2 * linux/fs/jbd2/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
40 #include <asm/uaccess.h>
43 EXPORT_SYMBOL(jbd2_journal_start);
44 EXPORT_SYMBOL(jbd2_journal_restart);
45 EXPORT_SYMBOL(jbd2_journal_extend);
46 EXPORT_SYMBOL(jbd2_journal_stop);
47 EXPORT_SYMBOL(jbd2_journal_lock_updates);
48 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
49 EXPORT_SYMBOL(jbd2_journal_get_write_access);
50 EXPORT_SYMBOL(jbd2_journal_get_create_access);
51 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
52 EXPORT_SYMBOL(jbd2_journal_dirty_data);
53 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
54 EXPORT_SYMBOL(jbd2_journal_release_buffer);
55 EXPORT_SYMBOL(jbd2_journal_forget);
57 EXPORT_SYMBOL(journal_sync_buffer);
59 EXPORT_SYMBOL(jbd2_journal_flush);
60 EXPORT_SYMBOL(jbd2_journal_revoke);
62 EXPORT_SYMBOL(jbd2_journal_init_dev);
63 EXPORT_SYMBOL(jbd2_journal_init_inode);
64 EXPORT_SYMBOL(jbd2_journal_update_format);
65 EXPORT_SYMBOL(jbd2_journal_check_used_features);
66 EXPORT_SYMBOL(jbd2_journal_check_available_features);
67 EXPORT_SYMBOL(jbd2_journal_set_features);
68 EXPORT_SYMBOL(jbd2_journal_create);
69 EXPORT_SYMBOL(jbd2_journal_load);
70 EXPORT_SYMBOL(jbd2_journal_destroy);
71 EXPORT_SYMBOL(jbd2_journal_update_superblock);
72 EXPORT_SYMBOL(jbd2_journal_abort);
73 EXPORT_SYMBOL(jbd2_journal_errno);
74 EXPORT_SYMBOL(jbd2_journal_ack_err);
75 EXPORT_SYMBOL(jbd2_journal_clear_err);
76 EXPORT_SYMBOL(jbd2_log_wait_commit);
77 EXPORT_SYMBOL(jbd2_journal_start_commit);
78 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
79 EXPORT_SYMBOL(jbd2_journal_wipe);
80 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
81 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
82 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
83 EXPORT_SYMBOL(jbd2_journal_force_commit);
85 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
86 static void __journal_abort_soft (journal_t *journal, int errno);
89 * Helper function used to manage commit timeouts
92 static void commit_timeout(unsigned long __data)
94 struct task_struct * p = (struct task_struct *) __data;
100 * kjournald2: The main thread function used to manage a logging device
103 * This kernel thread is responsible for two things:
105 * 1) COMMIT: Every so often we need to commit the current state of the
106 * filesystem to disk. The journal thread is responsible for writing
107 * all of the metadata buffers to disk.
109 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
110 * of the data in that part of the log has been rewritten elsewhere on
111 * the disk. Flushing these old buffers to reclaim space in the log is
112 * known as checkpointing, and this thread is responsible for that job.
115 static int kjournald2(void *arg)
117 journal_t *journal = arg;
118 transaction_t *transaction;
121 * Set up an interval timer which can be used to trigger a commit wakeup
122 * after the commit interval expires
124 setup_timer(&journal->j_commit_timer, commit_timeout,
125 (unsigned long)current);
127 /* Record that the journal thread is running */
128 journal->j_task = current;
129 wake_up(&journal->j_wait_done_commit);
131 printk(KERN_INFO "kjournald2 starting. Commit interval %ld seconds\n",
132 journal->j_commit_interval / HZ);
135 * And now, wait forever for commit wakeup events.
137 spin_lock(&journal->j_state_lock);
140 if (journal->j_flags & JBD2_UNMOUNT)
143 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
144 journal->j_commit_sequence, journal->j_commit_request);
146 if (journal->j_commit_sequence != journal->j_commit_request) {
147 jbd_debug(1, "OK, requests differ\n");
148 spin_unlock(&journal->j_state_lock);
149 del_timer_sync(&journal->j_commit_timer);
150 jbd2_journal_commit_transaction(journal);
151 spin_lock(&journal->j_state_lock);
155 wake_up(&journal->j_wait_done_commit);
156 if (freezing(current)) {
158 * The simpler the better. Flushing journal isn't a
159 * good idea, because that depends on threads that may
160 * be already stopped.
162 jbd_debug(1, "Now suspending kjournald2\n");
163 spin_unlock(&journal->j_state_lock);
165 spin_lock(&journal->j_state_lock);
168 * We assume on resume that commits are already there,
172 int should_sleep = 1;
174 prepare_to_wait(&journal->j_wait_commit, &wait,
176 if (journal->j_commit_sequence != journal->j_commit_request)
178 transaction = journal->j_running_transaction;
179 if (transaction && time_after_eq(jiffies,
180 transaction->t_expires))
182 if (journal->j_flags & JBD2_UNMOUNT)
185 spin_unlock(&journal->j_state_lock);
187 spin_lock(&journal->j_state_lock);
189 finish_wait(&journal->j_wait_commit, &wait);
192 jbd_debug(1, "kjournald2 wakes\n");
195 * Were we woken up by a commit wakeup event?
197 transaction = journal->j_running_transaction;
198 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
199 journal->j_commit_request = transaction->t_tid;
200 jbd_debug(1, "woke because of timeout\n");
205 spin_unlock(&journal->j_state_lock);
206 del_timer_sync(&journal->j_commit_timer);
207 journal->j_task = NULL;
208 wake_up(&journal->j_wait_done_commit);
209 jbd_debug(1, "Journal thread exiting.\n");
213 static int jbd2_journal_start_thread(journal_t *journal)
215 struct task_struct *t;
217 t = kthread_run(kjournald2, journal, "kjournald2");
221 wait_event(journal->j_wait_done_commit, journal->j_task != 0);
225 static void journal_kill_thread(journal_t *journal)
227 spin_lock(&journal->j_state_lock);
228 journal->j_flags |= JBD2_UNMOUNT;
230 while (journal->j_task) {
231 wake_up(&journal->j_wait_commit);
232 spin_unlock(&journal->j_state_lock);
233 wait_event(journal->j_wait_done_commit, journal->j_task == 0);
234 spin_lock(&journal->j_state_lock);
236 spin_unlock(&journal->j_state_lock);
240 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
242 * Writes a metadata buffer to a given disk block. The actual IO is not
243 * performed but a new buffer_head is constructed which labels the data
244 * to be written with the correct destination disk block.
246 * Any magic-number escaping which needs to be done will cause a
247 * copy-out here. If the buffer happens to start with the
248 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
249 * magic number is only written to the log for descripter blocks. In
250 * this case, we copy the data and replace the first word with 0, and we
251 * return a result code which indicates that this buffer needs to be
252 * marked as an escaped buffer in the corresponding log descriptor
253 * block. The missing word can then be restored when the block is read
256 * If the source buffer has already been modified by a new transaction
257 * since we took the last commit snapshot, we use the frozen copy of
258 * that data for IO. If we end up using the existing buffer_head's data
259 * for the write, then we *have* to lock the buffer to prevent anyone
260 * else from using and possibly modifying it while the IO is in
263 * The function returns a pointer to the buffer_heads to be used for IO.
265 * We assume that the journal has already been locked in this function.
272 * Bit 0 set == escape performed on the data
273 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
276 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
277 struct journal_head *jh_in,
278 struct journal_head **jh_out,
279 unsigned long long blocknr)
281 int need_copy_out = 0;
282 int done_copy_out = 0;
285 struct buffer_head *new_bh;
286 struct journal_head *new_jh;
287 struct page *new_page;
288 unsigned int new_offset;
289 struct buffer_head *bh_in = jh2bh(jh_in);
292 * The buffer really shouldn't be locked: only the current committing
293 * transaction is allowed to write it, so nobody else is allowed
296 * akpm: except if we're journalling data, and write() output is
297 * also part of a shared mapping, and another thread has
298 * decided to launch a writepage() against this buffer.
300 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
302 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
305 * If a new transaction has already done a buffer copy-out, then
306 * we use that version of the data for the commit.
308 jbd_lock_bh_state(bh_in);
310 if (jh_in->b_frozen_data) {
312 new_page = virt_to_page(jh_in->b_frozen_data);
313 new_offset = offset_in_page(jh_in->b_frozen_data);
315 new_page = jh2bh(jh_in)->b_page;
316 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
319 mapped_data = kmap_atomic(new_page, KM_USER0);
323 if (*((__be32 *)(mapped_data + new_offset)) ==
324 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
328 kunmap_atomic(mapped_data, KM_USER0);
331 * Do we need to do a data copy?
333 if (need_copy_out && !done_copy_out) {
336 jbd_unlock_bh_state(bh_in);
337 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
338 jbd_lock_bh_state(bh_in);
339 if (jh_in->b_frozen_data) {
340 jbd2_free(tmp, bh_in->b_size);
344 jh_in->b_frozen_data = tmp;
345 mapped_data = kmap_atomic(new_page, KM_USER0);
346 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
347 kunmap_atomic(mapped_data, KM_USER0);
349 new_page = virt_to_page(tmp);
350 new_offset = offset_in_page(tmp);
355 * Did we need to do an escaping? Now we've done all the
356 * copying, we can finally do so.
359 mapped_data = kmap_atomic(new_page, KM_USER0);
360 *((unsigned int *)(mapped_data + new_offset)) = 0;
361 kunmap_atomic(mapped_data, KM_USER0);
364 /* keep subsequent assertions sane */
366 init_buffer(new_bh, NULL, NULL);
367 atomic_set(&new_bh->b_count, 1);
368 jbd_unlock_bh_state(bh_in);
370 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
372 set_bh_page(new_bh, new_page, new_offset);
373 new_jh->b_transaction = NULL;
374 new_bh->b_size = jh2bh(jh_in)->b_size;
375 new_bh->b_bdev = transaction->t_journal->j_dev;
376 new_bh->b_blocknr = blocknr;
377 set_buffer_mapped(new_bh);
378 set_buffer_dirty(new_bh);
383 * The to-be-written buffer needs to get moved to the io queue,
384 * and the original buffer whose contents we are shadowing or
385 * copying is moved to the transaction's shadow queue.
387 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
388 jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
389 JBUFFER_TRACE(new_jh, "file as BJ_IO");
390 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
392 return do_escape | (done_copy_out << 1);
396 * Allocation code for the journal file. Manage the space left in the
397 * journal, so that we can begin checkpointing when appropriate.
401 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
403 * Called with the journal already locked.
405 * Called under j_state_lock
408 int __jbd2_log_space_left(journal_t *journal)
410 int left = journal->j_free;
412 assert_spin_locked(&journal->j_state_lock);
415 * Be pessimistic here about the number of those free blocks which
416 * might be required for log descriptor control blocks.
419 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
421 left -= MIN_LOG_RESERVED_BLOCKS;
430 * Called under j_state_lock. Returns true if a transaction was started.
432 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
435 * Are we already doing a recent enough commit?
437 if (!tid_geq(journal->j_commit_request, target)) {
439 * We want a new commit: OK, mark the request and wakup the
440 * commit thread. We do _not_ do the commit ourselves.
443 journal->j_commit_request = target;
444 jbd_debug(1, "JBD: requesting commit %d/%d\n",
445 journal->j_commit_request,
446 journal->j_commit_sequence);
447 wake_up(&journal->j_wait_commit);
453 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
457 spin_lock(&journal->j_state_lock);
458 ret = __jbd2_log_start_commit(journal, tid);
459 spin_unlock(&journal->j_state_lock);
464 * Force and wait upon a commit if the calling process is not within
465 * transaction. This is used for forcing out undo-protected data which contains
466 * bitmaps, when the fs is running out of space.
468 * We can only force the running transaction if we don't have an active handle;
469 * otherwise, we will deadlock.
471 * Returns true if a transaction was started.
473 int jbd2_journal_force_commit_nested(journal_t *journal)
475 transaction_t *transaction = NULL;
478 spin_lock(&journal->j_state_lock);
479 if (journal->j_running_transaction && !current->journal_info) {
480 transaction = journal->j_running_transaction;
481 __jbd2_log_start_commit(journal, transaction->t_tid);
482 } else if (journal->j_committing_transaction)
483 transaction = journal->j_committing_transaction;
486 spin_unlock(&journal->j_state_lock);
487 return 0; /* Nothing to retry */
490 tid = transaction->t_tid;
491 spin_unlock(&journal->j_state_lock);
492 jbd2_log_wait_commit(journal, tid);
497 * Start a commit of the current running transaction (if any). Returns true
498 * if a transaction was started, and fills its tid in at *ptid
500 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
504 spin_lock(&journal->j_state_lock);
505 if (journal->j_running_transaction) {
506 tid_t tid = journal->j_running_transaction->t_tid;
508 ret = __jbd2_log_start_commit(journal, tid);
511 } else if (journal->j_committing_transaction && ptid) {
513 * If ext3_write_super() recently started a commit, then we
514 * have to wait for completion of that transaction
516 *ptid = journal->j_committing_transaction->t_tid;
519 spin_unlock(&journal->j_state_lock);
524 * Wait for a specified commit to complete.
525 * The caller may not hold the journal lock.
527 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
531 #ifdef CONFIG_JBD2_DEBUG
532 spin_lock(&journal->j_state_lock);
533 if (!tid_geq(journal->j_commit_request, tid)) {
535 "%s: error: j_commit_request=%d, tid=%d\n",
536 __FUNCTION__, journal->j_commit_request, tid);
538 spin_unlock(&journal->j_state_lock);
540 spin_lock(&journal->j_state_lock);
541 while (tid_gt(tid, journal->j_commit_sequence)) {
542 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
543 tid, journal->j_commit_sequence);
544 wake_up(&journal->j_wait_commit);
545 spin_unlock(&journal->j_state_lock);
546 wait_event(journal->j_wait_done_commit,
547 !tid_gt(tid, journal->j_commit_sequence));
548 spin_lock(&journal->j_state_lock);
550 spin_unlock(&journal->j_state_lock);
552 if (unlikely(is_journal_aborted(journal))) {
553 printk(KERN_EMERG "journal commit I/O error\n");
560 * Log buffer allocation routines:
563 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
565 unsigned long blocknr;
567 spin_lock(&journal->j_state_lock);
568 J_ASSERT(journal->j_free > 1);
570 blocknr = journal->j_head;
573 if (journal->j_head == journal->j_last)
574 journal->j_head = journal->j_first;
575 spin_unlock(&journal->j_state_lock);
576 return jbd2_journal_bmap(journal, blocknr, retp);
580 * Conversion of logical to physical block numbers for the journal
582 * On external journals the journal blocks are identity-mapped, so
583 * this is a no-op. If needed, we can use j_blk_offset - everything is
586 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
587 unsigned long long *retp)
590 unsigned long long ret;
592 if (journal->j_inode) {
593 ret = bmap(journal->j_inode, blocknr);
597 char b[BDEVNAME_SIZE];
599 printk(KERN_ALERT "%s: journal block not found "
600 "at offset %lu on %s\n",
603 bdevname(journal->j_dev, b));
605 __journal_abort_soft(journal, err);
608 *retp = blocknr; /* +journal->j_blk_offset */
614 * We play buffer_head aliasing tricks to write data/metadata blocks to
615 * the journal without copying their contents, but for journal
616 * descriptor blocks we do need to generate bona fide buffers.
618 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
619 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
620 * But we don't bother doing that, so there will be coherency problems with
621 * mmaps of blockdevs which hold live JBD-controlled filesystems.
623 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
625 struct buffer_head *bh;
626 unsigned long long blocknr;
629 err = jbd2_journal_next_log_block(journal, &blocknr);
634 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
636 memset(bh->b_data, 0, journal->j_blocksize);
637 set_buffer_uptodate(bh);
639 BUFFER_TRACE(bh, "return this buffer");
640 return jbd2_journal_add_journal_head(bh);
644 * Management for journal control blocks: functions to create and
645 * destroy journal_t structures, and to initialise and read existing
646 * journal blocks from disk. */
648 /* First: create and setup a journal_t object in memory. We initialise
649 * very few fields yet: that has to wait until we have created the
650 * journal structures from from scratch, or loaded them from disk. */
652 static journal_t * journal_init_common (void)
657 journal = kzalloc(sizeof(*journal), GFP_KERNEL|__GFP_NOFAIL);
661 init_waitqueue_head(&journal->j_wait_transaction_locked);
662 init_waitqueue_head(&journal->j_wait_logspace);
663 init_waitqueue_head(&journal->j_wait_done_commit);
664 init_waitqueue_head(&journal->j_wait_checkpoint);
665 init_waitqueue_head(&journal->j_wait_commit);
666 init_waitqueue_head(&journal->j_wait_updates);
667 mutex_init(&journal->j_barrier);
668 mutex_init(&journal->j_checkpoint_mutex);
669 spin_lock_init(&journal->j_revoke_lock);
670 spin_lock_init(&journal->j_list_lock);
671 spin_lock_init(&journal->j_state_lock);
673 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
675 /* The journal is marked for error until we succeed with recovery! */
676 journal->j_flags = JBD2_ABORT;
678 /* Set up a default-sized revoke table for the new mount. */
679 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
689 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
691 * Create a journal structure assigned some fixed set of disk blocks to
692 * the journal. We don't actually touch those disk blocks yet, but we
693 * need to set up all of the mapping information to tell the journaling
694 * system where the journal blocks are.
699 * journal_t * jbd2_journal_init_dev() - creates an initialises a journal structure
700 * @bdev: Block device on which to create the journal
701 * @fs_dev: Device which hold journalled filesystem for this journal.
702 * @start: Block nr Start of journal.
703 * @len: Length of the journal in blocks.
704 * @blocksize: blocksize of journalling device
705 * @returns: a newly created journal_t *
707 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
708 * range of blocks on an arbitrary block device.
711 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
712 struct block_device *fs_dev,
713 unsigned long long start, int len, int blocksize)
715 journal_t *journal = journal_init_common();
716 struct buffer_head *bh;
722 /* journal descriptor can store up to n blocks -bzzz */
723 journal->j_blocksize = blocksize;
724 n = journal->j_blocksize / sizeof(journal_block_tag_t);
725 journal->j_wbufsize = n;
726 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
727 if (!journal->j_wbuf) {
728 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
734 journal->j_dev = bdev;
735 journal->j_fs_dev = fs_dev;
736 journal->j_blk_offset = start;
737 journal->j_maxlen = len;
739 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
740 J_ASSERT(bh != NULL);
741 journal->j_sb_buffer = bh;
742 journal->j_superblock = (journal_superblock_t *)bh->b_data;
748 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
749 * @inode: An inode to create the journal in
751 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
752 * the journal. The inode must exist already, must support bmap() and
753 * must have all data blocks preallocated.
755 journal_t * jbd2_journal_init_inode (struct inode *inode)
757 struct buffer_head *bh;
758 journal_t *journal = journal_init_common();
761 unsigned long long blocknr;
766 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
767 journal->j_inode = inode;
769 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
770 journal, inode->i_sb->s_id, inode->i_ino,
771 (long long) inode->i_size,
772 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
774 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
775 journal->j_blocksize = inode->i_sb->s_blocksize;
777 /* journal descriptor can store up to n blocks -bzzz */
778 n = journal->j_blocksize / sizeof(journal_block_tag_t);
779 journal->j_wbufsize = n;
780 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
781 if (!journal->j_wbuf) {
782 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
788 err = jbd2_journal_bmap(journal, 0, &blocknr);
789 /* If that failed, give up */
791 printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
797 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
798 J_ASSERT(bh != NULL);
799 journal->j_sb_buffer = bh;
800 journal->j_superblock = (journal_superblock_t *)bh->b_data;
806 * If the journal init or create aborts, we need to mark the journal
807 * superblock as being NULL to prevent the journal destroy from writing
808 * back a bogus superblock.
810 static void journal_fail_superblock (journal_t *journal)
812 struct buffer_head *bh = journal->j_sb_buffer;
814 journal->j_sb_buffer = NULL;
818 * Given a journal_t structure, initialise the various fields for
819 * startup of a new journaling session. We use this both when creating
820 * a journal, and after recovering an old journal to reset it for
824 static int journal_reset(journal_t *journal)
826 journal_superblock_t *sb = journal->j_superblock;
827 unsigned long long first, last;
829 first = be32_to_cpu(sb->s_first);
830 last = be32_to_cpu(sb->s_maxlen);
832 journal->j_first = first;
833 journal->j_last = last;
835 journal->j_head = first;
836 journal->j_tail = first;
837 journal->j_free = last - first;
839 journal->j_tail_sequence = journal->j_transaction_sequence;
840 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
841 journal->j_commit_request = journal->j_commit_sequence;
843 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
845 /* Add the dynamic fields and write it to disk. */
846 jbd2_journal_update_superblock(journal, 1);
847 return jbd2_journal_start_thread(journal);
851 * int jbd2_journal_create() - Initialise the new journal file
852 * @journal: Journal to create. This structure must have been initialised
854 * Given a journal_t structure which tells us which disk blocks we can
855 * use, create a new journal superblock and initialise all of the
856 * journal fields from scratch.
858 int jbd2_journal_create(journal_t *journal)
860 unsigned long long blocknr;
861 struct buffer_head *bh;
862 journal_superblock_t *sb;
865 if (journal->j_maxlen < JBD2_MIN_JOURNAL_BLOCKS) {
866 printk (KERN_ERR "Journal length (%d blocks) too short.\n",
868 journal_fail_superblock(journal);
872 if (journal->j_inode == NULL) {
874 * We don't know what block to start at!
877 "%s: creation of journal on external device!\n",
882 /* Zero out the entire journal on disk. We cannot afford to
883 have any blocks on disk beginning with JBD2_MAGIC_NUMBER. */
884 jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
885 for (i = 0; i < journal->j_maxlen; i++) {
886 err = jbd2_journal_bmap(journal, i, &blocknr);
889 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
891 memset (bh->b_data, 0, journal->j_blocksize);
892 BUFFER_TRACE(bh, "marking dirty");
893 mark_buffer_dirty(bh);
894 BUFFER_TRACE(bh, "marking uptodate");
895 set_buffer_uptodate(bh);
900 sync_blockdev(journal->j_dev);
901 jbd_debug(1, "JBD: journal cleared.\n");
903 /* OK, fill in the initial static fields in the new superblock */
904 sb = journal->j_superblock;
906 sb->s_header.h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
907 sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
909 sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
910 sb->s_maxlen = cpu_to_be32(journal->j_maxlen);
911 sb->s_first = cpu_to_be32(1);
913 journal->j_transaction_sequence = 1;
915 journal->j_flags &= ~JBD2_ABORT;
916 journal->j_format_version = 2;
918 return journal_reset(journal);
922 * void jbd2_journal_update_superblock() - Update journal sb on disk.
923 * @journal: The journal to update.
924 * @wait: Set to '0' if you don't want to wait for IO completion.
926 * Update a journal's dynamic superblock fields and write it to disk,
927 * optionally waiting for the IO to complete.
929 void jbd2_journal_update_superblock(journal_t *journal, int wait)
931 journal_superblock_t *sb = journal->j_superblock;
932 struct buffer_head *bh = journal->j_sb_buffer;
935 * As a special case, if the on-disk copy is already marked as needing
936 * no recovery (s_start == 0) and there are no outstanding transactions
937 * in the filesystem, then we can safely defer the superblock update
938 * until the next commit by setting JBD2_FLUSHED. This avoids
939 * attempting a write to a potential-readonly device.
941 if (sb->s_start == 0 && journal->j_tail_sequence ==
942 journal->j_transaction_sequence) {
943 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
944 "(start %ld, seq %d, errno %d)\n",
945 journal->j_tail, journal->j_tail_sequence,
950 spin_lock(&journal->j_state_lock);
951 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
952 journal->j_tail, journal->j_tail_sequence, journal->j_errno);
954 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
955 sb->s_start = cpu_to_be32(journal->j_tail);
956 sb->s_errno = cpu_to_be32(journal->j_errno);
957 spin_unlock(&journal->j_state_lock);
959 BUFFER_TRACE(bh, "marking dirty");
960 mark_buffer_dirty(bh);
962 sync_dirty_buffer(bh);
964 ll_rw_block(SWRITE, 1, &bh);
967 /* If we have just flushed the log (by marking s_start==0), then
968 * any future commit will have to be careful to update the
969 * superblock again to re-record the true start of the log. */
971 spin_lock(&journal->j_state_lock);
973 journal->j_flags &= ~JBD2_FLUSHED;
975 journal->j_flags |= JBD2_FLUSHED;
976 spin_unlock(&journal->j_state_lock);
980 * Read the superblock for a given journal, performing initial
981 * validation of the format.
984 static int journal_get_superblock(journal_t *journal)
986 struct buffer_head *bh;
987 journal_superblock_t *sb;
990 bh = journal->j_sb_buffer;
992 J_ASSERT(bh != NULL);
993 if (!buffer_uptodate(bh)) {
994 ll_rw_block(READ, 1, &bh);
996 if (!buffer_uptodate(bh)) {
998 "JBD: IO error reading journal superblock\n");
1003 sb = journal->j_superblock;
1007 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1008 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1009 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1013 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1014 case JBD2_SUPERBLOCK_V1:
1015 journal->j_format_version = 1;
1017 case JBD2_SUPERBLOCK_V2:
1018 journal->j_format_version = 2;
1021 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1025 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1026 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1027 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1028 printk (KERN_WARNING "JBD: journal file too short\n");
1035 journal_fail_superblock(journal);
1040 * Load the on-disk journal superblock and read the key fields into the
1044 static int load_superblock(journal_t *journal)
1047 journal_superblock_t *sb;
1049 err = journal_get_superblock(journal);
1053 sb = journal->j_superblock;
1055 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1056 journal->j_tail = be32_to_cpu(sb->s_start);
1057 journal->j_first = be32_to_cpu(sb->s_first);
1058 journal->j_last = be32_to_cpu(sb->s_maxlen);
1059 journal->j_errno = be32_to_cpu(sb->s_errno);
1066 * int jbd2_journal_load() - Read journal from disk.
1067 * @journal: Journal to act on.
1069 * Given a journal_t structure which tells us which disk blocks contain
1070 * a journal, read the journal from disk to initialise the in-memory
1073 int jbd2_journal_load(journal_t *journal)
1076 journal_superblock_t *sb;
1078 err = load_superblock(journal);
1082 sb = journal->j_superblock;
1083 /* If this is a V2 superblock, then we have to check the
1084 * features flags on it. */
1086 if (journal->j_format_version >= 2) {
1087 if ((sb->s_feature_ro_compat &
1088 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1089 (sb->s_feature_incompat &
1090 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1091 printk (KERN_WARNING
1092 "JBD: Unrecognised features on journal\n");
1097 /* Let the recovery code check whether it needs to recover any
1098 * data from the journal. */
1099 if (jbd2_journal_recover(journal))
1100 goto recovery_error;
1102 /* OK, we've finished with the dynamic journal bits:
1103 * reinitialise the dynamic contents of the superblock in memory
1104 * and reset them on disk. */
1105 if (journal_reset(journal))
1106 goto recovery_error;
1108 journal->j_flags &= ~JBD2_ABORT;
1109 journal->j_flags |= JBD2_LOADED;
1113 printk (KERN_WARNING "JBD: recovery failed\n");
1118 * void jbd2_journal_destroy() - Release a journal_t structure.
1119 * @journal: Journal to act on.
1121 * Release a journal_t structure once it is no longer in use by the
1124 void jbd2_journal_destroy(journal_t *journal)
1126 /* Wait for the commit thread to wake up and die. */
1127 journal_kill_thread(journal);
1129 /* Force a final log commit */
1130 if (journal->j_running_transaction)
1131 jbd2_journal_commit_transaction(journal);
1133 /* Force any old transactions to disk */
1135 /* Totally anal locking here... */
1136 spin_lock(&journal->j_list_lock);
1137 while (journal->j_checkpoint_transactions != NULL) {
1138 spin_unlock(&journal->j_list_lock);
1139 jbd2_log_do_checkpoint(journal);
1140 spin_lock(&journal->j_list_lock);
1143 J_ASSERT(journal->j_running_transaction == NULL);
1144 J_ASSERT(journal->j_committing_transaction == NULL);
1145 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1146 spin_unlock(&journal->j_list_lock);
1148 /* We can now mark the journal as empty. */
1149 journal->j_tail = 0;
1150 journal->j_tail_sequence = ++journal->j_transaction_sequence;
1151 if (journal->j_sb_buffer) {
1152 jbd2_journal_update_superblock(journal, 1);
1153 brelse(journal->j_sb_buffer);
1156 if (journal->j_inode)
1157 iput(journal->j_inode);
1158 if (journal->j_revoke)
1159 jbd2_journal_destroy_revoke(journal);
1160 kfree(journal->j_wbuf);
1166 *int jbd2_journal_check_used_features () - Check if features specified are used.
1167 * @journal: Journal to check.
1168 * @compat: bitmask of compatible features
1169 * @ro: bitmask of features that force read-only mount
1170 * @incompat: bitmask of incompatible features
1172 * Check whether the journal uses all of a given set of
1173 * features. Return true (non-zero) if it does.
1176 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1177 unsigned long ro, unsigned long incompat)
1179 journal_superblock_t *sb;
1181 if (!compat && !ro && !incompat)
1183 if (journal->j_format_version == 1)
1186 sb = journal->j_superblock;
1188 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1189 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1190 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1197 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1198 * @journal: Journal to check.
1199 * @compat: bitmask of compatible features
1200 * @ro: bitmask of features that force read-only mount
1201 * @incompat: bitmask of incompatible features
1203 * Check whether the journaling code supports the use of
1204 * all of a given set of features on this journal. Return true
1205 * (non-zero) if it can. */
1207 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1208 unsigned long ro, unsigned long incompat)
1210 journal_superblock_t *sb;
1212 if (!compat && !ro && !incompat)
1215 sb = journal->j_superblock;
1217 /* We can support any known requested features iff the
1218 * superblock is in version 2. Otherwise we fail to support any
1219 * extended sb features. */
1221 if (journal->j_format_version != 2)
1224 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1225 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1226 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1233 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1234 * @journal: Journal to act on.
1235 * @compat: bitmask of compatible features
1236 * @ro: bitmask of features that force read-only mount
1237 * @incompat: bitmask of incompatible features
1239 * Mark a given journal feature as present on the
1240 * superblock. Returns true if the requested features could be set.
1244 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1245 unsigned long ro, unsigned long incompat)
1247 journal_superblock_t *sb;
1249 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1252 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1255 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1256 compat, ro, incompat);
1258 sb = journal->j_superblock;
1260 sb->s_feature_compat |= cpu_to_be32(compat);
1261 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1262 sb->s_feature_incompat |= cpu_to_be32(incompat);
1269 * int jbd2_journal_update_format () - Update on-disk journal structure.
1270 * @journal: Journal to act on.
1272 * Given an initialised but unloaded journal struct, poke about in the
1273 * on-disk structure to update it to the most recent supported version.
1275 int jbd2_journal_update_format (journal_t *journal)
1277 journal_superblock_t *sb;
1280 err = journal_get_superblock(journal);
1284 sb = journal->j_superblock;
1286 switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1287 case JBD2_SUPERBLOCK_V2:
1289 case JBD2_SUPERBLOCK_V1:
1290 return journal_convert_superblock_v1(journal, sb);
1297 static int journal_convert_superblock_v1(journal_t *journal,
1298 journal_superblock_t *sb)
1300 int offset, blocksize;
1301 struct buffer_head *bh;
1304 "JBD: Converting superblock from version 1 to 2.\n");
1306 /* Pre-initialise new fields to zero */
1307 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1308 blocksize = be32_to_cpu(sb->s_blocksize);
1309 memset(&sb->s_feature_compat, 0, blocksize-offset);
1311 sb->s_nr_users = cpu_to_be32(1);
1312 sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1313 journal->j_format_version = 2;
1315 bh = journal->j_sb_buffer;
1316 BUFFER_TRACE(bh, "marking dirty");
1317 mark_buffer_dirty(bh);
1318 sync_dirty_buffer(bh);
1324 * int jbd2_journal_flush () - Flush journal
1325 * @journal: Journal to act on.
1327 * Flush all data for a given journal to disk and empty the journal.
1328 * Filesystems can use this when remounting readonly to ensure that
1329 * recovery does not need to happen on remount.
1332 int jbd2_journal_flush(journal_t *journal)
1335 transaction_t *transaction = NULL;
1336 unsigned long old_tail;
1338 spin_lock(&journal->j_state_lock);
1340 /* Force everything buffered to the log... */
1341 if (journal->j_running_transaction) {
1342 transaction = journal->j_running_transaction;
1343 __jbd2_log_start_commit(journal, transaction->t_tid);
1344 } else if (journal->j_committing_transaction)
1345 transaction = journal->j_committing_transaction;
1347 /* Wait for the log commit to complete... */
1349 tid_t tid = transaction->t_tid;
1351 spin_unlock(&journal->j_state_lock);
1352 jbd2_log_wait_commit(journal, tid);
1354 spin_unlock(&journal->j_state_lock);
1357 /* ...and flush everything in the log out to disk. */
1358 spin_lock(&journal->j_list_lock);
1359 while (!err && journal->j_checkpoint_transactions != NULL) {
1360 spin_unlock(&journal->j_list_lock);
1361 err = jbd2_log_do_checkpoint(journal);
1362 spin_lock(&journal->j_list_lock);
1364 spin_unlock(&journal->j_list_lock);
1365 jbd2_cleanup_journal_tail(journal);
1367 /* Finally, mark the journal as really needing no recovery.
1368 * This sets s_start==0 in the underlying superblock, which is
1369 * the magic code for a fully-recovered superblock. Any future
1370 * commits of data to the journal will restore the current
1372 spin_lock(&journal->j_state_lock);
1373 old_tail = journal->j_tail;
1374 journal->j_tail = 0;
1375 spin_unlock(&journal->j_state_lock);
1376 jbd2_journal_update_superblock(journal, 1);
1377 spin_lock(&journal->j_state_lock);
1378 journal->j_tail = old_tail;
1380 J_ASSERT(!journal->j_running_transaction);
1381 J_ASSERT(!journal->j_committing_transaction);
1382 J_ASSERT(!journal->j_checkpoint_transactions);
1383 J_ASSERT(journal->j_head == journal->j_tail);
1384 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1385 spin_unlock(&journal->j_state_lock);
1390 * int jbd2_journal_wipe() - Wipe journal contents
1391 * @journal: Journal to act on.
1392 * @write: flag (see below)
1394 * Wipe out all of the contents of a journal, safely. This will produce
1395 * a warning if the journal contains any valid recovery information.
1396 * Must be called between journal_init_*() and jbd2_journal_load().
1398 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1399 * we merely suppress recovery.
1402 int jbd2_journal_wipe(journal_t *journal, int write)
1404 journal_superblock_t *sb;
1407 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1409 err = load_superblock(journal);
1413 sb = journal->j_superblock;
1415 if (!journal->j_tail)
1418 printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1419 write ? "Clearing" : "Ignoring");
1421 err = jbd2_journal_skip_recovery(journal);
1423 jbd2_journal_update_superblock(journal, 1);
1430 * journal_dev_name: format a character string to describe on what
1431 * device this journal is present.
1434 static const char *journal_dev_name(journal_t *journal, char *buffer)
1436 struct block_device *bdev;
1438 if (journal->j_inode)
1439 bdev = journal->j_inode->i_sb->s_bdev;
1441 bdev = journal->j_dev;
1443 return bdevname(bdev, buffer);
1447 * Journal abort has very specific semantics, which we describe
1448 * for journal abort.
1450 * Two internal function, which provide abort to te jbd layer
1455 * Quick version for internal journal use (doesn't lock the journal).
1456 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1457 * and don't attempt to make any other journal updates.
1459 void __jbd2_journal_abort_hard(journal_t *journal)
1461 transaction_t *transaction;
1462 char b[BDEVNAME_SIZE];
1464 if (journal->j_flags & JBD2_ABORT)
1467 printk(KERN_ERR "Aborting journal on device %s.\n",
1468 journal_dev_name(journal, b));
1470 spin_lock(&journal->j_state_lock);
1471 journal->j_flags |= JBD2_ABORT;
1472 transaction = journal->j_running_transaction;
1474 __jbd2_log_start_commit(journal, transaction->t_tid);
1475 spin_unlock(&journal->j_state_lock);
1478 /* Soft abort: record the abort error status in the journal superblock,
1479 * but don't do any other IO. */
1480 static void __journal_abort_soft (journal_t *journal, int errno)
1482 if (journal->j_flags & JBD2_ABORT)
1485 if (!journal->j_errno)
1486 journal->j_errno = errno;
1488 __jbd2_journal_abort_hard(journal);
1491 jbd2_journal_update_superblock(journal, 1);
1495 * void jbd2_journal_abort () - Shutdown the journal immediately.
1496 * @journal: the journal to shutdown.
1497 * @errno: an error number to record in the journal indicating
1498 * the reason for the shutdown.
1500 * Perform a complete, immediate shutdown of the ENTIRE
1501 * journal (not of a single transaction). This operation cannot be
1502 * undone without closing and reopening the journal.
1504 * The jbd2_journal_abort function is intended to support higher level error
1505 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1508 * Journal abort has very specific semantics. Any existing dirty,
1509 * unjournaled buffers in the main filesystem will still be written to
1510 * disk by bdflush, but the journaling mechanism will be suspended
1511 * immediately and no further transaction commits will be honoured.
1513 * Any dirty, journaled buffers will be written back to disk without
1514 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1515 * filesystem, but we _do_ attempt to leave as much data as possible
1516 * behind for fsck to use for cleanup.
1518 * Any attempt to get a new transaction handle on a journal which is in
1519 * ABORT state will just result in an -EROFS error return. A
1520 * jbd2_journal_stop on an existing handle will return -EIO if we have
1521 * entered abort state during the update.
1523 * Recursive transactions are not disturbed by journal abort until the
1524 * final jbd2_journal_stop, which will receive the -EIO error.
1526 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1527 * which will be recorded (if possible) in the journal superblock. This
1528 * allows a client to record failure conditions in the middle of a
1529 * transaction without having to complete the transaction to record the
1530 * failure to disk. ext3_error, for example, now uses this
1533 * Errors which originate from within the journaling layer will NOT
1534 * supply an errno; a null errno implies that absolutely no further
1535 * writes are done to the journal (unless there are any already in
1540 void jbd2_journal_abort(journal_t *journal, int errno)
1542 __journal_abort_soft(journal, errno);
1546 * int jbd2_journal_errno () - returns the journal's error state.
1547 * @journal: journal to examine.
1549 * This is the errno numbet set with jbd2_journal_abort(), the last
1550 * time the journal was mounted - if the journal was stopped
1551 * without calling abort this will be 0.
1553 * If the journal has been aborted on this mount time -EROFS will
1556 int jbd2_journal_errno(journal_t *journal)
1560 spin_lock(&journal->j_state_lock);
1561 if (journal->j_flags & JBD2_ABORT)
1564 err = journal->j_errno;
1565 spin_unlock(&journal->j_state_lock);
1570 * int jbd2_journal_clear_err () - clears the journal's error state
1571 * @journal: journal to act on.
1573 * An error must be cleared or Acked to take a FS out of readonly
1576 int jbd2_journal_clear_err(journal_t *journal)
1580 spin_lock(&journal->j_state_lock);
1581 if (journal->j_flags & JBD2_ABORT)
1584 journal->j_errno = 0;
1585 spin_unlock(&journal->j_state_lock);
1590 * void jbd2_journal_ack_err() - Ack journal err.
1591 * @journal: journal to act on.
1593 * An error must be cleared or Acked to take a FS out of readonly
1596 void jbd2_journal_ack_err(journal_t *journal)
1598 spin_lock(&journal->j_state_lock);
1599 if (journal->j_errno)
1600 journal->j_flags |= JBD2_ACK_ERR;
1601 spin_unlock(&journal->j_state_lock);
1604 int jbd2_journal_blocks_per_page(struct inode *inode)
1606 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1610 * helper functions to deal with 32 or 64bit block numbers.
1612 size_t journal_tag_bytes(journal_t *journal)
1614 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1615 return JBD2_TAG_SIZE64;
1617 return JBD2_TAG_SIZE32;
1621 * Journal_head storage management
1623 static struct kmem_cache *jbd2_journal_head_cache;
1624 #ifdef CONFIG_JBD2_DEBUG
1625 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1628 static int journal_init_jbd2_journal_head_cache(void)
1632 J_ASSERT(jbd2_journal_head_cache == 0);
1633 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1634 sizeof(struct journal_head),
1639 if (jbd2_journal_head_cache == 0) {
1641 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1646 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1648 J_ASSERT(jbd2_journal_head_cache != NULL);
1649 kmem_cache_destroy(jbd2_journal_head_cache);
1650 jbd2_journal_head_cache = NULL;
1654 * journal_head splicing and dicing
1656 static struct journal_head *journal_alloc_journal_head(void)
1658 struct journal_head *ret;
1659 static unsigned long last_warning;
1661 #ifdef CONFIG_JBD2_DEBUG
1662 atomic_inc(&nr_journal_heads);
1664 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1666 jbd_debug(1, "out of memory for journal_head\n");
1667 if (time_after(jiffies, last_warning + 5*HZ)) {
1668 printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1670 last_warning = jiffies;
1674 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1680 static void journal_free_journal_head(struct journal_head *jh)
1682 #ifdef CONFIG_JBD2_DEBUG
1683 atomic_dec(&nr_journal_heads);
1684 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
1686 kmem_cache_free(jbd2_journal_head_cache, jh);
1690 * A journal_head is attached to a buffer_head whenever JBD has an
1691 * interest in the buffer.
1693 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1694 * is set. This bit is tested in core kernel code where we need to take
1695 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
1698 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1700 * When a buffer has its BH_JBD bit set it is immune from being released by
1701 * core kernel code, mainly via ->b_count.
1703 * A journal_head may be detached from its buffer_head when the journal_head's
1704 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1705 * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
1706 * journal_head can be dropped if needed.
1708 * Various places in the kernel want to attach a journal_head to a buffer_head
1709 * _before_ attaching the journal_head to a transaction. To protect the
1710 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
1711 * journal_head's b_jcount refcount by one. The caller must call
1712 * jbd2_journal_put_journal_head() to undo this.
1714 * So the typical usage would be:
1716 * (Attach a journal_head if needed. Increments b_jcount)
1717 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1719 * jh->b_transaction = xxx;
1720 * jbd2_journal_put_journal_head(jh);
1722 * Now, the journal_head's b_jcount is zero, but it is safe from being released
1723 * because it has a non-zero b_transaction.
1727 * Give a buffer_head a journal_head.
1729 * Doesn't need the journal lock.
1732 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
1734 struct journal_head *jh;
1735 struct journal_head *new_jh = NULL;
1738 if (!buffer_jbd(bh)) {
1739 new_jh = journal_alloc_journal_head();
1740 memset(new_jh, 0, sizeof(*new_jh));
1743 jbd_lock_bh_journal_head(bh);
1744 if (buffer_jbd(bh)) {
1748 (atomic_read(&bh->b_count) > 0) ||
1749 (bh->b_page && bh->b_page->mapping));
1752 jbd_unlock_bh_journal_head(bh);
1757 new_jh = NULL; /* We consumed it */
1762 BUFFER_TRACE(bh, "added journal_head");
1765 jbd_unlock_bh_journal_head(bh);
1767 journal_free_journal_head(new_jh);
1768 return bh->b_private;
1772 * Grab a ref against this buffer_head's journal_head. If it ended up not
1773 * having a journal_head, return NULL
1775 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
1777 struct journal_head *jh = NULL;
1779 jbd_lock_bh_journal_head(bh);
1780 if (buffer_jbd(bh)) {
1784 jbd_unlock_bh_journal_head(bh);
1788 static void __journal_remove_journal_head(struct buffer_head *bh)
1790 struct journal_head *jh = bh2jh(bh);
1792 J_ASSERT_JH(jh, jh->b_jcount >= 0);
1795 if (jh->b_jcount == 0) {
1796 if (jh->b_transaction == NULL &&
1797 jh->b_next_transaction == NULL &&
1798 jh->b_cp_transaction == NULL) {
1799 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1800 J_ASSERT_BH(bh, buffer_jbd(bh));
1801 J_ASSERT_BH(bh, jh2bh(jh) == bh);
1802 BUFFER_TRACE(bh, "remove journal_head");
1803 if (jh->b_frozen_data) {
1804 printk(KERN_WARNING "%s: freeing "
1807 jbd2_free(jh->b_frozen_data, bh->b_size);
1809 if (jh->b_committed_data) {
1810 printk(KERN_WARNING "%s: freeing "
1811 "b_committed_data\n",
1813 jbd2_free(jh->b_committed_data, bh->b_size);
1815 bh->b_private = NULL;
1816 jh->b_bh = NULL; /* debug, really */
1817 clear_buffer_jbd(bh);
1819 journal_free_journal_head(jh);
1821 BUFFER_TRACE(bh, "journal_head was locked");
1827 * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
1828 * and has a zero b_jcount then remove and release its journal_head. If we did
1829 * see that the buffer is not used by any transaction we also "logically"
1830 * decrement ->b_count.
1832 * We in fact take an additional increment on ->b_count as a convenience,
1833 * because the caller usually wants to do additional things with the bh
1834 * after calling here.
1835 * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
1836 * time. Once the caller has run __brelse(), the buffer is eligible for
1837 * reaping by try_to_free_buffers().
1839 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
1841 jbd_lock_bh_journal_head(bh);
1842 __journal_remove_journal_head(bh);
1843 jbd_unlock_bh_journal_head(bh);
1847 * Drop a reference on the passed journal_head. If it fell to zero then try to
1848 * release the journal_head from the buffer_head.
1850 void jbd2_journal_put_journal_head(struct journal_head *jh)
1852 struct buffer_head *bh = jh2bh(jh);
1854 jbd_lock_bh_journal_head(bh);
1855 J_ASSERT_JH(jh, jh->b_jcount > 0);
1857 if (!jh->b_jcount && !jh->b_transaction) {
1858 __journal_remove_journal_head(bh);
1861 jbd_unlock_bh_journal_head(bh);
1867 #ifdef CONFIG_JBD2_DEBUG
1868 u8 jbd2_journal_enable_debug __read_mostly;
1869 EXPORT_SYMBOL(jbd2_journal_enable_debug);
1871 #define JBD2_DEBUG_NAME "jbd2-debug"
1873 static struct dentry *jbd2_debugfs_dir;
1874 static struct dentry *jbd2_debug;
1876 static void __init jbd2_create_debugfs_entry(void)
1878 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
1879 if (jbd2_debugfs_dir)
1880 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME, S_IRUGO,
1882 &jbd2_journal_enable_debug);
1885 static void __exit jbd2_remove_debugfs_entry(void)
1887 debugfs_remove(jbd2_debug);
1888 debugfs_remove(jbd2_debugfs_dir);
1893 static void __init jbd2_create_debugfs_entry(void)
1897 static void __exit jbd2_remove_debugfs_entry(void)
1903 struct kmem_cache *jbd2_handle_cache;
1905 static int __init journal_init_handle_cache(void)
1907 jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
1912 if (jbd2_handle_cache == NULL) {
1913 printk(KERN_EMERG "JBD: failed to create handle cache\n");
1919 static void jbd2_journal_destroy_handle_cache(void)
1921 if (jbd2_handle_cache)
1922 kmem_cache_destroy(jbd2_handle_cache);
1926 * Module startup and shutdown
1929 static int __init journal_init_caches(void)
1933 ret = jbd2_journal_init_revoke_caches();
1935 ret = journal_init_jbd2_journal_head_cache();
1937 ret = journal_init_handle_cache();
1941 static void jbd2_journal_destroy_caches(void)
1943 jbd2_journal_destroy_revoke_caches();
1944 jbd2_journal_destroy_jbd2_journal_head_cache();
1945 jbd2_journal_destroy_handle_cache();
1948 static int __init journal_init(void)
1952 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
1954 ret = journal_init_caches();
1956 jbd2_journal_destroy_caches();
1957 jbd2_create_debugfs_entry();
1961 static void __exit journal_exit(void)
1963 #ifdef CONFIG_JBD2_DEBUG
1964 int n = atomic_read(&nr_journal_heads);
1966 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
1968 jbd2_remove_debugfs_entry();
1969 jbd2_journal_destroy_caches();
1972 MODULE_LICENSE("GPL");
1973 module_init(journal_init);
1974 module_exit(journal_exit);