1 /* sched.c - SPU scheduler.
3 * Copyright (C) IBM 2005
4 * Author: Mark Nutter <mnutter@us.ibm.com>
6 * SPU scheduler, based on Linux thread priority. For now use
7 * a simple "cooperative" yield model with no preemption. SPU
8 * scheduling will eventually be preemptive: When a thread with
9 * a higher static priority gets ready to run, then an active SPU
10 * context will be preempted and returned to the waitq.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
29 #include <linux/config.h>
30 #include <linux/module.h>
31 #include <linux/errno.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
35 #include <linux/completion.h>
36 #include <linux/vmalloc.h>
37 #include <linux/smp.h>
38 #include <linux/smp_lock.h>
39 #include <linux/stddef.h>
40 #include <linux/unistd.h>
43 #include <asm/mmu_context.h>
45 #include <asm/spu_csa.h>
46 #include <asm/spu_priv1.h>
49 #define SPU_MIN_TIMESLICE (100 * HZ / 1000)
51 #define SPU_BITMAP_SIZE (((MAX_PRIO+BITS_PER_LONG)/BITS_PER_LONG)+1)
52 struct spu_prio_array {
54 unsigned long bitmap[SPU_BITMAP_SIZE];
55 wait_queue_head_t waitq[MAX_PRIO];
58 /* spu_runqueue - This is the main runqueue data structure for SPUs. */
61 unsigned long nr_active;
62 unsigned long nr_idle;
63 unsigned long nr_switches;
64 struct list_head active_list;
65 struct list_head idle_list;
66 struct spu_prio_array prio;
69 static struct spu_runqueue *spu_runqueues = NULL;
71 static inline struct spu_runqueue *spu_rq(void)
73 /* Future: make this a per-NODE array,
74 * and use cpu_to_node(smp_processor_id())
79 static inline struct spu *del_idle(struct spu_runqueue *rq)
83 BUG_ON(rq->nr_idle <= 0);
84 BUG_ON(list_empty(&rq->idle_list));
85 /* Future: Move SPU out of low-power SRI state. */
86 spu = list_entry(rq->idle_list.next, struct spu, sched_list);
87 list_del_init(&spu->sched_list);
92 static inline void del_active(struct spu_runqueue *rq, struct spu *spu)
94 BUG_ON(rq->nr_active <= 0);
95 BUG_ON(list_empty(&rq->active_list));
96 list_del_init(&spu->sched_list);
100 static inline void add_idle(struct spu_runqueue *rq, struct spu *spu)
102 /* Future: Put SPU into low-power SRI state. */
103 list_add_tail(&spu->sched_list, &rq->idle_list);
107 static inline void add_active(struct spu_runqueue *rq, struct spu *spu)
111 list_add_tail(&spu->sched_list, &rq->active_list);
114 static void prio_wakeup(struct spu_runqueue *rq)
116 if (atomic_read(&rq->prio.nr_blocked) && rq->nr_idle) {
117 int best = sched_find_first_bit(rq->prio.bitmap);
118 if (best < MAX_PRIO) {
119 wait_queue_head_t *wq = &rq->prio.waitq[best];
120 wake_up_interruptible_nr(wq, 1);
125 static void prio_wait(struct spu_runqueue *rq, struct spu_context *ctx,
128 int prio = current->prio;
129 wait_queue_head_t *wq = &rq->prio.waitq[prio];
132 __set_bit(prio, rq->prio.bitmap);
133 atomic_inc(&rq->prio.nr_blocked);
134 prepare_to_wait_exclusive(wq, &wait, TASK_INTERRUPTIBLE);
135 if (!signal_pending(current)) {
137 up_write(&ctx->state_sema);
138 pr_debug("%s: pid=%d prio=%d\n", __FUNCTION__,
139 current->pid, current->prio);
141 down_write(&ctx->state_sema);
144 finish_wait(wq, &wait);
145 atomic_dec(&rq->prio.nr_blocked);
146 if (!waitqueue_active(wq))
147 __clear_bit(prio, rq->prio.bitmap);
150 static inline int is_best_prio(struct spu_runqueue *rq)
154 best_prio = sched_find_first_bit(rq->prio.bitmap);
155 return (current->prio < best_prio) ? 1 : 0;
158 static inline void mm_needs_global_tlbie(struct mm_struct *mm)
160 /* Global TLBIE broadcast required with SPEs. */
162 __cpus_setall(&mm->cpu_vm_mask, NR_CPUS);
164 __cpus_setall(&mm->cpu_vm_mask, NR_CPUS+1); /* is this ok? */
168 static inline void bind_context(struct spu *spu, struct spu_context *ctx)
170 pr_debug("%s: pid=%d SPU=%d\n", __FUNCTION__, current->pid,
176 ctx->ops = &spu_hw_ops;
177 spu->pid = current->pid;
178 spu->prio = current->prio;
179 spu->mm = ctx->owner;
180 mm_needs_global_tlbie(spu->mm);
181 spu->ibox_callback = spufs_ibox_callback;
182 spu->wbox_callback = spufs_wbox_callback;
183 spu->stop_callback = spufs_stop_callback;
184 spu->mfc_callback = spufs_mfc_callback;
186 spu_unmap_mappings(ctx);
187 spu_restore(&ctx->csa, spu);
188 spu->timestamp = jiffies;
191 static inline void unbind_context(struct spu *spu, struct spu_context *ctx)
193 pr_debug("%s: unbind pid=%d SPU=%d\n", __FUNCTION__,
194 spu->pid, spu->number);
195 spu_unmap_mappings(ctx);
196 spu_save(&ctx->csa, spu);
197 spu->timestamp = jiffies;
198 ctx->state = SPU_STATE_SAVED;
199 spu->ibox_callback = NULL;
200 spu->wbox_callback = NULL;
201 spu->stop_callback = NULL;
202 spu->mfc_callback = NULL;
205 spu->prio = MAX_PRIO;
206 ctx->ops = &spu_backing_ops;
213 static void spu_reaper(void *data)
215 struct spu_context *ctx = data;
218 down_write(&ctx->state_sema);
220 if (spu && test_bit(SPU_CONTEXT_PREEMPT, &ctx->flags)) {
221 if (atomic_read(&spu->rq->prio.nr_blocked)) {
222 pr_debug("%s: spu=%d\n", __func__, spu->number);
223 ctx->ops->runcntl_stop(ctx);
225 wake_up_all(&ctx->stop_wq);
227 clear_bit(SPU_CONTEXT_PREEMPT, &ctx->flags);
230 up_write(&ctx->state_sema);
231 put_spu_context(ctx);
234 static void schedule_spu_reaper(struct spu_runqueue *rq, struct spu *spu)
236 struct spu_context *ctx = get_spu_context(spu->ctx);
237 unsigned long now = jiffies;
238 unsigned long expire = spu->timestamp + SPU_MIN_TIMESLICE;
240 set_bit(SPU_CONTEXT_PREEMPT, &ctx->flags);
241 INIT_WORK(&ctx->reap_work, spu_reaper, ctx);
242 if (time_after(now, expire))
243 schedule_work(&ctx->reap_work);
245 schedule_delayed_work(&ctx->reap_work, expire - now);
248 static void check_preempt_active(struct spu_runqueue *rq)
251 struct spu *worst = NULL;
253 list_for_each(p, &rq->active_list) {
254 struct spu *spu = list_entry(p, struct spu, sched_list);
255 struct spu_context *ctx = spu->ctx;
256 if (!test_bit(SPU_CONTEXT_PREEMPT, &ctx->flags)) {
257 if (!worst || (spu->prio > worst->prio)) {
262 if (worst && (current->prio < worst->prio))
263 schedule_spu_reaper(rq, worst);
266 static struct spu *get_idle_spu(struct spu_context *ctx, u64 flags)
268 struct spu_runqueue *rq;
269 struct spu *spu = NULL;
274 if (rq->nr_idle > 0) {
275 if (is_best_prio(rq)) {
283 if (signal_pending(current)) {
291 check_preempt_active(rq);
292 prio_wait(rq, ctx, flags);
293 if (signal_pending(current)) {
305 static void put_idle_spu(struct spu *spu)
307 struct spu_runqueue *rq = spu->rq;
315 static int get_active_spu(struct spu *spu)
317 struct spu_runqueue *rq = spu->rq;
323 list_for_each(p, &rq->active_list) {
324 tmp = list_entry(p, struct spu, sched_list);
335 static void put_active_spu(struct spu *spu)
337 struct spu_runqueue *rq = spu->rq;
345 * spu_activate() & spu_deactivate() require the
346 * caller to have down_write(&ctx->state_sema).
348 * The rq->sem is breifly held (inside or outside a
349 * given ctx lock) for list management, but is never
350 * held during save/restore.
353 int spu_activate(struct spu_context *ctx, u64 flags)
359 spu = get_idle_spu(ctx, flags);
361 return (signal_pending(current)) ? -ERESTARTSYS : -EAGAIN;
362 bind_context(spu, ctx);
364 * We're likely to wait for interrupts on the same
365 * CPU that we are now on, so send them here.
367 spu_cpu_affinity_set(spu, raw_smp_processor_id());
372 void spu_deactivate(struct spu_context *ctx)
380 needs_idle = get_active_spu(spu);
381 unbind_context(spu, ctx);
386 void spu_yield(struct spu_context *ctx)
391 down_write(&ctx->state_sema);
393 if (spu && (sched_find_first_bit(spu->rq->prio.bitmap) < MAX_PRIO)) {
394 pr_debug("%s: yielding SPU %d\n", __FUNCTION__, spu->number);
396 ctx->state = SPU_STATE_SAVED;
399 spu->prio = MAX_PRIO;
401 up_write(&ctx->state_sema);
402 if (unlikely(need_yield))
406 int __init spu_sched_init(void)
408 struct spu_runqueue *rq;
412 rq = spu_runqueues = kmalloc(sizeof(struct spu_runqueue), GFP_KERNEL);
414 printk(KERN_WARNING "%s: Unable to allocate runqueues.\n",
418 memset(rq, 0, sizeof(struct spu_runqueue));
419 init_MUTEX(&rq->sem);
420 INIT_LIST_HEAD(&rq->active_list);
421 INIT_LIST_HEAD(&rq->idle_list);
425 atomic_set(&rq->prio.nr_blocked, 0);
426 for (i = 0; i < MAX_PRIO; i++) {
427 init_waitqueue_head(&rq->prio.waitq[i]);
428 __clear_bit(i, rq->prio.bitmap);
430 __set_bit(MAX_PRIO, rq->prio.bitmap);
435 pr_debug("%s: adding SPU[%d]\n", __FUNCTION__, spu->number);
438 spu->timestamp = jiffies;
441 printk(KERN_WARNING "%s: No available SPUs.\n", __FUNCTION__);
448 void __exit spu_sched_exit(void)
450 struct spu_runqueue *rq = spu_rq();
454 printk(KERN_WARNING "%s: no runqueues!\n", __FUNCTION__);
457 while (rq->nr_idle > 0) {