x86: Kconfig cleanup with genericarch
[linux-2.6] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pci.h>
25 #include <linux/pfn.h>
26 #include <linux/poison.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/module.h>
29 #include <linux/memory_hotplug.h>
30 #include <linux/nmi.h>
31
32 #include <asm/processor.h>
33 #include <asm/system.h>
34 #include <asm/uaccess.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgalloc.h>
37 #include <asm/dma.h>
38 #include <asm/fixmap.h>
39 #include <asm/e820.h>
40 #include <asm/apic.h>
41 #include <asm/tlb.h>
42 #include <asm/mmu_context.h>
43 #include <asm/proto.h>
44 #include <asm/smp.h>
45 #include <asm/sections.h>
46 #include <asm/kdebug.h>
47 #include <asm/numa.h>
48 #include <asm/cacheflush.h>
49
50 /*
51  * PFN of last memory page.
52  */
53 unsigned long end_pfn;
54
55 /*
56  * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
57  * The direct mapping extends to max_pfn_mapped, so that we can directly access
58  * apertures, ACPI and other tables without having to play with fixmaps.
59  */
60 unsigned long max_pfn_mapped;
61
62 static unsigned long dma_reserve __initdata;
63
64 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
65
66 int direct_gbpages __meminitdata
67 #ifdef CONFIG_DIRECT_GBPAGES
68                                 = 1
69 #endif
70 ;
71
72 static int __init parse_direct_gbpages_off(char *arg)
73 {
74         direct_gbpages = 0;
75         return 0;
76 }
77 early_param("nogbpages", parse_direct_gbpages_off);
78
79 static int __init parse_direct_gbpages_on(char *arg)
80 {
81         direct_gbpages = 1;
82         return 0;
83 }
84 early_param("gbpages", parse_direct_gbpages_on);
85
86 /*
87  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
88  * physical space so we can cache the place of the first one and move
89  * around without checking the pgd every time.
90  */
91
92 void show_mem(void)
93 {
94         long i, total = 0, reserved = 0;
95         long shared = 0, cached = 0;
96         struct page *page;
97         pg_data_t *pgdat;
98
99         printk(KERN_INFO "Mem-info:\n");
100         show_free_areas();
101         for_each_online_pgdat(pgdat) {
102                 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
103                         /*
104                          * This loop can take a while with 256 GB and
105                          * 4k pages so defer the NMI watchdog:
106                          */
107                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
108                                 touch_nmi_watchdog();
109
110                         if (!pfn_valid(pgdat->node_start_pfn + i))
111                                 continue;
112
113                         page = pfn_to_page(pgdat->node_start_pfn + i);
114                         total++;
115                         if (PageReserved(page))
116                                 reserved++;
117                         else if (PageSwapCache(page))
118                                 cached++;
119                         else if (page_count(page))
120                                 shared += page_count(page) - 1;
121                 }
122         }
123         printk(KERN_INFO "%lu pages of RAM\n",          total);
124         printk(KERN_INFO "%lu reserved pages\n",        reserved);
125         printk(KERN_INFO "%lu pages shared\n",          shared);
126         printk(KERN_INFO "%lu pages swap cached\n",     cached);
127 }
128
129 int after_bootmem;
130
131 static __init void *spp_getpage(void)
132 {
133         void *ptr;
134
135         if (after_bootmem)
136                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
137         else
138                 ptr = alloc_bootmem_pages(PAGE_SIZE);
139
140         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
141                 panic("set_pte_phys: cannot allocate page data %s\n",
142                         after_bootmem ? "after bootmem" : "");
143         }
144
145         pr_debug("spp_getpage %p\n", ptr);
146
147         return ptr;
148 }
149
150 static __init void
151 set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot)
152 {
153         pgd_t *pgd;
154         pud_t *pud;
155         pmd_t *pmd;
156         pte_t *pte, new_pte;
157
158         pr_debug("set_pte_phys %lx to %lx\n", vaddr, phys);
159
160         pgd = pgd_offset_k(vaddr);
161         if (pgd_none(*pgd)) {
162                 printk(KERN_ERR
163                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
164                 return;
165         }
166         pud = pud_offset(pgd, vaddr);
167         if (pud_none(*pud)) {
168                 pmd = (pmd_t *) spp_getpage();
169                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
170                 if (pmd != pmd_offset(pud, 0)) {
171                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
172                                 pmd, pmd_offset(pud, 0));
173                         return;
174                 }
175         }
176         pmd = pmd_offset(pud, vaddr);
177         if (pmd_none(*pmd)) {
178                 pte = (pte_t *) spp_getpage();
179                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
180                 if (pte != pte_offset_kernel(pmd, 0)) {
181                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
182                         return;
183                 }
184         }
185         new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
186
187         pte = pte_offset_kernel(pmd, vaddr);
188         if (!pte_none(*pte) && pte_val(new_pte) &&
189             pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
190                 pte_ERROR(*pte);
191         set_pte(pte, new_pte);
192
193         /*
194          * It's enough to flush this one mapping.
195          * (PGE mappings get flushed as well)
196          */
197         __flush_tlb_one(vaddr);
198 }
199
200 /*
201  * The head.S code sets up the kernel high mapping:
202  *
203  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
204  *
205  * phys_addr holds the negative offset to the kernel, which is added
206  * to the compile time generated pmds. This results in invalid pmds up
207  * to the point where we hit the physaddr 0 mapping.
208  *
209  * We limit the mappings to the region from _text to _end.  _end is
210  * rounded up to the 2MB boundary. This catches the invalid pmds as
211  * well, as they are located before _text:
212  */
213 void __init cleanup_highmap(void)
214 {
215         unsigned long vaddr = __START_KERNEL_map;
216         unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
217         pmd_t *pmd = level2_kernel_pgt;
218         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
219
220         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
221                 if (pmd_none(*pmd))
222                         continue;
223                 if (vaddr < (unsigned long) _text || vaddr > end)
224                         set_pmd(pmd, __pmd(0));
225         }
226 }
227
228 /* NOTE: this is meant to be run only at boot */
229 void __init __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
230 {
231         unsigned long address = __fix_to_virt(idx);
232
233         if (idx >= __end_of_fixed_addresses) {
234                 printk(KERN_ERR "Invalid __set_fixmap\n");
235                 return;
236         }
237         set_pte_phys(address, phys, prot);
238 }
239
240 static unsigned long __initdata table_start;
241 static unsigned long __meminitdata table_end;
242
243 static __meminit void *alloc_low_page(unsigned long *phys)
244 {
245         unsigned long pfn = table_end++;
246         void *adr;
247
248         if (after_bootmem) {
249                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
250                 *phys = __pa(adr);
251
252                 return adr;
253         }
254
255         if (pfn >= end_pfn)
256                 panic("alloc_low_page: ran out of memory");
257
258         adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
259         memset(adr, 0, PAGE_SIZE);
260         *phys  = pfn * PAGE_SIZE;
261         return adr;
262 }
263
264 static __meminit void unmap_low_page(void *adr)
265 {
266         if (after_bootmem)
267                 return;
268
269         early_iounmap(adr, PAGE_SIZE);
270 }
271
272 /* Must run before zap_low_mappings */
273 __meminit void *early_ioremap(unsigned long addr, unsigned long size)
274 {
275         pmd_t *pmd, *last_pmd;
276         unsigned long vaddr;
277         int i, pmds;
278
279         pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
280         vaddr = __START_KERNEL_map;
281         pmd = level2_kernel_pgt;
282         last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
283
284         for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
285                 for (i = 0; i < pmds; i++) {
286                         if (pmd_present(pmd[i]))
287                                 goto continue_outer_loop;
288                 }
289                 vaddr += addr & ~PMD_MASK;
290                 addr &= PMD_MASK;
291
292                 for (i = 0; i < pmds; i++, addr += PMD_SIZE)
293                         set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
294                 __flush_tlb_all();
295
296                 return (void *)vaddr;
297 continue_outer_loop:
298                 ;
299         }
300         printk(KERN_ERR "early_ioremap(0x%lx, %lu) failed\n", addr, size);
301
302         return NULL;
303 }
304
305 /*
306  * To avoid virtual aliases later:
307  */
308 __meminit void early_iounmap(void *addr, unsigned long size)
309 {
310         unsigned long vaddr;
311         pmd_t *pmd;
312         int i, pmds;
313
314         vaddr = (unsigned long)addr;
315         pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
316         pmd = level2_kernel_pgt + pmd_index(vaddr);
317
318         for (i = 0; i < pmds; i++)
319                 pmd_clear(pmd + i);
320
321         __flush_tlb_all();
322 }
323
324 static unsigned long __meminit
325 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
326 {
327         int i = pmd_index(address);
328
329         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
330                 pmd_t *pmd = pmd_page + pmd_index(address);
331
332                 if (address >= end) {
333                         if (!after_bootmem) {
334                                 for (; i < PTRS_PER_PMD; i++, pmd++)
335                                         set_pmd(pmd, __pmd(0));
336                         }
337                         break;
338                 }
339
340                 if (pmd_val(*pmd))
341                         continue;
342
343                 set_pte((pte_t *)pmd,
344                         pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
345         }
346         return address;
347 }
348
349 static unsigned long __meminit
350 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
351 {
352         pmd_t *pmd = pmd_offset(pud, 0);
353         unsigned long last_map_addr;
354
355         spin_lock(&init_mm.page_table_lock);
356         last_map_addr = phys_pmd_init(pmd, address, end);
357         spin_unlock(&init_mm.page_table_lock);
358         __flush_tlb_all();
359         return last_map_addr;
360 }
361
362 static unsigned long __meminit
363 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
364 {
365         unsigned long last_map_addr = end;
366         int i = pud_index(addr);
367
368         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
369                 unsigned long pmd_phys;
370                 pud_t *pud = pud_page + pud_index(addr);
371                 pmd_t *pmd;
372
373                 if (addr >= end)
374                         break;
375
376                 if (!after_bootmem &&
377                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
378                         set_pud(pud, __pud(0));
379                         continue;
380                 }
381
382                 if (pud_val(*pud)) {
383                         if (!pud_large(*pud))
384                                 last_map_addr = phys_pmd_update(pud, addr, end);
385                         continue;
386                 }
387
388                 if (direct_gbpages) {
389                         set_pte((pte_t *)pud,
390                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
391                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
392                         continue;
393                 }
394
395                 pmd = alloc_low_page(&pmd_phys);
396
397                 spin_lock(&init_mm.page_table_lock);
398                 set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
399                 last_map_addr = phys_pmd_init(pmd, addr, end);
400                 spin_unlock(&init_mm.page_table_lock);
401
402                 unmap_low_page(pmd);
403         }
404         __flush_tlb_all();
405
406         return last_map_addr >> PAGE_SHIFT;
407 }
408
409 static void __init find_early_table_space(unsigned long end)
410 {
411         unsigned long puds, pmds, tables, start;
412
413         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
414         tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
415         if (!direct_gbpages) {
416                 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
417                 tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
418         }
419
420         /*
421          * RED-PEN putting page tables only on node 0 could
422          * cause a hotspot and fill up ZONE_DMA. The page tables
423          * need roughly 0.5KB per GB.
424          */
425         start = 0x8000;
426         table_start = find_e820_area(start, end, tables, PAGE_SIZE);
427         if (table_start == -1UL)
428                 panic("Cannot find space for the kernel page tables");
429
430         table_start >>= PAGE_SHIFT;
431         table_end = table_start;
432
433         early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
434                 end, table_start << PAGE_SHIFT,
435                 (table_start << PAGE_SHIFT) + tables);
436 }
437
438 static void __init init_gbpages(void)
439 {
440         if (direct_gbpages && cpu_has_gbpages)
441                 printk(KERN_INFO "Using GB pages for direct mapping\n");
442         else
443                 direct_gbpages = 0;
444 }
445
446 #ifdef CONFIG_MEMTEST_BOOTPARAM
447
448 static void __init memtest(unsigned long start_phys, unsigned long size,
449                                  unsigned pattern)
450 {
451         unsigned long i;
452         unsigned long *start;
453         unsigned long start_bad;
454         unsigned long last_bad;
455         unsigned long val;
456         unsigned long start_phys_aligned;
457         unsigned long count;
458         unsigned long incr;
459
460         switch (pattern) {
461         case 0:
462                 val = 0UL;
463                 break;
464         case 1:
465                 val = -1UL;
466                 break;
467         case 2:
468                 val = 0x5555555555555555UL;
469                 break;
470         case 3:
471                 val = 0xaaaaaaaaaaaaaaaaUL;
472                 break;
473         default:
474                 return;
475         }
476
477         incr = sizeof(unsigned long);
478         start_phys_aligned = ALIGN(start_phys, incr);
479         count = (size - (start_phys_aligned - start_phys))/incr;
480         start = __va(start_phys_aligned);
481         start_bad = 0;
482         last_bad = 0;
483
484         for (i = 0; i < count; i++)
485                 start[i] = val;
486         for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
487                 if (*start != val) {
488                         if (start_phys_aligned == last_bad + incr) {
489                                 last_bad += incr;
490                         } else {
491                                 if (start_bad) {
492                                         printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
493                                                 val, start_bad, last_bad + incr);
494                                         reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
495                                 }
496                                 start_bad = last_bad = start_phys_aligned;
497                         }
498                 }
499         }
500         if (start_bad) {
501                 printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
502                         val, start_bad, last_bad + incr);
503                 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
504         }
505
506 }
507
508 static int memtest_pattern __initdata = CONFIG_MEMTEST_BOOTPARAM_VALUE;
509
510 static int __init parse_memtest(char *arg)
511 {
512         if (arg)
513                 memtest_pattern = simple_strtoul(arg, NULL, 0);
514         return 0;
515 }
516
517 early_param("memtest", parse_memtest);
518
519 static void __init early_memtest(unsigned long start, unsigned long end)
520 {
521         u64 t_start, t_size;
522         unsigned pattern;
523
524         if (!memtest_pattern)
525                 return;
526
527         printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
528         for (pattern = 0; pattern < memtest_pattern; pattern++) {
529                 t_start = start;
530                 t_size = 0;
531                 while (t_start < end) {
532                         t_start = find_e820_area_size(t_start, &t_size, 1);
533
534                         /* done ? */
535                         if (t_start >= end)
536                                 break;
537                         if (t_start + t_size > end)
538                                 t_size = end - t_start;
539
540                         printk(KERN_CONT "\n  %016llx - %016llx pattern %d",
541                                 (unsigned long long)t_start,
542                                 (unsigned long long)t_start + t_size, pattern);
543
544                         memtest(t_start, t_size, pattern);
545
546                         t_start += t_size;
547                 }
548         }
549         printk(KERN_CONT "\n");
550 }
551 #else
552 static void __init early_memtest(unsigned long start, unsigned long end)
553 {
554 }
555 #endif
556
557 /*
558  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
559  * This runs before bootmem is initialized and gets pages directly from
560  * the physical memory. To access them they are temporarily mapped.
561  */
562 unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end)
563 {
564         unsigned long next, last_map_addr = end;
565         unsigned long start_phys = start, end_phys = end;
566
567         printk(KERN_INFO "init_memory_mapping\n");
568
569         /*
570          * Find space for the kernel direct mapping tables.
571          *
572          * Later we should allocate these tables in the local node of the
573          * memory mapped. Unfortunately this is done currently before the
574          * nodes are discovered.
575          */
576         if (!after_bootmem) {
577                 init_gbpages();
578                 find_early_table_space(end);
579         }
580
581         start = (unsigned long)__va(start);
582         end = (unsigned long)__va(end);
583
584         for (; start < end; start = next) {
585                 pgd_t *pgd = pgd_offset_k(start);
586                 unsigned long pud_phys;
587                 pud_t *pud;
588
589                 if (after_bootmem)
590                         pud = pud_offset(pgd, start & PGDIR_MASK);
591                 else
592                         pud = alloc_low_page(&pud_phys);
593
594                 next = start + PGDIR_SIZE;
595                 if (next > end)
596                         next = end;
597                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next));
598                 if (!after_bootmem)
599                         set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
600                 unmap_low_page(pud);
601         }
602
603         if (!after_bootmem)
604                 mmu_cr4_features = read_cr4();
605         __flush_tlb_all();
606
607         if (!after_bootmem)
608                 reserve_early(table_start << PAGE_SHIFT,
609                                  table_end << PAGE_SHIFT, "PGTABLE");
610
611         if (!after_bootmem)
612                 early_memtest(start_phys, end_phys);
613
614         return last_map_addr;
615 }
616
617 #ifndef CONFIG_NUMA
618 void __init paging_init(void)
619 {
620         unsigned long max_zone_pfns[MAX_NR_ZONES];
621
622         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
623         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
624         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
625         max_zone_pfns[ZONE_NORMAL] = end_pfn;
626
627         memory_present(0, 0, end_pfn);
628         sparse_init();
629         free_area_init_nodes(max_zone_pfns);
630 }
631 #endif
632
633 /*
634  * Memory hotplug specific functions
635  */
636 #ifdef CONFIG_MEMORY_HOTPLUG
637 /*
638  * Memory is added always to NORMAL zone. This means you will never get
639  * additional DMA/DMA32 memory.
640  */
641 int arch_add_memory(int nid, u64 start, u64 size)
642 {
643         struct pglist_data *pgdat = NODE_DATA(nid);
644         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
645         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
646         unsigned long nr_pages = size >> PAGE_SHIFT;
647         int ret;
648
649         last_mapped_pfn = init_memory_mapping(start, start + size-1);
650         if (last_mapped_pfn > max_pfn_mapped)
651                 max_pfn_mapped = last_mapped_pfn;
652
653         ret = __add_pages(zone, start_pfn, nr_pages);
654         WARN_ON(1);
655
656         return ret;
657 }
658 EXPORT_SYMBOL_GPL(arch_add_memory);
659
660 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
661 int memory_add_physaddr_to_nid(u64 start)
662 {
663         return 0;
664 }
665 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
666 #endif
667
668 #endif /* CONFIG_MEMORY_HOTPLUG */
669
670 /*
671  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
672  * is valid. The argument is a physical page number.
673  *
674  *
675  * On x86, access has to be given to the first megabyte of ram because that area
676  * contains bios code and data regions used by X and dosemu and similar apps.
677  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
678  * mmio resources as well as potential bios/acpi data regions.
679  */
680 int devmem_is_allowed(unsigned long pagenr)
681 {
682         if (pagenr <= 256)
683                 return 1;
684         if (!page_is_ram(pagenr))
685                 return 1;
686         return 0;
687 }
688
689
690 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
691                          kcore_modules, kcore_vsyscall;
692
693 void __init mem_init(void)
694 {
695         long codesize, reservedpages, datasize, initsize;
696
697         pci_iommu_alloc();
698
699         /* clear_bss() already clear the empty_zero_page */
700
701         reservedpages = 0;
702
703         /* this will put all low memory onto the freelists */
704 #ifdef CONFIG_NUMA
705         totalram_pages = numa_free_all_bootmem();
706 #else
707         totalram_pages = free_all_bootmem();
708 #endif
709         reservedpages = end_pfn - totalram_pages -
710                                         absent_pages_in_range(0, end_pfn);
711         after_bootmem = 1;
712
713         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
714         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
715         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
716
717         /* Register memory areas for /proc/kcore */
718         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
719         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
720                    VMALLOC_END-VMALLOC_START);
721         kclist_add(&kcore_kernel, &_stext, _end - _stext);
722         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
723         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
724                                  VSYSCALL_END - VSYSCALL_START);
725
726         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
727                                 "%ldk reserved, %ldk data, %ldk init)\n",
728                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
729                 end_pfn << (PAGE_SHIFT-10),
730                 codesize >> 10,
731                 reservedpages << (PAGE_SHIFT-10),
732                 datasize >> 10,
733                 initsize >> 10);
734
735         cpa_init();
736 }
737
738 void free_init_pages(char *what, unsigned long begin, unsigned long end)
739 {
740         unsigned long addr = begin;
741
742         if (addr >= end)
743                 return;
744
745         /*
746          * If debugging page accesses then do not free this memory but
747          * mark them not present - any buggy init-section access will
748          * create a kernel page fault:
749          */
750 #ifdef CONFIG_DEBUG_PAGEALLOC
751         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
752                 begin, PAGE_ALIGN(end));
753         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
754 #else
755         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
756
757         for (; addr < end; addr += PAGE_SIZE) {
758                 ClearPageReserved(virt_to_page(addr));
759                 init_page_count(virt_to_page(addr));
760                 memset((void *)(addr & ~(PAGE_SIZE-1)),
761                         POISON_FREE_INITMEM, PAGE_SIZE);
762                 free_page(addr);
763                 totalram_pages++;
764         }
765 #endif
766 }
767
768 void free_initmem(void)
769 {
770         free_init_pages("unused kernel memory",
771                         (unsigned long)(&__init_begin),
772                         (unsigned long)(&__init_end));
773 }
774
775 #ifdef CONFIG_DEBUG_RODATA
776 const int rodata_test_data = 0xC3;
777 EXPORT_SYMBOL_GPL(rodata_test_data);
778
779 void mark_rodata_ro(void)
780 {
781         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
782
783         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
784                (end - start) >> 10);
785         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
786
787         /*
788          * The rodata section (but not the kernel text!) should also be
789          * not-executable.
790          */
791         start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
792         set_memory_nx(start, (end - start) >> PAGE_SHIFT);
793
794         rodata_test();
795
796 #ifdef CONFIG_CPA_DEBUG
797         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
798         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
799
800         printk(KERN_INFO "Testing CPA: again\n");
801         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
802 #endif
803 }
804
805 #endif
806
807 #ifdef CONFIG_BLK_DEV_INITRD
808 void free_initrd_mem(unsigned long start, unsigned long end)
809 {
810         free_init_pages("initrd memory", start, end);
811 }
812 #endif
813
814 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
815                                    int flags)
816 {
817 #ifdef CONFIG_NUMA
818         int nid, next_nid;
819 #endif
820         unsigned long pfn = phys >> PAGE_SHIFT;
821         int ret;
822
823         if (pfn >= end_pfn) {
824                 /*
825                  * This can happen with kdump kernels when accessing
826                  * firmware tables:
827                  */
828                 if (pfn < max_pfn_mapped)
829                         return -EFAULT;
830
831                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
832                                 phys, len);
833                 return -EFAULT;
834         }
835
836         /* Should check here against the e820 map to avoid double free */
837 #ifdef CONFIG_NUMA
838         nid = phys_to_nid(phys);
839         next_nid = phys_to_nid(phys + len - 1);
840         if (nid == next_nid)
841                 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
842         else
843                 ret = reserve_bootmem(phys, len, flags);
844
845         if (ret != 0)
846                 return ret;
847
848 #else
849         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
850 #endif
851
852         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
853                 dma_reserve += len / PAGE_SIZE;
854                 set_dma_reserve(dma_reserve);
855         }
856
857         return 0;
858 }
859
860 int kern_addr_valid(unsigned long addr)
861 {
862         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
863         pgd_t *pgd;
864         pud_t *pud;
865         pmd_t *pmd;
866         pte_t *pte;
867
868         if (above != 0 && above != -1UL)
869                 return 0;
870
871         pgd = pgd_offset_k(addr);
872         if (pgd_none(*pgd))
873                 return 0;
874
875         pud = pud_offset(pgd, addr);
876         if (pud_none(*pud))
877                 return 0;
878
879         pmd = pmd_offset(pud, addr);
880         if (pmd_none(*pmd))
881                 return 0;
882
883         if (pmd_large(*pmd))
884                 return pfn_valid(pmd_pfn(*pmd));
885
886         pte = pte_offset_kernel(pmd, addr);
887         if (pte_none(*pte))
888                 return 0;
889
890         return pfn_valid(pte_pfn(*pte));
891 }
892
893 /*
894  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
895  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
896  * not need special handling anymore:
897  */
898 static struct vm_area_struct gate_vma = {
899         .vm_start       = VSYSCALL_START,
900         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
901         .vm_page_prot   = PAGE_READONLY_EXEC,
902         .vm_flags       = VM_READ | VM_EXEC
903 };
904
905 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
906 {
907 #ifdef CONFIG_IA32_EMULATION
908         if (test_tsk_thread_flag(tsk, TIF_IA32))
909                 return NULL;
910 #endif
911         return &gate_vma;
912 }
913
914 int in_gate_area(struct task_struct *task, unsigned long addr)
915 {
916         struct vm_area_struct *vma = get_gate_vma(task);
917
918         if (!vma)
919                 return 0;
920
921         return (addr >= vma->vm_start) && (addr < vma->vm_end);
922 }
923
924 /*
925  * Use this when you have no reliable task/vma, typically from interrupt
926  * context. It is less reliable than using the task's vma and may give
927  * false positives:
928  */
929 int in_gate_area_no_task(unsigned long addr)
930 {
931         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
932 }
933
934 const char *arch_vma_name(struct vm_area_struct *vma)
935 {
936         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
937                 return "[vdso]";
938         if (vma == &gate_vma)
939                 return "[vsyscall]";
940         return NULL;
941 }
942
943 #ifdef CONFIG_SPARSEMEM_VMEMMAP
944 /*
945  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
946  */
947 static long __meminitdata addr_start, addr_end;
948 static void __meminitdata *p_start, *p_end;
949 static int __meminitdata node_start;
950
951 int __meminit
952 vmemmap_populate(struct page *start_page, unsigned long size, int node)
953 {
954         unsigned long addr = (unsigned long)start_page;
955         unsigned long end = (unsigned long)(start_page + size);
956         unsigned long next;
957         pgd_t *pgd;
958         pud_t *pud;
959         pmd_t *pmd;
960
961         for (; addr < end; addr = next) {
962                 next = pmd_addr_end(addr, end);
963
964                 pgd = vmemmap_pgd_populate(addr, node);
965                 if (!pgd)
966                         return -ENOMEM;
967
968                 pud = vmemmap_pud_populate(pgd, addr, node);
969                 if (!pud)
970                         return -ENOMEM;
971
972                 pmd = pmd_offset(pud, addr);
973                 if (pmd_none(*pmd)) {
974                         pte_t entry;
975                         void *p;
976
977                         p = vmemmap_alloc_block(PMD_SIZE, node);
978                         if (!p)
979                                 return -ENOMEM;
980
981                         entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
982                                                         PAGE_KERNEL_LARGE);
983                         set_pmd(pmd, __pmd(pte_val(entry)));
984
985                         /* check to see if we have contiguous blocks */
986                         if (p_end != p || node_start != node) {
987                                 if (p_start)
988                                         printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
989                                                 addr_start, addr_end-1, p_start, p_end-1, node_start);
990                                 addr_start = addr;
991                                 node_start = node;
992                                 p_start = p;
993                         }
994                         addr_end = addr + PMD_SIZE;
995                         p_end = p + PMD_SIZE;
996                 } else {
997                         vmemmap_verify((pte_t *)pmd, node, addr, next);
998                 }
999         }
1000         return 0;
1001 }
1002
1003 void __meminit vmemmap_populate_print_last(void)
1004 {
1005         if (p_start) {
1006                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1007                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1008                 p_start = NULL;
1009                 p_end = NULL;
1010                 node_start = 0;
1011         }
1012 }
1013 #endif