(dd, SIGSTOP))
2690 ipath_dbg("Stopped some processes\n");
2691 ipath_cancel_sends(dd, 1);
2695 static void ipath_hol_signal_up(struct ipath_devdata *dd)
2697 if (ipath_signal_procs(dd, SIGCONT))
2698 ipath_dbg("Continued some processes\n");
2702 * link is down, stop any users processes, and flush pending sends
2703 * to prevent HoL blocking, then start the HoL timer that
2704 * periodically continues, then stop procs, so they can detect
2705 * link down if they want, and do something about it.
2706 * Timer may already be running, so use __mod_timer, not add_timer.
2708 void ipath_hol_down(struct ipath_devdata *dd)
2710 dd->ipath_hol_state = IPATH_HOL_DOWN;
2711 ipath_hol_signal_down(dd);
2712 dd->ipath_hol_next = IPATH_HOL_DOWNCONT;
2713 dd->ipath_hol_timer.expires = jiffies +
2714 msecs_to_jiffies(ipath_hol_timeout_ms);
2715 __mod_timer(&dd->ipath_hol_timer, dd->ipath_hol_timer.expires);
2719 * link is up, continue any user processes, and ensure timer
2720 * is a nop, if running. Let timer keep running, if set; it
2721 * will nop when it sees the link is up
2723 void ipath_hol_up(struct ipath_devdata *dd)
2725 ipath_hol_signal_up(dd);
2726 dd->ipath_hol_state = IPATH_HOL_UP;
2730 * toggle the running/not running state of user proceses
2731 * to prevent HoL blocking on chip resources, but still allow
2732 * user processes to do link down special case handling.
2733 * Should only be called via the timer
2735 void ipath_hol_event(unsigned long opaque)
2737 struct ipath_devdata *dd = (struct ipath_devdata *)opaque;
2739 if (dd->ipath_hol_next == IPATH_HOL_DOWNSTOP
2740 && dd->ipath_hol_state != IPATH_HOL_UP) {
2741 dd->ipath_hol_next = IPATH_HOL_DOWNCONT;
2742 ipath_dbg("Stopping processes\n");
2743 ipath_hol_signal_down(dd);
2744 } else { /* may do "extra" if also in ipath_hol_up() */
2745 dd->ipath_hol_next = IPATH_HOL_DOWNSTOP;
2746 ipath_dbg("Continuing processes\n");
2747 ipath_hol_signal_up(dd);
2749 if (dd->ipath_hol_state == IPATH_HOL_UP)
2750 ipath_dbg("link's up, don't resched timer\n");
2752 dd->ipath_hol_timer.expires = jiffies +
2753 msecs_to_jiffies(ipath_hol_timeout_ms);
2754 __mod_timer(&dd->ipath_hol_timer,
2755 dd->ipath_hol_timer.expires);
2759 int ipath_set_rx_pol_inv(struct ipath_devdata *dd, u8 new_pol_inv)
2763 if (new_pol_inv > INFINIPATH_XGXS_RX_POL_MASK)
2765 if (dd->ipath_rx_pol_inv != new_pol_inv) {
2766 dd->ipath_rx_pol_inv = new_pol_inv;
2767 val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_xgxsconfig);
2768 val &= ~(INFINIPATH_XGXS_RX_POL_MASK <<
2769 INFINIPATH_XGXS_RX_POL_SHIFT);
2770 val |= ((u64)dd->ipath_rx_pol_inv) <<
2771 INFINIPATH_XGXS_RX_POL_SHIFT;
2772 ipath_write_kreg(dd, dd->ipath_kregs->kr_xgxsconfig, val);
2778 * Disable and enable the armlaunch error. Used for PIO bandwidth testing on
2779 * the 7220, which is count-based, rather than trigger-based. Safe for the
2780 * driver check, since it's at init. Not completely safe when used for
2781 * user-mode checking, since some error checking can be lost, but not
2782 * particularly risky, and only has problematic side-effects in the face of
2783 * very buggy user code. There is no reference counting, but that's also
2784 * fine, given the intended use.
2786 void ipath_enable_armlaunch(struct ipath_devdata *dd)
2788 dd->ipath_lasterror &= ~INFINIPATH_E_SPIOARMLAUNCH;
2789 ipath_write_kreg(dd, dd->ipath_kregs->kr_errorclear,
2790 INFINIPATH_E_SPIOARMLAUNCH);
2791 dd->ipath_errormask |= INFINIPATH_E_SPIOARMLAUNCH;
2792 ipath_write_kreg(dd, dd->ipath_kregs->kr_errormask,
2793 dd->ipath_errormask);
2796 void ipath_disable_armlaunch(struct ipath_devdata *dd)
2798 /* so don't re-enable if already set */
2799 dd->ipath_maskederrs &= ~INFINIPATH_E_SPIOARMLAUNCH;
2800 dd->ipath_errormask &= ~INFINIPATH_E_SPIOARMLAUNCH;
2801 ipath_write_kreg(dd, dd->ipath_kregs->kr_errormask,
2802 dd->ipath_errormask);
2805 module_init(infinipath_init);
2806 module_exit(infinipath_cleanup);