2 * Initialize MMU support.
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
7 #include <linux/kernel.h>
8 #include <linux/init.h>
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
14 #include <linux/mmzone.h>
15 #include <linux/module.h>
16 #include <linux/personality.h>
17 #include <linux/reboot.h>
18 #include <linux/slab.h>
19 #include <linux/swap.h>
20 #include <linux/proc_fs.h>
21 #include <linux/bitops.h>
22 #include <linux/kexec.h>
24 #include <asm/a.out.h>
28 #include <asm/machvec.h>
30 #include <asm/patch.h>
31 #include <asm/pgalloc.h>
33 #include <asm/sections.h>
34 #include <asm/system.h>
36 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
40 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
42 extern void ia64_tlb_init (void);
44 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
46 #ifdef CONFIG_VIRTUAL_MEM_MAP
47 unsigned long vmalloc_end = VMALLOC_END_INIT;
48 EXPORT_SYMBOL(vmalloc_end);
49 struct page *vmem_map;
50 EXPORT_SYMBOL(vmem_map);
53 struct page *zero_page_memmap_ptr; /* map entry for zero page */
54 EXPORT_SYMBOL(zero_page_memmap_ptr);
57 __ia64_sync_icache_dcache (pte_t pte)
64 addr = (unsigned long) page_address(page);
66 if (test_bit(PG_arch_1, &page->flags))
67 return; /* i-cache is already coherent with d-cache */
69 if (PageCompound(page)) {
70 order = compound_order(page);
71 flush_icache_range(addr, addr + (1UL << order << PAGE_SHIFT));
74 flush_icache_range(addr, addr + PAGE_SIZE);
75 set_bit(PG_arch_1, &page->flags); /* mark page as clean */
79 * Since DMA is i-cache coherent, any (complete) pages that were written via
80 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
81 * flush them when they get mapped into an executable vm-area.
84 dma_mark_clean(void *addr, size_t size)
86 unsigned long pg_addr, end;
88 pg_addr = PAGE_ALIGN((unsigned long) addr);
89 end = (unsigned long) addr + size;
90 while (pg_addr + PAGE_SIZE <= end) {
91 struct page *page = virt_to_page(pg_addr);
92 set_bit(PG_arch_1, &page->flags);
98 ia64_set_rbs_bot (void)
100 unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
102 if (stack_size > MAX_USER_STACK_SIZE)
103 stack_size = MAX_USER_STACK_SIZE;
104 current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
108 * This performs some platform-dependent address space initialization.
109 * On IA-64, we want to setup the VM area for the register backing
110 * store (which grows upwards) and install the gateway page which is
111 * used for signal trampolines, etc.
114 ia64_init_addr_space (void)
116 struct vm_area_struct *vma;
121 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
122 * the problem. When the process attempts to write to the register backing store
123 * for the first time, it will get a SEGFAULT in this case.
125 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
127 vma->vm_mm = current->mm;
128 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
129 vma->vm_end = vma->vm_start + PAGE_SIZE;
130 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
131 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
132 down_write(¤t->mm->mmap_sem);
133 if (insert_vm_struct(current->mm, vma)) {
134 up_write(¤t->mm->mmap_sem);
135 kmem_cache_free(vm_area_cachep, vma);
138 up_write(¤t->mm->mmap_sem);
141 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
142 if (!(current->personality & MMAP_PAGE_ZERO)) {
143 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
145 vma->vm_mm = current->mm;
146 vma->vm_end = PAGE_SIZE;
147 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
148 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
149 down_write(¤t->mm->mmap_sem);
150 if (insert_vm_struct(current->mm, vma)) {
151 up_write(¤t->mm->mmap_sem);
152 kmem_cache_free(vm_area_cachep, vma);
155 up_write(¤t->mm->mmap_sem);
163 unsigned long addr, eaddr;
165 addr = (unsigned long) ia64_imva(__init_begin);
166 eaddr = (unsigned long) ia64_imva(__init_end);
167 while (addr < eaddr) {
168 ClearPageReserved(virt_to_page(addr));
169 init_page_count(virt_to_page(addr));
174 printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
175 (__init_end - __init_begin) >> 10);
179 free_initrd_mem (unsigned long start, unsigned long end)
183 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
184 * Thus EFI and the kernel may have different page sizes. It is
185 * therefore possible to have the initrd share the same page as
186 * the end of the kernel (given current setup).
188 * To avoid freeing/using the wrong page (kernel sized) we:
189 * - align up the beginning of initrd
190 * - align down the end of initrd
193 * |=============| a000
199 * |=============| 8000
202 * |/////////////| 7000
205 * |=============| 6000
208 * K=kernel using 8KB pages
210 * In this example, we must free page 8000 ONLY. So we must align up
211 * initrd_start and keep initrd_end as is.
213 start = PAGE_ALIGN(start);
214 end = end & PAGE_MASK;
217 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
219 for (; start < end; start += PAGE_SIZE) {
220 if (!virt_addr_valid(start))
222 page = virt_to_page(start);
223 ClearPageReserved(page);
224 init_page_count(page);
231 * This installs a clean page in the kernel's page table.
233 static struct page * __init
234 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
241 if (!PageReserved(page))
242 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
245 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
248 pud = pud_alloc(&init_mm, pgd, address);
251 pmd = pmd_alloc(&init_mm, pud, address);
254 pte = pte_alloc_kernel(pmd, address);
259 set_pte(pte, mk_pte(page, pgprot));
262 /* no need for flush_tlb */
272 * Map the gate page twice: once read-only to export the ELF
273 * headers etc. and once execute-only page to enable
274 * privilege-promotion via "epc":
276 page = virt_to_page(ia64_imva(__start_gate_section));
277 put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
278 #ifdef HAVE_BUGGY_SEGREL
279 page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
280 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
282 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
283 /* Fill in the holes (if any) with read-only zero pages: */
287 for (addr = GATE_ADDR + PAGE_SIZE;
288 addr < GATE_ADDR + PERCPU_PAGE_SIZE;
291 put_kernel_page(ZERO_PAGE(0), addr,
293 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
302 ia64_mmu_init (void *my_cpu_data)
304 unsigned long pta, impl_va_bits;
305 extern void __devinit tlb_init (void);
307 #ifdef CONFIG_DISABLE_VHPT
308 # define VHPT_ENABLE_BIT 0
310 # define VHPT_ENABLE_BIT 1
314 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
315 * address space. The IA-64 architecture guarantees that at least 50 bits of
316 * virtual address space are implemented but if we pick a large enough page size
317 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
318 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
319 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
320 * problem in practice. Alternatively, we could truncate the top of the mapped
321 * address space to not permit mappings that would overlap with the VMLPT.
325 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
327 * The virtual page table has to cover the entire implemented address space within
328 * a region even though not all of this space may be mappable. The reason for
329 * this is that the Access bit and Dirty bit fault handlers perform
330 * non-speculative accesses to the virtual page table, so the address range of the
331 * virtual page table itself needs to be covered by virtual page table.
333 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
334 # define POW2(n) (1ULL << (n))
336 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
338 if (impl_va_bits < 51 || impl_va_bits > 61)
339 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
341 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
342 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
343 * the test makes sure that our mapped space doesn't overlap the
344 * unimplemented hole in the middle of the region.
346 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
347 (mapped_space_bits > impl_va_bits - 1))
348 panic("Cannot build a big enough virtual-linear page table"
349 " to cover mapped address space.\n"
350 " Try using a smaller page size.\n");
353 /* place the VMLPT at the end of each page-table mapped region: */
354 pta = POW2(61) - POW2(vmlpt_bits);
357 * Set the (virtually mapped linear) page table address. Bit
358 * 8 selects between the short and long format, bits 2-7 the
359 * size of the table, and bit 0 whether the VHPT walker is
362 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
366 #ifdef CONFIG_HUGETLB_PAGE
367 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
372 #ifdef CONFIG_VIRTUAL_MEM_MAP
373 int vmemmap_find_next_valid_pfn(int node, int i)
375 unsigned long end_address, hole_next_pfn;
376 unsigned long stop_address;
377 pg_data_t *pgdat = NODE_DATA(node);
379 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
380 end_address = PAGE_ALIGN(end_address);
382 stop_address = (unsigned long) &vmem_map[
383 pgdat->node_start_pfn + pgdat->node_spanned_pages];
391 pgd = pgd_offset_k(end_address);
392 if (pgd_none(*pgd)) {
393 end_address += PGDIR_SIZE;
397 pud = pud_offset(pgd, end_address);
398 if (pud_none(*pud)) {
399 end_address += PUD_SIZE;
403 pmd = pmd_offset(pud, end_address);
404 if (pmd_none(*pmd)) {
405 end_address += PMD_SIZE;
409 pte = pte_offset_kernel(pmd, end_address);
411 if (pte_none(*pte)) {
412 end_address += PAGE_SIZE;
414 if ((end_address < stop_address) &&
415 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
419 /* Found next valid vmem_map page */
421 } while (end_address < stop_address);
423 end_address = min(end_address, stop_address);
424 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
425 hole_next_pfn = end_address / sizeof(struct page);
426 return hole_next_pfn - pgdat->node_start_pfn;
430 create_mem_map_page_table (u64 start, u64 end, void *arg)
432 unsigned long address, start_page, end_page;
433 struct page *map_start, *map_end;
440 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
441 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
443 start_page = (unsigned long) map_start & PAGE_MASK;
444 end_page = PAGE_ALIGN((unsigned long) map_end);
445 node = paddr_to_nid(__pa(start));
447 for (address = start_page; address < end_page; address += PAGE_SIZE) {
448 pgd = pgd_offset_k(address);
450 pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
451 pud = pud_offset(pgd, address);
454 pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
455 pmd = pmd_offset(pud, address);
458 pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
459 pte = pte_offset_kernel(pmd, address);
462 set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
468 struct memmap_init_callback_data {
476 virtual_memmap_init (u64 start, u64 end, void *arg)
478 struct memmap_init_callback_data *args;
479 struct page *map_start, *map_end;
481 args = (struct memmap_init_callback_data *) arg;
482 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
483 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
485 if (map_start < args->start)
486 map_start = args->start;
487 if (map_end > args->end)
491 * We have to initialize "out of bounds" struct page elements that fit completely
492 * on the same pages that were allocated for the "in bounds" elements because they
493 * may be referenced later (and found to be "reserved").
495 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
496 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
497 / sizeof(struct page));
499 if (map_start < map_end)
500 memmap_init_zone((unsigned long)(map_end - map_start),
501 args->nid, args->zone, page_to_pfn(map_start),
507 memmap_init (unsigned long size, int nid, unsigned long zone,
508 unsigned long start_pfn)
511 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
514 struct memmap_init_callback_data args;
516 start = pfn_to_page(start_pfn);
518 args.end = start + size;
522 efi_memmap_walk(virtual_memmap_init, &args);
527 ia64_pfn_valid (unsigned long pfn)
530 struct page *pg = pfn_to_page(pfn);
532 return (__get_user(byte, (char __user *) pg) == 0)
533 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
534 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
536 EXPORT_SYMBOL(ia64_pfn_valid);
539 find_largest_hole (u64 start, u64 end, void *arg)
543 static u64 last_end = PAGE_OFFSET;
545 /* NOTE: this algorithm assumes efi memmap table is ordered */
547 if (*max_gap < (start - last_end))
548 *max_gap = start - last_end;
553 #endif /* CONFIG_VIRTUAL_MEM_MAP */
556 register_active_ranges(u64 start, u64 end, void *arg)
558 int nid = paddr_to_nid(__pa(start));
563 if (start > crashk_res.start && start < crashk_res.end)
564 start = crashk_res.end;
565 if (end > crashk_res.start && end < crashk_res.end)
566 end = crashk_res.start;
570 add_active_range(nid, __pa(start) >> PAGE_SHIFT,
571 __pa(end) >> PAGE_SHIFT);
576 count_reserved_pages (u64 start, u64 end, void *arg)
578 unsigned long num_reserved = 0;
579 unsigned long *count = arg;
581 for (; start < end; start += PAGE_SIZE)
582 if (PageReserved(virt_to_page(start)))
584 *count += num_reserved;
589 find_max_min_low_pfn (unsigned long start, unsigned long end, void *arg)
591 unsigned long pfn_start, pfn_end;
592 #ifdef CONFIG_FLATMEM
593 pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
594 pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
596 pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
597 pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
599 min_low_pfn = min(min_low_pfn, pfn_start);
600 max_low_pfn = max(max_low_pfn, pfn_end);
605 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
606 * system call handler. When this option is in effect, all fsyscalls will end up bubbling
607 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
608 * useful for performance testing, but conceivably could also come in handy for debugging
612 static int nolwsys __initdata;
615 nolwsys_setup (char *s)
621 __setup("nolwsys", nolwsys_setup);
626 long reserved_pages, codesize, datasize, initsize;
629 static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
631 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
632 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
633 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
637 * This needs to be called _after_ the command line has been parsed but _before_
638 * any drivers that may need the PCI DMA interface are initialized or bootmem has
644 #ifdef CONFIG_FLATMEM
647 max_mapnr = max_low_pfn;
650 high_memory = __va(max_low_pfn * PAGE_SIZE);
652 kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
653 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
654 kclist_add(&kcore_kernel, _stext, _end - _stext);
656 for_each_online_pgdat(pgdat)
657 if (pgdat->bdata->node_bootmem_map)
658 totalram_pages += free_all_bootmem_node(pgdat);
661 efi_memmap_walk(count_reserved_pages, &reserved_pages);
663 codesize = (unsigned long) _etext - (unsigned long) _stext;
664 datasize = (unsigned long) _edata - (unsigned long) _etext;
665 initsize = (unsigned long) __init_end - (unsigned long) __init_begin;
667 printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
668 "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
669 num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
670 reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
674 * For fsyscall entrpoints with no light-weight handler, use the ordinary
675 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
676 * code can tell them apart.
678 for (i = 0; i < NR_syscalls; ++i) {
679 extern unsigned long fsyscall_table[NR_syscalls];
680 extern unsigned long sys_call_table[NR_syscalls];
682 if (!fsyscall_table[i] || nolwsys)
683 fsyscall_table[i] = sys_call_table[i] | 1;
687 #ifdef CONFIG_IA32_SUPPORT
692 #ifdef CONFIG_MEMORY_HOTPLUG
693 void online_page(struct page *page)
695 ClearPageReserved(page);
696 init_page_count(page);
702 int arch_add_memory(int nid, u64 start, u64 size)
706 unsigned long start_pfn = start >> PAGE_SHIFT;
707 unsigned long nr_pages = size >> PAGE_SHIFT;
710 pgdat = NODE_DATA(nid);
712 zone = pgdat->node_zones + ZONE_NORMAL;
713 ret = __add_pages(zone, start_pfn, nr_pages);
716 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
721 #ifdef CONFIG_MEMORY_HOTREMOVE
722 int remove_memory(u64 start, u64 size)
724 unsigned long start_pfn, end_pfn;
725 unsigned long timeout = 120 * HZ;
727 start_pfn = start >> PAGE_SHIFT;
728 end_pfn = start_pfn + (size >> PAGE_SHIFT);
729 ret = offline_pages(start_pfn, end_pfn, timeout);
732 /* we can free mem_map at this point */
736 EXPORT_SYMBOL_GPL(remove_memory);
737 #endif /* CONFIG_MEMORY_HOTREMOVE */