2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/blktrace_api.h>
30 #include <linux/fault-inject.h>
31 #include <trace/block.h>
35 DEFINE_TRACE(block_plug);
36 DEFINE_TRACE(block_unplug_io);
37 DEFINE_TRACE(block_unplug_timer);
38 DEFINE_TRACE(block_getrq);
39 DEFINE_TRACE(block_sleeprq);
40 DEFINE_TRACE(block_rq_requeue);
41 DEFINE_TRACE(block_bio_backmerge);
42 DEFINE_TRACE(block_bio_frontmerge);
43 DEFINE_TRACE(block_bio_queue);
44 DEFINE_TRACE(block_rq_complete);
45 DEFINE_TRACE(block_remap); /* Also used in drivers/md/dm.c */
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
48 static int __make_request(struct request_queue *q, struct bio *bio);
51 * For the allocated request tables
53 static struct kmem_cache *request_cachep;
56 * For queue allocation
58 struct kmem_cache *blk_requestq_cachep;
61 * Controlling structure to kblockd
63 static struct workqueue_struct *kblockd_workqueue;
65 static void drive_stat_acct(struct request *rq, int new_io)
67 struct hd_struct *part;
68 int rw = rq_data_dir(rq);
71 if (!blk_do_io_stat(rq))
74 cpu = part_stat_lock();
75 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
78 part_stat_inc(cpu, part, merges[rw]);
80 part_round_stats(cpu, part);
81 part_inc_in_flight(part);
87 void blk_queue_congestion_threshold(struct request_queue *q)
91 nr = q->nr_requests - (q->nr_requests / 8) + 1;
92 if (nr > q->nr_requests)
94 q->nr_congestion_on = nr;
96 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
99 q->nr_congestion_off = nr;
103 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
106 * Locates the passed device's request queue and returns the address of its
109 * Will return NULL if the request queue cannot be located.
111 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
113 struct backing_dev_info *ret = NULL;
114 struct request_queue *q = bdev_get_queue(bdev);
117 ret = &q->backing_dev_info;
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
122 void blk_rq_init(struct request_queue *q, struct request *rq)
124 memset(rq, 0, sizeof(*rq));
126 INIT_LIST_HEAD(&rq->queuelist);
127 INIT_LIST_HEAD(&rq->timeout_list);
130 rq->__sector = (sector_t) -1;
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
134 rq->cmd_len = BLK_MAX_CDB;
137 rq->start_time = jiffies;
139 EXPORT_SYMBOL(blk_rq_init);
141 static void req_bio_endio(struct request *rq, struct bio *bio,
142 unsigned int nbytes, int error)
144 struct request_queue *q = rq->q;
146 if (&q->bar_rq != rq) {
148 clear_bit(BIO_UPTODATE, &bio->bi_flags);
149 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
152 if (unlikely(nbytes > bio->bi_size)) {
153 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
154 __func__, nbytes, bio->bi_size);
155 nbytes = bio->bi_size;
158 if (unlikely(rq->cmd_flags & REQ_QUIET))
159 set_bit(BIO_QUIET, &bio->bi_flags);
161 bio->bi_size -= nbytes;
162 bio->bi_sector += (nbytes >> 9);
164 if (bio_integrity(bio))
165 bio_integrity_advance(bio, nbytes);
167 if (bio->bi_size == 0)
168 bio_endio(bio, error);
172 * Okay, this is the barrier request in progress, just
175 if (error && !q->orderr)
180 void blk_dump_rq_flags(struct request *rq, char *msg)
184 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
185 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
188 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
189 (unsigned long long)blk_rq_pos(rq),
190 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
191 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
192 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
194 if (blk_pc_request(rq)) {
195 printk(KERN_INFO " cdb: ");
196 for (bit = 0; bit < BLK_MAX_CDB; bit++)
197 printk("%02x ", rq->cmd[bit]);
201 EXPORT_SYMBOL(blk_dump_rq_flags);
204 * "plug" the device if there are no outstanding requests: this will
205 * force the transfer to start only after we have put all the requests
208 * This is called with interrupts off and no requests on the queue and
209 * with the queue lock held.
211 void blk_plug_device(struct request_queue *q)
213 WARN_ON(!irqs_disabled());
216 * don't plug a stopped queue, it must be paired with blk_start_queue()
217 * which will restart the queueing
219 if (blk_queue_stopped(q))
222 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
223 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
227 EXPORT_SYMBOL(blk_plug_device);
230 * blk_plug_device_unlocked - plug a device without queue lock held
231 * @q: The &struct request_queue to plug
234 * Like @blk_plug_device(), but grabs the queue lock and disables
237 void blk_plug_device_unlocked(struct request_queue *q)
241 spin_lock_irqsave(q->queue_lock, flags);
243 spin_unlock_irqrestore(q->queue_lock, flags);
245 EXPORT_SYMBOL(blk_plug_device_unlocked);
248 * remove the queue from the plugged list, if present. called with
249 * queue lock held and interrupts disabled.
251 int blk_remove_plug(struct request_queue *q)
253 WARN_ON(!irqs_disabled());
255 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
258 del_timer(&q->unplug_timer);
261 EXPORT_SYMBOL(blk_remove_plug);
264 * remove the plug and let it rip..
266 void __generic_unplug_device(struct request_queue *q)
268 if (unlikely(blk_queue_stopped(q)))
270 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
277 * generic_unplug_device - fire a request queue
278 * @q: The &struct request_queue in question
281 * Linux uses plugging to build bigger requests queues before letting
282 * the device have at them. If a queue is plugged, the I/O scheduler
283 * is still adding and merging requests on the queue. Once the queue
284 * gets unplugged, the request_fn defined for the queue is invoked and
287 void generic_unplug_device(struct request_queue *q)
289 if (blk_queue_plugged(q)) {
290 spin_lock_irq(q->queue_lock);
291 __generic_unplug_device(q);
292 spin_unlock_irq(q->queue_lock);
295 EXPORT_SYMBOL(generic_unplug_device);
297 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
300 struct request_queue *q = bdi->unplug_io_data;
305 void blk_unplug_work(struct work_struct *work)
307 struct request_queue *q =
308 container_of(work, struct request_queue, unplug_work);
310 trace_block_unplug_io(q);
314 void blk_unplug_timeout(unsigned long data)
316 struct request_queue *q = (struct request_queue *)data;
318 trace_block_unplug_timer(q);
319 kblockd_schedule_work(q, &q->unplug_work);
322 void blk_unplug(struct request_queue *q)
325 * devices don't necessarily have an ->unplug_fn defined
328 trace_block_unplug_io(q);
332 EXPORT_SYMBOL(blk_unplug);
335 * blk_start_queue - restart a previously stopped queue
336 * @q: The &struct request_queue in question
339 * blk_start_queue() will clear the stop flag on the queue, and call
340 * the request_fn for the queue if it was in a stopped state when
341 * entered. Also see blk_stop_queue(). Queue lock must be held.
343 void blk_start_queue(struct request_queue *q)
345 WARN_ON(!irqs_disabled());
347 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
350 EXPORT_SYMBOL(blk_start_queue);
353 * blk_stop_queue - stop a queue
354 * @q: The &struct request_queue in question
357 * The Linux block layer assumes that a block driver will consume all
358 * entries on the request queue when the request_fn strategy is called.
359 * Often this will not happen, because of hardware limitations (queue
360 * depth settings). If a device driver gets a 'queue full' response,
361 * or if it simply chooses not to queue more I/O at one point, it can
362 * call this function to prevent the request_fn from being called until
363 * the driver has signalled it's ready to go again. This happens by calling
364 * blk_start_queue() to restart queue operations. Queue lock must be held.
366 void blk_stop_queue(struct request_queue *q)
369 queue_flag_set(QUEUE_FLAG_STOPPED, q);
371 EXPORT_SYMBOL(blk_stop_queue);
374 * blk_sync_queue - cancel any pending callbacks on a queue
378 * The block layer may perform asynchronous callback activity
379 * on a queue, such as calling the unplug function after a timeout.
380 * A block device may call blk_sync_queue to ensure that any
381 * such activity is cancelled, thus allowing it to release resources
382 * that the callbacks might use. The caller must already have made sure
383 * that its ->make_request_fn will not re-add plugging prior to calling
387 void blk_sync_queue(struct request_queue *q)
389 del_timer_sync(&q->unplug_timer);
390 del_timer_sync(&q->timeout);
391 cancel_work_sync(&q->unplug_work);
393 EXPORT_SYMBOL(blk_sync_queue);
396 * __blk_run_queue - run a single device queue
397 * @q: The queue to run
400 * See @blk_run_queue. This variant must be called with the queue lock
401 * held and interrupts disabled.
404 void __blk_run_queue(struct request_queue *q)
408 if (unlikely(blk_queue_stopped(q)))
411 if (elv_queue_empty(q))
415 * Only recurse once to avoid overrunning the stack, let the unplug
416 * handling reinvoke the handler shortly if we already got there.
418 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
420 queue_flag_clear(QUEUE_FLAG_REENTER, q);
422 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
423 kblockd_schedule_work(q, &q->unplug_work);
426 EXPORT_SYMBOL(__blk_run_queue);
429 * blk_run_queue - run a single device queue
430 * @q: The queue to run
433 * Invoke request handling on this queue, if it has pending work to do.
434 * May be used to restart queueing when a request has completed.
436 void blk_run_queue(struct request_queue *q)
440 spin_lock_irqsave(q->queue_lock, flags);
442 spin_unlock_irqrestore(q->queue_lock, flags);
444 EXPORT_SYMBOL(blk_run_queue);
446 void blk_put_queue(struct request_queue *q)
448 kobject_put(&q->kobj);
451 void blk_cleanup_queue(struct request_queue *q)
454 * We know we have process context here, so we can be a little
455 * cautious and ensure that pending block actions on this device
456 * are done before moving on. Going into this function, we should
457 * not have processes doing IO to this device.
461 mutex_lock(&q->sysfs_lock);
462 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
463 mutex_unlock(&q->sysfs_lock);
466 elevator_exit(q->elevator);
470 EXPORT_SYMBOL(blk_cleanup_queue);
472 static int blk_init_free_list(struct request_queue *q)
474 struct request_list *rl = &q->rq;
476 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
477 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
479 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
480 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
482 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
483 mempool_free_slab, request_cachep, q->node);
491 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
493 return blk_alloc_queue_node(gfp_mask, -1);
495 EXPORT_SYMBOL(blk_alloc_queue);
497 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
499 struct request_queue *q;
502 q = kmem_cache_alloc_node(blk_requestq_cachep,
503 gfp_mask | __GFP_ZERO, node_id);
507 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
508 q->backing_dev_info.unplug_io_data = q;
509 err = bdi_init(&q->backing_dev_info);
511 kmem_cache_free(blk_requestq_cachep, q);
515 init_timer(&q->unplug_timer);
516 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
517 INIT_LIST_HEAD(&q->timeout_list);
518 INIT_WORK(&q->unplug_work, blk_unplug_work);
520 kobject_init(&q->kobj, &blk_queue_ktype);
522 mutex_init(&q->sysfs_lock);
523 spin_lock_init(&q->__queue_lock);
527 EXPORT_SYMBOL(blk_alloc_queue_node);
530 * blk_init_queue - prepare a request queue for use with a block device
531 * @rfn: The function to be called to process requests that have been
532 * placed on the queue.
533 * @lock: Request queue spin lock
536 * If a block device wishes to use the standard request handling procedures,
537 * which sorts requests and coalesces adjacent requests, then it must
538 * call blk_init_queue(). The function @rfn will be called when there
539 * are requests on the queue that need to be processed. If the device
540 * supports plugging, then @rfn may not be called immediately when requests
541 * are available on the queue, but may be called at some time later instead.
542 * Plugged queues are generally unplugged when a buffer belonging to one
543 * of the requests on the queue is needed, or due to memory pressure.
545 * @rfn is not required, or even expected, to remove all requests off the
546 * queue, but only as many as it can handle at a time. If it does leave
547 * requests on the queue, it is responsible for arranging that the requests
548 * get dealt with eventually.
550 * The queue spin lock must be held while manipulating the requests on the
551 * request queue; this lock will be taken also from interrupt context, so irq
552 * disabling is needed for it.
554 * Function returns a pointer to the initialized request queue, or %NULL if
558 * blk_init_queue() must be paired with a blk_cleanup_queue() call
559 * when the block device is deactivated (such as at module unload).
562 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
564 return blk_init_queue_node(rfn, lock, -1);
566 EXPORT_SYMBOL(blk_init_queue);
568 struct request_queue *
569 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
571 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
577 if (blk_init_free_list(q)) {
578 kmem_cache_free(blk_requestq_cachep, q);
583 * if caller didn't supply a lock, they get per-queue locking with
587 lock = &q->__queue_lock;
590 q->prep_rq_fn = NULL;
591 q->unplug_fn = generic_unplug_device;
592 q->queue_flags = QUEUE_FLAG_DEFAULT;
593 q->queue_lock = lock;
596 * This also sets hw/phys segments, boundary and size
598 blk_queue_make_request(q, __make_request);
600 q->sg_reserved_size = INT_MAX;
602 blk_set_cmd_filter_defaults(&q->cmd_filter);
607 if (!elevator_init(q, NULL)) {
608 blk_queue_congestion_threshold(q);
615 EXPORT_SYMBOL(blk_init_queue_node);
617 int blk_get_queue(struct request_queue *q)
619 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
620 kobject_get(&q->kobj);
627 static inline void blk_free_request(struct request_queue *q, struct request *rq)
629 if (rq->cmd_flags & REQ_ELVPRIV)
630 elv_put_request(q, rq);
631 mempool_free(rq, q->rq.rq_pool);
634 static struct request *
635 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
637 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
644 rq->cmd_flags = flags | REQ_ALLOCED;
647 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
648 mempool_free(rq, q->rq.rq_pool);
651 rq->cmd_flags |= REQ_ELVPRIV;
658 * ioc_batching returns true if the ioc is a valid batching request and
659 * should be given priority access to a request.
661 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
667 * Make sure the process is able to allocate at least 1 request
668 * even if the batch times out, otherwise we could theoretically
671 return ioc->nr_batch_requests == q->nr_batching ||
672 (ioc->nr_batch_requests > 0
673 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
677 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
678 * will cause the process to be a "batcher" on all queues in the system. This
679 * is the behaviour we want though - once it gets a wakeup it should be given
682 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
684 if (!ioc || ioc_batching(q, ioc))
687 ioc->nr_batch_requests = q->nr_batching;
688 ioc->last_waited = jiffies;
691 static void __freed_request(struct request_queue *q, int sync)
693 struct request_list *rl = &q->rq;
695 if (rl->count[sync] < queue_congestion_off_threshold(q))
696 blk_clear_queue_congested(q, sync);
698 if (rl->count[sync] + 1 <= q->nr_requests) {
699 if (waitqueue_active(&rl->wait[sync]))
700 wake_up(&rl->wait[sync]);
702 blk_clear_queue_full(q, sync);
707 * A request has just been released. Account for it, update the full and
708 * congestion status, wake up any waiters. Called under q->queue_lock.
710 static void freed_request(struct request_queue *q, int sync, int priv)
712 struct request_list *rl = &q->rq;
718 __freed_request(q, sync);
720 if (unlikely(rl->starved[sync ^ 1]))
721 __freed_request(q, sync ^ 1);
725 * Get a free request, queue_lock must be held.
726 * Returns NULL on failure, with queue_lock held.
727 * Returns !NULL on success, with queue_lock *not held*.
729 static struct request *get_request(struct request_queue *q, int rw_flags,
730 struct bio *bio, gfp_t gfp_mask)
732 struct request *rq = NULL;
733 struct request_list *rl = &q->rq;
734 struct io_context *ioc = NULL;
735 const bool is_sync = rw_is_sync(rw_flags) != 0;
738 may_queue = elv_may_queue(q, rw_flags);
739 if (may_queue == ELV_MQUEUE_NO)
742 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
743 if (rl->count[is_sync]+1 >= q->nr_requests) {
744 ioc = current_io_context(GFP_ATOMIC, q->node);
746 * The queue will fill after this allocation, so set
747 * it as full, and mark this process as "batching".
748 * This process will be allowed to complete a batch of
749 * requests, others will be blocked.
751 if (!blk_queue_full(q, is_sync)) {
752 ioc_set_batching(q, ioc);
753 blk_set_queue_full(q, is_sync);
755 if (may_queue != ELV_MQUEUE_MUST
756 && !ioc_batching(q, ioc)) {
758 * The queue is full and the allocating
759 * process is not a "batcher", and not
760 * exempted by the IO scheduler
766 blk_set_queue_congested(q, is_sync);
770 * Only allow batching queuers to allocate up to 50% over the defined
771 * limit of requests, otherwise we could have thousands of requests
772 * allocated with any setting of ->nr_requests
774 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
777 rl->count[is_sync]++;
778 rl->starved[is_sync] = 0;
780 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
784 if (blk_queue_io_stat(q))
785 rw_flags |= REQ_IO_STAT;
786 spin_unlock_irq(q->queue_lock);
788 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
791 * Allocation failed presumably due to memory. Undo anything
792 * we might have messed up.
794 * Allocating task should really be put onto the front of the
795 * wait queue, but this is pretty rare.
797 spin_lock_irq(q->queue_lock);
798 freed_request(q, is_sync, priv);
801 * in the very unlikely event that allocation failed and no
802 * requests for this direction was pending, mark us starved
803 * so that freeing of a request in the other direction will
804 * notice us. another possible fix would be to split the
805 * rq mempool into READ and WRITE
808 if (unlikely(rl->count[is_sync] == 0))
809 rl->starved[is_sync] = 1;
815 * ioc may be NULL here, and ioc_batching will be false. That's
816 * OK, if the queue is under the request limit then requests need
817 * not count toward the nr_batch_requests limit. There will always
818 * be some limit enforced by BLK_BATCH_TIME.
820 if (ioc_batching(q, ioc))
821 ioc->nr_batch_requests--;
823 trace_block_getrq(q, bio, rw_flags & 1);
829 * No available requests for this queue, unplug the device and wait for some
830 * requests to become available.
832 * Called with q->queue_lock held, and returns with it unlocked.
834 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
837 const bool is_sync = rw_is_sync(rw_flags) != 0;
840 rq = get_request(q, rw_flags, bio, GFP_NOIO);
843 struct io_context *ioc;
844 struct request_list *rl = &q->rq;
846 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
847 TASK_UNINTERRUPTIBLE);
849 trace_block_sleeprq(q, bio, rw_flags & 1);
851 __generic_unplug_device(q);
852 spin_unlock_irq(q->queue_lock);
856 * After sleeping, we become a "batching" process and
857 * will be able to allocate at least one request, and
858 * up to a big batch of them for a small period time.
859 * See ioc_batching, ioc_set_batching
861 ioc = current_io_context(GFP_NOIO, q->node);
862 ioc_set_batching(q, ioc);
864 spin_lock_irq(q->queue_lock);
865 finish_wait(&rl->wait[is_sync], &wait);
867 rq = get_request(q, rw_flags, bio, GFP_NOIO);
873 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
877 BUG_ON(rw != READ && rw != WRITE);
879 spin_lock_irq(q->queue_lock);
880 if (gfp_mask & __GFP_WAIT) {
881 rq = get_request_wait(q, rw, NULL);
883 rq = get_request(q, rw, NULL, gfp_mask);
885 spin_unlock_irq(q->queue_lock);
887 /* q->queue_lock is unlocked at this point */
891 EXPORT_SYMBOL(blk_get_request);
894 * blk_requeue_request - put a request back on queue
895 * @q: request queue where request should be inserted
896 * @rq: request to be inserted
899 * Drivers often keep queueing requests until the hardware cannot accept
900 * more, when that condition happens we need to put the request back
901 * on the queue. Must be called with queue lock held.
903 void blk_requeue_request(struct request_queue *q, struct request *rq)
905 blk_delete_timer(rq);
906 blk_clear_rq_complete(rq);
907 trace_block_rq_requeue(q, rq);
909 if (blk_rq_tagged(rq))
910 blk_queue_end_tag(q, rq);
912 elv_requeue_request(q, rq);
914 EXPORT_SYMBOL(blk_requeue_request);
917 * blk_insert_request - insert a special request into a request queue
918 * @q: request queue where request should be inserted
919 * @rq: request to be inserted
920 * @at_head: insert request at head or tail of queue
921 * @data: private data
924 * Many block devices need to execute commands asynchronously, so they don't
925 * block the whole kernel from preemption during request execution. This is
926 * accomplished normally by inserting aritficial requests tagged as
927 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
928 * be scheduled for actual execution by the request queue.
930 * We have the option of inserting the head or the tail of the queue.
931 * Typically we use the tail for new ioctls and so forth. We use the head
932 * of the queue for things like a QUEUE_FULL message from a device, or a
933 * host that is unable to accept a particular command.
935 void blk_insert_request(struct request_queue *q, struct request *rq,
936 int at_head, void *data)
938 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
942 * tell I/O scheduler that this isn't a regular read/write (ie it
943 * must not attempt merges on this) and that it acts as a soft
946 rq->cmd_type = REQ_TYPE_SPECIAL;
950 spin_lock_irqsave(q->queue_lock, flags);
953 * If command is tagged, release the tag
955 if (blk_rq_tagged(rq))
956 blk_queue_end_tag(q, rq);
958 drive_stat_acct(rq, 1);
959 __elv_add_request(q, rq, where, 0);
961 spin_unlock_irqrestore(q->queue_lock, flags);
963 EXPORT_SYMBOL(blk_insert_request);
966 * add-request adds a request to the linked list.
967 * queue lock is held and interrupts disabled, as we muck with the
968 * request queue list.
970 static inline void add_request(struct request_queue *q, struct request *req)
972 drive_stat_acct(req, 1);
975 * elevator indicated where it wants this request to be
976 * inserted at elevator_merge time
978 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
981 static void part_round_stats_single(int cpu, struct hd_struct *part,
984 if (now == part->stamp)
987 if (part->in_flight) {
988 __part_stat_add(cpu, part, time_in_queue,
989 part->in_flight * (now - part->stamp));
990 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
996 * part_round_stats() - Round off the performance stats on a struct disk_stats.
997 * @cpu: cpu number for stats access
998 * @part: target partition
1000 * The average IO queue length and utilisation statistics are maintained
1001 * by observing the current state of the queue length and the amount of
1002 * time it has been in this state for.
1004 * Normally, that accounting is done on IO completion, but that can result
1005 * in more than a second's worth of IO being accounted for within any one
1006 * second, leading to >100% utilisation. To deal with that, we call this
1007 * function to do a round-off before returning the results when reading
1008 * /proc/diskstats. This accounts immediately for all queue usage up to
1009 * the current jiffies and restarts the counters again.
1011 void part_round_stats(int cpu, struct hd_struct *part)
1013 unsigned long now = jiffies;
1016 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1017 part_round_stats_single(cpu, part, now);
1019 EXPORT_SYMBOL_GPL(part_round_stats);
1022 * queue lock must be held
1024 void __blk_put_request(struct request_queue *q, struct request *req)
1028 if (unlikely(--req->ref_count))
1031 elv_completed_request(q, req);
1033 /* this is a bio leak */
1034 WARN_ON(req->bio != NULL);
1037 * Request may not have originated from ll_rw_blk. if not,
1038 * it didn't come out of our reserved rq pools
1040 if (req->cmd_flags & REQ_ALLOCED) {
1041 int is_sync = rq_is_sync(req) != 0;
1042 int priv = req->cmd_flags & REQ_ELVPRIV;
1044 BUG_ON(!list_empty(&req->queuelist));
1045 BUG_ON(!hlist_unhashed(&req->hash));
1047 blk_free_request(q, req);
1048 freed_request(q, is_sync, priv);
1051 EXPORT_SYMBOL_GPL(__blk_put_request);
1053 void blk_put_request(struct request *req)
1055 unsigned long flags;
1056 struct request_queue *q = req->q;
1058 spin_lock_irqsave(q->queue_lock, flags);
1059 __blk_put_request(q, req);
1060 spin_unlock_irqrestore(q->queue_lock, flags);
1062 EXPORT_SYMBOL(blk_put_request);
1064 void init_request_from_bio(struct request *req, struct bio *bio)
1066 req->cpu = bio->bi_comp_cpu;
1067 req->cmd_type = REQ_TYPE_FS;
1070 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1072 if (bio_rw_ahead(bio))
1073 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1074 REQ_FAILFAST_DRIVER);
1075 if (bio_failfast_dev(bio))
1076 req->cmd_flags |= REQ_FAILFAST_DEV;
1077 if (bio_failfast_transport(bio))
1078 req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1079 if (bio_failfast_driver(bio))
1080 req->cmd_flags |= REQ_FAILFAST_DRIVER;
1082 if (unlikely(bio_discard(bio))) {
1083 req->cmd_flags |= REQ_DISCARD;
1084 if (bio_barrier(bio))
1085 req->cmd_flags |= REQ_SOFTBARRIER;
1086 req->q->prepare_discard_fn(req->q, req);
1087 } else if (unlikely(bio_barrier(bio)))
1088 req->cmd_flags |= REQ_HARDBARRIER;
1091 req->cmd_flags |= REQ_RW_SYNC;
1092 if (bio_rw_meta(bio))
1093 req->cmd_flags |= REQ_RW_META;
1094 if (bio_noidle(bio))
1095 req->cmd_flags |= REQ_NOIDLE;
1098 req->__sector = bio->bi_sector;
1099 req->ioprio = bio_prio(bio);
1100 blk_rq_bio_prep(req->q, req, bio);
1104 * Only disabling plugging for non-rotational devices if it does tagging
1105 * as well, otherwise we do need the proper merging
1107 static inline bool queue_should_plug(struct request_queue *q)
1109 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1112 static int __make_request(struct request_queue *q, struct bio *bio)
1114 struct request *req;
1116 unsigned int bytes = bio->bi_size;
1117 const unsigned short prio = bio_prio(bio);
1118 const int sync = bio_sync(bio);
1119 const int unplug = bio_unplug(bio);
1123 * low level driver can indicate that it wants pages above a
1124 * certain limit bounced to low memory (ie for highmem, or even
1125 * ISA dma in theory)
1127 blk_queue_bounce(q, &bio);
1129 spin_lock_irq(q->queue_lock);
1131 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
1134 el_ret = elv_merge(q, &req, bio);
1136 case ELEVATOR_BACK_MERGE:
1137 BUG_ON(!rq_mergeable(req));
1139 if (!ll_back_merge_fn(q, req, bio))
1142 trace_block_bio_backmerge(q, bio);
1144 req->biotail->bi_next = bio;
1146 req->__data_len += bytes;
1147 req->ioprio = ioprio_best(req->ioprio, prio);
1148 if (!blk_rq_cpu_valid(req))
1149 req->cpu = bio->bi_comp_cpu;
1150 drive_stat_acct(req, 0);
1151 if (!attempt_back_merge(q, req))
1152 elv_merged_request(q, req, el_ret);
1155 case ELEVATOR_FRONT_MERGE:
1156 BUG_ON(!rq_mergeable(req));
1158 if (!ll_front_merge_fn(q, req, bio))
1161 trace_block_bio_frontmerge(q, bio);
1163 bio->bi_next = req->bio;
1167 * may not be valid. if the low level driver said
1168 * it didn't need a bounce buffer then it better
1169 * not touch req->buffer either...
1171 req->buffer = bio_data(bio);
1172 req->__sector = bio->bi_sector;
1173 req->__data_len += bytes;
1174 req->ioprio = ioprio_best(req->ioprio, prio);
1175 if (!blk_rq_cpu_valid(req))
1176 req->cpu = bio->bi_comp_cpu;
1177 drive_stat_acct(req, 0);
1178 if (!attempt_front_merge(q, req))
1179 elv_merged_request(q, req, el_ret);
1182 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1189 * This sync check and mask will be re-done in init_request_from_bio(),
1190 * but we need to set it earlier to expose the sync flag to the
1191 * rq allocator and io schedulers.
1193 rw_flags = bio_data_dir(bio);
1195 rw_flags |= REQ_RW_SYNC;
1198 * Grab a free request. This is might sleep but can not fail.
1199 * Returns with the queue unlocked.
1201 req = get_request_wait(q, rw_flags, bio);
1204 * After dropping the lock and possibly sleeping here, our request
1205 * may now be mergeable after it had proven unmergeable (above).
1206 * We don't worry about that case for efficiency. It won't happen
1207 * often, and the elevators are able to handle it.
1209 init_request_from_bio(req, bio);
1211 spin_lock_irq(q->queue_lock);
1212 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1213 bio_flagged(bio, BIO_CPU_AFFINE))
1214 req->cpu = blk_cpu_to_group(smp_processor_id());
1215 if (queue_should_plug(q) && elv_queue_empty(q))
1217 add_request(q, req);
1219 if (unplug || !queue_should_plug(q))
1220 __generic_unplug_device(q);
1221 spin_unlock_irq(q->queue_lock);
1226 * If bio->bi_dev is a partition, remap the location
1228 static inline void blk_partition_remap(struct bio *bio)
1230 struct block_device *bdev = bio->bi_bdev;
1232 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1233 struct hd_struct *p = bdev->bd_part;
1235 bio->bi_sector += p->start_sect;
1236 bio->bi_bdev = bdev->bd_contains;
1238 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1239 bdev->bd_dev, bio->bi_sector,
1240 bio->bi_sector - p->start_sect);
1244 static void handle_bad_sector(struct bio *bio)
1246 char b[BDEVNAME_SIZE];
1248 printk(KERN_INFO "attempt to access beyond end of device\n");
1249 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1250 bdevname(bio->bi_bdev, b),
1252 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1253 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1255 set_bit(BIO_EOF, &bio->bi_flags);
1258 #ifdef CONFIG_FAIL_MAKE_REQUEST
1260 static DECLARE_FAULT_ATTR(fail_make_request);
1262 static int __init setup_fail_make_request(char *str)
1264 return setup_fault_attr(&fail_make_request, str);
1266 __setup("fail_make_request=", setup_fail_make_request);
1268 static int should_fail_request(struct bio *bio)
1270 struct hd_struct *part = bio->bi_bdev->bd_part;
1272 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1273 return should_fail(&fail_make_request, bio->bi_size);
1278 static int __init fail_make_request_debugfs(void)
1280 return init_fault_attr_dentries(&fail_make_request,
1281 "fail_make_request");
1284 late_initcall(fail_make_request_debugfs);
1286 #else /* CONFIG_FAIL_MAKE_REQUEST */
1288 static inline int should_fail_request(struct bio *bio)
1293 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1296 * Check whether this bio extends beyond the end of the device.
1298 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1305 /* Test device or partition size, when known. */
1306 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1308 sector_t sector = bio->bi_sector;
1310 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1312 * This may well happen - the kernel calls bread()
1313 * without checking the size of the device, e.g., when
1314 * mounting a device.
1316 handle_bad_sector(bio);
1325 * generic_make_request - hand a buffer to its device driver for I/O
1326 * @bio: The bio describing the location in memory and on the device.
1328 * generic_make_request() is used to make I/O requests of block
1329 * devices. It is passed a &struct bio, which describes the I/O that needs
1332 * generic_make_request() does not return any status. The
1333 * success/failure status of the request, along with notification of
1334 * completion, is delivered asynchronously through the bio->bi_end_io
1335 * function described (one day) else where.
1337 * The caller of generic_make_request must make sure that bi_io_vec
1338 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1339 * set to describe the device address, and the
1340 * bi_end_io and optionally bi_private are set to describe how
1341 * completion notification should be signaled.
1343 * generic_make_request and the drivers it calls may use bi_next if this
1344 * bio happens to be merged with someone else, and may change bi_dev and
1345 * bi_sector for remaps as it sees fit. So the values of these fields
1346 * should NOT be depended on after the call to generic_make_request.
1348 static inline void __generic_make_request(struct bio *bio)
1350 struct request_queue *q;
1351 sector_t old_sector;
1352 int ret, nr_sectors = bio_sectors(bio);
1358 if (bio_check_eod(bio, nr_sectors))
1362 * Resolve the mapping until finished. (drivers are
1363 * still free to implement/resolve their own stacking
1364 * by explicitly returning 0)
1366 * NOTE: we don't repeat the blk_size check for each new device.
1367 * Stacking drivers are expected to know what they are doing.
1372 char b[BDEVNAME_SIZE];
1374 q = bdev_get_queue(bio->bi_bdev);
1377 "generic_make_request: Trying to access "
1378 "nonexistent block-device %s (%Lu)\n",
1379 bdevname(bio->bi_bdev, b),
1380 (long long) bio->bi_sector);
1384 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1385 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1386 bdevname(bio->bi_bdev, b),
1392 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1395 if (should_fail_request(bio))
1399 * If this device has partitions, remap block n
1400 * of partition p to block n+start(p) of the disk.
1402 blk_partition_remap(bio);
1404 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1407 if (old_sector != -1)
1408 trace_block_remap(q, bio, old_dev, bio->bi_sector,
1411 trace_block_bio_queue(q, bio);
1413 old_sector = bio->bi_sector;
1414 old_dev = bio->bi_bdev->bd_dev;
1416 if (bio_check_eod(bio, nr_sectors))
1419 if (bio_discard(bio) && !q->prepare_discard_fn) {
1423 if (bio_barrier(bio) && bio_has_data(bio) &&
1424 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1429 ret = q->make_request_fn(q, bio);
1435 bio_endio(bio, err);
1439 * We only want one ->make_request_fn to be active at a time,
1440 * else stack usage with stacked devices could be a problem.
1441 * So use current->bio_{list,tail} to keep a list of requests
1442 * submited by a make_request_fn function.
1443 * current->bio_tail is also used as a flag to say if
1444 * generic_make_request is currently active in this task or not.
1445 * If it is NULL, then no make_request is active. If it is non-NULL,
1446 * then a make_request is active, and new requests should be added
1449 void generic_make_request(struct bio *bio)
1451 if (current->bio_tail) {
1452 /* make_request is active */
1453 *(current->bio_tail) = bio;
1454 bio->bi_next = NULL;
1455 current->bio_tail = &bio->bi_next;
1458 /* following loop may be a bit non-obvious, and so deserves some
1460 * Before entering the loop, bio->bi_next is NULL (as all callers
1461 * ensure that) so we have a list with a single bio.
1462 * We pretend that we have just taken it off a longer list, so
1463 * we assign bio_list to the next (which is NULL) and bio_tail
1464 * to &bio_list, thus initialising the bio_list of new bios to be
1465 * added. __generic_make_request may indeed add some more bios
1466 * through a recursive call to generic_make_request. If it
1467 * did, we find a non-NULL value in bio_list and re-enter the loop
1468 * from the top. In this case we really did just take the bio
1469 * of the top of the list (no pretending) and so fixup bio_list and
1470 * bio_tail or bi_next, and call into __generic_make_request again.
1472 * The loop was structured like this to make only one call to
1473 * __generic_make_request (which is important as it is large and
1474 * inlined) and to keep the structure simple.
1476 BUG_ON(bio->bi_next);
1478 current->bio_list = bio->bi_next;
1479 if (bio->bi_next == NULL)
1480 current->bio_tail = ¤t->bio_list;
1482 bio->bi_next = NULL;
1483 __generic_make_request(bio);
1484 bio = current->bio_list;
1486 current->bio_tail = NULL; /* deactivate */
1488 EXPORT_SYMBOL(generic_make_request);
1491 * submit_bio - submit a bio to the block device layer for I/O
1492 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1493 * @bio: The &struct bio which describes the I/O
1495 * submit_bio() is very similar in purpose to generic_make_request(), and
1496 * uses that function to do most of the work. Both are fairly rough
1497 * interfaces; @bio must be presetup and ready for I/O.
1500 void submit_bio(int rw, struct bio *bio)
1502 int count = bio_sectors(bio);
1507 * If it's a regular read/write or a barrier with data attached,
1508 * go through the normal accounting stuff before submission.
1510 if (bio_has_data(bio)) {
1512 count_vm_events(PGPGOUT, count);
1514 task_io_account_read(bio->bi_size);
1515 count_vm_events(PGPGIN, count);
1518 if (unlikely(block_dump)) {
1519 char b[BDEVNAME_SIZE];
1520 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1521 current->comm, task_pid_nr(current),
1522 (rw & WRITE) ? "WRITE" : "READ",
1523 (unsigned long long)bio->bi_sector,
1524 bdevname(bio->bi_bdev, b));
1528 generic_make_request(bio);
1530 EXPORT_SYMBOL(submit_bio);
1533 * blk_rq_check_limits - Helper function to check a request for the queue limit
1535 * @rq: the request being checked
1538 * @rq may have been made based on weaker limitations of upper-level queues
1539 * in request stacking drivers, and it may violate the limitation of @q.
1540 * Since the block layer and the underlying device driver trust @rq
1541 * after it is inserted to @q, it should be checked against @q before
1542 * the insertion using this generic function.
1544 * This function should also be useful for request stacking drivers
1545 * in some cases below, so export this fuction.
1546 * Request stacking drivers like request-based dm may change the queue
1547 * limits while requests are in the queue (e.g. dm's table swapping).
1548 * Such request stacking drivers should check those requests agaist
1549 * the new queue limits again when they dispatch those requests,
1550 * although such checkings are also done against the old queue limits
1551 * when submitting requests.
1553 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1555 if (blk_rq_sectors(rq) > q->max_sectors ||
1556 blk_rq_bytes(rq) > q->max_hw_sectors << 9) {
1557 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1562 * queue's settings related to segment counting like q->bounce_pfn
1563 * may differ from that of other stacking queues.
1564 * Recalculate it to check the request correctly on this queue's
1567 blk_recalc_rq_segments(rq);
1568 if (rq->nr_phys_segments > q->max_phys_segments ||
1569 rq->nr_phys_segments > q->max_hw_segments) {
1570 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1576 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1579 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1580 * @q: the queue to submit the request
1581 * @rq: the request being queued
1583 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1585 unsigned long flags;
1587 if (blk_rq_check_limits(q, rq))
1590 #ifdef CONFIG_FAIL_MAKE_REQUEST
1591 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1592 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1596 spin_lock_irqsave(q->queue_lock, flags);
1599 * Submitting request must be dequeued before calling this function
1600 * because it will be linked to another request_queue
1602 BUG_ON(blk_queued_rq(rq));
1604 drive_stat_acct(rq, 1);
1605 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1607 spin_unlock_irqrestore(q->queue_lock, flags);
1611 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1614 * blkdev_dequeue_request - dequeue request and start timeout timer
1615 * @req: request to dequeue
1617 * Dequeue @req and start timeout timer on it. This hands off the
1618 * request to the driver.
1620 * Block internal functions which don't want to start timer should
1621 * call elv_dequeue_request().
1623 void blkdev_dequeue_request(struct request *req)
1625 elv_dequeue_request(req->q, req);
1628 * We are now handing the request to the hardware, add the
1633 EXPORT_SYMBOL(blkdev_dequeue_request);
1635 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1637 if (blk_do_io_stat(req)) {
1638 const int rw = rq_data_dir(req);
1639 struct hd_struct *part;
1642 cpu = part_stat_lock();
1643 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1644 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1649 static void blk_account_io_done(struct request *req)
1652 * Account IO completion. bar_rq isn't accounted as a normal
1653 * IO on queueing nor completion. Accounting the containing
1654 * request is enough.
1656 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
1657 unsigned long duration = jiffies - req->start_time;
1658 const int rw = rq_data_dir(req);
1659 struct hd_struct *part;
1662 cpu = part_stat_lock();
1663 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1665 part_stat_inc(cpu, part, ios[rw]);
1666 part_stat_add(cpu, part, ticks[rw], duration);
1667 part_round_stats(cpu, part);
1668 part_dec_in_flight(part);
1674 struct request *elv_next_request(struct request_queue *q)
1679 while ((rq = __elv_next_request(q)) != NULL) {
1680 if (!(rq->cmd_flags & REQ_STARTED)) {
1682 * This is the first time the device driver
1683 * sees this request (possibly after
1684 * requeueing). Notify IO scheduler.
1686 if (blk_sorted_rq(rq))
1687 elv_activate_rq(q, rq);
1690 * just mark as started even if we don't start
1691 * it, a request that has been delayed should
1692 * not be passed by new incoming requests
1694 rq->cmd_flags |= REQ_STARTED;
1695 trace_block_rq_issue(q, rq);
1698 if (!q->boundary_rq || q->boundary_rq == rq) {
1699 q->end_sector = rq_end_sector(rq);
1700 q->boundary_rq = NULL;
1703 if (rq->cmd_flags & REQ_DONTPREP)
1706 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1708 * make sure space for the drain appears we
1709 * know we can do this because max_hw_segments
1710 * has been adjusted to be one fewer than the
1713 rq->nr_phys_segments++;
1719 ret = q->prep_rq_fn(q, rq);
1720 if (ret == BLKPREP_OK) {
1722 } else if (ret == BLKPREP_DEFER) {
1724 * the request may have been (partially) prepped.
1725 * we need to keep this request in the front to
1726 * avoid resource deadlock. REQ_STARTED will
1727 * prevent other fs requests from passing this one.
1729 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1730 !(rq->cmd_flags & REQ_DONTPREP)) {
1732 * remove the space for the drain we added
1733 * so that we don't add it again
1735 --rq->nr_phys_segments;
1740 } else if (ret == BLKPREP_KILL) {
1741 rq->cmd_flags |= REQ_QUIET;
1742 __blk_end_request_all(rq, -EIO);
1744 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1751 EXPORT_SYMBOL(elv_next_request);
1753 void elv_dequeue_request(struct request_queue *q, struct request *rq)
1755 BUG_ON(list_empty(&rq->queuelist));
1756 BUG_ON(ELV_ON_HASH(rq));
1758 list_del_init(&rq->queuelist);
1761 * the time frame between a request being removed from the lists
1762 * and to it is freed is accounted as io that is in progress at
1765 if (blk_account_rq(rq))
1770 * blk_update_request - Special helper function for request stacking drivers
1771 * @rq: the request being processed
1772 * @error: %0 for success, < %0 for error
1773 * @nr_bytes: number of bytes to complete @rq
1776 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
1777 * the request structure even if @rq doesn't have leftover.
1778 * If @rq has leftover, sets it up for the next range of segments.
1780 * This special helper function is only for request stacking drivers
1781 * (e.g. request-based dm) so that they can handle partial completion.
1782 * Actual device drivers should use blk_end_request instead.
1784 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1785 * %false return from this function.
1788 * %false - this request doesn't have any more data
1789 * %true - this request has more data
1791 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1793 int total_bytes, bio_nbytes, next_idx = 0;
1799 trace_block_rq_complete(req->q, req);
1802 * For fs requests, rq is just carrier of independent bio's
1803 * and each partial completion should be handled separately.
1804 * Reset per-request error on each partial completion.
1806 * TODO: tj: This is too subtle. It would be better to let
1807 * low level drivers do what they see fit.
1809 if (blk_fs_request(req))
1812 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1813 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1814 req->rq_disk ? req->rq_disk->disk_name : "?",
1815 (unsigned long long)blk_rq_pos(req));
1818 blk_account_io_completion(req, nr_bytes);
1820 total_bytes = bio_nbytes = 0;
1821 while ((bio = req->bio) != NULL) {
1824 if (nr_bytes >= bio->bi_size) {
1825 req->bio = bio->bi_next;
1826 nbytes = bio->bi_size;
1827 req_bio_endio(req, bio, nbytes, error);
1831 int idx = bio->bi_idx + next_idx;
1833 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1834 blk_dump_rq_flags(req, "__end_that");
1835 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1836 __func__, bio->bi_idx, bio->bi_vcnt);
1840 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1841 BIO_BUG_ON(nbytes > bio->bi_size);
1844 * not a complete bvec done
1846 if (unlikely(nbytes > nr_bytes)) {
1847 bio_nbytes += nr_bytes;
1848 total_bytes += nr_bytes;
1853 * advance to the next vector
1856 bio_nbytes += nbytes;
1859 total_bytes += nbytes;
1865 * end more in this run, or just return 'not-done'
1867 if (unlikely(nr_bytes <= 0))
1877 * Reset counters so that the request stacking driver
1878 * can find how many bytes remain in the request
1881 req->__data_len = 0;
1886 * if the request wasn't completed, update state
1889 req_bio_endio(req, bio, bio_nbytes, error);
1890 bio->bi_idx += next_idx;
1891 bio_iovec(bio)->bv_offset += nr_bytes;
1892 bio_iovec(bio)->bv_len -= nr_bytes;
1895 req->__data_len -= total_bytes;
1896 req->buffer = bio_data(req->bio);
1898 /* update sector only for requests with clear definition of sector */
1899 if (blk_fs_request(req) || blk_discard_rq(req))
1900 req->__sector += total_bytes >> 9;
1903 * If total number of sectors is less than the first segment
1904 * size, something has gone terribly wrong.
1906 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1907 printk(KERN_ERR "blk: request botched\n");
1908 req->__data_len = blk_rq_cur_bytes(req);
1911 /* recalculate the number of segments */
1912 blk_recalc_rq_segments(req);
1916 EXPORT_SYMBOL_GPL(blk_update_request);
1918 static bool blk_update_bidi_request(struct request *rq, int error,
1919 unsigned int nr_bytes,
1920 unsigned int bidi_bytes)
1922 if (blk_update_request(rq, error, nr_bytes))
1925 /* Bidi request must be completed as a whole */
1926 if (unlikely(blk_bidi_rq(rq)) &&
1927 blk_update_request(rq->next_rq, error, bidi_bytes))
1930 add_disk_randomness(rq->rq_disk);
1936 * queue lock must be held
1938 static void blk_finish_request(struct request *req, int error)
1940 if (blk_rq_tagged(req))
1941 blk_queue_end_tag(req->q, req);
1943 if (blk_queued_rq(req))
1944 elv_dequeue_request(req->q, req);
1946 if (unlikely(laptop_mode) && blk_fs_request(req))
1947 laptop_io_completion();
1949 blk_delete_timer(req);
1951 blk_account_io_done(req);
1954 req->end_io(req, error);
1956 if (blk_bidi_rq(req))
1957 __blk_put_request(req->next_rq->q, req->next_rq);
1959 __blk_put_request(req->q, req);
1964 * blk_end_bidi_request - Complete a bidi request
1965 * @rq: the request to complete
1966 * @error: %0 for success, < %0 for error
1967 * @nr_bytes: number of bytes to complete @rq
1968 * @bidi_bytes: number of bytes to complete @rq->next_rq
1971 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1972 * Drivers that supports bidi can safely call this member for any
1973 * type of request, bidi or uni. In the later case @bidi_bytes is
1977 * %false - we are done with this request
1978 * %true - still buffers pending for this request
1980 bool blk_end_bidi_request(struct request *rq, int error,
1981 unsigned int nr_bytes, unsigned int bidi_bytes)
1983 struct request_queue *q = rq->q;
1984 unsigned long flags;
1986 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
1989 spin_lock_irqsave(q->queue_lock, flags);
1990 blk_finish_request(rq, error);
1991 spin_unlock_irqrestore(q->queue_lock, flags);
1995 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1998 * __blk_end_bidi_request - Complete a bidi request with queue lock held
1999 * @rq: the request to complete
2000 * @error: %0 for success, < %0 for error
2001 * @nr_bytes: number of bytes to complete @rq
2002 * @bidi_bytes: number of bytes to complete @rq->next_rq
2005 * Identical to blk_end_bidi_request() except that queue lock is
2006 * assumed to be locked on entry and remains so on return.
2009 * %false - we are done with this request
2010 * %true - still buffers pending for this request
2012 bool __blk_end_bidi_request(struct request *rq, int error,
2013 unsigned int nr_bytes, unsigned int bidi_bytes)
2015 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2018 blk_finish_request(rq, error);
2022 EXPORT_SYMBOL_GPL(__blk_end_bidi_request);
2024 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2027 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2028 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2029 rq->cmd_flags |= (bio->bi_rw & 3);
2031 if (bio_has_data(bio)) {
2032 rq->nr_phys_segments = bio_phys_segments(q, bio);
2033 rq->buffer = bio_data(bio);
2035 rq->__data_len = bio->bi_size;
2036 rq->bio = rq->biotail = bio;
2039 rq->rq_disk = bio->bi_bdev->bd_disk;
2043 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2044 * @q : the queue of the device being checked
2047 * Check if underlying low-level drivers of a device are busy.
2048 * If the drivers want to export their busy state, they must set own
2049 * exporting function using blk_queue_lld_busy() first.
2051 * Basically, this function is used only by request stacking drivers
2052 * to stop dispatching requests to underlying devices when underlying
2053 * devices are busy. This behavior helps more I/O merging on the queue
2054 * of the request stacking driver and prevents I/O throughput regression
2055 * on burst I/O load.
2058 * 0 - Not busy (The request stacking driver should dispatch request)
2059 * 1 - Busy (The request stacking driver should stop dispatching request)
2061 int blk_lld_busy(struct request_queue *q)
2064 return q->lld_busy_fn(q);
2068 EXPORT_SYMBOL_GPL(blk_lld_busy);
2070 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2072 return queue_work(kblockd_workqueue, work);
2074 EXPORT_SYMBOL(kblockd_schedule_work);
2076 int __init blk_dev_init(void)
2078 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2079 sizeof(((struct request *)0)->cmd_flags));
2081 kblockd_workqueue = create_workqueue("kblockd");
2082 if (!kblockd_workqueue)
2083 panic("Failed to create kblockd\n");
2085 request_cachep = kmem_cache_create("blkdev_requests",
2086 sizeof(struct request), 0, SLAB_PANIC, NULL);
2088 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2089 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);