Merge branch 'master' of ../net-2.6/
[linux-2.6] / net / mac80211 / rx.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007  Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #include <linux/jiffies.h>
13 #include <linux/kernel.h>
14 #include <linux/skbuff.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/rcupdate.h>
18 #include <net/mac80211.h>
19 #include <net/ieee80211_radiotap.h>
20
21 #include "ieee80211_i.h"
22 #include "ieee80211_led.h"
23 #include "mesh.h"
24 #include "wep.h"
25 #include "wpa.h"
26 #include "tkip.h"
27 #include "wme.h"
28
29 u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
30                                 struct tid_ampdu_rx *tid_agg_rx,
31                                 struct sk_buff *skb, u16 mpdu_seq_num,
32                                 int bar_req);
33 /*
34  * monitor mode reception
35  *
36  * This function cleans up the SKB, i.e. it removes all the stuff
37  * only useful for monitoring.
38  */
39 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
40                                            struct sk_buff *skb,
41                                            int rtap_len)
42 {
43         skb_pull(skb, rtap_len);
44
45         if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46                 if (likely(skb->len > FCS_LEN))
47                         skb_trim(skb, skb->len - FCS_LEN);
48                 else {
49                         /* driver bug */
50                         WARN_ON(1);
51                         dev_kfree_skb(skb);
52                         skb = NULL;
53                 }
54         }
55
56         return skb;
57 }
58
59 static inline int should_drop_frame(struct ieee80211_rx_status *status,
60                                     struct sk_buff *skb,
61                                     int present_fcs_len,
62                                     int radiotap_len)
63 {
64         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
65
66         if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
67                 return 1;
68         if (unlikely(skb->len < 16 + present_fcs_len + radiotap_len))
69                 return 1;
70         if (((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
71                         cpu_to_le16(IEEE80211_FTYPE_CTL)) &&
72             ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE)) !=
73                         cpu_to_le16(IEEE80211_STYPE_PSPOLL)) &&
74             ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE)) !=
75                         cpu_to_le16(IEEE80211_STYPE_BACK_REQ)))
76                 return 1;
77         return 0;
78 }
79
80 /*
81  * This function copies a received frame to all monitor interfaces and
82  * returns a cleaned-up SKB that no longer includes the FCS nor the
83  * radiotap header the driver might have added.
84  */
85 static struct sk_buff *
86 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
87                      struct ieee80211_rx_status *status,
88                      struct ieee80211_rate *rate)
89 {
90         struct ieee80211_sub_if_data *sdata;
91         int needed_headroom = 0;
92         struct ieee80211_radiotap_header *rthdr;
93         __le64 *rttsft = NULL;
94         struct ieee80211_rtap_fixed_data {
95                 u8 flags;
96                 u8 rate;
97                 __le16 chan_freq;
98                 __le16 chan_flags;
99                 u8 antsignal;
100                 u8 padding_for_rxflags;
101                 __le16 rx_flags;
102         } __attribute__ ((packed)) *rtfixed;
103         struct sk_buff *skb, *skb2;
104         struct net_device *prev_dev = NULL;
105         int present_fcs_len = 0;
106         int rtap_len = 0;
107
108         /*
109          * First, we may need to make a copy of the skb because
110          *  (1) we need to modify it for radiotap (if not present), and
111          *  (2) the other RX handlers will modify the skb we got.
112          *
113          * We don't need to, of course, if we aren't going to return
114          * the SKB because it has a bad FCS/PLCP checksum.
115          */
116         if (status->flag & RX_FLAG_RADIOTAP)
117                 rtap_len = ieee80211_get_radiotap_len(origskb->data);
118         else
119                 /* room for radiotap header, always present fields and TSFT */
120                 needed_headroom = sizeof(*rthdr) + sizeof(*rtfixed) + 8;
121
122         if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
123                 present_fcs_len = FCS_LEN;
124
125         if (!local->monitors) {
126                 if (should_drop_frame(status, origskb, present_fcs_len,
127                                       rtap_len)) {
128                         dev_kfree_skb(origskb);
129                         return NULL;
130                 }
131
132                 return remove_monitor_info(local, origskb, rtap_len);
133         }
134
135         if (should_drop_frame(status, origskb, present_fcs_len, rtap_len)) {
136                 /* only need to expand headroom if necessary */
137                 skb = origskb;
138                 origskb = NULL;
139
140                 /*
141                  * This shouldn't trigger often because most devices have an
142                  * RX header they pull before we get here, and that should
143                  * be big enough for our radiotap information. We should
144                  * probably export the length to drivers so that we can have
145                  * them allocate enough headroom to start with.
146                  */
147                 if (skb_headroom(skb) < needed_headroom &&
148                     pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
149                         dev_kfree_skb(skb);
150                         return NULL;
151                 }
152         } else {
153                 /*
154                  * Need to make a copy and possibly remove radiotap header
155                  * and FCS from the original.
156                  */
157                 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
158
159                 origskb = remove_monitor_info(local, origskb, rtap_len);
160
161                 if (!skb)
162                         return origskb;
163         }
164
165         /* if necessary, prepend radiotap information */
166         if (!(status->flag & RX_FLAG_RADIOTAP)) {
167                 rtfixed = (void *) skb_push(skb, sizeof(*rtfixed));
168                 rtap_len = sizeof(*rthdr) + sizeof(*rtfixed);
169                 if (status->flag & RX_FLAG_TSFT) {
170                         rttsft = (void *) skb_push(skb, sizeof(*rttsft));
171                         rtap_len += 8;
172                 }
173                 rthdr = (void *) skb_push(skb, sizeof(*rthdr));
174                 memset(rthdr, 0, sizeof(*rthdr));
175                 memset(rtfixed, 0, sizeof(*rtfixed));
176                 rthdr->it_present =
177                         cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
178                                     (1 << IEEE80211_RADIOTAP_RATE) |
179                                     (1 << IEEE80211_RADIOTAP_CHANNEL) |
180                                     (1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL) |
181                                     (1 << IEEE80211_RADIOTAP_RX_FLAGS));
182                 rtfixed->flags = 0;
183                 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
184                         rtfixed->flags |= IEEE80211_RADIOTAP_F_FCS;
185
186                 if (rttsft) {
187                         *rttsft = cpu_to_le64(status->mactime);
188                         rthdr->it_present |=
189                                 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
190                 }
191
192                 /* FIXME: when radiotap gets a 'bad PLCP' flag use it here */
193                 rtfixed->rx_flags = 0;
194                 if (status->flag &
195                     (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
196                         rtfixed->rx_flags |=
197                                 cpu_to_le16(IEEE80211_RADIOTAP_F_RX_BADFCS);
198
199                 rtfixed->rate = rate->bitrate / 5;
200
201                 rtfixed->chan_freq = cpu_to_le16(status->freq);
202
203                 if (status->band == IEEE80211_BAND_5GHZ)
204                         rtfixed->chan_flags =
205                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
206                                             IEEE80211_CHAN_5GHZ);
207                 else
208                         rtfixed->chan_flags =
209                                 cpu_to_le16(IEEE80211_CHAN_DYN |
210                                             IEEE80211_CHAN_2GHZ);
211
212                 rtfixed->antsignal = status->ssi;
213                 rthdr->it_len = cpu_to_le16(rtap_len);
214         }
215
216         skb_reset_mac_header(skb);
217         skb->ip_summed = CHECKSUM_UNNECESSARY;
218         skb->pkt_type = PACKET_OTHERHOST;
219         skb->protocol = htons(ETH_P_802_2);
220
221         list_for_each_entry_rcu(sdata, &local->interfaces, list) {
222                 if (!netif_running(sdata->dev))
223                         continue;
224
225                 if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR)
226                         continue;
227
228                 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
229                         continue;
230
231                 if (prev_dev) {
232                         skb2 = skb_clone(skb, GFP_ATOMIC);
233                         if (skb2) {
234                                 skb2->dev = prev_dev;
235                                 netif_rx(skb2);
236                         }
237                 }
238
239                 prev_dev = sdata->dev;
240                 sdata->dev->stats.rx_packets++;
241                 sdata->dev->stats.rx_bytes += skb->len;
242         }
243
244         if (prev_dev) {
245                 skb->dev = prev_dev;
246                 netif_rx(skb);
247         } else
248                 dev_kfree_skb(skb);
249
250         return origskb;
251 }
252
253
254 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
255 {
256         u8 *data = rx->skb->data;
257         int tid;
258
259         /* does the frame have a qos control field? */
260         if (WLAN_FC_IS_QOS_DATA(rx->fc)) {
261                 u8 *qc = data + ieee80211_get_hdrlen(rx->fc) - QOS_CONTROL_LEN;
262                 /* frame has qos control */
263                 tid = qc[0] & QOS_CONTROL_TID_MASK;
264                 if (qc[0] & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
265                         rx->flags |= IEEE80211_RX_AMSDU;
266                 else
267                         rx->flags &= ~IEEE80211_RX_AMSDU;
268         } else {
269                 if (unlikely((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)) {
270                         /* Separate TID for management frames */
271                         tid = NUM_RX_DATA_QUEUES - 1;
272                 } else {
273                         /* no qos control present */
274                         tid = 0; /* 802.1d - Best Effort */
275                 }
276         }
277
278         I802_DEBUG_INC(rx->local->wme_rx_queue[tid]);
279         /* only a debug counter, sta might not be assigned properly yet */
280         if (rx->sta)
281                 I802_DEBUG_INC(rx->sta->wme_rx_queue[tid]);
282
283         rx->queue = tid;
284         /* Set skb->priority to 1d tag if highest order bit of TID is not set.
285          * For now, set skb->priority to 0 for other cases. */
286         rx->skb->priority = (tid > 7) ? 0 : tid;
287 }
288
289 static void ieee80211_verify_ip_alignment(struct ieee80211_rx_data *rx)
290 {
291 #ifdef CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT
292         int hdrlen;
293
294         if (!WLAN_FC_DATA_PRESENT(rx->fc))
295                 return;
296
297         /*
298          * Drivers are required to align the payload data in a way that
299          * guarantees that the contained IP header is aligned to a four-
300          * byte boundary. In the case of regular frames, this simply means
301          * aligning the payload to a four-byte boundary (because either
302          * the IP header is directly contained, or IV/RFC1042 headers that
303          * have a length divisible by four are in front of it.
304          *
305          * With A-MSDU frames, however, the payload data address must
306          * yield two modulo four because there are 14-byte 802.3 headers
307          * within the A-MSDU frames that push the IP header further back
308          * to a multiple of four again. Thankfully, the specs were sane
309          * enough this time around to require padding each A-MSDU subframe
310          * to a length that is a multiple of four.
311          *
312          * Padding like atheros hardware adds which is inbetween the 802.11
313          * header and the payload is not supported, the driver is required
314          * to move the 802.11 header further back in that case.
315          */
316         hdrlen = ieee80211_get_hdrlen(rx->fc);
317         if (rx->flags & IEEE80211_RX_AMSDU)
318                 hdrlen += ETH_HLEN;
319         WARN_ON_ONCE(((unsigned long)(rx->skb->data + hdrlen)) & 3);
320 #endif
321 }
322
323
324 static u32 ieee80211_rx_load_stats(struct ieee80211_local *local,
325                                    struct sk_buff *skb,
326                                    struct ieee80211_rx_status *status,
327                                    struct ieee80211_rate *rate)
328 {
329         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
330         u32 load = 0, hdrtime;
331
332         /* Estimate total channel use caused by this frame */
333
334         /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
335          * 1 usec = 1/8 * (1080 / 10) = 13.5 */
336
337         if (status->band == IEEE80211_BAND_5GHZ ||
338             (status->band == IEEE80211_BAND_5GHZ &&
339              rate->flags & IEEE80211_RATE_ERP_G))
340                 hdrtime = CHAN_UTIL_HDR_SHORT;
341         else
342                 hdrtime = CHAN_UTIL_HDR_LONG;
343
344         load = hdrtime;
345         if (!is_multicast_ether_addr(hdr->addr1))
346                 load += hdrtime;
347
348         /* TODO: optimise again */
349         load += skb->len * CHAN_UTIL_RATE_LCM / rate->bitrate;
350
351         /* Divide channel_use by 8 to avoid wrapping around the counter */
352         load >>= CHAN_UTIL_SHIFT;
353
354         return load;
355 }
356
357 /* rx handlers */
358
359 static ieee80211_rx_result
360 ieee80211_rx_h_if_stats(struct ieee80211_rx_data *rx)
361 {
362         if (rx->sta)
363                 rx->sta->channel_use_raw += rx->load;
364         rx->sdata->channel_use_raw += rx->load;
365         return RX_CONTINUE;
366 }
367
368 static ieee80211_rx_result
369 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
370 {
371         struct ieee80211_local *local = rx->local;
372         struct sk_buff *skb = rx->skb;
373
374         if (unlikely(local->sta_hw_scanning))
375                 return ieee80211_sta_rx_scan(rx->dev, skb, rx->status);
376
377         if (unlikely(local->sta_sw_scanning)) {
378                 /* drop all the other packets during a software scan anyway */
379                 if (ieee80211_sta_rx_scan(rx->dev, skb, rx->status)
380                     != RX_QUEUED)
381                         dev_kfree_skb(skb);
382                 return RX_QUEUED;
383         }
384
385         if (unlikely(rx->flags & IEEE80211_RX_IN_SCAN)) {
386                 /* scanning finished during invoking of handlers */
387                 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
388                 return RX_DROP_UNUSABLE;
389         }
390
391         return RX_CONTINUE;
392 }
393
394 static ieee80211_rx_result
395 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
396 {
397         int hdrlen = ieee80211_get_hdrlen(rx->fc);
398         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
399
400 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
401
402         if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) {
403                 if (!((rx->fc & IEEE80211_FCTL_FROMDS) &&
404                       (rx->fc & IEEE80211_FCTL_TODS)))
405                         return RX_DROP_MONITOR;
406                 if (memcmp(hdr->addr4, rx->dev->dev_addr, ETH_ALEN) == 0)
407                         return RX_DROP_MONITOR;
408         }
409
410         /* If there is not an established peer link and this is not a peer link
411          * establisment frame, beacon or probe, drop the frame.
412          */
413
414         if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
415                 struct ieee80211_mgmt *mgmt;
416
417                 if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT)
418                         return RX_DROP_MONITOR;
419
420                 switch (rx->fc & IEEE80211_FCTL_STYPE) {
421                 case IEEE80211_STYPE_ACTION:
422                         mgmt = (struct ieee80211_mgmt *)hdr;
423                         if (mgmt->u.action.category != PLINK_CATEGORY)
424                                 return RX_DROP_MONITOR;
425                         /* fall through on else */
426                 case IEEE80211_STYPE_PROBE_REQ:
427                 case IEEE80211_STYPE_PROBE_RESP:
428                 case IEEE80211_STYPE_BEACON:
429                         return RX_CONTINUE;
430                         break;
431                 default:
432                         return RX_DROP_MONITOR;
433                 }
434
435          } else if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
436                     is_broadcast_ether_addr(hdr->addr1) &&
437                     mesh_rmc_check(hdr->addr4, msh_h_get(hdr, hdrlen), rx->dev))
438                 return RX_DROP_MONITOR;
439 #undef msh_h_get
440
441         return RX_CONTINUE;
442 }
443
444
445 static ieee80211_rx_result
446 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
447 {
448         struct ieee80211_hdr *hdr;
449
450         hdr = (struct ieee80211_hdr *) rx->skb->data;
451
452         /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
453         if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
454                 if (unlikely(rx->fc & IEEE80211_FCTL_RETRY &&
455                              rx->sta->last_seq_ctrl[rx->queue] ==
456                              hdr->seq_ctrl)) {
457                         if (rx->flags & IEEE80211_RX_RA_MATCH) {
458                                 rx->local->dot11FrameDuplicateCount++;
459                                 rx->sta->num_duplicates++;
460                         }
461                         return RX_DROP_MONITOR;
462                 } else
463                         rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
464         }
465
466         if (unlikely(rx->skb->len < 16)) {
467                 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
468                 return RX_DROP_MONITOR;
469         }
470
471         /* Drop disallowed frame classes based on STA auth/assoc state;
472          * IEEE 802.11, Chap 5.5.
473          *
474          * 80211.o does filtering only based on association state, i.e., it
475          * drops Class 3 frames from not associated stations. hostapd sends
476          * deauth/disassoc frames when needed. In addition, hostapd is
477          * responsible for filtering on both auth and assoc states.
478          */
479
480         if (ieee80211_vif_is_mesh(&rx->sdata->vif))
481                 return ieee80211_rx_mesh_check(rx);
482
483         if (unlikely(((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA ||
484                       ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL &&
485                        (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)) &&
486                      rx->sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
487                      (!rx->sta || !(rx->sta->flags & WLAN_STA_ASSOC)))) {
488                 if ((!(rx->fc & IEEE80211_FCTL_FROMDS) &&
489                      !(rx->fc & IEEE80211_FCTL_TODS) &&
490                      (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
491                     || !(rx->flags & IEEE80211_RX_RA_MATCH)) {
492                         /* Drop IBSS frames and frames for other hosts
493                          * silently. */
494                         return RX_DROP_MONITOR;
495                 }
496
497                 return RX_DROP_MONITOR;
498         }
499
500         return RX_CONTINUE;
501 }
502
503
504 static ieee80211_rx_result
505 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
506 {
507         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
508         int keyidx;
509         int hdrlen;
510         ieee80211_rx_result result = RX_DROP_UNUSABLE;
511         struct ieee80211_key *stakey = NULL;
512
513         /*
514          * Key selection 101
515          *
516          * There are three types of keys:
517          *  - GTK (group keys)
518          *  - PTK (pairwise keys)
519          *  - STK (station-to-station pairwise keys)
520          *
521          * When selecting a key, we have to distinguish between multicast
522          * (including broadcast) and unicast frames, the latter can only
523          * use PTKs and STKs while the former always use GTKs. Unless, of
524          * course, actual WEP keys ("pre-RSNA") are used, then unicast
525          * frames can also use key indizes like GTKs. Hence, if we don't
526          * have a PTK/STK we check the key index for a WEP key.
527          *
528          * Note that in a regular BSS, multicast frames are sent by the
529          * AP only, associated stations unicast the frame to the AP first
530          * which then multicasts it on their behalf.
531          *
532          * There is also a slight problem in IBSS mode: GTKs are negotiated
533          * with each station, that is something we don't currently handle.
534          * The spec seems to expect that one negotiates the same key with
535          * every station but there's no such requirement; VLANs could be
536          * possible.
537          */
538
539         if (!(rx->fc & IEEE80211_FCTL_PROTECTED))
540                 return RX_CONTINUE;
541
542         /*
543          * No point in finding a key and decrypting if the frame is neither
544          * addressed to us nor a multicast frame.
545          */
546         if (!(rx->flags & IEEE80211_RX_RA_MATCH))
547                 return RX_CONTINUE;
548
549         if (rx->sta)
550                 stakey = rcu_dereference(rx->sta->key);
551
552         if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
553                 rx->key = stakey;
554         } else {
555                 /*
556                  * The device doesn't give us the IV so we won't be
557                  * able to look up the key. That's ok though, we
558                  * don't need to decrypt the frame, we just won't
559                  * be able to keep statistics accurate.
560                  * Except for key threshold notifications, should
561                  * we somehow allow the driver to tell us which key
562                  * the hardware used if this flag is set?
563                  */
564                 if ((rx->status->flag & RX_FLAG_DECRYPTED) &&
565                     (rx->status->flag & RX_FLAG_IV_STRIPPED))
566                         return RX_CONTINUE;
567
568                 hdrlen = ieee80211_get_hdrlen(rx->fc);
569
570                 if (rx->skb->len < 8 + hdrlen)
571                         return RX_DROP_UNUSABLE; /* TODO: count this? */
572
573                 /*
574                  * no need to call ieee80211_wep_get_keyidx,
575                  * it verifies a bunch of things we've done already
576                  */
577                 keyidx = rx->skb->data[hdrlen + 3] >> 6;
578
579                 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
580
581                 /*
582                  * RSNA-protected unicast frames should always be sent with
583                  * pairwise or station-to-station keys, but for WEP we allow
584                  * using a key index as well.
585                  */
586                 if (rx->key && rx->key->conf.alg != ALG_WEP &&
587                     !is_multicast_ether_addr(hdr->addr1))
588                         rx->key = NULL;
589         }
590
591         if (rx->key) {
592                 rx->key->tx_rx_count++;
593                 /* TODO: add threshold stuff again */
594         } else {
595 #ifdef CONFIG_MAC80211_DEBUG
596                 if (net_ratelimit())
597                         printk(KERN_DEBUG "%s: RX protected frame,"
598                                " but have no key\n", rx->dev->name);
599 #endif /* CONFIG_MAC80211_DEBUG */
600                 return RX_DROP_MONITOR;
601         }
602
603         /* Check for weak IVs if possible */
604         if (rx->sta && rx->key->conf.alg == ALG_WEP &&
605             ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) &&
606             (!(rx->status->flag & RX_FLAG_IV_STRIPPED) ||
607              !(rx->status->flag & RX_FLAG_DECRYPTED)) &&
608             ieee80211_wep_is_weak_iv(rx->skb, rx->key))
609                 rx->sta->wep_weak_iv_count++;
610
611         switch (rx->key->conf.alg) {
612         case ALG_WEP:
613                 result = ieee80211_crypto_wep_decrypt(rx);
614                 break;
615         case ALG_TKIP:
616                 result = ieee80211_crypto_tkip_decrypt(rx);
617                 break;
618         case ALG_CCMP:
619                 result = ieee80211_crypto_ccmp_decrypt(rx);
620                 break;
621         }
622
623         /* either the frame has been decrypted or will be dropped */
624         rx->status->flag |= RX_FLAG_DECRYPTED;
625
626         return result;
627 }
628
629 static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta)
630 {
631         struct ieee80211_sub_if_data *sdata;
632         DECLARE_MAC_BUF(mac);
633
634         sdata = sta->sdata;
635
636         if (sdata->bss)
637                 atomic_inc(&sdata->bss->num_sta_ps);
638         sta->flags |= WLAN_STA_PS;
639         sta->flags &= ~WLAN_STA_PSPOLL;
640 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
641         printk(KERN_DEBUG "%s: STA %s aid %d enters power save mode\n",
642                dev->name, print_mac(mac, sta->addr), sta->aid);
643 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
644 }
645
646 static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta)
647 {
648         struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
649         struct sk_buff *skb;
650         int sent = 0;
651         struct ieee80211_sub_if_data *sdata;
652         struct ieee80211_tx_packet_data *pkt_data;
653         DECLARE_MAC_BUF(mac);
654
655         sdata = sta->sdata;
656
657         if (sdata->bss)
658                 atomic_dec(&sdata->bss->num_sta_ps);
659
660         sta->flags &= ~(WLAN_STA_PS | WLAN_STA_PSPOLL);
661
662         if (!skb_queue_empty(&sta->ps_tx_buf))
663                 sta_info_clear_tim_bit(sta);
664
665 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
666         printk(KERN_DEBUG "%s: STA %s aid %d exits power save mode\n",
667                dev->name, print_mac(mac, sta->addr), sta->aid);
668 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
669
670         /* Send all buffered frames to the station */
671         while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
672                 pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
673                 sent++;
674                 pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
675                 dev_queue_xmit(skb);
676         }
677         while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
678                 pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
679                 local->total_ps_buffered--;
680                 sent++;
681 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
682                 printk(KERN_DEBUG "%s: STA %s aid %d send PS frame "
683                        "since STA not sleeping anymore\n", dev->name,
684                        print_mac(mac, sta->addr), sta->aid);
685 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
686                 pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
687                 dev_queue_xmit(skb);
688         }
689
690         return sent;
691 }
692
693 static ieee80211_rx_result
694 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
695 {
696         struct sta_info *sta = rx->sta;
697         struct net_device *dev = rx->dev;
698         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
699
700         if (!sta)
701                 return RX_CONTINUE;
702
703         /* Update last_rx only for IBSS packets which are for the current
704          * BSSID to avoid keeping the current IBSS network alive in cases where
705          * other STAs are using different BSSID. */
706         if (rx->sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
707                 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
708                                                 IEEE80211_IF_TYPE_IBSS);
709                 if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0)
710                         sta->last_rx = jiffies;
711         } else
712         if (!is_multicast_ether_addr(hdr->addr1) ||
713             rx->sdata->vif.type == IEEE80211_IF_TYPE_STA) {
714                 /* Update last_rx only for unicast frames in order to prevent
715                  * the Probe Request frames (the only broadcast frames from a
716                  * STA in infrastructure mode) from keeping a connection alive.
717                  * Mesh beacons will update last_rx when if they are found to
718                  * match the current local configuration when processed.
719                  */
720                 sta->last_rx = jiffies;
721         }
722
723         if (!(rx->flags & IEEE80211_RX_RA_MATCH))
724                 return RX_CONTINUE;
725
726         sta->rx_fragments++;
727         sta->rx_bytes += rx->skb->len;
728         sta->last_rssi = rx->status->ssi;
729         sta->last_signal = rx->status->signal;
730         sta->last_noise = rx->status->noise;
731
732         if (!(rx->fc & IEEE80211_FCTL_MOREFRAGS)) {
733                 /* Change STA power saving mode only in the end of a frame
734                  * exchange sequence */
735                 if ((sta->flags & WLAN_STA_PS) && !(rx->fc & IEEE80211_FCTL_PM))
736                         rx->sent_ps_buffered += ap_sta_ps_end(dev, sta);
737                 else if (!(sta->flags & WLAN_STA_PS) &&
738                          (rx->fc & IEEE80211_FCTL_PM))
739                         ap_sta_ps_start(dev, sta);
740         }
741
742         /* Drop data::nullfunc frames silently, since they are used only to
743          * control station power saving mode. */
744         if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
745             (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_NULLFUNC) {
746                 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
747                 /* Update counter and free packet here to avoid counting this
748                  * as a dropped packed. */
749                 sta->rx_packets++;
750                 dev_kfree_skb(rx->skb);
751                 return RX_QUEUED;
752         }
753
754         return RX_CONTINUE;
755 } /* ieee80211_rx_h_sta_process */
756
757 static inline struct ieee80211_fragment_entry *
758 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
759                          unsigned int frag, unsigned int seq, int rx_queue,
760                          struct sk_buff **skb)
761 {
762         struct ieee80211_fragment_entry *entry;
763         int idx;
764
765         idx = sdata->fragment_next;
766         entry = &sdata->fragments[sdata->fragment_next++];
767         if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
768                 sdata->fragment_next = 0;
769
770         if (!skb_queue_empty(&entry->skb_list)) {
771 #ifdef CONFIG_MAC80211_DEBUG
772                 struct ieee80211_hdr *hdr =
773                         (struct ieee80211_hdr *) entry->skb_list.next->data;
774                 DECLARE_MAC_BUF(mac);
775                 DECLARE_MAC_BUF(mac2);
776                 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
777                        "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
778                        "addr1=%s addr2=%s\n",
779                        sdata->dev->name, idx,
780                        jiffies - entry->first_frag_time, entry->seq,
781                        entry->last_frag, print_mac(mac, hdr->addr1),
782                        print_mac(mac2, hdr->addr2));
783 #endif /* CONFIG_MAC80211_DEBUG */
784                 __skb_queue_purge(&entry->skb_list);
785         }
786
787         __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
788         *skb = NULL;
789         entry->first_frag_time = jiffies;
790         entry->seq = seq;
791         entry->rx_queue = rx_queue;
792         entry->last_frag = frag;
793         entry->ccmp = 0;
794         entry->extra_len = 0;
795
796         return entry;
797 }
798
799 static inline struct ieee80211_fragment_entry *
800 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
801                           u16 fc, unsigned int frag, unsigned int seq,
802                           int rx_queue, struct ieee80211_hdr *hdr)
803 {
804         struct ieee80211_fragment_entry *entry;
805         int i, idx;
806
807         idx = sdata->fragment_next;
808         for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
809                 struct ieee80211_hdr *f_hdr;
810                 u16 f_fc;
811
812                 idx--;
813                 if (idx < 0)
814                         idx = IEEE80211_FRAGMENT_MAX - 1;
815
816                 entry = &sdata->fragments[idx];
817                 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
818                     entry->rx_queue != rx_queue ||
819                     entry->last_frag + 1 != frag)
820                         continue;
821
822                 f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data;
823                 f_fc = le16_to_cpu(f_hdr->frame_control);
824
825                 if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) ||
826                     compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
827                     compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
828                         continue;
829
830                 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
831                         __skb_queue_purge(&entry->skb_list);
832                         continue;
833                 }
834                 return entry;
835         }
836
837         return NULL;
838 }
839
840 static ieee80211_rx_result
841 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
842 {
843         struct ieee80211_hdr *hdr;
844         u16 sc;
845         unsigned int frag, seq;
846         struct ieee80211_fragment_entry *entry;
847         struct sk_buff *skb;
848         DECLARE_MAC_BUF(mac);
849
850         hdr = (struct ieee80211_hdr *) rx->skb->data;
851         sc = le16_to_cpu(hdr->seq_ctrl);
852         frag = sc & IEEE80211_SCTL_FRAG;
853
854         if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) ||
855                    (rx->skb)->len < 24 ||
856                    is_multicast_ether_addr(hdr->addr1))) {
857                 /* not fragmented */
858                 goto out;
859         }
860         I802_DEBUG_INC(rx->local->rx_handlers_fragments);
861
862         seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
863
864         if (frag == 0) {
865                 /* This is the first fragment of a new frame. */
866                 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
867                                                  rx->queue, &(rx->skb));
868                 if (rx->key && rx->key->conf.alg == ALG_CCMP &&
869                     (rx->fc & IEEE80211_FCTL_PROTECTED)) {
870                         /* Store CCMP PN so that we can verify that the next
871                          * fragment has a sequential PN value. */
872                         entry->ccmp = 1;
873                         memcpy(entry->last_pn,
874                                rx->key->u.ccmp.rx_pn[rx->queue],
875                                CCMP_PN_LEN);
876                 }
877                 return RX_QUEUED;
878         }
879
880         /* This is a fragment for a frame that should already be pending in
881          * fragment cache. Add this fragment to the end of the pending entry.
882          */
883         entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq,
884                                           rx->queue, hdr);
885         if (!entry) {
886                 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
887                 return RX_DROP_MONITOR;
888         }
889
890         /* Verify that MPDUs within one MSDU have sequential PN values.
891          * (IEEE 802.11i, 8.3.3.4.5) */
892         if (entry->ccmp) {
893                 int i;
894                 u8 pn[CCMP_PN_LEN], *rpn;
895                 if (!rx->key || rx->key->conf.alg != ALG_CCMP)
896                         return RX_DROP_UNUSABLE;
897                 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
898                 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
899                         pn[i]++;
900                         if (pn[i])
901                                 break;
902                 }
903                 rpn = rx->key->u.ccmp.rx_pn[rx->queue];
904                 if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) {
905                         if (net_ratelimit())
906                                 printk(KERN_DEBUG "%s: defrag: CCMP PN not "
907                                        "sequential A2=%s"
908                                        " PN=%02x%02x%02x%02x%02x%02x "
909                                        "(expected %02x%02x%02x%02x%02x%02x)\n",
910                                        rx->dev->name, print_mac(mac, hdr->addr2),
911                                        rpn[0], rpn[1], rpn[2], rpn[3], rpn[4],
912                                        rpn[5], pn[0], pn[1], pn[2], pn[3],
913                                        pn[4], pn[5]);
914                         return RX_DROP_UNUSABLE;
915                 }
916                 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
917         }
918
919         skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc));
920         __skb_queue_tail(&entry->skb_list, rx->skb);
921         entry->last_frag = frag;
922         entry->extra_len += rx->skb->len;
923         if (rx->fc & IEEE80211_FCTL_MOREFRAGS) {
924                 rx->skb = NULL;
925                 return RX_QUEUED;
926         }
927
928         rx->skb = __skb_dequeue(&entry->skb_list);
929         if (skb_tailroom(rx->skb) < entry->extra_len) {
930                 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
931                 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
932                                               GFP_ATOMIC))) {
933                         I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
934                         __skb_queue_purge(&entry->skb_list);
935                         return RX_DROP_UNUSABLE;
936                 }
937         }
938         while ((skb = __skb_dequeue(&entry->skb_list))) {
939                 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
940                 dev_kfree_skb(skb);
941         }
942
943         /* Complete frame has been reassembled - process it now */
944         rx->flags |= IEEE80211_RX_FRAGMENTED;
945
946  out:
947         if (rx->sta)
948                 rx->sta->rx_packets++;
949         if (is_multicast_ether_addr(hdr->addr1))
950                 rx->local->dot11MulticastReceivedFrameCount++;
951         else
952                 ieee80211_led_rx(rx->local);
953         return RX_CONTINUE;
954 }
955
956 static ieee80211_rx_result
957 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
958 {
959         struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
960         struct sk_buff *skb;
961         int no_pending_pkts;
962         DECLARE_MAC_BUF(mac);
963
964         if (likely(!rx->sta ||
965                    (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL ||
966                    (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL ||
967                    !(rx->flags & IEEE80211_RX_RA_MATCH)))
968                 return RX_CONTINUE;
969
970         if ((sdata->vif.type != IEEE80211_IF_TYPE_AP) &&
971             (sdata->vif.type != IEEE80211_IF_TYPE_VLAN))
972                 return RX_DROP_UNUSABLE;
973
974         skb = skb_dequeue(&rx->sta->tx_filtered);
975         if (!skb) {
976                 skb = skb_dequeue(&rx->sta->ps_tx_buf);
977                 if (skb)
978                         rx->local->total_ps_buffered--;
979         }
980         no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
981                 skb_queue_empty(&rx->sta->ps_tx_buf);
982
983         if (skb) {
984                 struct ieee80211_hdr *hdr =
985                         (struct ieee80211_hdr *) skb->data;
986
987                 /*
988                  * Tell TX path to send one frame even though the STA may
989                  * still remain is PS mode after this frame exchange.
990                  */
991                 rx->sta->flags |= WLAN_STA_PSPOLL;
992
993 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
994                 printk(KERN_DEBUG "STA %s aid %d: PS Poll (entries after %d)\n",
995                        print_mac(mac, rx->sta->addr), rx->sta->aid,
996                        skb_queue_len(&rx->sta->ps_tx_buf));
997 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
998
999                 /* Use MoreData flag to indicate whether there are more
1000                  * buffered frames for this STA */
1001                 if (no_pending_pkts)
1002                         hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1003                 else
1004                         hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1005
1006                 dev_queue_xmit(skb);
1007
1008                 if (no_pending_pkts)
1009                         sta_info_clear_tim_bit(rx->sta);
1010 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1011         } else if (!rx->sent_ps_buffered) {
1012                 /*
1013                  * FIXME: This can be the result of a race condition between
1014                  *        us expiring a frame and the station polling for it.
1015                  *        Should we send it a null-func frame indicating we
1016                  *        have nothing buffered for it?
1017                  */
1018                 printk(KERN_DEBUG "%s: STA %s sent PS Poll even "
1019                        "though there is no buffered frames for it\n",
1020                        rx->dev->name, print_mac(mac, rx->sta->addr));
1021 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1022         }
1023
1024         /* Free PS Poll skb here instead of returning RX_DROP that would
1025          * count as an dropped frame. */
1026         dev_kfree_skb(rx->skb);
1027
1028         return RX_QUEUED;
1029 }
1030
1031 static ieee80211_rx_result
1032 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1033 {
1034         u16 fc = rx->fc;
1035         u8 *data = rx->skb->data;
1036         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) data;
1037
1038         if (!WLAN_FC_IS_QOS_DATA(fc))
1039                 return RX_CONTINUE;
1040
1041         /* remove the qos control field, update frame type and meta-data */
1042         memmove(data + 2, data, ieee80211_get_hdrlen(fc) - 2);
1043         hdr = (struct ieee80211_hdr *) skb_pull(rx->skb, 2);
1044         /* change frame type to non QOS */
1045         rx->fc = fc &= ~IEEE80211_STYPE_QOS_DATA;
1046         hdr->frame_control = cpu_to_le16(fc);
1047
1048         return RX_CONTINUE;
1049 }
1050
1051 static int
1052 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1053 {
1054         if (unlikely(!rx->sta || !(rx->sta->flags & WLAN_STA_AUTHORIZED))) {
1055 #ifdef CONFIG_MAC80211_DEBUG
1056                 if (net_ratelimit())
1057                         printk(KERN_DEBUG "%s: dropped frame "
1058                                "(unauthorized port)\n", rx->dev->name);
1059 #endif /* CONFIG_MAC80211_DEBUG */
1060                 return -EACCES;
1061         }
1062
1063         return 0;
1064 }
1065
1066 static int
1067 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx)
1068 {
1069         /*
1070          * Pass through unencrypted frames if the hardware has
1071          * decrypted them already.
1072          */
1073         if (rx->status->flag & RX_FLAG_DECRYPTED)
1074                 return 0;
1075
1076         /* Drop unencrypted frames if key is set. */
1077         if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) &&
1078                      (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
1079                      (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
1080                      (rx->key || rx->sdata->drop_unencrypted))) {
1081                 if (net_ratelimit())
1082                         printk(KERN_DEBUG "%s: RX non-WEP frame, but expected "
1083                                "encryption\n", rx->dev->name);
1084                 return -EACCES;
1085         }
1086         return 0;
1087 }
1088
1089 static int
1090 ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1091 {
1092         struct net_device *dev = rx->dev;
1093         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
1094         u16 fc, hdrlen, ethertype;
1095         u8 *payload;
1096         u8 dst[ETH_ALEN];
1097         u8 src[ETH_ALEN];
1098         struct sk_buff *skb = rx->skb;
1099         struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1100         DECLARE_MAC_BUF(mac);
1101         DECLARE_MAC_BUF(mac2);
1102         DECLARE_MAC_BUF(mac3);
1103         DECLARE_MAC_BUF(mac4);
1104
1105         fc = rx->fc;
1106
1107         if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1108                 return -1;
1109
1110         hdrlen = ieee80211_get_hdrlen(fc);
1111
1112         if (ieee80211_vif_is_mesh(&sdata->vif)) {
1113                 int meshhdrlen = ieee80211_get_mesh_hdrlen(
1114                                 (struct ieee80211s_hdr *) (skb->data + hdrlen));
1115                 /* Copy on cb:
1116                  *  - mesh header: to be used for mesh forwarding
1117                  * decision. It will also be used as mesh header template at
1118                  * tx.c:ieee80211_subif_start_xmit() if interface
1119                  * type is mesh and skb->pkt_type == PACKET_OTHERHOST
1120                  *  - ta: to be used if a RERR needs to be sent.
1121                  */
1122                 memcpy(skb->cb, skb->data + hdrlen, meshhdrlen);
1123                 memcpy(MESH_PREQ(skb), hdr->addr2, ETH_ALEN);
1124                 hdrlen += meshhdrlen;
1125         }
1126
1127         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
1128          * header
1129          * IEEE 802.11 address fields:
1130          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
1131          *   0     0   DA    SA    BSSID n/a
1132          *   0     1   DA    BSSID SA    n/a
1133          *   1     0   BSSID SA    DA    n/a
1134          *   1     1   RA    TA    DA    SA
1135          */
1136
1137         switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
1138         case IEEE80211_FCTL_TODS:
1139                 /* BSSID SA DA */
1140                 memcpy(dst, hdr->addr3, ETH_ALEN);
1141                 memcpy(src, hdr->addr2, ETH_ALEN);
1142
1143                 if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_AP &&
1144                              sdata->vif.type != IEEE80211_IF_TYPE_VLAN)) {
1145                         if (net_ratelimit())
1146                                 printk(KERN_DEBUG "%s: dropped ToDS frame "
1147                                        "(BSSID=%s SA=%s DA=%s)\n",
1148                                        dev->name,
1149                                        print_mac(mac, hdr->addr1),
1150                                        print_mac(mac2, hdr->addr2),
1151                                        print_mac(mac3, hdr->addr3));
1152                         return -1;
1153                 }
1154                 break;
1155         case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
1156                 /* RA TA DA SA */
1157                 memcpy(dst, hdr->addr3, ETH_ALEN);
1158                 memcpy(src, hdr->addr4, ETH_ALEN);
1159
1160                  if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_WDS &&
1161                              sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT)) {
1162                          if (net_ratelimit())
1163                                  printk(KERN_DEBUG "%s: dropped FromDS&ToDS "
1164                                        "frame (RA=%s TA=%s DA=%s SA=%s)\n",
1165                                        rx->dev->name,
1166                                        print_mac(mac, hdr->addr1),
1167                                        print_mac(mac2, hdr->addr2),
1168                                        print_mac(mac3, hdr->addr3),
1169                                        print_mac(mac4, hdr->addr4));
1170                         return -1;
1171                 }
1172                 break;
1173         case IEEE80211_FCTL_FROMDS:
1174                 /* DA BSSID SA */
1175                 memcpy(dst, hdr->addr1, ETH_ALEN);
1176                 memcpy(src, hdr->addr3, ETH_ALEN);
1177
1178                 if (sdata->vif.type != IEEE80211_IF_TYPE_STA ||
1179                     (is_multicast_ether_addr(dst) &&
1180                      !compare_ether_addr(src, dev->dev_addr)))
1181                         return -1;
1182                 break;
1183         case 0:
1184                 /* DA SA BSSID */
1185                 memcpy(dst, hdr->addr1, ETH_ALEN);
1186                 memcpy(src, hdr->addr2, ETH_ALEN);
1187
1188                 if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
1189                         if (net_ratelimit()) {
1190                                 printk(KERN_DEBUG "%s: dropped IBSS frame "
1191                                        "(DA=%s SA=%s BSSID=%s)\n",
1192                                        dev->name,
1193                                        print_mac(mac, hdr->addr1),
1194                                        print_mac(mac2, hdr->addr2),
1195                                        print_mac(mac3, hdr->addr3));
1196                         }
1197                         return -1;
1198                 }
1199                 break;
1200         }
1201
1202         if (unlikely(skb->len - hdrlen < 8)) {
1203                 if (net_ratelimit()) {
1204                         printk(KERN_DEBUG "%s: RX too short data frame "
1205                                "payload\n", dev->name);
1206                 }
1207                 return -1;
1208         }
1209
1210         payload = skb->data + hdrlen;
1211         ethertype = (payload[6] << 8) | payload[7];
1212
1213         if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1214                     ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1215                    compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
1216                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
1217                  * replace EtherType */
1218                 skb_pull(skb, hdrlen + 6);
1219                 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
1220                 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
1221         } else {
1222                 struct ethhdr *ehdr;
1223                 __be16 len;
1224
1225                 skb_pull(skb, hdrlen);
1226                 len = htons(skb->len);
1227                 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
1228                 memcpy(ehdr->h_dest, dst, ETH_ALEN);
1229                 memcpy(ehdr->h_source, src, ETH_ALEN);
1230                 ehdr->h_proto = len;
1231         }
1232         return 0;
1233 }
1234
1235 /*
1236  * requires that rx->skb is a frame with ethernet header
1237  */
1238 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx)
1239 {
1240         static const u8 pae_group_addr[ETH_ALEN]
1241                 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1242         struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1243
1244         /*
1245          * Allow EAPOL frames to us/the PAE group address regardless
1246          * of whether the frame was encrypted or not.
1247          */
1248         if (ehdr->h_proto == htons(ETH_P_PAE) &&
1249             (compare_ether_addr(ehdr->h_dest, rx->dev->dev_addr) == 0 ||
1250              compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1251                 return true;
1252
1253         if (ieee80211_802_1x_port_control(rx) ||
1254             ieee80211_drop_unencrypted(rx))
1255                 return false;
1256
1257         return true;
1258 }
1259
1260 /*
1261  * requires that rx->skb is a frame with ethernet header
1262  */
1263 static void
1264 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1265 {
1266         struct net_device *dev = rx->dev;
1267         struct ieee80211_local *local = rx->local;
1268         struct sk_buff *skb, *xmit_skb;
1269         struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1270         struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1271         struct sta_info *dsta;
1272
1273         skb = rx->skb;
1274         xmit_skb = NULL;
1275
1276         if (local->bridge_packets && (sdata->vif.type == IEEE80211_IF_TYPE_AP ||
1277                                       sdata->vif.type == IEEE80211_IF_TYPE_VLAN) &&
1278             (rx->flags & IEEE80211_RX_RA_MATCH)) {
1279                 if (is_multicast_ether_addr(ehdr->h_dest)) {
1280                         /*
1281                          * send multicast frames both to higher layers in
1282                          * local net stack and back to the wireless medium
1283                          */
1284                         xmit_skb = skb_copy(skb, GFP_ATOMIC);
1285                         if (!xmit_skb && net_ratelimit())
1286                                 printk(KERN_DEBUG "%s: failed to clone "
1287                                        "multicast frame\n", dev->name);
1288                 } else {
1289                         dsta = sta_info_get(local, skb->data);
1290                         if (dsta && dsta->sdata->dev == dev) {
1291                                 /*
1292                                  * The destination station is associated to
1293                                  * this AP (in this VLAN), so send the frame
1294                                  * directly to it and do not pass it to local
1295                                  * net stack.
1296                                  */
1297                                 xmit_skb = skb;
1298                                 skb = NULL;
1299                         }
1300                 }
1301         }
1302
1303         /* Mesh forwarding */
1304         if (ieee80211_vif_is_mesh(&sdata->vif)) {
1305                 u8 *mesh_ttl = &((struct ieee80211s_hdr *)skb->cb)->ttl;
1306                 (*mesh_ttl)--;
1307
1308                 if (is_multicast_ether_addr(skb->data)) {
1309                         if (*mesh_ttl > 0) {
1310                                 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1311                                 if (!xmit_skb && net_ratelimit())
1312                                         printk(KERN_DEBUG "%s: failed to clone "
1313                                                "multicast frame\n", dev->name);
1314                                 else
1315                                         xmit_skb->pkt_type = PACKET_OTHERHOST;
1316                         } else
1317                                 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.sta,
1318                                                              dropped_frames_ttl);
1319                 } else if (skb->pkt_type != PACKET_OTHERHOST &&
1320                         compare_ether_addr(dev->dev_addr, skb->data) != 0) {
1321                         if (*mesh_ttl == 0) {
1322                                 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.sta,
1323                                                              dropped_frames_ttl);
1324                                 dev_kfree_skb(skb);
1325                                 skb = NULL;
1326                         } else {
1327                                 xmit_skb = skb;
1328                                 xmit_skb->pkt_type = PACKET_OTHERHOST;
1329                                 if (!(dev->flags & IFF_PROMISC))
1330                                         skb  = NULL;
1331                         }
1332                 }
1333         }
1334
1335         if (skb) {
1336                 /* deliver to local stack */
1337                 skb->protocol = eth_type_trans(skb, dev);
1338                 memset(skb->cb, 0, sizeof(skb->cb));
1339                 netif_rx(skb);
1340         }
1341
1342         if (xmit_skb) {
1343                 /* send to wireless media */
1344                 xmit_skb->protocol = htons(ETH_P_802_3);
1345                 skb_reset_network_header(xmit_skb);
1346                 skb_reset_mac_header(xmit_skb);
1347                 dev_queue_xmit(xmit_skb);
1348         }
1349 }
1350
1351 static ieee80211_rx_result
1352 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1353 {
1354         struct net_device *dev = rx->dev;
1355         struct ieee80211_local *local = rx->local;
1356         u16 fc, ethertype;
1357         u8 *payload;
1358         struct sk_buff *skb = rx->skb, *frame = NULL;
1359         const struct ethhdr *eth;
1360         int remaining, err;
1361         u8 dst[ETH_ALEN];
1362         u8 src[ETH_ALEN];
1363         DECLARE_MAC_BUF(mac);
1364
1365         fc = rx->fc;
1366         if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
1367                 return RX_CONTINUE;
1368
1369         if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1370                 return RX_DROP_MONITOR;
1371
1372         if (!(rx->flags & IEEE80211_RX_AMSDU))
1373                 return RX_CONTINUE;
1374
1375         err = ieee80211_data_to_8023(rx);
1376         if (unlikely(err))
1377                 return RX_DROP_UNUSABLE;
1378
1379         skb->dev = dev;
1380
1381         dev->stats.rx_packets++;
1382         dev->stats.rx_bytes += skb->len;
1383
1384         /* skip the wrapping header */
1385         eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
1386         if (!eth)
1387                 return RX_DROP_UNUSABLE;
1388
1389         while (skb != frame) {
1390                 u8 padding;
1391                 __be16 len = eth->h_proto;
1392                 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
1393
1394                 remaining = skb->len;
1395                 memcpy(dst, eth->h_dest, ETH_ALEN);
1396                 memcpy(src, eth->h_source, ETH_ALEN);
1397
1398                 padding = ((4 - subframe_len) & 0x3);
1399                 /* the last MSDU has no padding */
1400                 if (subframe_len > remaining) {
1401                         printk(KERN_DEBUG "%s: wrong buffer size", dev->name);
1402                         return RX_DROP_UNUSABLE;
1403                 }
1404
1405                 skb_pull(skb, sizeof(struct ethhdr));
1406                 /* if last subframe reuse skb */
1407                 if (remaining <= subframe_len + padding)
1408                         frame = skb;
1409                 else {
1410                         frame = dev_alloc_skb(local->hw.extra_tx_headroom +
1411                                               subframe_len);
1412
1413                         if (frame == NULL)
1414                                 return RX_DROP_UNUSABLE;
1415
1416                         skb_reserve(frame, local->hw.extra_tx_headroom +
1417                                     sizeof(struct ethhdr));
1418                         memcpy(skb_put(frame, ntohs(len)), skb->data,
1419                                 ntohs(len));
1420
1421                         eth = (struct ethhdr *) skb_pull(skb, ntohs(len) +
1422                                                         padding);
1423                         if (!eth) {
1424                                 printk(KERN_DEBUG "%s: wrong buffer size ",
1425                                        dev->name);
1426                                 dev_kfree_skb(frame);
1427                                 return RX_DROP_UNUSABLE;
1428                         }
1429                 }
1430
1431                 skb_reset_network_header(frame);
1432                 frame->dev = dev;
1433                 frame->priority = skb->priority;
1434                 rx->skb = frame;
1435
1436                 payload = frame->data;
1437                 ethertype = (payload[6] << 8) | payload[7];
1438
1439                 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1440                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1441                            compare_ether_addr(payload,
1442                                               bridge_tunnel_header) == 0)) {
1443                         /* remove RFC1042 or Bridge-Tunnel
1444                          * encapsulation and replace EtherType */
1445                         skb_pull(frame, 6);
1446                         memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1447                         memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1448                 } else {
1449                         memcpy(skb_push(frame, sizeof(__be16)),
1450                                &len, sizeof(__be16));
1451                         memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1452                         memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1453                 }
1454
1455                 if (!ieee80211_frame_allowed(rx)) {
1456                         if (skb == frame) /* last frame */
1457                                 return RX_DROP_UNUSABLE;
1458                         dev_kfree_skb(frame);
1459                         continue;
1460                 }
1461
1462                 ieee80211_deliver_skb(rx);
1463         }
1464
1465         return RX_QUEUED;
1466 }
1467
1468 static ieee80211_rx_result
1469 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1470 {
1471         struct net_device *dev = rx->dev;
1472         u16 fc;
1473         int err;
1474
1475         fc = rx->fc;
1476         if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
1477                 return RX_CONTINUE;
1478
1479         if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1480                 return RX_DROP_MONITOR;
1481
1482         err = ieee80211_data_to_8023(rx);
1483         if (unlikely(err))
1484                 return RX_DROP_UNUSABLE;
1485
1486         if (!ieee80211_frame_allowed(rx))
1487                 return RX_DROP_MONITOR;
1488
1489         rx->skb->dev = dev;
1490
1491         dev->stats.rx_packets++;
1492         dev->stats.rx_bytes += rx->skb->len;
1493
1494         ieee80211_deliver_skb(rx);
1495
1496         return RX_QUEUED;
1497 }
1498
1499 static ieee80211_rx_result
1500 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
1501 {
1502         struct ieee80211_local *local = rx->local;
1503         struct ieee80211_hw *hw = &local->hw;
1504         struct sk_buff *skb = rx->skb;
1505         struct ieee80211_bar *bar = (struct ieee80211_bar *) skb->data;
1506         struct tid_ampdu_rx *tid_agg_rx;
1507         u16 start_seq_num;
1508         u16 tid;
1509
1510         if (likely((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL))
1511                 return RX_CONTINUE;
1512
1513         if ((rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BACK_REQ) {
1514                 if (!rx->sta)
1515                         return RX_CONTINUE;
1516                 tid = le16_to_cpu(bar->control) >> 12;
1517                 tid_agg_rx = &(rx->sta->ampdu_mlme.tid_rx[tid]);
1518                 if (tid_agg_rx->state != HT_AGG_STATE_OPERATIONAL)
1519                         return RX_CONTINUE;
1520
1521                 start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4;
1522
1523                 /* reset session timer */
1524                 if (tid_agg_rx->timeout) {
1525                         unsigned long expires =
1526                                 jiffies + (tid_agg_rx->timeout / 1000) * HZ;
1527                         mod_timer(&tid_agg_rx->session_timer, expires);
1528                 }
1529
1530                 /* manage reordering buffer according to requested */
1531                 /* sequence number */
1532                 rcu_read_lock();
1533                 ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, NULL,
1534                                                  start_seq_num, 1);
1535                 rcu_read_unlock();
1536                 return RX_DROP_UNUSABLE;
1537         }
1538
1539         return RX_CONTINUE;
1540 }
1541
1542 static ieee80211_rx_result
1543 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
1544 {
1545         struct ieee80211_sub_if_data *sdata;
1546
1547         if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1548                 return RX_DROP_MONITOR;
1549
1550         sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
1551         if ((sdata->vif.type == IEEE80211_IF_TYPE_STA ||
1552              sdata->vif.type == IEEE80211_IF_TYPE_IBSS ||
1553              sdata->vif.type == IEEE80211_IF_TYPE_MESH_POINT) &&
1554             !(sdata->flags & IEEE80211_SDATA_USERSPACE_MLME))
1555                 ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->status);
1556         else
1557                 return RX_DROP_MONITOR;
1558
1559         return RX_QUEUED;
1560 }
1561
1562 static void ieee80211_rx_michael_mic_report(struct net_device *dev,
1563                                             struct ieee80211_hdr *hdr,
1564                                             struct ieee80211_rx_data *rx)
1565 {
1566         int keyidx, hdrlen;
1567         DECLARE_MAC_BUF(mac);
1568         DECLARE_MAC_BUF(mac2);
1569
1570         hdrlen = ieee80211_get_hdrlen_from_skb(rx->skb);
1571         if (rx->skb->len >= hdrlen + 4)
1572                 keyidx = rx->skb->data[hdrlen + 3] >> 6;
1573         else
1574                 keyidx = -1;
1575
1576         if (net_ratelimit())
1577                 printk(KERN_DEBUG "%s: TKIP hwaccel reported Michael MIC "
1578                        "failure from %s to %s keyidx=%d\n",
1579                        dev->name, print_mac(mac, hdr->addr2),
1580                        print_mac(mac2, hdr->addr1), keyidx);
1581
1582         if (!rx->sta) {
1583                 /*
1584                  * Some hardware seem to generate incorrect Michael MIC
1585                  * reports; ignore them to avoid triggering countermeasures.
1586                  */
1587                 if (net_ratelimit())
1588                         printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
1589                                "error for unknown address %s\n",
1590                                dev->name, print_mac(mac, hdr->addr2));
1591                 goto ignore;
1592         }
1593
1594         if (!(rx->fc & IEEE80211_FCTL_PROTECTED)) {
1595                 if (net_ratelimit())
1596                         printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
1597                                "error for a frame with no PROTECTED flag (src "
1598                                "%s)\n", dev->name, print_mac(mac, hdr->addr2));
1599                 goto ignore;
1600         }
1601
1602         if (rx->sdata->vif.type == IEEE80211_IF_TYPE_AP && keyidx) {
1603                 /*
1604                  * APs with pairwise keys should never receive Michael MIC
1605                  * errors for non-zero keyidx because these are reserved for
1606                  * group keys and only the AP is sending real multicast
1607                  * frames in the BSS.
1608                  */
1609                 if (net_ratelimit())
1610                         printk(KERN_DEBUG "%s: ignored Michael MIC error for "
1611                                "a frame with non-zero keyidx (%d)"
1612                                " (src %s)\n", dev->name, keyidx,
1613                                print_mac(mac, hdr->addr2));
1614                 goto ignore;
1615         }
1616
1617         if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
1618             ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
1619              (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)) {
1620                 if (net_ratelimit())
1621                         printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
1622                                "error for a frame that cannot be encrypted "
1623                                "(fc=0x%04x) (src %s)\n",
1624                                dev->name, rx->fc, print_mac(mac, hdr->addr2));
1625                 goto ignore;
1626         }
1627
1628         mac80211_ev_michael_mic_failure(rx->dev, keyidx, hdr);
1629  ignore:
1630         dev_kfree_skb(rx->skb);
1631         rx->skb = NULL;
1632 }
1633
1634 /* TODO: use IEEE80211_RX_FRAGMENTED */
1635 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx)
1636 {
1637         struct ieee80211_sub_if_data *sdata;
1638         struct ieee80211_local *local = rx->local;
1639         struct ieee80211_rtap_hdr {
1640                 struct ieee80211_radiotap_header hdr;
1641                 u8 flags;
1642                 u8 rate;
1643                 __le16 chan_freq;
1644                 __le16 chan_flags;
1645         } __attribute__ ((packed)) *rthdr;
1646         struct sk_buff *skb = rx->skb, *skb2;
1647         struct net_device *prev_dev = NULL;
1648         struct ieee80211_rx_status *status = rx->status;
1649
1650         if (rx->flags & IEEE80211_RX_CMNTR_REPORTED)
1651                 goto out_free_skb;
1652
1653         if (skb_headroom(skb) < sizeof(*rthdr) &&
1654             pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
1655                 goto out_free_skb;
1656
1657         rthdr = (void *)skb_push(skb, sizeof(*rthdr));
1658         memset(rthdr, 0, sizeof(*rthdr));
1659         rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
1660         rthdr->hdr.it_present =
1661                 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
1662                             (1 << IEEE80211_RADIOTAP_RATE) |
1663                             (1 << IEEE80211_RADIOTAP_CHANNEL));
1664
1665         rthdr->rate = rx->rate->bitrate / 5;
1666         rthdr->chan_freq = cpu_to_le16(status->freq);
1667
1668         if (status->band == IEEE80211_BAND_5GHZ)
1669                 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
1670                                                 IEEE80211_CHAN_5GHZ);
1671         else
1672                 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
1673                                                 IEEE80211_CHAN_2GHZ);
1674
1675         skb_set_mac_header(skb, 0);
1676         skb->ip_summed = CHECKSUM_UNNECESSARY;
1677         skb->pkt_type = PACKET_OTHERHOST;
1678         skb->protocol = htons(ETH_P_802_2);
1679
1680         list_for_each_entry_rcu(sdata, &local->interfaces, list) {
1681                 if (!netif_running(sdata->dev))
1682                         continue;
1683
1684                 if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR ||
1685                     !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
1686                         continue;
1687
1688                 if (prev_dev) {
1689                         skb2 = skb_clone(skb, GFP_ATOMIC);
1690                         if (skb2) {
1691                                 skb2->dev = prev_dev;
1692                                 netif_rx(skb2);
1693                         }
1694                 }
1695
1696                 prev_dev = sdata->dev;
1697                 sdata->dev->stats.rx_packets++;
1698                 sdata->dev->stats.rx_bytes += skb->len;
1699         }
1700
1701         if (prev_dev) {
1702                 skb->dev = prev_dev;
1703                 netif_rx(skb);
1704                 skb = NULL;
1705         } else
1706                 goto out_free_skb;
1707
1708         rx->flags |= IEEE80211_RX_CMNTR_REPORTED;
1709         return;
1710
1711  out_free_skb:
1712         dev_kfree_skb(skb);
1713 }
1714
1715 typedef ieee80211_rx_result (*ieee80211_rx_handler)(struct ieee80211_rx_data *);
1716 static ieee80211_rx_handler ieee80211_rx_handlers[] =
1717 {
1718         ieee80211_rx_h_if_stats,
1719         ieee80211_rx_h_passive_scan,
1720         ieee80211_rx_h_check,
1721         ieee80211_rx_h_decrypt,
1722         ieee80211_rx_h_sta_process,
1723         ieee80211_rx_h_defragment,
1724         ieee80211_rx_h_ps_poll,
1725         ieee80211_rx_h_michael_mic_verify,
1726         /* this must be after decryption - so header is counted in MPDU mic
1727          * must be before pae and data, so QOS_DATA format frames
1728          * are not passed to user space by these functions
1729          */
1730         ieee80211_rx_h_remove_qos_control,
1731         ieee80211_rx_h_amsdu,
1732         ieee80211_rx_h_data,
1733         ieee80211_rx_h_ctrl,
1734         ieee80211_rx_h_mgmt,
1735         NULL
1736 };
1737
1738 static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata,
1739                                          struct ieee80211_rx_data *rx,
1740                                          struct sk_buff *skb)
1741 {
1742         ieee80211_rx_handler *handler;
1743         ieee80211_rx_result res = RX_DROP_MONITOR;
1744
1745         rx->skb = skb;
1746         rx->sdata = sdata;
1747         rx->dev = sdata->dev;
1748
1749         for (handler = ieee80211_rx_handlers; *handler != NULL; handler++) {
1750                 res = (*handler)(rx);
1751
1752                 switch (res) {
1753                 case RX_CONTINUE:
1754                         continue;
1755                 case RX_DROP_UNUSABLE:
1756                 case RX_DROP_MONITOR:
1757                         I802_DEBUG_INC(sdata->local->rx_handlers_drop);
1758                         if (rx->sta)
1759                                 rx->sta->rx_dropped++;
1760                         break;
1761                 case RX_QUEUED:
1762                         I802_DEBUG_INC(sdata->local->rx_handlers_queued);
1763                         break;
1764                 }
1765                 break;
1766         }
1767
1768         switch (res) {
1769         case RX_CONTINUE:
1770         case RX_DROP_MONITOR:
1771                 ieee80211_rx_cooked_monitor(rx);
1772                 break;
1773         case RX_DROP_UNUSABLE:
1774                 dev_kfree_skb(rx->skb);
1775                 break;
1776         }
1777 }
1778
1779 /* main receive path */
1780
1781 static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
1782                                 u8 *bssid, struct ieee80211_rx_data *rx,
1783                                 struct ieee80211_hdr *hdr)
1784 {
1785         int multicast = is_multicast_ether_addr(hdr->addr1);
1786
1787         switch (sdata->vif.type) {
1788         case IEEE80211_IF_TYPE_STA:
1789                 if (!bssid)
1790                         return 0;
1791                 if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1792                         if (!(rx->flags & IEEE80211_RX_IN_SCAN))
1793                                 return 0;
1794                         rx->flags &= ~IEEE80211_RX_RA_MATCH;
1795                 } else if (!multicast &&
1796                            compare_ether_addr(sdata->dev->dev_addr,
1797                                               hdr->addr1) != 0) {
1798                         if (!(sdata->dev->flags & IFF_PROMISC))
1799                                 return 0;
1800                         rx->flags &= ~IEEE80211_RX_RA_MATCH;
1801                 }
1802                 break;
1803         case IEEE80211_IF_TYPE_IBSS:
1804                 if (!bssid)
1805                         return 0;
1806                 if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT &&
1807                     (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON)
1808                         return 1;
1809                 else if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1810                         if (!(rx->flags & IEEE80211_RX_IN_SCAN))
1811                                 return 0;
1812                         rx->flags &= ~IEEE80211_RX_RA_MATCH;
1813                 } else if (!multicast &&
1814                            compare_ether_addr(sdata->dev->dev_addr,
1815                                               hdr->addr1) != 0) {
1816                         if (!(sdata->dev->flags & IFF_PROMISC))
1817                                 return 0;
1818                         rx->flags &= ~IEEE80211_RX_RA_MATCH;
1819                 } else if (!rx->sta)
1820                         rx->sta = ieee80211_ibss_add_sta(sdata->dev, rx->skb,
1821                                                          bssid, hdr->addr2);
1822                 break;
1823         case IEEE80211_IF_TYPE_MESH_POINT:
1824                 if (!multicast &&
1825                     compare_ether_addr(sdata->dev->dev_addr,
1826                                        hdr->addr1) != 0) {
1827                         if (!(sdata->dev->flags & IFF_PROMISC))
1828                                 return 0;
1829
1830                         rx->flags &= ~IEEE80211_RX_RA_MATCH;
1831                 }
1832                 break;
1833         case IEEE80211_IF_TYPE_VLAN:
1834         case IEEE80211_IF_TYPE_AP:
1835                 if (!bssid) {
1836                         if (compare_ether_addr(sdata->dev->dev_addr,
1837                                                hdr->addr1))
1838                                 return 0;
1839                 } else if (!ieee80211_bssid_match(bssid,
1840                                         sdata->dev->dev_addr)) {
1841                         if (!(rx->flags & IEEE80211_RX_IN_SCAN))
1842                                 return 0;
1843                         rx->flags &= ~IEEE80211_RX_RA_MATCH;
1844                 }
1845                 if (sdata->dev == sdata->local->mdev &&
1846                     !(rx->flags & IEEE80211_RX_IN_SCAN))
1847                         /* do not receive anything via
1848                          * master device when not scanning */
1849                         return 0;
1850                 break;
1851         case IEEE80211_IF_TYPE_WDS:
1852                 if (bssid ||
1853                     (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA)
1854                         return 0;
1855                 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
1856                         return 0;
1857                 break;
1858         case IEEE80211_IF_TYPE_MNTR:
1859                 /* take everything */
1860                 break;
1861         case IEEE80211_IF_TYPE_INVALID:
1862                 /* should never get here */
1863                 WARN_ON(1);
1864                 break;
1865         }
1866
1867         return 1;
1868 }
1869
1870 /*
1871  * This is the actual Rx frames handler. as it blongs to Rx path it must
1872  * be called with rcu_read_lock protection.
1873  */
1874 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
1875                                          struct sk_buff *skb,
1876                                          struct ieee80211_rx_status *status,
1877                                          u32 load,
1878                                          struct ieee80211_rate *rate)
1879 {
1880         struct ieee80211_local *local = hw_to_local(hw);
1881         struct ieee80211_sub_if_data *sdata;
1882         struct ieee80211_hdr *hdr;
1883         struct ieee80211_rx_data rx;
1884         u16 type;
1885         int prepares;
1886         struct ieee80211_sub_if_data *prev = NULL;
1887         struct sk_buff *skb_new;
1888         u8 *bssid;
1889
1890         hdr = (struct ieee80211_hdr *) skb->data;
1891         memset(&rx, 0, sizeof(rx));
1892         rx.skb = skb;
1893         rx.local = local;
1894
1895         rx.status = status;
1896         rx.load = load;
1897         rx.rate = rate;
1898         rx.fc = le16_to_cpu(hdr->frame_control);
1899         type = rx.fc & IEEE80211_FCTL_FTYPE;
1900
1901         if (type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT)
1902                 local->dot11ReceivedFragmentCount++;
1903
1904         rx.sta = sta_info_get(local, hdr->addr2);
1905         if (rx.sta) {
1906                 rx.sdata = rx.sta->sdata;
1907                 rx.dev = rx.sta->sdata->dev;
1908         }
1909
1910         if ((status->flag & RX_FLAG_MMIC_ERROR)) {
1911                 ieee80211_rx_michael_mic_report(local->mdev, hdr, &rx);
1912                 return;
1913         }
1914
1915         if (unlikely(local->sta_sw_scanning || local->sta_hw_scanning))
1916                 rx.flags |= IEEE80211_RX_IN_SCAN;
1917
1918         ieee80211_parse_qos(&rx);
1919         ieee80211_verify_ip_alignment(&rx);
1920
1921         skb = rx.skb;
1922
1923         list_for_each_entry_rcu(sdata, &local->interfaces, list) {
1924                 if (!netif_running(sdata->dev))
1925                         continue;
1926
1927                 if (sdata->vif.type == IEEE80211_IF_TYPE_MNTR)
1928                         continue;
1929
1930                 bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
1931                 rx.flags |= IEEE80211_RX_RA_MATCH;
1932                 prepares = prepare_for_handlers(sdata, bssid, &rx, hdr);
1933
1934                 if (!prepares)
1935                         continue;
1936
1937                 /*
1938                  * frame is destined for this interface, but if it's not
1939                  * also for the previous one we handle that after the
1940                  * loop to avoid copying the SKB once too much
1941                  */
1942
1943                 if (!prev) {
1944                         prev = sdata;
1945                         continue;
1946                 }
1947
1948                 /*
1949                  * frame was destined for the previous interface
1950                  * so invoke RX handlers for it
1951                  */
1952
1953                 skb_new = skb_copy(skb, GFP_ATOMIC);
1954                 if (!skb_new) {
1955                         if (net_ratelimit())
1956                                 printk(KERN_DEBUG "%s: failed to copy "
1957                                        "multicast frame for %s",
1958                                        wiphy_name(local->hw.wiphy),
1959                                        prev->dev->name);
1960                         continue;
1961                 }
1962                 rx.fc = le16_to_cpu(hdr->frame_control);
1963                 ieee80211_invoke_rx_handlers(prev, &rx, skb_new);
1964                 prev = sdata;
1965         }
1966         if (prev) {
1967                 rx.fc = le16_to_cpu(hdr->frame_control);
1968                 ieee80211_invoke_rx_handlers(prev, &rx, skb);
1969         } else
1970                 dev_kfree_skb(skb);
1971 }
1972
1973 #define SEQ_MODULO 0x1000
1974 #define SEQ_MASK   0xfff
1975
1976 static inline int seq_less(u16 sq1, u16 sq2)
1977 {
1978         return (((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1));
1979 }
1980
1981 static inline u16 seq_inc(u16 sq)
1982 {
1983         return ((sq + 1) & SEQ_MASK);
1984 }
1985
1986 static inline u16 seq_sub(u16 sq1, u16 sq2)
1987 {
1988         return ((sq1 - sq2) & SEQ_MASK);
1989 }
1990
1991
1992 /*
1993  * As it function blongs to Rx path it must be called with
1994  * the proper rcu_read_lock protection for its flow.
1995  */
1996 u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
1997                                 struct tid_ampdu_rx *tid_agg_rx,
1998                                 struct sk_buff *skb, u16 mpdu_seq_num,
1999                                 int bar_req)
2000 {
2001         struct ieee80211_local *local = hw_to_local(hw);
2002         struct ieee80211_rx_status status;
2003         u16 head_seq_num, buf_size;
2004         int index;
2005         u32 pkt_load;
2006         struct ieee80211_supported_band *sband;
2007         struct ieee80211_rate *rate;
2008
2009         buf_size = tid_agg_rx->buf_size;
2010         head_seq_num = tid_agg_rx->head_seq_num;
2011
2012         /* frame with out of date sequence number */
2013         if (seq_less(mpdu_seq_num, head_seq_num)) {
2014                 dev_kfree_skb(skb);
2015                 return 1;
2016         }
2017
2018         /* if frame sequence number exceeds our buffering window size or
2019          * block Ack Request arrived - release stored frames */
2020         if ((!seq_less(mpdu_seq_num, head_seq_num + buf_size)) || (bar_req)) {
2021                 /* new head to the ordering buffer */
2022                 if (bar_req)
2023                         head_seq_num = mpdu_seq_num;
2024                 else
2025                         head_seq_num =
2026                                 seq_inc(seq_sub(mpdu_seq_num, buf_size));
2027                 /* release stored frames up to new head to stack */
2028                 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
2029                         index = seq_sub(tid_agg_rx->head_seq_num,
2030                                 tid_agg_rx->ssn)
2031                                 % tid_agg_rx->buf_size;
2032
2033                         if (tid_agg_rx->reorder_buf[index]) {
2034                                 /* release the reordered frames to stack */
2035                                 memcpy(&status,
2036                                         tid_agg_rx->reorder_buf[index]->cb,
2037                                         sizeof(status));
2038                                 sband = local->hw.wiphy->bands[status.band];
2039                                 rate = &sband->bitrates[status.rate_idx];
2040                                 pkt_load = ieee80211_rx_load_stats(local,
2041                                                 tid_agg_rx->reorder_buf[index],
2042                                                 &status, rate);
2043                                 __ieee80211_rx_handle_packet(hw,
2044                                         tid_agg_rx->reorder_buf[index],
2045                                         &status, pkt_load, rate);
2046                                 tid_agg_rx->stored_mpdu_num--;
2047                                 tid_agg_rx->reorder_buf[index] = NULL;
2048                         }
2049                         tid_agg_rx->head_seq_num =
2050                                 seq_inc(tid_agg_rx->head_seq_num);
2051                 }
2052                 if (bar_req)
2053                         return 1;
2054         }
2055
2056         /* now the new frame is always in the range of the reordering */
2057         /* buffer window */
2058         index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn)
2059                                 % tid_agg_rx->buf_size;
2060         /* check if we already stored this frame */
2061         if (tid_agg_rx->reorder_buf[index]) {
2062                 dev_kfree_skb(skb);
2063                 return 1;
2064         }
2065
2066         /* if arrived mpdu is in the right order and nothing else stored */
2067         /* release it immediately */
2068         if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
2069                         tid_agg_rx->stored_mpdu_num == 0) {
2070                 tid_agg_rx->head_seq_num =
2071                         seq_inc(tid_agg_rx->head_seq_num);
2072                 return 0;
2073         }
2074
2075         /* put the frame in the reordering buffer */
2076         tid_agg_rx->reorder_buf[index] = skb;
2077         tid_agg_rx->stored_mpdu_num++;
2078         /* release the buffer until next missing frame */
2079         index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn)
2080                                                 % tid_agg_rx->buf_size;
2081         while (tid_agg_rx->reorder_buf[index]) {
2082                 /* release the reordered frame back to stack */
2083                 memcpy(&status, tid_agg_rx->reorder_buf[index]->cb,
2084                         sizeof(status));
2085                 sband = local->hw.wiphy->bands[status.band];
2086                 rate = &sband->bitrates[status.rate_idx];
2087                 pkt_load = ieee80211_rx_load_stats(local,
2088                                         tid_agg_rx->reorder_buf[index],
2089                                         &status, rate);
2090                 __ieee80211_rx_handle_packet(hw, tid_agg_rx->reorder_buf[index],
2091                                              &status, pkt_load, rate);
2092                 tid_agg_rx->stored_mpdu_num--;
2093                 tid_agg_rx->reorder_buf[index] = NULL;
2094                 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
2095                 index = seq_sub(tid_agg_rx->head_seq_num,
2096                         tid_agg_rx->ssn) % tid_agg_rx->buf_size;
2097         }
2098         return 1;
2099 }
2100
2101 static u8 ieee80211_rx_reorder_ampdu(struct ieee80211_local *local,
2102                                      struct sk_buff *skb)
2103 {
2104         struct ieee80211_hw *hw = &local->hw;
2105         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2106         struct sta_info *sta;
2107         struct tid_ampdu_rx *tid_agg_rx;
2108         u16 fc, sc;
2109         u16 mpdu_seq_num;
2110         u8 ret = 0, *qc;
2111         int tid;
2112
2113         sta = sta_info_get(local, hdr->addr2);
2114         if (!sta)
2115                 return ret;
2116
2117         fc = le16_to_cpu(hdr->frame_control);
2118
2119         /* filter the QoS data rx stream according to
2120          * STA/TID and check if this STA/TID is on aggregation */
2121         if (!WLAN_FC_IS_QOS_DATA(fc))
2122                 goto end_reorder;
2123
2124         qc = skb->data + ieee80211_get_hdrlen(fc) - QOS_CONTROL_LEN;
2125         tid = qc[0] & QOS_CONTROL_TID_MASK;
2126         tid_agg_rx = &(sta->ampdu_mlme.tid_rx[tid]);
2127
2128         if (tid_agg_rx->state != HT_AGG_STATE_OPERATIONAL)
2129                 goto end_reorder;
2130
2131         /* null data frames are excluded */
2132         if (unlikely(fc & IEEE80211_STYPE_NULLFUNC))
2133                 goto end_reorder;
2134
2135         /* new un-ordered ampdu frame - process it */
2136
2137         /* reset session timer */
2138         if (tid_agg_rx->timeout) {
2139                 unsigned long expires =
2140                         jiffies + (tid_agg_rx->timeout / 1000) * HZ;
2141                 mod_timer(&tid_agg_rx->session_timer, expires);
2142         }
2143
2144         /* if this mpdu is fragmented - terminate rx aggregation session */
2145         sc = le16_to_cpu(hdr->seq_ctrl);
2146         if (sc & IEEE80211_SCTL_FRAG) {
2147                 ieee80211_sta_stop_rx_ba_session(sta->sdata->dev, sta->addr,
2148                         tid, 0, WLAN_REASON_QSTA_REQUIRE_SETUP);
2149                 ret = 1;
2150                 goto end_reorder;
2151         }
2152
2153         /* according to mpdu sequence number deal with reordering buffer */
2154         mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
2155         ret = ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb,
2156                                                 mpdu_seq_num, 0);
2157  end_reorder:
2158         return ret;
2159 }
2160
2161 /*
2162  * This is the receive path handler. It is called by a low level driver when an
2163  * 802.11 MPDU is received from the hardware.
2164  */
2165 void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
2166                     struct ieee80211_rx_status *status)
2167 {
2168         struct ieee80211_local *local = hw_to_local(hw);
2169         u32 pkt_load;
2170         struct ieee80211_rate *rate = NULL;
2171         struct ieee80211_supported_band *sband;
2172
2173         if (status->band < 0 ||
2174             status->band > IEEE80211_NUM_BANDS) {
2175                 WARN_ON(1);
2176                 return;
2177         }
2178
2179         sband = local->hw.wiphy->bands[status->band];
2180
2181         if (!sband ||
2182             status->rate_idx < 0 ||
2183             status->rate_idx >= sband->n_bitrates) {
2184                 WARN_ON(1);
2185                 return;
2186         }
2187
2188         rate = &sband->bitrates[status->rate_idx];
2189
2190         /*
2191          * key references and virtual interfaces are protected using RCU
2192          * and this requires that we are in a read-side RCU section during
2193          * receive processing
2194          */
2195         rcu_read_lock();
2196
2197         /*
2198          * Frames with failed FCS/PLCP checksum are not returned,
2199          * all other frames are returned without radiotap header
2200          * if it was previously present.
2201          * Also, frames with less than 16 bytes are dropped.
2202          */
2203         skb = ieee80211_rx_monitor(local, skb, status, rate);
2204         if (!skb) {
2205                 rcu_read_unlock();
2206                 return;
2207         }
2208
2209         pkt_load = ieee80211_rx_load_stats(local, skb, status, rate);
2210         local->channel_use_raw += pkt_load;
2211
2212         if (!ieee80211_rx_reorder_ampdu(local, skb))
2213                 __ieee80211_rx_handle_packet(hw, skb, status, pkt_load, rate);
2214
2215         rcu_read_unlock();
2216 }
2217 EXPORT_SYMBOL(__ieee80211_rx);
2218
2219 /* This is a version of the rx handler that can be called from hard irq
2220  * context. Post the skb on the queue and schedule the tasklet */
2221 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb,
2222                           struct ieee80211_rx_status *status)
2223 {
2224         struct ieee80211_local *local = hw_to_local(hw);
2225
2226         BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2227
2228         skb->dev = local->mdev;
2229         /* copy status into skb->cb for use by tasklet */
2230         memcpy(skb->cb, status, sizeof(*status));
2231         skb->pkt_type = IEEE80211_RX_MSG;
2232         skb_queue_tail(&local->skb_queue, skb);
2233         tasklet_schedule(&local->tasklet);
2234 }
2235 EXPORT_SYMBOL(ieee80211_rx_irqsafe);