2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35 * Targeted preemption latency for CPU-bound tasks:
37 const_debug unsigned int sysctl_sched_latency = 20000000ULL;
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
43 const_debug unsigned int sysctl_sched_child_runs_first = 1;
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
49 const_debug unsigned int sysctl_sched_nr_latency = 20;
52 * sys_sched_yield() compat mode
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
57 unsigned int __read_mostly sysctl_sched_compat_yield;
60 * SCHED_BATCH wake-up granularity.
61 * (default: 10 msec, units: nanoseconds)
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
67 const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
70 * SCHED_OTHER wake-up granularity.
71 * (default: 10 msec, units: nanoseconds)
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
77 const_debug unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
79 /**************************************************************
80 * CFS operations on generic schedulable entities:
83 #ifdef CONFIG_FAIR_GROUP_SCHED
85 /* cpu runqueue to which this cfs_rq is attached */
86 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91 /* An entity is a task if it doesn't "own" a runqueue */
92 #define entity_is_task(se) (!se->my_q)
94 #else /* CONFIG_FAIR_GROUP_SCHED */
96 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
98 return container_of(cfs_rq, struct rq, cfs);
101 #define entity_is_task(se) 1
103 #endif /* CONFIG_FAIR_GROUP_SCHED */
105 static inline struct task_struct *task_of(struct sched_entity *se)
107 return container_of(se, struct task_struct, se);
111 /**************************************************************
112 * Scheduling class tree data structure manipulation methods:
116 max_vruntime(u64 min_vruntime, u64 vruntime)
118 s64 delta = (s64)(vruntime - min_vruntime);
120 min_vruntime = vruntime;
126 min_vruntime(u64 min_vruntime, u64 vruntime)
128 s64 delta = (s64)(vruntime - min_vruntime);
130 min_vruntime = vruntime;
136 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
138 return se->vruntime - cfs_rq->min_vruntime;
142 * Enqueue an entity into the rb-tree:
145 __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
147 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
148 struct rb_node *parent = NULL;
149 struct sched_entity *entry;
150 s64 key = entity_key(cfs_rq, se);
154 * Find the right place in the rbtree:
158 entry = rb_entry(parent, struct sched_entity, run_node);
160 * We dont care about collisions. Nodes with
161 * the same key stay together.
163 if (key < entity_key(cfs_rq, entry)) {
164 link = &parent->rb_left;
166 link = &parent->rb_right;
172 * Maintain a cache of leftmost tree entries (it is frequently
176 cfs_rq->rb_leftmost = &se->run_node;
178 rb_link_node(&se->run_node, parent, link);
179 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
183 __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
185 if (cfs_rq->rb_leftmost == &se->run_node)
186 cfs_rq->rb_leftmost = rb_next(&se->run_node);
188 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
191 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
193 return cfs_rq->rb_leftmost;
196 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
198 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
201 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
203 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
204 struct sched_entity *se = NULL;
205 struct rb_node *parent;
209 se = rb_entry(parent, struct sched_entity, run_node);
210 link = &parent->rb_right;
216 /**************************************************************
217 * Scheduling class statistics methods:
222 * The idea is to set a period in which each task runs once.
224 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
225 * this period because otherwise the slices get too small.
227 * p = (nr <= nl) ? l : l*nr/nl
229 static u64 __sched_period(unsigned long nr_running)
231 u64 period = sysctl_sched_latency;
232 unsigned long nr_latency = sysctl_sched_nr_latency;
234 if (unlikely(nr_running > nr_latency)) {
235 period *= nr_running;
236 do_div(period, nr_latency);
243 * We calculate the wall-time slice from the period by taking a part
244 * proportional to the weight.
248 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
250 u64 slice = __sched_period(cfs_rq->nr_running);
252 slice *= se->load.weight;
253 do_div(slice, cfs_rq->load.weight);
259 * We calculate the vruntime slice.
263 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
265 u64 vslice = __sched_period(nr_running);
267 do_div(vslice, rq_weight);
272 static u64 sched_vslice(struct cfs_rq *cfs_rq)
274 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
277 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
279 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
280 cfs_rq->nr_running + 1);
284 * Update the current task's runtime statistics. Skip current tasks that
285 * are not in our scheduling class.
288 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
289 unsigned long delta_exec)
291 unsigned long delta_exec_weighted;
294 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
296 curr->sum_exec_runtime += delta_exec;
297 schedstat_add(cfs_rq, exec_clock, delta_exec);
298 delta_exec_weighted = delta_exec;
299 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
300 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
303 curr->vruntime += delta_exec_weighted;
306 * maintain cfs_rq->min_vruntime to be a monotonic increasing
307 * value tracking the leftmost vruntime in the tree.
309 if (first_fair(cfs_rq)) {
310 vruntime = min_vruntime(curr->vruntime,
311 __pick_next_entity(cfs_rq)->vruntime);
313 vruntime = curr->vruntime;
315 cfs_rq->min_vruntime =
316 max_vruntime(cfs_rq->min_vruntime, vruntime);
319 static void update_curr(struct cfs_rq *cfs_rq)
321 struct sched_entity *curr = cfs_rq->curr;
322 u64 now = rq_of(cfs_rq)->clock;
323 unsigned long delta_exec;
329 * Get the amount of time the current task was running
330 * since the last time we changed load (this cannot
331 * overflow on 32 bits):
333 delta_exec = (unsigned long)(now - curr->exec_start);
335 __update_curr(cfs_rq, curr, delta_exec);
336 curr->exec_start = now;
340 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
342 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
346 * Task is being enqueued - update stats:
348 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
351 * Are we enqueueing a waiting task? (for current tasks
352 * a dequeue/enqueue event is a NOP)
354 if (se != cfs_rq->curr)
355 update_stats_wait_start(cfs_rq, se);
359 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
361 schedstat_set(se->wait_max, max(se->wait_max,
362 rq_of(cfs_rq)->clock - se->wait_start));
363 schedstat_set(se->wait_start, 0);
367 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
370 * Mark the end of the wait period if dequeueing a
373 if (se != cfs_rq->curr)
374 update_stats_wait_end(cfs_rq, se);
378 * We are picking a new current task - update its stats:
381 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
384 * We are starting a new run period:
386 se->exec_start = rq_of(cfs_rq)->clock;
390 * We are descheduling a task - update its stats:
393 update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
398 /**************************************************
399 * Scheduling class queueing methods:
403 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
405 update_load_add(&cfs_rq->load, se->load.weight);
406 cfs_rq->nr_running++;
411 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
413 update_load_sub(&cfs_rq->load, se->load.weight);
414 cfs_rq->nr_running--;
418 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
420 #ifdef CONFIG_SCHEDSTATS
421 if (se->sleep_start) {
422 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
427 if (unlikely(delta > se->sleep_max))
428 se->sleep_max = delta;
431 se->sum_sleep_runtime += delta;
433 if (se->block_start) {
434 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
439 if (unlikely(delta > se->block_max))
440 se->block_max = delta;
443 se->sum_sleep_runtime += delta;
446 * Blocking time is in units of nanosecs, so shift by 20 to
447 * get a milliseconds-range estimation of the amount of
448 * time that the task spent sleeping:
450 if (unlikely(prof_on == SLEEP_PROFILING)) {
451 struct task_struct *tsk = task_of(se);
453 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
460 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
462 #ifdef CONFIG_SCHED_DEBUG
463 s64 d = se->vruntime - cfs_rq->min_vruntime;
468 if (d > 3*sysctl_sched_latency)
469 schedstat_inc(cfs_rq, nr_spread_over);
474 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
478 vruntime = cfs_rq->min_vruntime;
480 if (sched_feat(TREE_AVG)) {
481 struct sched_entity *last = __pick_last_entity(cfs_rq);
483 vruntime += last->vruntime;
486 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
487 vruntime += sched_vslice(cfs_rq)/2;
489 if (initial && sched_feat(START_DEBIT))
490 vruntime += sched_vslice_add(cfs_rq, se);
493 if (sched_feat(NEW_FAIR_SLEEPERS))
494 vruntime -= sysctl_sched_latency;
496 vruntime = max_t(s64, vruntime, se->vruntime);
499 se->vruntime = vruntime;
504 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
507 * Update run-time statistics of the 'current'.
512 place_entity(cfs_rq, se, 0);
513 enqueue_sleeper(cfs_rq, se);
516 update_stats_enqueue(cfs_rq, se);
517 check_spread(cfs_rq, se);
518 if (se != cfs_rq->curr)
519 __enqueue_entity(cfs_rq, se);
520 account_entity_enqueue(cfs_rq, se);
524 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
527 * Update run-time statistics of the 'current'.
531 update_stats_dequeue(cfs_rq, se);
533 #ifdef CONFIG_SCHEDSTATS
534 if (entity_is_task(se)) {
535 struct task_struct *tsk = task_of(se);
537 if (tsk->state & TASK_INTERRUPTIBLE)
538 se->sleep_start = rq_of(cfs_rq)->clock;
539 if (tsk->state & TASK_UNINTERRUPTIBLE)
540 se->block_start = rq_of(cfs_rq)->clock;
545 if (se != cfs_rq->curr)
546 __dequeue_entity(cfs_rq, se);
547 account_entity_dequeue(cfs_rq, se);
551 * Preempt the current task with a newly woken task if needed:
554 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
556 unsigned long ideal_runtime, delta_exec;
558 ideal_runtime = sched_slice(cfs_rq, curr);
559 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
560 if (delta_exec > ideal_runtime)
561 resched_task(rq_of(cfs_rq)->curr);
565 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
567 /* 'current' is not kept within the tree. */
570 * Any task has to be enqueued before it get to execute on
571 * a CPU. So account for the time it spent waiting on the
574 update_stats_wait_end(cfs_rq, se);
575 __dequeue_entity(cfs_rq, se);
578 update_stats_curr_start(cfs_rq, se);
580 #ifdef CONFIG_SCHEDSTATS
582 * Track our maximum slice length, if the CPU's load is at
583 * least twice that of our own weight (i.e. dont track it
584 * when there are only lesser-weight tasks around):
586 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
587 se->slice_max = max(se->slice_max,
588 se->sum_exec_runtime - se->prev_sum_exec_runtime);
591 se->prev_sum_exec_runtime = se->sum_exec_runtime;
594 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
596 struct sched_entity *se = NULL;
598 if (first_fair(cfs_rq)) {
599 se = __pick_next_entity(cfs_rq);
600 set_next_entity(cfs_rq, se);
606 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
609 * If still on the runqueue then deactivate_task()
610 * was not called and update_curr() has to be done:
615 update_stats_curr_end(cfs_rq, prev);
617 check_spread(cfs_rq, prev);
619 update_stats_wait_start(cfs_rq, prev);
620 /* Put 'current' back into the tree. */
621 __enqueue_entity(cfs_rq, prev);
626 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
629 * Update run-time statistics of the 'current'.
633 if (cfs_rq->nr_running > 1)
634 check_preempt_tick(cfs_rq, curr);
637 /**************************************************
638 * CFS operations on tasks:
641 #ifdef CONFIG_FAIR_GROUP_SCHED
643 /* Walk up scheduling entities hierarchy */
644 #define for_each_sched_entity(se) \
645 for (; se; se = se->parent)
647 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
652 /* runqueue on which this entity is (to be) queued */
653 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
658 /* runqueue "owned" by this group */
659 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
664 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
665 * another cpu ('this_cpu')
667 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
669 return cfs_rq->tg->cfs_rq[this_cpu];
672 /* Iterate thr' all leaf cfs_rq's on a runqueue */
673 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
674 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
676 /* Do the two (enqueued) entities belong to the same group ? */
678 is_same_group(struct sched_entity *se, struct sched_entity *pse)
680 if (se->cfs_rq == pse->cfs_rq)
686 static inline struct sched_entity *parent_entity(struct sched_entity *se)
691 #else /* CONFIG_FAIR_GROUP_SCHED */
693 #define for_each_sched_entity(se) \
694 for (; se; se = NULL)
696 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
698 return &task_rq(p)->cfs;
701 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
703 struct task_struct *p = task_of(se);
704 struct rq *rq = task_rq(p);
709 /* runqueue "owned" by this group */
710 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
715 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
717 return &cpu_rq(this_cpu)->cfs;
720 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
721 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
724 is_same_group(struct sched_entity *se, struct sched_entity *pse)
729 static inline struct sched_entity *parent_entity(struct sched_entity *se)
734 #endif /* CONFIG_FAIR_GROUP_SCHED */
737 * The enqueue_task method is called before nr_running is
738 * increased. Here we update the fair scheduling stats and
739 * then put the task into the rbtree:
741 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
743 struct cfs_rq *cfs_rq;
744 struct sched_entity *se = &p->se;
746 for_each_sched_entity(se) {
749 cfs_rq = cfs_rq_of(se);
750 enqueue_entity(cfs_rq, se, wakeup);
756 * The dequeue_task method is called before nr_running is
757 * decreased. We remove the task from the rbtree and
758 * update the fair scheduling stats:
760 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
762 struct cfs_rq *cfs_rq;
763 struct sched_entity *se = &p->se;
765 for_each_sched_entity(se) {
766 cfs_rq = cfs_rq_of(se);
767 dequeue_entity(cfs_rq, se, sleep);
768 /* Don't dequeue parent if it has other entities besides us */
769 if (cfs_rq->load.weight)
776 * sched_yield() support is very simple - we dequeue and enqueue.
778 * If compat_yield is turned on then we requeue to the end of the tree.
780 static void yield_task_fair(struct rq *rq)
782 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
783 struct sched_entity *rightmost, *se = &rq->curr->se;
786 * Are we the only task in the tree?
788 if (unlikely(cfs_rq->nr_running == 1))
791 if (likely(!sysctl_sched_compat_yield)) {
792 __update_rq_clock(rq);
794 * Update run-time statistics of the 'current'.
801 * Find the rightmost entry in the rbtree:
803 rightmost = __pick_last_entity(cfs_rq);
805 * Already in the rightmost position?
807 if (unlikely(rightmost->vruntime < se->vruntime))
811 * Minimally necessary key value to be last in the tree:
812 * Upon rescheduling, sched_class::put_prev_task() will place
813 * 'current' within the tree based on its new key value.
815 se->vruntime = rightmost->vruntime + 1;
819 * Preempt the current task with a newly woken task if needed:
821 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
823 struct task_struct *curr = rq->curr;
824 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
825 struct sched_entity *se = &curr->se, *pse = &p->se;
828 if (unlikely(rt_prio(p->prio))) {
835 while (!is_same_group(se, pse)) {
836 se = parent_entity(se);
837 pse = parent_entity(pse);
840 delta = se->vruntime - pse->vruntime;
842 if (delta > (s64)sysctl_sched_wakeup_granularity)
846 static struct task_struct *pick_next_task_fair(struct rq *rq)
848 struct cfs_rq *cfs_rq = &rq->cfs;
849 struct sched_entity *se;
851 if (unlikely(!cfs_rq->nr_running))
855 se = pick_next_entity(cfs_rq);
856 cfs_rq = group_cfs_rq(se);
863 * Account for a descheduled task:
865 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
867 struct sched_entity *se = &prev->se;
868 struct cfs_rq *cfs_rq;
870 for_each_sched_entity(se) {
871 cfs_rq = cfs_rq_of(se);
872 put_prev_entity(cfs_rq, se);
876 /**************************************************
877 * Fair scheduling class load-balancing methods:
881 * Load-balancing iterator. Note: while the runqueue stays locked
882 * during the whole iteration, the current task might be
883 * dequeued so the iterator has to be dequeue-safe. Here we
884 * achieve that by always pre-iterating before returning
887 static struct task_struct *
888 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
890 struct task_struct *p;
895 p = rb_entry(curr, struct task_struct, se.run_node);
896 cfs_rq->rb_load_balance_curr = rb_next(curr);
901 static struct task_struct *load_balance_start_fair(void *arg)
903 struct cfs_rq *cfs_rq = arg;
905 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
908 static struct task_struct *load_balance_next_fair(void *arg)
910 struct cfs_rq *cfs_rq = arg;
912 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
915 #ifdef CONFIG_FAIR_GROUP_SCHED
916 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
918 struct sched_entity *curr;
919 struct task_struct *p;
921 if (!cfs_rq->nr_running)
926 curr = __pick_next_entity(cfs_rq);
935 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
936 unsigned long max_nr_move, unsigned long max_load_move,
937 struct sched_domain *sd, enum cpu_idle_type idle,
938 int *all_pinned, int *this_best_prio)
940 struct cfs_rq *busy_cfs_rq;
941 unsigned long load_moved, total_nr_moved = 0, nr_moved;
942 long rem_load_move = max_load_move;
943 struct rq_iterator cfs_rq_iterator;
945 cfs_rq_iterator.start = load_balance_start_fair;
946 cfs_rq_iterator.next = load_balance_next_fair;
948 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
949 #ifdef CONFIG_FAIR_GROUP_SCHED
950 struct cfs_rq *this_cfs_rq;
952 unsigned long maxload;
954 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
956 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
957 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
961 /* Don't pull more than imbalance/2 */
963 maxload = min(rem_load_move, imbalance);
965 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
967 # define maxload rem_load_move
969 /* pass busy_cfs_rq argument into
970 * load_balance_[start|next]_fair iterators
972 cfs_rq_iterator.arg = busy_cfs_rq;
973 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
974 max_nr_move, maxload, sd, idle, all_pinned,
975 &load_moved, this_best_prio, &cfs_rq_iterator);
977 total_nr_moved += nr_moved;
978 max_nr_move -= nr_moved;
979 rem_load_move -= load_moved;
981 if (max_nr_move <= 0 || rem_load_move <= 0)
985 return max_load_move - rem_load_move;
989 * scheduler tick hitting a task of our scheduling class:
991 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
993 struct cfs_rq *cfs_rq;
994 struct sched_entity *se = &curr->se;
996 for_each_sched_entity(se) {
997 cfs_rq = cfs_rq_of(se);
998 entity_tick(cfs_rq, se);
1002 #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1005 * Share the fairness runtime between parent and child, thus the
1006 * total amount of pressure for CPU stays equal - new tasks
1007 * get a chance to run but frequent forkers are not allowed to
1008 * monopolize the CPU. Note: the parent runqueue is locked,
1009 * the child is not running yet.
1011 static void task_new_fair(struct rq *rq, struct task_struct *p)
1013 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1014 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1016 sched_info_queued(p);
1018 update_curr(cfs_rq);
1019 place_entity(cfs_rq, se, 1);
1021 if (sysctl_sched_child_runs_first &&
1022 curr->vruntime < se->vruntime) {
1024 * Upon rescheduling, sched_class::put_prev_task() will place
1025 * 'current' within the tree based on its new key value.
1027 swap(curr->vruntime, se->vruntime);
1030 update_stats_enqueue(cfs_rq, se);
1031 check_spread(cfs_rq, se);
1032 check_spread(cfs_rq, curr);
1033 __enqueue_entity(cfs_rq, se);
1034 account_entity_enqueue(cfs_rq, se);
1035 resched_task(rq->curr);
1038 /* Account for a task changing its policy or group.
1040 * This routine is mostly called to set cfs_rq->curr field when a task
1041 * migrates between groups/classes.
1043 static void set_curr_task_fair(struct rq *rq)
1045 struct sched_entity *se = &rq->curr->se;
1047 for_each_sched_entity(se)
1048 set_next_entity(cfs_rq_of(se), se);
1052 * All the scheduling class methods:
1054 static const struct sched_class fair_sched_class = {
1055 .next = &idle_sched_class,
1056 .enqueue_task = enqueue_task_fair,
1057 .dequeue_task = dequeue_task_fair,
1058 .yield_task = yield_task_fair,
1060 .check_preempt_curr = check_preempt_wakeup,
1062 .pick_next_task = pick_next_task_fair,
1063 .put_prev_task = put_prev_task_fair,
1065 .load_balance = load_balance_fair,
1067 .set_curr_task = set_curr_task_fair,
1068 .task_tick = task_tick_fair,
1069 .task_new = task_new_fair,
1072 #ifdef CONFIG_SCHED_DEBUG
1073 static void print_cfs_stats(struct seq_file *m, int cpu)
1075 struct cfs_rq *cfs_rq;
1077 #ifdef CONFIG_FAIR_GROUP_SCHED
1078 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1080 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1081 print_cfs_rq(m, cpu, cfs_rq);