2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3 * and other Tigon based cards.
5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
7 * Thanks to Alteon and 3Com for providing hardware and documentation
8 * enabling me to write this driver.
10 * A mailing list for discussing the use of this driver has been
11 * setup, please subscribe to the lists if you have any questions
12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13 * see how to subscribe.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22 * dump support. The trace dump support has not been
23 * integrated yet however.
24 * Troy Benjegerdes: Big Endian (PPC) patches.
25 * Nate Stahl: Better out of memory handling and stats support.
26 * Aman Singla: Nasty race between interrupt handler and tx code dealing
27 * with 'testing the tx_ret_csm and setting tx_full'
28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29 * infrastructure and Sparc support
30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31 * driver under Linux/Sparc64
32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33 * ETHTOOL_GDRVINFO support
34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35 * handler and close() cleanup.
36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37 * memory mapped IO is enabled to
38 * make the driver work on RS/6000.
39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40 * where the driver would disable
41 * bus master mode if it had to disable
42 * write and invalidate.
43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
46 * rx producer index when
47 * flushing the Jumbo ring.
48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/version.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
68 #include <linux/highmem.h>
69 #include <linux/sockios.h>
71 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
72 #include <linux/if_vlan.h>
76 #include <linux/ethtool.h>
82 #include <asm/system.h>
85 #include <asm/byteorder.h>
86 #include <asm/uaccess.h>
89 #define DRV_NAME "acenic"
93 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
94 #define ACE_IS_TIGON_I(ap) 0
95 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
97 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
98 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
101 #ifndef PCI_VENDOR_ID_ALTEON
102 #define PCI_VENDOR_ID_ALTEON 0x12ae
104 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
105 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
106 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
108 #ifndef PCI_DEVICE_ID_3COM_3C985
109 #define PCI_DEVICE_ID_3COM_3C985 0x0001
111 #ifndef PCI_VENDOR_ID_NETGEAR
112 #define PCI_VENDOR_ID_NETGEAR 0x1385
113 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
115 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
116 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
121 * Farallon used the DEC vendor ID by mistake and they seem not
124 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
125 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
127 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
128 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
130 #ifndef PCI_VENDOR_ID_SGI
131 #define PCI_VENDOR_ID_SGI 0x10a9
133 #ifndef PCI_DEVICE_ID_SGI_ACENIC
134 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
137 static struct pci_device_id acenic_pci_tbl[] = {
138 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
139 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
140 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
141 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
142 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
143 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
144 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
145 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
146 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
147 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
149 * Farallon used the DEC vendor ID on their cards incorrectly,
150 * then later Alteon's ID.
152 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
153 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
154 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
155 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
156 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
157 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
160 MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
162 #ifndef SET_NETDEV_DEV
163 #define SET_NETDEV_DEV(net, pdev) do{} while(0)
166 #if LINUX_VERSION_CODE >= 0x2051c
167 #define ace_sync_irq(irq) synchronize_irq(irq)
169 #define ace_sync_irq(irq) synchronize_irq()
172 #ifndef offset_in_page
173 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
176 #define ACE_MAX_MOD_PARMS 8
177 #define BOARD_IDX_STATIC 0
178 #define BOARD_IDX_OVERFLOW -1
180 #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
181 defined(NETIF_F_HW_VLAN_RX)
182 #define ACENIC_DO_VLAN 1
183 #define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST
185 #define ACENIC_DO_VLAN 0
186 #define ACE_RCB_VLAN_FLAG 0
192 * These must be defined before the firmware is included.
194 #define MAX_TEXT_LEN 96*1024
195 #define MAX_RODATA_LEN 8*1024
196 #define MAX_DATA_LEN 2*1024
198 #include "acenic_firmware.h"
200 #ifndef tigon2FwReleaseLocal
201 #define tigon2FwReleaseLocal 0
205 * This driver currently supports Tigon I and Tigon II based cards
206 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
207 * GA620. The driver should also work on the SGI, DEC and Farallon
208 * versions of the card, however I have not been able to test that
211 * This card is really neat, it supports receive hardware checksumming
212 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
213 * firmware. Also the programming interface is quite neat, except for
214 * the parts dealing with the i2c eeprom on the card ;-)
216 * Using jumbo frames:
218 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
219 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
220 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
221 * interface number and <MTU> being the MTU value.
225 * When compiled as a loadable module, the driver allows for a number
226 * of module parameters to be specified. The driver supports the
227 * following module parameters:
229 * trace=<val> - Firmware trace level. This requires special traced
230 * firmware to replace the firmware supplied with
231 * the driver - for debugging purposes only.
233 * link=<val> - Link state. Normally you want to use the default link
234 * parameters set by the driver. This can be used to
235 * override these in case your switch doesn't negotiate
236 * the link properly. Valid values are:
237 * 0x0001 - Force half duplex link.
238 * 0x0002 - Do not negotiate line speed with the other end.
239 * 0x0010 - 10Mbit/sec link.
240 * 0x0020 - 100Mbit/sec link.
241 * 0x0040 - 1000Mbit/sec link.
242 * 0x0100 - Do not negotiate flow control.
243 * 0x0200 - Enable RX flow control Y
244 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
245 * Default value is 0x0270, ie. enable link+flow
246 * control negotiation. Negotiating the highest
247 * possible link speed with RX flow control enabled.
249 * When disabling link speed negotiation, only one link
250 * speed is allowed to be specified!
252 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
253 * to wait for more packets to arive before
254 * interrupting the host, from the time the first
257 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
258 * to wait for more packets to arive in the transmit ring,
259 * before interrupting the host, after transmitting the
260 * first packet in the ring.
262 * max_tx_desc=<val> - maximum number of transmit descriptors
263 * (packets) transmitted before interrupting the host.
265 * max_rx_desc=<val> - maximum number of receive descriptors
266 * (packets) received before interrupting the host.
268 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
269 * increments of the NIC's on board memory to be used for
270 * transmit and receive buffers. For the 1MB NIC app. 800KB
271 * is available, on the 1/2MB NIC app. 300KB is available.
272 * 68KB will always be available as a minimum for both
273 * directions. The default value is a 50/50 split.
274 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
275 * operations, default (1) is to always disable this as
276 * that is what Alteon does on NT. I have not been able
277 * to measure any real performance differences with
278 * this on my systems. Set <val>=0 if you want to
279 * enable these operations.
281 * If you use more than one NIC, specify the parameters for the
282 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
283 * run tracing on NIC #2 but not on NIC #1 and #3.
287 * - Proper multicast support.
288 * - NIC dump support.
289 * - More tuning parameters.
291 * The mini ring is not used under Linux and I am not sure it makes sense
292 * to actually use it.
294 * New interrupt handler strategy:
296 * The old interrupt handler worked using the traditional method of
297 * replacing an skbuff with a new one when a packet arrives. However
298 * the rx rings do not need to contain a static number of buffer
299 * descriptors, thus it makes sense to move the memory allocation out
300 * of the main interrupt handler and do it in a bottom half handler
301 * and only allocate new buffers when the number of buffers in the
302 * ring is below a certain threshold. In order to avoid starving the
303 * NIC under heavy load it is however necessary to force allocation
304 * when hitting a minimum threshold. The strategy for alloction is as
307 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
308 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
309 * the buffers in the interrupt handler
310 * RX_RING_THRES - maximum number of buffers in the rx ring
311 * RX_MINI_THRES - maximum number of buffers in the mini ring
312 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
314 * One advantagous side effect of this allocation approach is that the
315 * entire rx processing can be done without holding any spin lock
316 * since the rx rings and registers are totally independent of the tx
317 * ring and its registers. This of course includes the kmalloc's of
318 * new skb's. Thus start_xmit can run in parallel with rx processing
319 * and the memory allocation on SMP systems.
321 * Note that running the skb reallocation in a bottom half opens up
322 * another can of races which needs to be handled properly. In
323 * particular it can happen that the interrupt handler tries to run
324 * the reallocation while the bottom half is either running on another
325 * CPU or was interrupted on the same CPU. To get around this the
326 * driver uses bitops to prevent the reallocation routines from being
329 * TX handling can also be done without holding any spin lock, wheee
330 * this is fun! since tx_ret_csm is only written to by the interrupt
331 * handler. The case to be aware of is when shutting down the device
332 * and cleaning up where it is necessary to make sure that
333 * start_xmit() is not running while this is happening. Well DaveM
334 * informs me that this case is already protected against ... bye bye
335 * Mr. Spin Lock, it was nice to know you.
337 * TX interrupts are now partly disabled so the NIC will only generate
338 * TX interrupts for the number of coal ticks, not for the number of
339 * TX packets in the queue. This should reduce the number of TX only,
340 * ie. when no RX processing is done, interrupts seen.
344 * Threshold values for RX buffer allocation - the low water marks for
345 * when to start refilling the rings are set to 75% of the ring
346 * sizes. It seems to make sense to refill the rings entirely from the
347 * intrrupt handler once it gets below the panic threshold, that way
348 * we don't risk that the refilling is moved to another CPU when the
349 * one running the interrupt handler just got the slab code hot in its
352 #define RX_RING_SIZE 72
353 #define RX_MINI_SIZE 64
354 #define RX_JUMBO_SIZE 48
356 #define RX_PANIC_STD_THRES 16
357 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
358 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
359 #define RX_PANIC_MINI_THRES 12
360 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
361 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
362 #define RX_PANIC_JUMBO_THRES 6
363 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
364 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
368 * Size of the mini ring entries, basically these just should be big
369 * enough to take TCP ACKs
371 #define ACE_MINI_SIZE 100
373 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
374 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
375 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
378 * There seems to be a magic difference in the effect between 995 and 996
379 * but little difference between 900 and 995 ... no idea why.
381 * There is now a default set of tuning parameters which is set, depending
382 * on whether or not the user enables Jumbo frames. It's assumed that if
383 * Jumbo frames are enabled, the user wants optimal tuning for that case.
385 #define DEF_TX_COAL 400 /* 996 */
386 #define DEF_TX_MAX_DESC 60 /* was 40 */
387 #define DEF_RX_COAL 120 /* 1000 */
388 #define DEF_RX_MAX_DESC 25
389 #define DEF_TX_RATIO 21 /* 24 */
391 #define DEF_JUMBO_TX_COAL 20
392 #define DEF_JUMBO_TX_MAX_DESC 60
393 #define DEF_JUMBO_RX_COAL 30
394 #define DEF_JUMBO_RX_MAX_DESC 6
395 #define DEF_JUMBO_TX_RATIO 21
397 #if tigon2FwReleaseLocal < 20001118
399 * Standard firmware and early modifications duplicate
400 * IRQ load without this flag (coal timer is never reset).
401 * Note that with this flag tx_coal should be less than
402 * time to xmit full tx ring.
403 * 400usec is not so bad for tx ring size of 128.
405 #define TX_COAL_INTS_ONLY 1 /* worth it */
408 * With modified firmware, this is not necessary, but still useful.
410 #define TX_COAL_INTS_ONLY 1
414 #define DEF_STAT (2 * TICKS_PER_SEC)
417 static int link[ACE_MAX_MOD_PARMS];
418 static int trace[ACE_MAX_MOD_PARMS];
419 static int tx_coal_tick[ACE_MAX_MOD_PARMS];
420 static int rx_coal_tick[ACE_MAX_MOD_PARMS];
421 static int max_tx_desc[ACE_MAX_MOD_PARMS];
422 static int max_rx_desc[ACE_MAX_MOD_PARMS];
423 static int tx_ratio[ACE_MAX_MOD_PARMS];
424 static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
426 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
427 MODULE_LICENSE("GPL");
428 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
430 module_param_array(link, int, NULL, 0);
431 module_param_array(trace, int, NULL, 0);
432 module_param_array(tx_coal_tick, int, NULL, 0);
433 module_param_array(max_tx_desc, int, NULL, 0);
434 module_param_array(rx_coal_tick, int, NULL, 0);
435 module_param_array(max_rx_desc, int, NULL, 0);
436 module_param_array(tx_ratio, int, NULL, 0);
437 MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
438 MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
439 MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
440 MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
441 MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
442 MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
443 MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
446 static char version[] __devinitdata =
447 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
448 " http://home.cern.ch/~jes/gige/acenic.html\n";
450 static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
451 static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
452 static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
454 static const struct ethtool_ops ace_ethtool_ops = {
455 .get_settings = ace_get_settings,
456 .set_settings = ace_set_settings,
457 .get_drvinfo = ace_get_drvinfo,
460 static void ace_watchdog(struct net_device *dev);
462 static int __devinit acenic_probe_one(struct pci_dev *pdev,
463 const struct pci_device_id *id)
465 struct net_device *dev;
466 struct ace_private *ap;
467 static int boards_found;
469 dev = alloc_etherdev(sizeof(struct ace_private));
471 printk(KERN_ERR "acenic: Unable to allocate "
472 "net_device structure!\n");
476 SET_MODULE_OWNER(dev);
477 SET_NETDEV_DEV(dev, &pdev->dev);
481 ap->name = pci_name(pdev);
483 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
485 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
486 dev->vlan_rx_register = ace_vlan_rx_register;
487 dev->vlan_rx_kill_vid = ace_vlan_rx_kill_vid;
490 dev->tx_timeout = &ace_watchdog;
491 dev->watchdog_timeo = 5*HZ;
494 dev->open = &ace_open;
495 dev->stop = &ace_close;
496 dev->hard_start_xmit = &ace_start_xmit;
497 dev->get_stats = &ace_get_stats;
498 dev->set_multicast_list = &ace_set_multicast_list;
499 SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
500 dev->set_mac_address = &ace_set_mac_addr;
501 dev->change_mtu = &ace_change_mtu;
503 /* we only display this string ONCE */
507 if (pci_enable_device(pdev))
508 goto fail_free_netdev;
511 * Enable master mode before we start playing with the
512 * pci_command word since pci_set_master() will modify
515 pci_set_master(pdev);
517 pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
519 /* OpenFirmware on Mac's does not set this - DOH.. */
520 if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
521 printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
522 "access - was not enabled by BIOS/Firmware\n",
524 ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
525 pci_write_config_word(ap->pdev, PCI_COMMAND,
530 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
531 if (ap->pci_latency <= 0x40) {
532 ap->pci_latency = 0x40;
533 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
537 * Remap the regs into kernel space - this is abuse of
538 * dev->base_addr since it was means for I/O port
539 * addresses but who gives a damn.
541 dev->base_addr = pci_resource_start(pdev, 0);
542 ap->regs = ioremap(dev->base_addr, 0x4000);
544 printk(KERN_ERR "%s: Unable to map I/O register, "
545 "AceNIC %i will be disabled.\n",
546 ap->name, boards_found);
547 goto fail_free_netdev;
550 switch(pdev->vendor) {
551 case PCI_VENDOR_ID_ALTEON:
552 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
553 printk(KERN_INFO "%s: Farallon PN9100-T ",
556 printk(KERN_INFO "%s: Alteon AceNIC ",
560 case PCI_VENDOR_ID_3COM:
561 printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
563 case PCI_VENDOR_ID_NETGEAR:
564 printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
566 case PCI_VENDOR_ID_DEC:
567 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
568 printk(KERN_INFO "%s: Farallon PN9000-SX ",
572 case PCI_VENDOR_ID_SGI:
573 printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
576 printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
580 printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
581 printk("irq %d\n", pdev->irq);
583 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
584 if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
585 printk(KERN_ERR "%s: Driver compiled without Tigon I"
586 " support - NIC disabled\n", dev->name);
591 if (ace_allocate_descriptors(dev))
592 goto fail_free_netdev;
595 if (boards_found >= ACE_MAX_MOD_PARMS)
596 ap->board_idx = BOARD_IDX_OVERFLOW;
598 ap->board_idx = boards_found;
600 ap->board_idx = BOARD_IDX_STATIC;
604 goto fail_free_netdev;
606 if (register_netdev(dev)) {
607 printk(KERN_ERR "acenic: device registration failed\n");
610 ap->name = dev->name;
612 if (ap->pci_using_dac)
613 dev->features |= NETIF_F_HIGHDMA;
615 pci_set_drvdata(pdev, dev);
621 ace_init_cleanup(dev);
627 static void __devexit acenic_remove_one(struct pci_dev *pdev)
629 struct net_device *dev = pci_get_drvdata(pdev);
630 struct ace_private *ap = netdev_priv(dev);
631 struct ace_regs __iomem *regs = ap->regs;
634 unregister_netdev(dev);
636 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl);
637 if (ap->version >= 2)
638 writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl);
641 * This clears any pending interrupts
643 writel(1, ®s->Mb0Lo);
644 readl(®s->CpuCtrl); /* flush */
647 * Make sure no other CPUs are processing interrupts
648 * on the card before the buffers are being released.
649 * Otherwise one might experience some `interesting'
652 * Then release the RX buffers - jumbo buffers were
653 * already released in ace_close().
655 ace_sync_irq(dev->irq);
657 for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
658 struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
661 struct ring_info *ringp;
664 ringp = &ap->skb->rx_std_skbuff[i];
665 mapping = pci_unmap_addr(ringp, mapping);
666 pci_unmap_page(ap->pdev, mapping,
670 ap->rx_std_ring[i].size = 0;
671 ap->skb->rx_std_skbuff[i].skb = NULL;
676 if (ap->version >= 2) {
677 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
678 struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
681 struct ring_info *ringp;
684 ringp = &ap->skb->rx_mini_skbuff[i];
685 mapping = pci_unmap_addr(ringp,mapping);
686 pci_unmap_page(ap->pdev, mapping,
690 ap->rx_mini_ring[i].size = 0;
691 ap->skb->rx_mini_skbuff[i].skb = NULL;
697 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
698 struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
700 struct ring_info *ringp;
703 ringp = &ap->skb->rx_jumbo_skbuff[i];
704 mapping = pci_unmap_addr(ringp, mapping);
705 pci_unmap_page(ap->pdev, mapping,
709 ap->rx_jumbo_ring[i].size = 0;
710 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
715 ace_init_cleanup(dev);
719 static struct pci_driver acenic_pci_driver = {
721 .id_table = acenic_pci_tbl,
722 .probe = acenic_probe_one,
723 .remove = __devexit_p(acenic_remove_one),
726 static int __init acenic_init(void)
728 return pci_register_driver(&acenic_pci_driver);
731 static void __exit acenic_exit(void)
733 pci_unregister_driver(&acenic_pci_driver);
736 module_init(acenic_init);
737 module_exit(acenic_exit);
739 static void ace_free_descriptors(struct net_device *dev)
741 struct ace_private *ap = netdev_priv(dev);
744 if (ap->rx_std_ring != NULL) {
745 size = (sizeof(struct rx_desc) *
746 (RX_STD_RING_ENTRIES +
747 RX_JUMBO_RING_ENTRIES +
748 RX_MINI_RING_ENTRIES +
749 RX_RETURN_RING_ENTRIES));
750 pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
751 ap->rx_ring_base_dma);
752 ap->rx_std_ring = NULL;
753 ap->rx_jumbo_ring = NULL;
754 ap->rx_mini_ring = NULL;
755 ap->rx_return_ring = NULL;
757 if (ap->evt_ring != NULL) {
758 size = (sizeof(struct event) * EVT_RING_ENTRIES);
759 pci_free_consistent(ap->pdev, size, ap->evt_ring,
763 if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
764 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
765 pci_free_consistent(ap->pdev, size, ap->tx_ring,
770 if (ap->evt_prd != NULL) {
771 pci_free_consistent(ap->pdev, sizeof(u32),
772 (void *)ap->evt_prd, ap->evt_prd_dma);
775 if (ap->rx_ret_prd != NULL) {
776 pci_free_consistent(ap->pdev, sizeof(u32),
777 (void *)ap->rx_ret_prd,
779 ap->rx_ret_prd = NULL;
781 if (ap->tx_csm != NULL) {
782 pci_free_consistent(ap->pdev, sizeof(u32),
783 (void *)ap->tx_csm, ap->tx_csm_dma);
789 static int ace_allocate_descriptors(struct net_device *dev)
791 struct ace_private *ap = netdev_priv(dev);
794 size = (sizeof(struct rx_desc) *
795 (RX_STD_RING_ENTRIES +
796 RX_JUMBO_RING_ENTRIES +
797 RX_MINI_RING_ENTRIES +
798 RX_RETURN_RING_ENTRIES));
800 ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
801 &ap->rx_ring_base_dma);
802 if (ap->rx_std_ring == NULL)
805 ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
806 ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
807 ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
809 size = (sizeof(struct event) * EVT_RING_ENTRIES);
811 ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
813 if (ap->evt_ring == NULL)
817 * Only allocate a host TX ring for the Tigon II, the Tigon I
818 * has to use PCI registers for this ;-(
820 if (!ACE_IS_TIGON_I(ap)) {
821 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
823 ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
826 if (ap->tx_ring == NULL)
830 ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
832 if (ap->evt_prd == NULL)
835 ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
836 &ap->rx_ret_prd_dma);
837 if (ap->rx_ret_prd == NULL)
840 ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
842 if (ap->tx_csm == NULL)
849 ace_init_cleanup(dev);
855 * Generic cleanup handling data allocated during init. Used when the
856 * module is unloaded or if an error occurs during initialization
858 static void ace_init_cleanup(struct net_device *dev)
860 struct ace_private *ap;
862 ap = netdev_priv(dev);
864 ace_free_descriptors(dev);
867 pci_free_consistent(ap->pdev, sizeof(struct ace_info),
868 ap->info, ap->info_dma);
870 kfree(ap->trace_buf);
873 free_irq(dev->irq, dev);
880 * Commands are considered to be slow.
882 static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
886 idx = readl(®s->CmdPrd);
888 writel(*(u32 *)(cmd), ®s->CmdRng[idx]);
889 idx = (idx + 1) % CMD_RING_ENTRIES;
891 writel(idx, ®s->CmdPrd);
895 static int __devinit ace_init(struct net_device *dev)
897 struct ace_private *ap;
898 struct ace_regs __iomem *regs;
899 struct ace_info *info = NULL;
900 struct pci_dev *pdev;
903 u32 tig_ver, mac1, mac2, tmp, pci_state;
904 int board_idx, ecode = 0;
906 unsigned char cache_size;
908 ap = netdev_priv(dev);
911 board_idx = ap->board_idx;
914 * aman@sgi.com - its useful to do a NIC reset here to
915 * address the `Firmware not running' problem subsequent
916 * to any crashes involving the NIC
918 writel(HW_RESET | (HW_RESET << 24), ®s->HostCtrl);
919 readl(®s->HostCtrl); /* PCI write posting */
923 * Don't access any other registers before this point!
927 * This will most likely need BYTE_SWAP once we switch
928 * to using __raw_writel()
930 writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
933 writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
936 readl(®s->HostCtrl); /* PCI write posting */
939 * Stop the NIC CPU and clear pending interrupts
941 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl);
942 readl(®s->CpuCtrl); /* PCI write posting */
943 writel(0, ®s->Mb0Lo);
945 tig_ver = readl(®s->HostCtrl) >> 28;
948 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
951 printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
952 tig_ver, tigonFwReleaseMajor, tigonFwReleaseMinor,
954 writel(0, ®s->LocalCtrl);
956 ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
960 printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
961 tig_ver, tigon2FwReleaseMajor, tigon2FwReleaseMinor,
963 writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl);
964 readl(®s->CpuBCtrl); /* PCI write posting */
966 * The SRAM bank size does _not_ indicate the amount
967 * of memory on the card, it controls the _bank_ size!
968 * Ie. a 1MB AceNIC will have two banks of 512KB.
970 writel(SRAM_BANK_512K, ®s->LocalCtrl);
971 writel(SYNC_SRAM_TIMING, ®s->MiscCfg);
973 ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
976 printk(KERN_WARNING " Unsupported Tigon version detected "
983 * ModeStat _must_ be set after the SRAM settings as this change
984 * seems to corrupt the ModeStat and possible other registers.
985 * The SRAM settings survive resets and setting it to the same
986 * value a second time works as well. This is what caused the
987 * `Firmware not running' problem on the Tigon II.
990 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
991 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat);
993 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
994 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat);
996 readl(®s->ModeStat); /* PCI write posting */
999 for(i = 0; i < 4; i++) {
1003 tmp = read_eeprom_byte(dev, 0x8c+i);
1008 mac1 |= (tmp & 0xff);
1011 for(i = 4; i < 8; i++) {
1015 tmp = read_eeprom_byte(dev, 0x8c+i);
1020 mac2 |= (tmp & 0xff);
1023 writel(mac1, ®s->MacAddrHi);
1024 writel(mac2, ®s->MacAddrLo);
1026 printk("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
1027 (mac1 >> 8) & 0xff, mac1 & 0xff, (mac2 >> 24) &0xff,
1028 (mac2 >> 16) & 0xff, (mac2 >> 8) & 0xff, mac2 & 0xff);
1030 dev->dev_addr[0] = (mac1 >> 8) & 0xff;
1031 dev->dev_addr[1] = mac1 & 0xff;
1032 dev->dev_addr[2] = (mac2 >> 24) & 0xff;
1033 dev->dev_addr[3] = (mac2 >> 16) & 0xff;
1034 dev->dev_addr[4] = (mac2 >> 8) & 0xff;
1035 dev->dev_addr[5] = mac2 & 0xff;
1038 * Looks like this is necessary to deal with on all architectures,
1039 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1040 * Ie. having two NICs in the machine, one will have the cache
1041 * line set at boot time, the other will not.
1044 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1046 if (cache_size != SMP_CACHE_BYTES) {
1047 printk(KERN_INFO " PCI cache line size set incorrectly "
1048 "(%i bytes) by BIOS/FW, ", cache_size);
1049 if (cache_size > SMP_CACHE_BYTES)
1050 printk("expecting %i\n", SMP_CACHE_BYTES);
1052 printk("correcting to %i\n", SMP_CACHE_BYTES);
1053 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1054 SMP_CACHE_BYTES >> 2);
1058 pci_state = readl(®s->PciState);
1059 printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, "
1060 "latency: %i clks\n",
1061 (pci_state & PCI_32BIT) ? 32 : 64,
1062 (pci_state & PCI_66MHZ) ? 66 : 33,
1066 * Set the max DMA transfer size. Seems that for most systems
1067 * the performance is better when no MAX parameter is
1068 * set. However for systems enabling PCI write and invalidate,
1069 * DMA writes must be set to the L1 cache line size to get
1070 * optimal performance.
1072 * The default is now to turn the PCI write and invalidate off
1073 * - that is what Alteon does for NT.
1075 tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1076 if (ap->version >= 2) {
1077 tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1079 * Tuning parameters only supported for 8 cards
1081 if (board_idx == BOARD_IDX_OVERFLOW ||
1082 dis_pci_mem_inval[board_idx]) {
1083 if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1084 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1085 pci_write_config_word(pdev, PCI_COMMAND,
1087 printk(KERN_INFO " Disabling PCI memory "
1088 "write and invalidate\n");
1090 } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1091 printk(KERN_INFO " PCI memory write & invalidate "
1092 "enabled by BIOS, enabling counter measures\n");
1094 switch(SMP_CACHE_BYTES) {
1096 tmp |= DMA_WRITE_MAX_16;
1099 tmp |= DMA_WRITE_MAX_32;
1102 tmp |= DMA_WRITE_MAX_64;
1105 tmp |= DMA_WRITE_MAX_128;
1108 printk(KERN_INFO " Cache line size %i not "
1109 "supported, PCI write and invalidate "
1110 "disabled\n", SMP_CACHE_BYTES);
1111 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1112 pci_write_config_word(pdev, PCI_COMMAND,
1120 * On this platform, we know what the best dma settings
1121 * are. We use 64-byte maximum bursts, because if we
1122 * burst larger than the cache line size (or even cross
1123 * a 64byte boundary in a single burst) the UltraSparc
1124 * PCI controller will disconnect at 64-byte multiples.
1126 * Read-multiple will be properly enabled above, and when
1127 * set will give the PCI controller proper hints about
1130 tmp &= ~DMA_READ_WRITE_MASK;
1131 tmp |= DMA_READ_MAX_64;
1132 tmp |= DMA_WRITE_MAX_64;
1135 tmp &= ~DMA_READ_WRITE_MASK;
1136 tmp |= DMA_READ_MAX_128;
1138 * All the docs say MUST NOT. Well, I did.
1139 * Nothing terrible happens, if we load wrong size.
1140 * Bit w&i still works better!
1142 tmp |= DMA_WRITE_MAX_128;
1144 writel(tmp, ®s->PciState);
1148 * The Host PCI bus controller driver has to set FBB.
1149 * If all devices on that PCI bus support FBB, then the controller
1150 * can enable FBB support in the Host PCI Bus controller (or on
1151 * the PCI-PCI bridge if that applies).
1155 * I have received reports from people having problems when this
1158 if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1159 printk(KERN_INFO " Enabling PCI Fast Back to Back\n");
1160 ap->pci_command |= PCI_COMMAND_FAST_BACK;
1161 pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1166 * Configure DMA attributes.
1168 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1169 ap->pci_using_dac = 1;
1170 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1171 ap->pci_using_dac = 0;
1178 * Initialize the generic info block and the command+event rings
1179 * and the control blocks for the transmit and receive rings
1180 * as they need to be setup once and for all.
1182 if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
1190 * Get the memory for the skb rings.
1192 if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1197 ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
1200 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1201 DRV_NAME, pdev->irq);
1204 dev->irq = pdev->irq;
1207 spin_lock_init(&ap->debug_lock);
1208 ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1209 ap->last_std_rx = 0;
1210 ap->last_mini_rx = 0;
1213 memset(ap->info, 0, sizeof(struct ace_info));
1214 memset(ap->skb, 0, sizeof(struct ace_skb));
1216 ace_load_firmware(dev);
1219 tmp_ptr = ap->info_dma;
1220 writel(tmp_ptr >> 32, ®s->InfoPtrHi);
1221 writel(tmp_ptr & 0xffffffff, ®s->InfoPtrLo);
1223 memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1225 set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1226 info->evt_ctrl.flags = 0;
1230 set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1231 writel(0, ®s->EvtCsm);
1233 set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1234 info->cmd_ctrl.flags = 0;
1235 info->cmd_ctrl.max_len = 0;
1237 for (i = 0; i < CMD_RING_ENTRIES; i++)
1238 writel(0, ®s->CmdRng[i]);
1240 writel(0, ®s->CmdPrd);
1241 writel(0, ®s->CmdCsm);
1243 tmp_ptr = ap->info_dma;
1244 tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1245 set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1247 set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1248 info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1249 info->rx_std_ctrl.flags =
1250 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1252 memset(ap->rx_std_ring, 0,
1253 RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1255 for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1256 ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1258 ap->rx_std_skbprd = 0;
1259 atomic_set(&ap->cur_rx_bufs, 0);
1261 set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1262 (ap->rx_ring_base_dma +
1263 (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1264 info->rx_jumbo_ctrl.max_len = 0;
1265 info->rx_jumbo_ctrl.flags =
1266 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1268 memset(ap->rx_jumbo_ring, 0,
1269 RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1271 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1272 ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1274 ap->rx_jumbo_skbprd = 0;
1275 atomic_set(&ap->cur_jumbo_bufs, 0);
1277 memset(ap->rx_mini_ring, 0,
1278 RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1280 if (ap->version >= 2) {
1281 set_aceaddr(&info->rx_mini_ctrl.rngptr,
1282 (ap->rx_ring_base_dma +
1283 (sizeof(struct rx_desc) *
1284 (RX_STD_RING_ENTRIES +
1285 RX_JUMBO_RING_ENTRIES))));
1286 info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
1287 info->rx_mini_ctrl.flags =
1288 RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|ACE_RCB_VLAN_FLAG;
1290 for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1291 ap->rx_mini_ring[i].flags =
1292 BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1294 set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1295 info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1296 info->rx_mini_ctrl.max_len = 0;
1299 ap->rx_mini_skbprd = 0;
1300 atomic_set(&ap->cur_mini_bufs, 0);
1302 set_aceaddr(&info->rx_return_ctrl.rngptr,
1303 (ap->rx_ring_base_dma +
1304 (sizeof(struct rx_desc) *
1305 (RX_STD_RING_ENTRIES +
1306 RX_JUMBO_RING_ENTRIES +
1307 RX_MINI_RING_ENTRIES))));
1308 info->rx_return_ctrl.flags = 0;
1309 info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1311 memset(ap->rx_return_ring, 0,
1312 RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1314 set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1315 *(ap->rx_ret_prd) = 0;
1317 writel(TX_RING_BASE, ®s->WinBase);
1319 if (ACE_IS_TIGON_I(ap)) {
1320 ap->tx_ring = (struct tx_desc *) regs->Window;
1321 for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
1322 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1323 writel(0, (void __iomem *)ap->tx_ring + i * 4);
1325 set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1327 memset(ap->tx_ring, 0,
1328 MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1330 set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1333 info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1334 tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1337 * The Tigon I does not like having the TX ring in host memory ;-(
1339 if (!ACE_IS_TIGON_I(ap))
1340 tmp |= RCB_FLG_TX_HOST_RING;
1341 #if TX_COAL_INTS_ONLY
1342 tmp |= RCB_FLG_COAL_INT_ONLY;
1344 info->tx_ctrl.flags = tmp;
1346 set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1349 * Potential item for tuning parameter
1352 writel(DMA_THRESH_16W, ®s->DmaReadCfg);
1353 writel(DMA_THRESH_16W, ®s->DmaWriteCfg);
1355 writel(DMA_THRESH_8W, ®s->DmaReadCfg);
1356 writel(DMA_THRESH_8W, ®s->DmaWriteCfg);
1359 writel(0, ®s->MaskInt);
1360 writel(1, ®s->IfIdx);
1363 * McKinley boxes do not like us fiddling with AssistState
1366 writel(1, ®s->AssistState);
1369 writel(DEF_STAT, ®s->TuneStatTicks);
1370 writel(DEF_TRACE, ®s->TuneTrace);
1372 ace_set_rxtx_parms(dev, 0);
1374 if (board_idx == BOARD_IDX_OVERFLOW) {
1375 printk(KERN_WARNING "%s: more than %i NICs detected, "
1376 "ignoring module parameters!\n",
1377 ap->name, ACE_MAX_MOD_PARMS);
1378 } else if (board_idx >= 0) {
1379 if (tx_coal_tick[board_idx])
1380 writel(tx_coal_tick[board_idx],
1381 ®s->TuneTxCoalTicks);
1382 if (max_tx_desc[board_idx])
1383 writel(max_tx_desc[board_idx], ®s->TuneMaxTxDesc);
1385 if (rx_coal_tick[board_idx])
1386 writel(rx_coal_tick[board_idx],
1387 ®s->TuneRxCoalTicks);
1388 if (max_rx_desc[board_idx])
1389 writel(max_rx_desc[board_idx], ®s->TuneMaxRxDesc);
1391 if (trace[board_idx])
1392 writel(trace[board_idx], ®s->TuneTrace);
1394 if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1395 writel(tx_ratio[board_idx], ®s->TxBufRat);
1399 * Default link parameters
1401 tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1402 LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1403 if(ap->version >= 2)
1404 tmp |= LNK_TX_FLOW_CTL_Y;
1407 * Override link default parameters
1409 if ((board_idx >= 0) && link[board_idx]) {
1410 int option = link[board_idx];
1414 if (option & 0x01) {
1415 printk(KERN_INFO "%s: Setting half duplex link\n",
1417 tmp &= ~LNK_FULL_DUPLEX;
1420 tmp &= ~LNK_NEGOTIATE;
1427 if ((option & 0x70) == 0) {
1428 printk(KERN_WARNING "%s: No media speed specified, "
1429 "forcing auto negotiation\n", ap->name);
1430 tmp |= LNK_NEGOTIATE | LNK_1000MB |
1431 LNK_100MB | LNK_10MB;
1433 if ((option & 0x100) == 0)
1434 tmp |= LNK_NEG_FCTL;
1436 printk(KERN_INFO "%s: Disabling flow control "
1437 "negotiation\n", ap->name);
1439 tmp |= LNK_RX_FLOW_CTL_Y;
1440 if ((option & 0x400) && (ap->version >= 2)) {
1441 printk(KERN_INFO "%s: Enabling TX flow control\n",
1443 tmp |= LNK_TX_FLOW_CTL_Y;
1448 writel(tmp, ®s->TuneLink);
1449 if (ap->version >= 2)
1450 writel(tmp, ®s->TuneFastLink);
1452 if (ACE_IS_TIGON_I(ap))
1453 writel(tigonFwStartAddr, ®s->Pc);
1454 if (ap->version == 2)
1455 writel(tigon2FwStartAddr, ®s->Pc);
1457 writel(0, ®s->Mb0Lo);
1460 * Set tx_csm before we start receiving interrupts, otherwise
1461 * the interrupt handler might think it is supposed to process
1462 * tx ints before we are up and running, which may cause a null
1463 * pointer access in the int handler.
1466 ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1469 ace_set_txprd(regs, ap, 0);
1470 writel(0, ®s->RxRetCsm);
1473 * Zero the stats before starting the interface
1475 memset(&ap->stats, 0, sizeof(ap->stats));
1478 * Enable DMA engine now.
1479 * If we do this sooner, Mckinley box pukes.
1480 * I assume it's because Tigon II DMA engine wants to check
1481 * *something* even before the CPU is started.
1483 writel(1, ®s->AssistState); /* enable DMA */
1488 writel(readl(®s->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), ®s->CpuCtrl);
1489 readl(®s->CpuCtrl);
1492 * Wait for the firmware to spin up - max 3 seconds.
1494 myjif = jiffies + 3 * HZ;
1495 while (time_before(jiffies, myjif) && !ap->fw_running)
1498 if (!ap->fw_running) {
1499 printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1502 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl);
1503 readl(®s->CpuCtrl);
1505 /* aman@sgi.com - account for badly behaving firmware/NIC:
1506 * - have observed that the NIC may continue to generate
1507 * interrupts for some reason; attempt to stop it - halt
1508 * second CPU for Tigon II cards, and also clear Mb0
1509 * - if we're a module, we'll fail to load if this was
1510 * the only GbE card in the system => if the kernel does
1511 * see an interrupt from the NIC, code to handle it is
1512 * gone and OOps! - so free_irq also
1514 if (ap->version >= 2)
1515 writel(readl(®s->CpuBCtrl) | CPU_HALT,
1517 writel(0, ®s->Mb0Lo);
1518 readl(®s->Mb0Lo);
1525 * We load the ring here as there seem to be no way to tell the
1526 * firmware to wipe the ring without re-initializing it.
1528 if (!test_and_set_bit(0, &ap->std_refill_busy))
1529 ace_load_std_rx_ring(ap, RX_RING_SIZE);
1531 printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1533 if (ap->version >= 2) {
1534 if (!test_and_set_bit(0, &ap->mini_refill_busy))
1535 ace_load_mini_rx_ring(ap, RX_MINI_SIZE);
1537 printk(KERN_ERR "%s: Someone is busy refilling "
1538 "the RX mini ring\n", ap->name);
1543 ace_init_cleanup(dev);
1548 static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1550 struct ace_private *ap = netdev_priv(dev);
1551 struct ace_regs __iomem *regs = ap->regs;
1552 int board_idx = ap->board_idx;
1554 if (board_idx >= 0) {
1556 if (!tx_coal_tick[board_idx])
1557 writel(DEF_TX_COAL, ®s->TuneTxCoalTicks);
1558 if (!max_tx_desc[board_idx])
1559 writel(DEF_TX_MAX_DESC, ®s->TuneMaxTxDesc);
1560 if (!rx_coal_tick[board_idx])
1561 writel(DEF_RX_COAL, ®s->TuneRxCoalTicks);
1562 if (!max_rx_desc[board_idx])
1563 writel(DEF_RX_MAX_DESC, ®s->TuneMaxRxDesc);
1564 if (!tx_ratio[board_idx])
1565 writel(DEF_TX_RATIO, ®s->TxBufRat);
1567 if (!tx_coal_tick[board_idx])
1568 writel(DEF_JUMBO_TX_COAL,
1569 ®s->TuneTxCoalTicks);
1570 if (!max_tx_desc[board_idx])
1571 writel(DEF_JUMBO_TX_MAX_DESC,
1572 ®s->TuneMaxTxDesc);
1573 if (!rx_coal_tick[board_idx])
1574 writel(DEF_JUMBO_RX_COAL,
1575 ®s->TuneRxCoalTicks);
1576 if (!max_rx_desc[board_idx])
1577 writel(DEF_JUMBO_RX_MAX_DESC,
1578 ®s->TuneMaxRxDesc);
1579 if (!tx_ratio[board_idx])
1580 writel(DEF_JUMBO_TX_RATIO, ®s->TxBufRat);
1586 static void ace_watchdog(struct net_device *data)
1588 struct net_device *dev = data;
1589 struct ace_private *ap = netdev_priv(dev);
1590 struct ace_regs __iomem *regs = ap->regs;
1593 * We haven't received a stats update event for more than 2.5
1594 * seconds and there is data in the transmit queue, thus we
1595 * asume the card is stuck.
1597 if (*ap->tx_csm != ap->tx_ret_csm) {
1598 printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1599 dev->name, (unsigned int)readl(®s->HostCtrl));
1600 /* This can happen due to ieee flow control. */
1602 printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1605 netif_wake_queue(dev);
1611 static void ace_tasklet(unsigned long dev)
1613 struct ace_private *ap = netdev_priv((struct net_device *)dev);
1616 cur_size = atomic_read(&ap->cur_rx_bufs);
1617 if ((cur_size < RX_LOW_STD_THRES) &&
1618 !test_and_set_bit(0, &ap->std_refill_busy)) {
1620 printk("refilling buffers (current %i)\n", cur_size);
1622 ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size);
1625 if (ap->version >= 2) {
1626 cur_size = atomic_read(&ap->cur_mini_bufs);
1627 if ((cur_size < RX_LOW_MINI_THRES) &&
1628 !test_and_set_bit(0, &ap->mini_refill_busy)) {
1630 printk("refilling mini buffers (current %i)\n",
1633 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
1637 cur_size = atomic_read(&ap->cur_jumbo_bufs);
1638 if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1639 !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1641 printk("refilling jumbo buffers (current %i)\n", cur_size);
1643 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
1645 ap->tasklet_pending = 0;
1650 * Copy the contents of the NIC's trace buffer to kernel memory.
1652 static void ace_dump_trace(struct ace_private *ap)
1656 if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1663 * Load the standard rx ring.
1665 * Loading rings is safe without holding the spin lock since this is
1666 * done only before the device is enabled, thus no interrupts are
1667 * generated and by the interrupt handler/tasklet handler.
1669 static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs)
1671 struct ace_regs __iomem *regs = ap->regs;
1675 prefetchw(&ap->cur_rx_bufs);
1677 idx = ap->rx_std_skbprd;
1679 for (i = 0; i < nr_bufs; i++) {
1680 struct sk_buff *skb;
1684 skb = alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1688 skb_reserve(skb, NET_IP_ALIGN);
1689 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1690 offset_in_page(skb->data),
1692 PCI_DMA_FROMDEVICE);
1693 ap->skb->rx_std_skbuff[idx].skb = skb;
1694 pci_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1697 rd = &ap->rx_std_ring[idx];
1698 set_aceaddr(&rd->addr, mapping);
1699 rd->size = ACE_STD_BUFSIZE;
1701 idx = (idx + 1) % RX_STD_RING_ENTRIES;
1707 atomic_add(i, &ap->cur_rx_bufs);
1708 ap->rx_std_skbprd = idx;
1710 if (ACE_IS_TIGON_I(ap)) {
1712 cmd.evt = C_SET_RX_PRD_IDX;
1714 cmd.idx = ap->rx_std_skbprd;
1715 ace_issue_cmd(regs, &cmd);
1717 writel(idx, ®s->RxStdPrd);
1722 clear_bit(0, &ap->std_refill_busy);
1726 printk(KERN_INFO "Out of memory when allocating "
1727 "standard receive buffers\n");
1732 static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs)
1734 struct ace_regs __iomem *regs = ap->regs;
1737 prefetchw(&ap->cur_mini_bufs);
1739 idx = ap->rx_mini_skbprd;
1740 for (i = 0; i < nr_bufs; i++) {
1741 struct sk_buff *skb;
1745 skb = alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1749 skb_reserve(skb, NET_IP_ALIGN);
1750 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1751 offset_in_page(skb->data),
1753 PCI_DMA_FROMDEVICE);
1754 ap->skb->rx_mini_skbuff[idx].skb = skb;
1755 pci_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1758 rd = &ap->rx_mini_ring[idx];
1759 set_aceaddr(&rd->addr, mapping);
1760 rd->size = ACE_MINI_BUFSIZE;
1762 idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1768 atomic_add(i, &ap->cur_mini_bufs);
1770 ap->rx_mini_skbprd = idx;
1772 writel(idx, ®s->RxMiniPrd);
1776 clear_bit(0, &ap->mini_refill_busy);
1779 printk(KERN_INFO "Out of memory when allocating "
1780 "mini receive buffers\n");
1786 * Load the jumbo rx ring, this may happen at any time if the MTU
1787 * is changed to a value > 1500.
1789 static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs)
1791 struct ace_regs __iomem *regs = ap->regs;
1794 idx = ap->rx_jumbo_skbprd;
1796 for (i = 0; i < nr_bufs; i++) {
1797 struct sk_buff *skb;
1801 skb = alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1805 skb_reserve(skb, NET_IP_ALIGN);
1806 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1807 offset_in_page(skb->data),
1809 PCI_DMA_FROMDEVICE);
1810 ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1811 pci_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1814 rd = &ap->rx_jumbo_ring[idx];
1815 set_aceaddr(&rd->addr, mapping);
1816 rd->size = ACE_JUMBO_BUFSIZE;
1818 idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1824 atomic_add(i, &ap->cur_jumbo_bufs);
1825 ap->rx_jumbo_skbprd = idx;
1827 if (ACE_IS_TIGON_I(ap)) {
1829 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1831 cmd.idx = ap->rx_jumbo_skbprd;
1832 ace_issue_cmd(regs, &cmd);
1834 writel(idx, ®s->RxJumboPrd);
1839 clear_bit(0, &ap->jumbo_refill_busy);
1842 if (net_ratelimit())
1843 printk(KERN_INFO "Out of memory when allocating "
1844 "jumbo receive buffers\n");
1850 * All events are considered to be slow (RX/TX ints do not generate
1851 * events) and are handled here, outside the main interrupt handler,
1852 * to reduce the size of the handler.
1854 static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1856 struct ace_private *ap;
1858 ap = netdev_priv(dev);
1860 while (evtcsm != evtprd) {
1861 switch (ap->evt_ring[evtcsm].evt) {
1863 printk(KERN_INFO "%s: Firmware up and running\n",
1868 case E_STATS_UPDATED:
1872 u16 code = ap->evt_ring[evtcsm].code;
1876 u32 state = readl(&ap->regs->GigLnkState);
1877 printk(KERN_WARNING "%s: Optical link UP "
1878 "(%s Duplex, Flow Control: %s%s)\n",
1880 state & LNK_FULL_DUPLEX ? "Full":"Half",
1881 state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1882 state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1886 printk(KERN_WARNING "%s: Optical link DOWN\n",
1889 case E_C_LINK_10_100:
1890 printk(KERN_WARNING "%s: 10/100BaseT link "
1894 printk(KERN_ERR "%s: Unknown optical link "
1895 "state %02x\n", ap->name, code);
1900 switch(ap->evt_ring[evtcsm].code) {
1901 case E_C_ERR_INVAL_CMD:
1902 printk(KERN_ERR "%s: invalid command error\n",
1905 case E_C_ERR_UNIMP_CMD:
1906 printk(KERN_ERR "%s: unimplemented command "
1907 "error\n", ap->name);
1909 case E_C_ERR_BAD_CFG:
1910 printk(KERN_ERR "%s: bad config error\n",
1914 printk(KERN_ERR "%s: unknown error %02x\n",
1915 ap->name, ap->evt_ring[evtcsm].code);
1918 case E_RESET_JUMBO_RNG:
1921 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1922 if (ap->skb->rx_jumbo_skbuff[i].skb) {
1923 ap->rx_jumbo_ring[i].size = 0;
1924 set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1925 dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1926 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1930 if (ACE_IS_TIGON_I(ap)) {
1932 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1935 ace_issue_cmd(ap->regs, &cmd);
1937 writel(0, &((ap->regs)->RxJumboPrd));
1942 ap->rx_jumbo_skbprd = 0;
1943 printk(KERN_INFO "%s: Jumbo ring flushed\n",
1945 clear_bit(0, &ap->jumbo_refill_busy);
1949 printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1950 ap->name, ap->evt_ring[evtcsm].evt);
1952 evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1959 static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1961 struct ace_private *ap = netdev_priv(dev);
1963 int mini_count = 0, std_count = 0;
1967 prefetchw(&ap->cur_rx_bufs);
1968 prefetchw(&ap->cur_mini_bufs);
1970 while (idx != rxretprd) {
1971 struct ring_info *rip;
1972 struct sk_buff *skb;
1973 struct rx_desc *rxdesc, *retdesc;
1975 int bd_flags, desc_type, mapsize;
1979 /* make sure the rx descriptor isn't read before rxretprd */
1980 if (idx == rxretcsm)
1983 retdesc = &ap->rx_return_ring[idx];
1984 skbidx = retdesc->idx;
1985 bd_flags = retdesc->flags;
1986 desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1990 * Normal frames do not have any flags set
1992 * Mini and normal frames arrive frequently,
1993 * so use a local counter to avoid doing
1994 * atomic operations for each packet arriving.
1997 rip = &ap->skb->rx_std_skbuff[skbidx];
1998 mapsize = ACE_STD_BUFSIZE;
1999 rxdesc = &ap->rx_std_ring[skbidx];
2003 rip = &ap->skb->rx_jumbo_skbuff[skbidx];
2004 mapsize = ACE_JUMBO_BUFSIZE;
2005 rxdesc = &ap->rx_jumbo_ring[skbidx];
2006 atomic_dec(&ap->cur_jumbo_bufs);
2009 rip = &ap->skb->rx_mini_skbuff[skbidx];
2010 mapsize = ACE_MINI_BUFSIZE;
2011 rxdesc = &ap->rx_mini_ring[skbidx];
2015 printk(KERN_INFO "%s: unknown frame type (0x%02x) "
2016 "returned by NIC\n", dev->name,
2023 pci_unmap_page(ap->pdev,
2024 pci_unmap_addr(rip, mapping),
2026 PCI_DMA_FROMDEVICE);
2027 skb_put(skb, retdesc->size);
2032 csum = retdesc->tcp_udp_csum;
2035 skb->protocol = eth_type_trans(skb, dev);
2038 * Instead of forcing the poor tigon mips cpu to calculate
2039 * pseudo hdr checksum, we do this ourselves.
2041 if (bd_flags & BD_FLG_TCP_UDP_SUM) {
2042 skb->csum = htons(csum);
2043 skb->ip_summed = CHECKSUM_HW;
2045 skb->ip_summed = CHECKSUM_NONE;
2050 if (ap->vlgrp && (bd_flags & BD_FLG_VLAN_TAG)) {
2051 vlan_hwaccel_rx(skb, ap->vlgrp, retdesc->vlan);
2056 dev->last_rx = jiffies;
2057 ap->stats.rx_packets++;
2058 ap->stats.rx_bytes += retdesc->size;
2060 idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2063 atomic_sub(std_count, &ap->cur_rx_bufs);
2064 if (!ACE_IS_TIGON_I(ap))
2065 atomic_sub(mini_count, &ap->cur_mini_bufs);
2069 * According to the documentation RxRetCsm is obsolete with
2070 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2072 if (ACE_IS_TIGON_I(ap)) {
2073 writel(idx, &ap->regs->RxRetCsm);
2084 static inline void ace_tx_int(struct net_device *dev,
2087 struct ace_private *ap = netdev_priv(dev);
2090 struct sk_buff *skb;
2092 struct tx_ring_info *info;
2094 info = ap->skb->tx_skbuff + idx;
2096 mapping = pci_unmap_addr(info, mapping);
2099 pci_unmap_page(ap->pdev, mapping,
2100 pci_unmap_len(info, maplen),
2102 pci_unmap_addr_set(info, mapping, 0);
2106 ap->stats.tx_packets++;
2107 ap->stats.tx_bytes += skb->len;
2108 dev_kfree_skb_irq(skb);
2112 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2113 } while (idx != txcsm);
2115 if (netif_queue_stopped(dev))
2116 netif_wake_queue(dev);
2119 ap->tx_ret_csm = txcsm;
2121 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2123 * We could try to make it before. In this case we would get
2124 * the following race condition: hard_start_xmit on other cpu
2125 * enters after we advanced tx_ret_csm and fills space,
2126 * which we have just freed, so that we make illegal device wakeup.
2127 * There is no good way to workaround this (at entry
2128 * to ace_start_xmit detects this condition and prevents
2129 * ring corruption, but it is not a good workaround.)
2131 * When tx_ret_csm is advanced after, we wake up device _only_
2132 * if we really have some space in ring (though the core doing
2133 * hard_start_xmit can see full ring for some period and has to
2134 * synchronize.) Superb.
2135 * BUT! We get another subtle race condition. hard_start_xmit
2136 * may think that ring is full between wakeup and advancing
2137 * tx_ret_csm and will stop device instantly! It is not so bad.
2138 * We are guaranteed that there is something in ring, so that
2139 * the next irq will resume transmission. To speedup this we could
2140 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2141 * (see ace_start_xmit).
2143 * Well, this dilemma exists in all lock-free devices.
2144 * We, following scheme used in drivers by Donald Becker,
2145 * select the least dangerous.
2151 static irqreturn_t ace_interrupt(int irq, void *dev_id, struct pt_regs *ptregs)
2153 struct net_device *dev = (struct net_device *)dev_id;
2154 struct ace_private *ap = netdev_priv(dev);
2155 struct ace_regs __iomem *regs = ap->regs;
2157 u32 txcsm, rxretcsm, rxretprd;
2161 * In case of PCI shared interrupts or spurious interrupts,
2162 * we want to make sure it is actually our interrupt before
2163 * spending any time in here.
2165 if (!(readl(®s->HostCtrl) & IN_INT))
2169 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2170 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2171 * writel(0, ®s->Mb0Lo).
2173 * "IRQ avoidance" recommended in docs applies to IRQs served
2174 * threads and it is wrong even for that case.
2176 writel(0, ®s->Mb0Lo);
2177 readl(®s->Mb0Lo);
2180 * There is no conflict between transmit handling in
2181 * start_xmit and receive processing, thus there is no reason
2182 * to take a spin lock for RX handling. Wait until we start
2183 * working on the other stuff - hey we don't need a spin lock
2186 rxretprd = *ap->rx_ret_prd;
2187 rxretcsm = ap->cur_rx;
2189 if (rxretprd != rxretcsm)
2190 ace_rx_int(dev, rxretprd, rxretcsm);
2192 txcsm = *ap->tx_csm;
2193 idx = ap->tx_ret_csm;
2197 * If each skb takes only one descriptor this check degenerates
2198 * to identity, because new space has just been opened.
2199 * But if skbs are fragmented we must check that this index
2200 * update releases enough of space, otherwise we just
2201 * wait for device to make more work.
2203 if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2204 ace_tx_int(dev, txcsm, idx);
2207 evtcsm = readl(®s->EvtCsm);
2208 evtprd = *ap->evt_prd;
2210 if (evtcsm != evtprd) {
2211 evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2212 writel(evtcsm, ®s->EvtCsm);
2216 * This has to go last in the interrupt handler and run with
2217 * the spin lock released ... what lock?
2219 if (netif_running(dev)) {
2221 int run_tasklet = 0;
2223 cur_size = atomic_read(&ap->cur_rx_bufs);
2224 if (cur_size < RX_LOW_STD_THRES) {
2225 if ((cur_size < RX_PANIC_STD_THRES) &&
2226 !test_and_set_bit(0, &ap->std_refill_busy)) {
2228 printk("low on std buffers %i\n", cur_size);
2230 ace_load_std_rx_ring(ap,
2231 RX_RING_SIZE - cur_size);
2236 if (!ACE_IS_TIGON_I(ap)) {
2237 cur_size = atomic_read(&ap->cur_mini_bufs);
2238 if (cur_size < RX_LOW_MINI_THRES) {
2239 if ((cur_size < RX_PANIC_MINI_THRES) &&
2240 !test_and_set_bit(0,
2241 &ap->mini_refill_busy)) {
2243 printk("low on mini buffers %i\n",
2246 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
2253 cur_size = atomic_read(&ap->cur_jumbo_bufs);
2254 if (cur_size < RX_LOW_JUMBO_THRES) {
2255 if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2256 !test_and_set_bit(0,
2257 &ap->jumbo_refill_busy)){
2259 printk("low on jumbo buffers %i\n",
2262 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
2267 if (run_tasklet && !ap->tasklet_pending) {
2268 ap->tasklet_pending = 1;
2269 tasklet_schedule(&ap->ace_tasklet);
2278 static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2280 struct ace_private *ap = netdev_priv(dev);
2281 unsigned long flags;
2283 local_irq_save(flags);
2288 ace_unmask_irq(dev);
2289 local_irq_restore(flags);
2293 static void ace_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
2295 struct ace_private *ap = netdev_priv(dev);
2296 unsigned long flags;
2298 local_irq_save(flags);
2302 ap->vlgrp->vlan_devices[vid] = NULL;
2304 ace_unmask_irq(dev);
2305 local_irq_restore(flags);
2307 #endif /* ACENIC_DO_VLAN */
2310 static int ace_open(struct net_device *dev)
2312 struct ace_private *ap = netdev_priv(dev);
2313 struct ace_regs __iomem *regs = ap->regs;
2316 if (!(ap->fw_running)) {
2317 printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2321 writel(dev->mtu + ETH_HLEN + 4, ®s->IfMtu);
2323 cmd.evt = C_CLEAR_STATS;
2326 ace_issue_cmd(regs, &cmd);
2328 cmd.evt = C_HOST_STATE;
2329 cmd.code = C_C_STACK_UP;
2331 ace_issue_cmd(regs, &cmd);
2334 !test_and_set_bit(0, &ap->jumbo_refill_busy))
2335 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2337 if (dev->flags & IFF_PROMISC) {
2338 cmd.evt = C_SET_PROMISC_MODE;
2339 cmd.code = C_C_PROMISC_ENABLE;
2341 ace_issue_cmd(regs, &cmd);
2349 cmd.evt = C_LNK_NEGOTIATION;
2352 ace_issue_cmd(regs, &cmd);
2355 netif_start_queue(dev);
2358 * Setup the bottom half rx ring refill handler
2360 tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
2365 static int ace_close(struct net_device *dev)
2367 struct ace_private *ap = netdev_priv(dev);
2368 struct ace_regs __iomem *regs = ap->regs;
2370 unsigned long flags;
2374 * Without (or before) releasing irq and stopping hardware, this
2375 * is an absolute non-sense, by the way. It will be reset instantly
2378 netif_stop_queue(dev);
2382 cmd.evt = C_SET_PROMISC_MODE;
2383 cmd.code = C_C_PROMISC_DISABLE;
2385 ace_issue_cmd(regs, &cmd);
2389 cmd.evt = C_HOST_STATE;
2390 cmd.code = C_C_STACK_DOWN;
2392 ace_issue_cmd(regs, &cmd);
2394 tasklet_kill(&ap->ace_tasklet);
2397 * Make sure one CPU is not processing packets while
2398 * buffers are being released by another.
2401 local_irq_save(flags);
2404 for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2405 struct sk_buff *skb;
2407 struct tx_ring_info *info;
2409 info = ap->skb->tx_skbuff + i;
2411 mapping = pci_unmap_addr(info, mapping);
2414 if (ACE_IS_TIGON_I(ap)) {
2415 struct tx_desc __iomem *tx
2416 = (struct tx_desc __iomem *) &ap->tx_ring[i];
2417 writel(0, &tx->addr.addrhi);
2418 writel(0, &tx->addr.addrlo);
2419 writel(0, &tx->flagsize);
2421 memset(ap->tx_ring + i, 0,
2422 sizeof(struct tx_desc));
2423 pci_unmap_page(ap->pdev, mapping,
2424 pci_unmap_len(info, maplen),
2426 pci_unmap_addr_set(info, mapping, 0);
2435 cmd.evt = C_RESET_JUMBO_RNG;
2438 ace_issue_cmd(regs, &cmd);
2441 ace_unmask_irq(dev);
2442 local_irq_restore(flags);
2448 static inline dma_addr_t
2449 ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2450 struct sk_buff *tail, u32 idx)
2453 struct tx_ring_info *info;
2455 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
2456 offset_in_page(skb->data),
2457 skb->len, PCI_DMA_TODEVICE);
2459 info = ap->skb->tx_skbuff + idx;
2461 pci_unmap_addr_set(info, mapping, mapping);
2462 pci_unmap_len_set(info, maplen, skb->len);
2468 ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2469 u32 flagsize, u32 vlan_tag)
2471 #if !USE_TX_COAL_NOW
2472 flagsize &= ~BD_FLG_COAL_NOW;
2475 if (ACE_IS_TIGON_I(ap)) {
2476 struct tx_desc __iomem *io = (struct tx_desc __iomem *) desc;
2477 writel(addr >> 32, &io->addr.addrhi);
2478 writel(addr & 0xffffffff, &io->addr.addrlo);
2479 writel(flagsize, &io->flagsize);
2481 writel(vlan_tag, &io->vlanres);
2484 desc->addr.addrhi = addr >> 32;
2485 desc->addr.addrlo = addr;
2486 desc->flagsize = flagsize;
2488 desc->vlanres = vlan_tag;
2494 static int ace_start_xmit(struct sk_buff *skb, struct net_device *dev)
2496 struct ace_private *ap = netdev_priv(dev);
2497 struct ace_regs __iomem *regs = ap->regs;
2498 struct tx_desc *desc;
2500 unsigned long maxjiff = jiffies + 3*HZ;
2505 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2508 if (!skb_shinfo(skb)->nr_frags) {
2512 mapping = ace_map_tx_skb(ap, skb, skb, idx);
2513 flagsize = (skb->len << 16) | (BD_FLG_END);
2514 if (skb->ip_summed == CHECKSUM_HW)
2515 flagsize |= BD_FLG_TCP_UDP_SUM;
2517 if (vlan_tx_tag_present(skb)) {
2518 flagsize |= BD_FLG_VLAN_TAG;
2519 vlan_tag = vlan_tx_tag_get(skb);
2522 desc = ap->tx_ring + idx;
2523 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2525 /* Look at ace_tx_int for explanations. */
2526 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2527 flagsize |= BD_FLG_COAL_NOW;
2529 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2535 mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2536 flagsize = (skb_headlen(skb) << 16);
2537 if (skb->ip_summed == CHECKSUM_HW)
2538 flagsize |= BD_FLG_TCP_UDP_SUM;
2540 if (vlan_tx_tag_present(skb)) {
2541 flagsize |= BD_FLG_VLAN_TAG;
2542 vlan_tag = vlan_tx_tag_get(skb);
2546 ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2548 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2550 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2551 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2552 struct tx_ring_info *info;
2555 info = ap->skb->tx_skbuff + idx;
2556 desc = ap->tx_ring + idx;
2558 mapping = pci_map_page(ap->pdev, frag->page,
2559 frag->page_offset, frag->size,
2562 flagsize = (frag->size << 16);
2563 if (skb->ip_summed == CHECKSUM_HW)
2564 flagsize |= BD_FLG_TCP_UDP_SUM;
2565 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2567 if (i == skb_shinfo(skb)->nr_frags - 1) {
2568 flagsize |= BD_FLG_END;
2569 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2570 flagsize |= BD_FLG_COAL_NOW;
2573 * Only the last fragment frees
2580 pci_unmap_addr_set(info, mapping, mapping);
2581 pci_unmap_len_set(info, maplen, frag->size);
2582 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2588 ace_set_txprd(regs, ap, idx);
2590 if (flagsize & BD_FLG_COAL_NOW) {
2591 netif_stop_queue(dev);
2594 * A TX-descriptor producer (an IRQ) might have gotten
2595 * inbetween, making the ring free again. Since xmit is
2596 * serialized, this is the only situation we have to
2599 if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2600 netif_wake_queue(dev);
2603 dev->trans_start = jiffies;
2604 return NETDEV_TX_OK;
2608 * This race condition is unavoidable with lock-free drivers.
2609 * We wake up the queue _before_ tx_prd is advanced, so that we can
2610 * enter hard_start_xmit too early, while tx ring still looks closed.
2611 * This happens ~1-4 times per 100000 packets, so that we can allow
2612 * to loop syncing to other CPU. Probably, we need an additional
2613 * wmb() in ace_tx_intr as well.
2615 * Note that this race is relieved by reserving one more entry
2616 * in tx ring than it is necessary (see original non-SG driver).
2617 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2618 * is already overkill.
2620 * Alternative is to return with 1 not throttling queue. In this
2621 * case loop becomes longer, no more useful effects.
2623 if (time_before(jiffies, maxjiff)) {
2629 /* The ring is stuck full. */
2630 printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2631 return NETDEV_TX_BUSY;
2635 static int ace_change_mtu(struct net_device *dev, int new_mtu)
2637 struct ace_private *ap = netdev_priv(dev);
2638 struct ace_regs __iomem *regs = ap->regs;
2640 if (new_mtu > ACE_JUMBO_MTU)
2643 writel(new_mtu + ETH_HLEN + 4, ®s->IfMtu);
2646 if (new_mtu > ACE_STD_MTU) {
2648 printk(KERN_INFO "%s: Enabling Jumbo frame "
2649 "support\n", dev->name);
2651 if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2652 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2653 ace_set_rxtx_parms(dev, 1);
2656 while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2657 ace_sync_irq(dev->irq);
2658 ace_set_rxtx_parms(dev, 0);
2662 cmd.evt = C_RESET_JUMBO_RNG;
2665 ace_issue_cmd(regs, &cmd);
2672 static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2674 struct ace_private *ap = netdev_priv(dev);
2675 struct ace_regs __iomem *regs = ap->regs;
2678 memset(ecmd, 0, sizeof(struct ethtool_cmd));
2680 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2681 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2682 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2683 SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2685 ecmd->port = PORT_FIBRE;
2686 ecmd->transceiver = XCVR_INTERNAL;
2688 link = readl(®s->GigLnkState);
2689 if (link & LNK_1000MB)
2690 ecmd->speed = SPEED_1000;
2692 link = readl(®s->FastLnkState);
2693 if (link & LNK_100MB)
2694 ecmd->speed = SPEED_100;
2695 else if (link & LNK_10MB)
2696 ecmd->speed = SPEED_10;
2700 if (link & LNK_FULL_DUPLEX)
2701 ecmd->duplex = DUPLEX_FULL;
2703 ecmd->duplex = DUPLEX_HALF;
2705 if (link & LNK_NEGOTIATE)
2706 ecmd->autoneg = AUTONEG_ENABLE;
2708 ecmd->autoneg = AUTONEG_DISABLE;
2712 * Current struct ethtool_cmd is insufficient
2714 ecmd->trace = readl(®s->TuneTrace);
2716 ecmd->txcoal = readl(®s->TuneTxCoalTicks);
2717 ecmd->rxcoal = readl(®s->TuneRxCoalTicks);
2719 ecmd->maxtxpkt = readl(®s->TuneMaxTxDesc);
2720 ecmd->maxrxpkt = readl(®s->TuneMaxRxDesc);
2725 static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2727 struct ace_private *ap = netdev_priv(dev);
2728 struct ace_regs __iomem *regs = ap->regs;
2731 link = readl(®s->GigLnkState);
2732 if (link & LNK_1000MB)
2735 link = readl(®s->FastLnkState);
2736 if (link & LNK_100MB)
2738 else if (link & LNK_10MB)
2744 link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2745 LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2746 if (!ACE_IS_TIGON_I(ap))
2747 link |= LNK_TX_FLOW_CTL_Y;
2748 if (ecmd->autoneg == AUTONEG_ENABLE)
2749 link |= LNK_NEGOTIATE;
2750 if (ecmd->speed != speed) {
2751 link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2765 if (ecmd->duplex == DUPLEX_FULL)
2766 link |= LNK_FULL_DUPLEX;
2768 if (link != ap->link) {
2770 printk(KERN_INFO "%s: Renegotiating link state\n",
2774 writel(link, ®s->TuneLink);
2775 if (!ACE_IS_TIGON_I(ap))
2776 writel(link, ®s->TuneFastLink);
2779 cmd.evt = C_LNK_NEGOTIATION;
2782 ace_issue_cmd(regs, &cmd);
2787 static void ace_get_drvinfo(struct net_device *dev,
2788 struct ethtool_drvinfo *info)
2790 struct ace_private *ap = netdev_priv(dev);
2792 strlcpy(info->driver, "acenic", sizeof(info->driver));
2793 snprintf(info->version, sizeof(info->version), "%i.%i.%i",
2794 tigonFwReleaseMajor, tigonFwReleaseMinor,
2798 strlcpy(info->bus_info, pci_name(ap->pdev),
2799 sizeof(info->bus_info));
2804 * Set the hardware MAC address.
2806 static int ace_set_mac_addr(struct net_device *dev, void *p)
2808 struct ace_private *ap = netdev_priv(dev);
2809 struct ace_regs __iomem *regs = ap->regs;
2810 struct sockaddr *addr=p;
2814 if(netif_running(dev))
2817 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2819 da = (u8 *)dev->dev_addr;
2821 writel(da[0] << 8 | da[1], ®s->MacAddrHi);
2822 writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2825 cmd.evt = C_SET_MAC_ADDR;
2828 ace_issue_cmd(regs, &cmd);
2834 static void ace_set_multicast_list(struct net_device *dev)
2836 struct ace_private *ap = netdev_priv(dev);
2837 struct ace_regs __iomem *regs = ap->regs;
2840 if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2841 cmd.evt = C_SET_MULTICAST_MODE;
2842 cmd.code = C_C_MCAST_ENABLE;
2844 ace_issue_cmd(regs, &cmd);
2846 } else if (ap->mcast_all) {
2847 cmd.evt = C_SET_MULTICAST_MODE;
2848 cmd.code = C_C_MCAST_DISABLE;
2850 ace_issue_cmd(regs, &cmd);
2854 if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2855 cmd.evt = C_SET_PROMISC_MODE;
2856 cmd.code = C_C_PROMISC_ENABLE;
2858 ace_issue_cmd(regs, &cmd);
2860 }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2861 cmd.evt = C_SET_PROMISC_MODE;
2862 cmd.code = C_C_PROMISC_DISABLE;
2864 ace_issue_cmd(regs, &cmd);
2869 * For the time being multicast relies on the upper layers
2870 * filtering it properly. The Firmware does not allow one to
2871 * set the entire multicast list at a time and keeping track of
2872 * it here is going to be messy.
2874 if ((dev->mc_count) && !(ap->mcast_all)) {
2875 cmd.evt = C_SET_MULTICAST_MODE;
2876 cmd.code = C_C_MCAST_ENABLE;
2878 ace_issue_cmd(regs, &cmd);
2879 }else if (!ap->mcast_all) {
2880 cmd.evt = C_SET_MULTICAST_MODE;
2881 cmd.code = C_C_MCAST_DISABLE;
2883 ace_issue_cmd(regs, &cmd);
2888 static struct net_device_stats *ace_get_stats(struct net_device *dev)
2890 struct ace_private *ap = netdev_priv(dev);
2891 struct ace_mac_stats __iomem *mac_stats =
2892 (struct ace_mac_stats __iomem *)ap->regs->Stats;
2894 ap->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2895 ap->stats.multicast = readl(&mac_stats->kept_mc);
2896 ap->stats.collisions = readl(&mac_stats->coll);
2902 static void __devinit ace_copy(struct ace_regs __iomem *regs, void *src,
2905 void __iomem *tdest;
2913 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2914 min_t(u32, size, ACE_WINDOW_SIZE));
2915 tdest = (void __iomem *) ®s->Window +
2916 (dest & (ACE_WINDOW_SIZE - 1));
2917 writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase);
2919 * This requires byte swapping on big endian, however
2920 * writel does that for us
2923 for (i = 0; i < (tsize / 4); i++) {
2924 writel(wsrc[i], tdest + i*4);
2935 static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2937 void __iomem *tdest;
2944 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2945 min_t(u32, size, ACE_WINDOW_SIZE));
2946 tdest = (void __iomem *) ®s->Window +
2947 (dest & (ACE_WINDOW_SIZE - 1));
2948 writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase);
2950 for (i = 0; i < (tsize / 4); i++) {
2951 writel(0, tdest + i*4);
2963 * Download the firmware into the SRAM on the NIC
2965 * This operation requires the NIC to be halted and is performed with
2966 * interrupts disabled and with the spinlock hold.
2968 int __devinit ace_load_firmware(struct net_device *dev)
2970 struct ace_private *ap = netdev_priv(dev);
2971 struct ace_regs __iomem *regs = ap->regs;
2973 if (!(readl(®s->CpuCtrl) & CPU_HALTED)) {
2974 printk(KERN_ERR "%s: trying to download firmware while the "
2975 "CPU is running!\n", ap->name);
2980 * Do not try to clear more than 512KB or we end up seeing
2981 * funny things on NICs with only 512KB SRAM
2983 ace_clear(regs, 0x2000, 0x80000-0x2000);
2984 if (ACE_IS_TIGON_I(ap)) {
2985 ace_copy(regs, tigonFwText, tigonFwTextAddr, tigonFwTextLen);
2986 ace_copy(regs, tigonFwData, tigonFwDataAddr, tigonFwDataLen);
2987 ace_copy(regs, tigonFwRodata, tigonFwRodataAddr,
2989 ace_clear(regs, tigonFwBssAddr, tigonFwBssLen);
2990 ace_clear(regs, tigonFwSbssAddr, tigonFwSbssLen);
2991 }else if (ap->version == 2) {
2992 ace_clear(regs, tigon2FwBssAddr, tigon2FwBssLen);
2993 ace_clear(regs, tigon2FwSbssAddr, tigon2FwSbssLen);
2994 ace_copy(regs, tigon2FwText, tigon2FwTextAddr,tigon2FwTextLen);
2995 ace_copy(regs, tigon2FwRodata, tigon2FwRodataAddr,
2997 ace_copy(regs, tigon2FwData, tigon2FwDataAddr,tigon2FwDataLen);
3005 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
3007 * Accessing the EEPROM is `interesting' to say the least - don't read
3008 * this code right after dinner.
3010 * This is all about black magic and bit-banging the device .... I
3011 * wonder in what hospital they have put the guy who designed the i2c
3014 * Oh yes, this is only the beginning!
3016 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
3017 * code i2c readout code by beta testing all my hacks.
3019 static void __devinit eeprom_start(struct ace_regs __iomem *regs)
3023 readl(®s->LocalCtrl);
3024 udelay(ACE_SHORT_DELAY);
3025 local = readl(®s->LocalCtrl);
3026 local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
3027 writel(local, ®s->LocalCtrl);
3028 readl(®s->LocalCtrl);
3030 udelay(ACE_SHORT_DELAY);
3031 local |= EEPROM_CLK_OUT;
3032 writel(local, ®s->LocalCtrl);
3033 readl(®s->LocalCtrl);
3035 udelay(ACE_SHORT_DELAY);
3036 local &= ~EEPROM_DATA_OUT;
3037 writel(local, ®s->LocalCtrl);
3038 readl(®s->LocalCtrl);
3040 udelay(ACE_SHORT_DELAY);
3041 local &= ~EEPROM_CLK_OUT;
3042 writel(local, ®s->LocalCtrl);
3043 readl(®s->LocalCtrl);
3048 static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
3053 udelay(ACE_SHORT_DELAY);
3054 local = readl(®s->LocalCtrl);
3055 local &= ~EEPROM_DATA_OUT;
3056 local |= EEPROM_WRITE_ENABLE;
3057 writel(local, ®s->LocalCtrl);
3058 readl(®s->LocalCtrl);
3061 for (i = 0; i < 8; i++, magic <<= 1) {
3062 udelay(ACE_SHORT_DELAY);
3064 local |= EEPROM_DATA_OUT;
3066 local &= ~EEPROM_DATA_OUT;
3067 writel(local, ®s->LocalCtrl);
3068 readl(®s->LocalCtrl);
3071 udelay(ACE_SHORT_DELAY);
3072 local |= EEPROM_CLK_OUT;
3073 writel(local, ®s->LocalCtrl);
3074 readl(®s->LocalCtrl);
3076 udelay(ACE_SHORT_DELAY);
3077 local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3078 writel(local, ®s->LocalCtrl);
3079 readl(®s->LocalCtrl);
3085 static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs)
3090 local = readl(®s->LocalCtrl);
3091 local &= ~EEPROM_WRITE_ENABLE;
3092 writel(local, ®s->LocalCtrl);
3093 readl(®s->LocalCtrl);
3095 udelay(ACE_LONG_DELAY);
3096 local |= EEPROM_CLK_OUT;
3097 writel(local, ®s->LocalCtrl);
3098 readl(®s->LocalCtrl);
3100 udelay(ACE_SHORT_DELAY);
3101 /* sample data in middle of high clk */
3102 state = (readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0;
3103 udelay(ACE_SHORT_DELAY);
3105 writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl);
3106 readl(®s->LocalCtrl);
3113 static void __devinit eeprom_stop(struct ace_regs __iomem *regs)
3117 udelay(ACE_SHORT_DELAY);
3118 local = readl(®s->LocalCtrl);
3119 local |= EEPROM_WRITE_ENABLE;
3120 writel(local, ®s->LocalCtrl);
3121 readl(®s->LocalCtrl);
3123 udelay(ACE_SHORT_DELAY);
3124 local &= ~EEPROM_DATA_OUT;
3125 writel(local, ®s->LocalCtrl);
3126 readl(®s->LocalCtrl);
3128 udelay(ACE_SHORT_DELAY);
3129 local |= EEPROM_CLK_OUT;
3130 writel(local, ®s->LocalCtrl);
3131 readl(®s->LocalCtrl);
3133 udelay(ACE_SHORT_DELAY);
3134 local |= EEPROM_DATA_OUT;
3135 writel(local, ®s->LocalCtrl);
3136 readl(®s->LocalCtrl);
3138 udelay(ACE_LONG_DELAY);
3139 local &= ~EEPROM_CLK_OUT;
3140 writel(local, ®s->LocalCtrl);
3146 * Read a whole byte from the EEPROM.
3148 static int __devinit read_eeprom_byte(struct net_device *dev,
3149 unsigned long offset)
3151 struct ace_private *ap = netdev_priv(dev);
3152 struct ace_regs __iomem *regs = ap->regs;
3153 unsigned long flags;
3159 printk(KERN_ERR "No device!\n");
3165 * Don't take interrupts on this CPU will bit banging
3166 * the %#%#@$ I2C device
3168 local_irq_save(flags);
3172 eeprom_prep(regs, EEPROM_WRITE_SELECT);
3173 if (eeprom_check_ack(regs)) {
3174 local_irq_restore(flags);
3175 printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3177 goto eeprom_read_error;
3180 eeprom_prep(regs, (offset >> 8) & 0xff);
3181 if (eeprom_check_ack(regs)) {
3182 local_irq_restore(flags);
3183 printk(KERN_ERR "%s: Unable to set address byte 0\n",
3186 goto eeprom_read_error;
3189 eeprom_prep(regs, offset & 0xff);
3190 if (eeprom_check_ack(regs)) {
3191 local_irq_restore(flags);
3192 printk(KERN_ERR "%s: Unable to set address byte 1\n",
3195 goto eeprom_read_error;
3199 eeprom_prep(regs, EEPROM_READ_SELECT);
3200 if (eeprom_check_ack(regs)) {
3201 local_irq_restore(flags);
3202 printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3205 goto eeprom_read_error;
3208 for (i = 0; i < 8; i++) {
3209 local = readl(®s->LocalCtrl);
3210 local &= ~EEPROM_WRITE_ENABLE;
3211 writel(local, ®s->LocalCtrl);
3212 readl(®s->LocalCtrl);
3213 udelay(ACE_LONG_DELAY);
3215 local |= EEPROM_CLK_OUT;
3216 writel(local, ®s->LocalCtrl);
3217 readl(®s->LocalCtrl);
3219 udelay(ACE_SHORT_DELAY);
3220 /* sample data mid high clk */
3221 result = (result << 1) |
3222 ((readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0);
3223 udelay(ACE_SHORT_DELAY);
3225 local = readl(®s->LocalCtrl);
3226 local &= ~EEPROM_CLK_OUT;
3227 writel(local, ®s->LocalCtrl);
3228 readl(®s->LocalCtrl);
3229 udelay(ACE_SHORT_DELAY);
3232 local |= EEPROM_WRITE_ENABLE;
3233 writel(local, ®s->LocalCtrl);
3234 readl(®s->LocalCtrl);
3236 udelay(ACE_SHORT_DELAY);
3240 local |= EEPROM_DATA_OUT;
3241 writel(local, ®s->LocalCtrl);
3242 readl(®s->LocalCtrl);
3244 udelay(ACE_SHORT_DELAY);
3245 writel(readl(®s->LocalCtrl) | EEPROM_CLK_OUT, ®s->LocalCtrl);
3246 readl(®s->LocalCtrl);
3247 udelay(ACE_LONG_DELAY);
3248 writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl);
3249 readl(®s->LocalCtrl);
3251 udelay(ACE_SHORT_DELAY);
3254 local_irq_restore(flags);
3259 printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3267 * compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h -c -o acenic.o acenic.c"