USB: EHCI: add separate IAA watchdog timer
[linux-2.6] / drivers / ieee1394 / eth1394.c
1 /*
2  * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
3  *
4  * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5  *               2000 Bonin Franck <boninf@free.fr>
6  *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7  *
8  * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  */
24
25 /*
26  * This driver intends to support RFC 2734, which describes a method for
27  * transporting IPv4 datagrams over IEEE-1394 serial busses.
28  *
29  * TODO:
30  * RFC 2734 related:
31  * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
32  *
33  * Non-RFC 2734 related:
34  * - Handle fragmented skb's coming from the networking layer.
35  * - Move generic GASP reception to core 1394 code
36  * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37  * - Stability improvements
38  * - Performance enhancements
39  * - Consider garbage collecting old partial datagrams after X amount of time
40  */
41
42 #include <linux/module.h>
43
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
50 #include <linux/workqueue.h>
51
52 #include <linux/netdevice.h>
53 #include <linux/inetdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
56 #include <linux/ip.h>
57 #include <linux/in.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <linux/ethtool.h>
62 #include <asm/uaccess.h>
63 #include <asm/delay.h>
64 #include <asm/unaligned.h>
65 #include <net/arp.h>
66
67 #include "config_roms.h"
68 #include "csr1212.h"
69 #include "eth1394.h"
70 #include "highlevel.h"
71 #include "ieee1394.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_hotplug.h"
74 #include "ieee1394_transactions.h"
75 #include "ieee1394_types.h"
76 #include "iso.h"
77 #include "nodemgr.h"
78
79 #define ETH1394_PRINT_G(level, fmt, args...) \
80         printk(level "%s: " fmt, driver_name, ## args)
81
82 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
83         printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
84
85 struct fragment_info {
86         struct list_head list;
87         int offset;
88         int len;
89 };
90
91 struct partial_datagram {
92         struct list_head list;
93         u16 dgl;
94         u16 dg_size;
95         u16 ether_type;
96         struct sk_buff *skb;
97         char *pbuf;
98         struct list_head frag_info;
99 };
100
101 struct pdg_list {
102         struct list_head list;  /* partial datagram list per node       */
103         unsigned int sz;        /* partial datagram list size per node  */
104         spinlock_t lock;        /* partial datagram lock                */
105 };
106
107 struct eth1394_host_info {
108         struct hpsb_host *host;
109         struct net_device *dev;
110 };
111
112 struct eth1394_node_ref {
113         struct unit_directory *ud;
114         struct list_head list;
115 };
116
117 struct eth1394_node_info {
118         u16 maxpayload;         /* max payload                  */
119         u8 sspd;                /* max speed                    */
120         u64 fifo;               /* FIFO address                 */
121         struct pdg_list pdg;    /* partial RX datagram lists    */
122         int dgl;                /* outgoing datagram label      */
123 };
124
125 static const char driver_name[] = "eth1394";
126
127 static struct kmem_cache *packet_task_cache;
128
129 static struct hpsb_highlevel eth1394_highlevel;
130
131 /* Use common.lf to determine header len */
132 static const int hdr_type_len[] = {
133         sizeof(struct eth1394_uf_hdr),
134         sizeof(struct eth1394_ff_hdr),
135         sizeof(struct eth1394_sf_hdr),
136         sizeof(struct eth1394_sf_hdr)
137 };
138
139 static const u16 eth1394_speedto_maxpayload[] = {
140 /*     S100, S200, S400, S800, S1600, S3200 */
141         512, 1024, 2048, 4096,  4096,  4096
142 };
143
144 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
145 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
146 MODULE_LICENSE("GPL");
147
148 /*
149  * The max_partial_datagrams parameter is the maximum number of fragmented
150  * datagrams per node that eth1394 will keep in memory.  Providing an upper
151  * bound allows us to limit the amount of memory that partial datagrams
152  * consume in the event that some partial datagrams are never completed.
153  */
154 static int max_partial_datagrams = 25;
155 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
156 MODULE_PARM_DESC(max_partial_datagrams,
157                  "Maximum number of partially received fragmented datagrams "
158                  "(default = 25).");
159
160
161 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
162                             unsigned short type, const void *daddr,
163                             const void *saddr, unsigned len);
164 static int ether1394_rebuild_header(struct sk_buff *skb);
165 static int ether1394_header_parse(const struct sk_buff *skb,
166                                   unsigned char *haddr);
167 static int ether1394_header_cache(const struct neighbour *neigh,
168                                   struct hh_cache *hh);
169 static void ether1394_header_cache_update(struct hh_cache *hh,
170                                           const struct net_device *dev,
171                                           const unsigned char *haddr);
172 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
173 static void ether1394_iso(struct hpsb_iso *iso);
174
175 static struct ethtool_ops ethtool_ops;
176
177 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
178                            quadlet_t *data, u64 addr, size_t len, u16 flags);
179 static void ether1394_add_host(struct hpsb_host *host);
180 static void ether1394_remove_host(struct hpsb_host *host);
181 static void ether1394_host_reset(struct hpsb_host *host);
182
183 /* Function for incoming 1394 packets */
184 static struct hpsb_address_ops addr_ops = {
185         .write =        ether1394_write,
186 };
187
188 /* Ieee1394 highlevel driver functions */
189 static struct hpsb_highlevel eth1394_highlevel = {
190         .name =         driver_name,
191         .add_host =     ether1394_add_host,
192         .remove_host =  ether1394_remove_host,
193         .host_reset =   ether1394_host_reset,
194 };
195
196 static int ether1394_recv_init(struct eth1394_priv *priv)
197 {
198         unsigned int iso_buf_size;
199
200         /* FIXME: rawiso limits us to PAGE_SIZE */
201         iso_buf_size = min((unsigned int)PAGE_SIZE,
202                            2 * (1U << (priv->host->csr.max_rec + 1)));
203
204         priv->iso = hpsb_iso_recv_init(priv->host,
205                                        ETHER1394_GASP_BUFFERS * iso_buf_size,
206                                        ETHER1394_GASP_BUFFERS,
207                                        priv->broadcast_channel,
208                                        HPSB_ISO_DMA_PACKET_PER_BUFFER,
209                                        1, ether1394_iso);
210         if (priv->iso == NULL) {
211                 ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
212                 priv->bc_state = ETHER1394_BC_ERROR;
213                 return -EAGAIN;
214         }
215
216         if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
217                 priv->bc_state = ETHER1394_BC_STOPPED;
218         else
219                 priv->bc_state = ETHER1394_BC_RUNNING;
220         return 0;
221 }
222
223 /* This is called after an "ifup" */
224 static int ether1394_open(struct net_device *dev)
225 {
226         struct eth1394_priv *priv = netdev_priv(dev);
227         int ret;
228
229         if (priv->bc_state == ETHER1394_BC_ERROR) {
230                 ret = ether1394_recv_init(priv);
231                 if (ret)
232                         return ret;
233         }
234         netif_start_queue(dev);
235         return 0;
236 }
237
238 /* This is called after an "ifdown" */
239 static int ether1394_stop(struct net_device *dev)
240 {
241         /* flush priv->wake */
242         flush_scheduled_work();
243
244         netif_stop_queue(dev);
245         return 0;
246 }
247
248 /* Return statistics to the caller */
249 static struct net_device_stats *ether1394_stats(struct net_device *dev)
250 {
251         return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
252 }
253
254 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
255  * so that's what we do. Should we increment the stat counters too?  */
256 static void ether1394_tx_timeout(struct net_device *dev)
257 {
258         struct hpsb_host *host =
259                         ((struct eth1394_priv *)netdev_priv(dev))->host;
260
261         ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
262         ether1394_host_reset(host);
263 }
264
265 static inline int ether1394_max_mtu(struct hpsb_host* host)
266 {
267         return (1 << (host->csr.max_rec + 1))
268                         - sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
269 }
270
271 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
272 {
273         int max_mtu;
274
275         if (new_mtu < 68)
276                 return -EINVAL;
277
278         max_mtu = ether1394_max_mtu(
279                         ((struct eth1394_priv *)netdev_priv(dev))->host);
280         if (new_mtu > max_mtu) {
281                 ETH1394_PRINT(KERN_INFO, dev->name,
282                               "Local node constrains MTU to %d\n", max_mtu);
283                 return -ERANGE;
284         }
285
286         dev->mtu = new_mtu;
287         return 0;
288 }
289
290 static void purge_partial_datagram(struct list_head *old)
291 {
292         struct partial_datagram *pd;
293         struct list_head *lh, *n;
294         struct fragment_info *fi;
295
296         pd = list_entry(old, struct partial_datagram, list);
297
298         list_for_each_safe(lh, n, &pd->frag_info) {
299                 fi = list_entry(lh, struct fragment_info, list);
300                 list_del(lh);
301                 kfree(fi);
302         }
303         list_del(old);
304         kfree_skb(pd->skb);
305         kfree(pd);
306 }
307
308 /******************************************
309  * 1394 bus activity functions
310  ******************************************/
311
312 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
313                                                   struct unit_directory *ud)
314 {
315         struct eth1394_node_ref *node;
316
317         list_for_each_entry(node, inl, list)
318                 if (node->ud == ud)
319                         return node;
320
321         return NULL;
322 }
323
324 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
325                                                        u64 guid)
326 {
327         struct eth1394_node_ref *node;
328
329         list_for_each_entry(node, inl, list)
330                 if (node->ud->ne->guid == guid)
331                         return node;
332
333         return NULL;
334 }
335
336 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
337                                                          nodeid_t nodeid)
338 {
339         struct eth1394_node_ref *node;
340
341         list_for_each_entry(node, inl, list)
342                 if (node->ud->ne->nodeid == nodeid)
343                         return node;
344
345         return NULL;
346 }
347
348 static int eth1394_new_node(struct eth1394_host_info *hi,
349                             struct unit_directory *ud)
350 {
351         struct eth1394_priv *priv;
352         struct eth1394_node_ref *new_node;
353         struct eth1394_node_info *node_info;
354
355         new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
356         if (!new_node)
357                 return -ENOMEM;
358
359         node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
360         if (!node_info) {
361                 kfree(new_node);
362                 return -ENOMEM;
363         }
364
365         spin_lock_init(&node_info->pdg.lock);
366         INIT_LIST_HEAD(&node_info->pdg.list);
367         node_info->pdg.sz = 0;
368         node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
369
370         ud->device.driver_data = node_info;
371         new_node->ud = ud;
372
373         priv = netdev_priv(hi->dev);
374         list_add_tail(&new_node->list, &priv->ip_node_list);
375         return 0;
376 }
377
378 static int eth1394_probe(struct device *dev)
379 {
380         struct unit_directory *ud;
381         struct eth1394_host_info *hi;
382
383         ud = container_of(dev, struct unit_directory, device);
384         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
385         if (!hi)
386                 return -ENOENT;
387
388         return eth1394_new_node(hi, ud);
389 }
390
391 static int eth1394_remove(struct device *dev)
392 {
393         struct unit_directory *ud;
394         struct eth1394_host_info *hi;
395         struct eth1394_priv *priv;
396         struct eth1394_node_ref *old_node;
397         struct eth1394_node_info *node_info;
398         struct list_head *lh, *n;
399         unsigned long flags;
400
401         ud = container_of(dev, struct unit_directory, device);
402         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
403         if (!hi)
404                 return -ENOENT;
405
406         priv = netdev_priv(hi->dev);
407
408         old_node = eth1394_find_node(&priv->ip_node_list, ud);
409         if (!old_node)
410                 return 0;
411
412         list_del(&old_node->list);
413         kfree(old_node);
414
415         node_info = (struct eth1394_node_info*)ud->device.driver_data;
416
417         spin_lock_irqsave(&node_info->pdg.lock, flags);
418         /* The partial datagram list should be empty, but we'll just
419          * make sure anyway... */
420         list_for_each_safe(lh, n, &node_info->pdg.list)
421                 purge_partial_datagram(lh);
422         spin_unlock_irqrestore(&node_info->pdg.lock, flags);
423
424         kfree(node_info);
425         ud->device.driver_data = NULL;
426         return 0;
427 }
428
429 static int eth1394_update(struct unit_directory *ud)
430 {
431         struct eth1394_host_info *hi;
432         struct eth1394_priv *priv;
433         struct eth1394_node_ref *node;
434
435         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
436         if (!hi)
437                 return -ENOENT;
438
439         priv = netdev_priv(hi->dev);
440         node = eth1394_find_node(&priv->ip_node_list, ud);
441         if (node)
442                 return 0;
443
444         return eth1394_new_node(hi, ud);
445 }
446
447 static struct ieee1394_device_id eth1394_id_table[] = {
448         {
449                 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
450                                 IEEE1394_MATCH_VERSION),
451                 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
452                 .version = ETHER1394_GASP_VERSION,
453         },
454         {}
455 };
456
457 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
458
459 static struct hpsb_protocol_driver eth1394_proto_driver = {
460         .name           = driver_name,
461         .id_table       = eth1394_id_table,
462         .update         = eth1394_update,
463         .driver         = {
464                 .probe          = eth1394_probe,
465                 .remove         = eth1394_remove,
466         },
467 };
468
469 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
470 {
471         unsigned long flags;
472         int i;
473         struct eth1394_priv *priv = netdev_priv(dev);
474         struct hpsb_host *host = priv->host;
475         u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
476         int max_speed = IEEE1394_SPEED_MAX;
477
478         spin_lock_irqsave(&priv->lock, flags);
479
480         memset(priv->ud_list, 0, sizeof(priv->ud_list));
481         priv->bc_maxpayload = 512;
482
483         /* Determine speed limit */
484         /* FIXME: This is broken for nodes with link speed < PHY speed,
485          * and it is suboptimal for S200B...S800B hardware.
486          * The result of nodemgr's speed probe should be used somehow. */
487         for (i = 0; i < host->node_count; i++) {
488                 /* take care of S100B...S400B PHY ports */
489                 if (host->speed[i] == SELFID_SPEED_UNKNOWN) {
490                         max_speed = IEEE1394_SPEED_100;
491                         break;
492                 }
493                 if (max_speed > host->speed[i])
494                         max_speed = host->speed[i];
495         }
496         priv->bc_sspd = max_speed;
497
498         if (set_mtu) {
499                 /* Use the RFC 2734 default 1500 octets or the maximum payload
500                  * as initial MTU */
501                 dev->mtu = min(1500, ether1394_max_mtu(host));
502
503                 /* Set our hardware address while we're at it */
504                 memcpy(dev->dev_addr, &guid, sizeof(u64));
505                 memset(dev->broadcast, 0xff, sizeof(u64));
506         }
507
508         spin_unlock_irqrestore(&priv->lock, flags);
509 }
510
511 static const struct header_ops ether1394_header_ops = {
512         .create         = ether1394_header,
513         .rebuild        = ether1394_rebuild_header,
514         .cache          = ether1394_header_cache,
515         .cache_update   = ether1394_header_cache_update,
516         .parse          = ether1394_header_parse,
517 };
518
519 static void ether1394_init_dev(struct net_device *dev)
520 {
521         dev->open               = ether1394_open;
522         dev->stop               = ether1394_stop;
523         dev->hard_start_xmit    = ether1394_tx;
524         dev->get_stats          = ether1394_stats;
525         dev->tx_timeout         = ether1394_tx_timeout;
526         dev->change_mtu         = ether1394_change_mtu;
527
528         dev->header_ops         = &ether1394_header_ops;
529
530         SET_ETHTOOL_OPS(dev, &ethtool_ops);
531
532         dev->watchdog_timeo     = ETHER1394_TIMEOUT;
533         dev->flags              = IFF_BROADCAST | IFF_MULTICAST;
534         dev->features           = NETIF_F_HIGHDMA;
535         dev->addr_len           = ETH1394_ALEN;
536         dev->hard_header_len    = ETH1394_HLEN;
537         dev->type               = ARPHRD_IEEE1394;
538
539         /* FIXME: This value was copied from ether_setup(). Is it too much? */
540         dev->tx_queue_len       = 1000;
541 }
542
543 /*
544  * Wake the queue up after commonly encountered transmit failure conditions are
545  * hopefully over.  Currently only tlabel exhaustion is accounted for.
546  */
547 static void ether1394_wake_queue(struct work_struct *work)
548 {
549         struct eth1394_priv *priv;
550         struct hpsb_packet *packet;
551
552         priv = container_of(work, struct eth1394_priv, wake);
553         packet = hpsb_alloc_packet(0);
554
555         /* This is really bad, but unjam the queue anyway. */
556         if (!packet)
557                 goto out;
558
559         packet->host = priv->host;
560         packet->node_id = priv->wake_node;
561         /*
562          * A transaction label is all we really want.  If we get one, it almost
563          * always means we can get a lot more because the ieee1394 core recycled
564          * a whole batch of tlabels, at last.
565          */
566         if (hpsb_get_tlabel(packet) == 0)
567                 hpsb_free_tlabel(packet);
568
569         hpsb_free_packet(packet);
570 out:
571         netif_wake_queue(priv->wake_dev);
572 }
573
574 /*
575  * This function is called every time a card is found. It is generally called
576  * when the module is installed. This is where we add all of our ethernet
577  * devices. One for each host.
578  */
579 static void ether1394_add_host(struct hpsb_host *host)
580 {
581         struct eth1394_host_info *hi = NULL;
582         struct net_device *dev = NULL;
583         struct eth1394_priv *priv;
584         u64 fifo_addr;
585
586         if (hpsb_config_rom_ip1394_add(host) != 0) {
587                 ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
588                 return;
589         }
590
591         fifo_addr = hpsb_allocate_and_register_addrspace(
592                         &eth1394_highlevel, host, &addr_ops,
593                         ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
594                         CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
595         if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
596                 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
597                 hpsb_config_rom_ip1394_remove(host);
598                 return;
599         }
600
601         dev = alloc_netdev(sizeof(*priv), "eth%d", ether1394_init_dev);
602         if (dev == NULL) {
603                 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
604                 goto out;
605         }
606
607         SET_NETDEV_DEV(dev, &host->device);
608
609         priv = netdev_priv(dev);
610         INIT_LIST_HEAD(&priv->ip_node_list);
611         spin_lock_init(&priv->lock);
612         priv->host = host;
613         priv->local_fifo = fifo_addr;
614         INIT_WORK(&priv->wake, ether1394_wake_queue);
615         priv->wake_dev = dev;
616
617         hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
618         if (hi == NULL) {
619                 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
620                 goto out;
621         }
622
623         ether1394_reset_priv(dev, 1);
624
625         if (register_netdev(dev)) {
626                 ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
627                 goto out;
628         }
629
630         ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
631                       host->id);
632
633         hi->host = host;
634         hi->dev = dev;
635
636         /* Ignore validity in hopes that it will be set in the future.  It'll
637          * be checked when the eth device is opened. */
638         priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
639
640         ether1394_recv_init(priv);
641         return;
642 out:
643         if (dev)
644                 free_netdev(dev);
645         if (hi)
646                 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
647         hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
648         hpsb_config_rom_ip1394_remove(host);
649 }
650
651 /* Remove a card from our list */
652 static void ether1394_remove_host(struct hpsb_host *host)
653 {
654         struct eth1394_host_info *hi;
655         struct eth1394_priv *priv;
656
657         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
658         if (!hi)
659                 return;
660         priv = netdev_priv(hi->dev);
661         hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
662         hpsb_config_rom_ip1394_remove(host);
663         if (priv->iso)
664                 hpsb_iso_shutdown(priv->iso);
665         unregister_netdev(hi->dev);
666         free_netdev(hi->dev);
667 }
668
669 /* A bus reset happened */
670 static void ether1394_host_reset(struct hpsb_host *host)
671 {
672         struct eth1394_host_info *hi;
673         struct eth1394_priv *priv;
674         struct net_device *dev;
675         struct list_head *lh, *n;
676         struct eth1394_node_ref *node;
677         struct eth1394_node_info *node_info;
678         unsigned long flags;
679
680         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
681
682         /* This can happen for hosts that we don't use */
683         if (!hi)
684                 return;
685
686         dev = hi->dev;
687         priv = netdev_priv(dev);
688
689         /* Reset our private host data, but not our MTU */
690         netif_stop_queue(dev);
691         ether1394_reset_priv(dev, 0);
692
693         list_for_each_entry(node, &priv->ip_node_list, list) {
694                 node_info = node->ud->device.driver_data;
695
696                 spin_lock_irqsave(&node_info->pdg.lock, flags);
697
698                 list_for_each_safe(lh, n, &node_info->pdg.list)
699                         purge_partial_datagram(lh);
700
701                 INIT_LIST_HEAD(&(node_info->pdg.list));
702                 node_info->pdg.sz = 0;
703
704                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
705         }
706
707         netif_wake_queue(dev);
708 }
709
710 /******************************************
711  * HW Header net device functions
712  ******************************************/
713 /* These functions have been adapted from net/ethernet/eth.c */
714
715 /* Create a fake MAC header for an arbitrary protocol layer.
716  * saddr=NULL means use device source address
717  * daddr=NULL means leave destination address (eg unresolved arp). */
718 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
719                             unsigned short type, const void *daddr,
720                             const void *saddr, unsigned len)
721 {
722         struct eth1394hdr *eth =
723                         (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
724
725         eth->h_proto = htons(type);
726
727         if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
728                 memset(eth->h_dest, 0, dev->addr_len);
729                 return dev->hard_header_len;
730         }
731
732         if (daddr) {
733                 memcpy(eth->h_dest, daddr, dev->addr_len);
734                 return dev->hard_header_len;
735         }
736
737         return -dev->hard_header_len;
738 }
739
740 /* Rebuild the faked MAC header. This is called after an ARP
741  * (or in future other address resolution) has completed on this
742  * sk_buff. We now let ARP fill in the other fields.
743  *
744  * This routine CANNOT use cached dst->neigh!
745  * Really, it is used only when dst->neigh is wrong.
746  */
747 static int ether1394_rebuild_header(struct sk_buff *skb)
748 {
749         struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
750
751         if (eth->h_proto == htons(ETH_P_IP))
752                 return arp_find((unsigned char *)&eth->h_dest, skb);
753
754         ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
755                       "unable to resolve type %04x addresses\n",
756                       ntohs(eth->h_proto));
757         return 0;
758 }
759
760 static int ether1394_header_parse(const struct sk_buff *skb,
761                                   unsigned char *haddr)
762 {
763         memcpy(haddr, skb->dev->dev_addr, ETH1394_ALEN);
764         return ETH1394_ALEN;
765 }
766
767 static int ether1394_header_cache(const struct neighbour *neigh,
768                                   struct hh_cache *hh)
769 {
770         unsigned short type = hh->hh_type;
771         struct net_device *dev = neigh->dev;
772         struct eth1394hdr *eth =
773                 (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
774
775         if (type == htons(ETH_P_802_3))
776                 return -1;
777
778         eth->h_proto = type;
779         memcpy(eth->h_dest, neigh->ha, dev->addr_len);
780
781         hh->hh_len = ETH1394_HLEN;
782         return 0;
783 }
784
785 /* Called by Address Resolution module to notify changes in address. */
786 static void ether1394_header_cache_update(struct hh_cache *hh,
787                                           const struct net_device *dev,
788                                           const unsigned char * haddr)
789 {
790         memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
791 }
792
793 /******************************************
794  * Datagram reception code
795  ******************************************/
796
797 /* Copied from net/ethernet/eth.c */
798 static u16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
799 {
800         struct eth1394hdr *eth;
801         unsigned char *rawp;
802
803         skb_reset_mac_header(skb);
804         skb_pull(skb, ETH1394_HLEN);
805         eth = eth1394_hdr(skb);
806
807         if (*eth->h_dest & 1) {
808                 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
809                         skb->pkt_type = PACKET_BROADCAST;
810 #if 0
811                 else
812                         skb->pkt_type = PACKET_MULTICAST;
813 #endif
814         } else {
815                 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
816                         skb->pkt_type = PACKET_OTHERHOST;
817         }
818
819         if (ntohs(eth->h_proto) >= 1536)
820                 return eth->h_proto;
821
822         rawp = skb->data;
823
824         if (*(unsigned short *)rawp == 0xFFFF)
825                 return htons(ETH_P_802_3);
826
827         return htons(ETH_P_802_2);
828 }
829
830 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
831  * We also perform ARP translation here, if need be.  */
832 static u16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
833                                  nodeid_t srcid, nodeid_t destid,
834                                  u16 ether_type)
835 {
836         struct eth1394_priv *priv = netdev_priv(dev);
837         u64 dest_hw;
838         unsigned short ret = 0;
839
840         /* Setup our hw addresses. We use these to build the ethernet header. */
841         if (destid == (LOCAL_BUS | ALL_NODES))
842                 dest_hw = ~0ULL;  /* broadcast */
843         else
844                 dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
845                                       priv->host->csr.guid_lo);
846
847         /* If this is an ARP packet, convert it. First, we want to make
848          * use of some of the fields, since they tell us a little bit
849          * about the sending machine.  */
850         if (ether_type == htons(ETH_P_ARP)) {
851                 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
852                 struct arphdr *arp = (struct arphdr *)skb->data;
853                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
854                 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
855                                            ntohl(arp1394->fifo_lo);
856                 u8 max_rec = min(priv->host->csr.max_rec,
857                                  (u8)(arp1394->max_rec));
858                 int sspd = arp1394->sspd;
859                 u16 maxpayload;
860                 struct eth1394_node_ref *node;
861                 struct eth1394_node_info *node_info;
862                 __be64 guid;
863
864                 /* Sanity check. MacOSX seems to be sending us 131 in this
865                  * field (atleast on my Panther G5). Not sure why. */
866                 if (sspd > 5 || sspd < 0)
867                         sspd = 0;
868
869                 maxpayload = min(eth1394_speedto_maxpayload[sspd],
870                                  (u16)(1 << (max_rec + 1)));
871
872                 guid = get_unaligned(&arp1394->s_uniq_id);
873                 node = eth1394_find_node_guid(&priv->ip_node_list,
874                                               be64_to_cpu(guid));
875                 if (!node)
876                         return 0;
877
878                 node_info =
879                     (struct eth1394_node_info *)node->ud->device.driver_data;
880
881                 /* Update our speed/payload/fifo_offset table */
882                 node_info->maxpayload = maxpayload;
883                 node_info->sspd =       sspd;
884                 node_info->fifo =       fifo_addr;
885
886                 /* Now that we're done with the 1394 specific stuff, we'll
887                  * need to alter some of the data.  Believe it or not, all
888                  * that needs to be done is sender_IP_address needs to be
889                  * moved, the destination hardware address get stuffed
890                  * in and the hardware address length set to 8.
891                  *
892                  * IMPORTANT: The code below overwrites 1394 specific data
893                  * needed above so keep the munging of the data for the
894                  * higher level IP stack last. */
895
896                 arp->ar_hln = 8;
897                 arp_ptr += arp->ar_hln;         /* skip over sender unique id */
898                 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
899                 arp_ptr += arp->ar_pln;         /* skip over sender IP addr */
900
901                 if (arp->ar_op == htons(ARPOP_REQUEST))
902                         memset(arp_ptr, 0, sizeof(u64));
903                 else
904                         memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
905         }
906
907         /* Now add the ethernet header. */
908         if (dev_hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
909                             skb->len) >= 0)
910                 ret = ether1394_type_trans(skb, dev);
911
912         return ret;
913 }
914
915 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
916 {
917         struct fragment_info *fi;
918         int end = offset + len;
919
920         list_for_each_entry(fi, frag_list, list)
921                 if (offset < fi->offset + fi->len && end > fi->offset)
922                         return 1;
923
924         return 0;
925 }
926
927 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
928 {
929         struct partial_datagram *pd;
930
931         list_for_each_entry(pd, pdgl, list)
932                 if (pd->dgl == dgl)
933                         return &pd->list;
934
935         return NULL;
936 }
937
938 /* Assumes that new fragment does not overlap any existing fragments */
939 static int new_fragment(struct list_head *frag_info, int offset, int len)
940 {
941         struct list_head *lh;
942         struct fragment_info *fi, *fi2, *new;
943
944         list_for_each(lh, frag_info) {
945                 fi = list_entry(lh, struct fragment_info, list);
946                 if (fi->offset + fi->len == offset) {
947                         /* The new fragment can be tacked on to the end */
948                         fi->len += len;
949                         /* Did the new fragment plug a hole? */
950                         fi2 = list_entry(lh->next, struct fragment_info, list);
951                         if (fi->offset + fi->len == fi2->offset) {
952                                 /* glue fragments together */
953                                 fi->len += fi2->len;
954                                 list_del(lh->next);
955                                 kfree(fi2);
956                         }
957                         return 0;
958                 } else if (offset + len == fi->offset) {
959                         /* The new fragment can be tacked on to the beginning */
960                         fi->offset = offset;
961                         fi->len += len;
962                         /* Did the new fragment plug a hole? */
963                         fi2 = list_entry(lh->prev, struct fragment_info, list);
964                         if (fi2->offset + fi2->len == fi->offset) {
965                                 /* glue fragments together */
966                                 fi2->len += fi->len;
967                                 list_del(lh);
968                                 kfree(fi);
969                         }
970                         return 0;
971                 } else if (offset > fi->offset + fi->len) {
972                         break;
973                 } else if (offset + len < fi->offset) {
974                         lh = lh->prev;
975                         break;
976                 }
977         }
978
979         new = kmalloc(sizeof(*new), GFP_ATOMIC);
980         if (!new)
981                 return -ENOMEM;
982
983         new->offset = offset;
984         new->len = len;
985
986         list_add(&new->list, lh);
987         return 0;
988 }
989
990 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
991                                 int dgl, int dg_size, char *frag_buf,
992                                 int frag_off, int frag_len)
993 {
994         struct partial_datagram *new;
995
996         new = kmalloc(sizeof(*new), GFP_ATOMIC);
997         if (!new)
998                 return -ENOMEM;
999
1000         INIT_LIST_HEAD(&new->frag_info);
1001
1002         if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1003                 kfree(new);
1004                 return -ENOMEM;
1005         }
1006
1007         new->dgl = dgl;
1008         new->dg_size = dg_size;
1009
1010         new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1011         if (!new->skb) {
1012                 struct fragment_info *fi = list_entry(new->frag_info.next,
1013                                                       struct fragment_info,
1014                                                       list);
1015                 kfree(fi);
1016                 kfree(new);
1017                 return -ENOMEM;
1018         }
1019
1020         skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1021         new->pbuf = skb_put(new->skb, dg_size);
1022         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1023
1024         list_add(&new->list, pdgl);
1025         return 0;
1026 }
1027
1028 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1029                                    char *frag_buf, int frag_off, int frag_len)
1030 {
1031         struct partial_datagram *pd =
1032                         list_entry(lh, struct partial_datagram, list);
1033
1034         if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1035                 return -ENOMEM;
1036
1037         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1038
1039         /* Move list entry to beginnig of list so that oldest partial
1040          * datagrams percolate to the end of the list */
1041         list_move(lh, pdgl);
1042         return 0;
1043 }
1044
1045 static int is_datagram_complete(struct list_head *lh, int dg_size)
1046 {
1047         struct partial_datagram *pd;
1048         struct fragment_info *fi;
1049
1050         pd = list_entry(lh, struct partial_datagram, list);
1051         fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1052
1053         return (fi->len == dg_size);
1054 }
1055
1056 /* Packet reception. We convert the IP1394 encapsulation header to an
1057  * ethernet header, and fill it with some of our other fields. This is
1058  * an incoming packet from the 1394 bus.  */
1059 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1060                                   char *buf, int len)
1061 {
1062         struct sk_buff *skb;
1063         unsigned long flags;
1064         struct eth1394_priv *priv = netdev_priv(dev);
1065         union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1066         u16 ether_type = 0;  /* initialized to clear warning */
1067         int hdr_len;
1068         struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1069         struct eth1394_node_info *node_info;
1070
1071         if (!ud) {
1072                 struct eth1394_node_ref *node;
1073                 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1074                 if (unlikely(!node)) {
1075                         HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1076                                    "lookup failure: " NODE_BUS_FMT,
1077                                    NODE_BUS_ARGS(priv->host, srcid));
1078                         priv->stats.rx_dropped++;
1079                         return -1;
1080                 }
1081                 ud = node->ud;
1082
1083                 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1084         }
1085
1086         node_info = (struct eth1394_node_info *)ud->device.driver_data;
1087
1088         /* First, did we receive a fragmented or unfragmented datagram? */
1089         hdr->words.word1 = ntohs(hdr->words.word1);
1090
1091         hdr_len = hdr_type_len[hdr->common.lf];
1092
1093         if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1094                 /* An unfragmented datagram has been received by the ieee1394
1095                  * bus. Build an skbuff around it so we can pass it to the
1096                  * high level network layer. */
1097
1098                 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1099                 if (unlikely(!skb)) {
1100                         ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
1101                         priv->stats.rx_dropped++;
1102                         return -1;
1103                 }
1104                 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1105                 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1106                        len - hdr_len);
1107                 ether_type = hdr->uf.ether_type;
1108         } else {
1109                 /* A datagram fragment has been received, now the fun begins. */
1110
1111                 struct list_head *pdgl, *lh;
1112                 struct partial_datagram *pd;
1113                 int fg_off;
1114                 int fg_len = len - hdr_len;
1115                 int dg_size;
1116                 int dgl;
1117                 int retval;
1118                 struct pdg_list *pdg = &(node_info->pdg);
1119
1120                 hdr->words.word3 = ntohs(hdr->words.word3);
1121                 /* The 4th header word is reserved so no need to do ntohs() */
1122
1123                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1124                         ether_type = hdr->ff.ether_type;
1125                         dgl = hdr->ff.dgl;
1126                         dg_size = hdr->ff.dg_size + 1;
1127                         fg_off = 0;
1128                 } else {
1129                         hdr->words.word2 = ntohs(hdr->words.word2);
1130                         dgl = hdr->sf.dgl;
1131                         dg_size = hdr->sf.dg_size + 1;
1132                         fg_off = hdr->sf.fg_off;
1133                 }
1134                 spin_lock_irqsave(&pdg->lock, flags);
1135
1136                 pdgl = &(pdg->list);
1137                 lh = find_partial_datagram(pdgl, dgl);
1138
1139                 if (lh == NULL) {
1140                         while (pdg->sz >= max_partial_datagrams) {
1141                                 /* remove the oldest */
1142                                 purge_partial_datagram(pdgl->prev);
1143                                 pdg->sz--;
1144                         }
1145
1146                         retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1147                                                       buf + hdr_len, fg_off,
1148                                                       fg_len);
1149                         if (retval < 0) {
1150                                 spin_unlock_irqrestore(&pdg->lock, flags);
1151                                 goto bad_proto;
1152                         }
1153                         pdg->sz++;
1154                         lh = find_partial_datagram(pdgl, dgl);
1155                 } else {
1156                         pd = list_entry(lh, struct partial_datagram, list);
1157
1158                         if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1159                                 /* Overlapping fragments, obliterate old
1160                                  * datagram and start new one. */
1161                                 purge_partial_datagram(lh);
1162                                 retval = new_partial_datagram(dev, pdgl, dgl,
1163                                                               dg_size,
1164                                                               buf + hdr_len,
1165                                                               fg_off, fg_len);
1166                                 if (retval < 0) {
1167                                         pdg->sz--;
1168                                         spin_unlock_irqrestore(&pdg->lock, flags);
1169                                         goto bad_proto;
1170                                 }
1171                         } else {
1172                                 retval = update_partial_datagram(pdgl, lh,
1173                                                                  buf + hdr_len,
1174                                                                  fg_off, fg_len);
1175                                 if (retval < 0) {
1176                                         /* Couldn't save off fragment anyway
1177                                          * so might as well obliterate the
1178                                          * datagram now. */
1179                                         purge_partial_datagram(lh);
1180                                         pdg->sz--;
1181                                         spin_unlock_irqrestore(&pdg->lock, flags);
1182                                         goto bad_proto;
1183                                 }
1184                         } /* fragment overlap */
1185                 } /* new datagram or add to existing one */
1186
1187                 pd = list_entry(lh, struct partial_datagram, list);
1188
1189                 if (hdr->common.lf == ETH1394_HDR_LF_FF)
1190                         pd->ether_type = ether_type;
1191
1192                 if (is_datagram_complete(lh, dg_size)) {
1193                         ether_type = pd->ether_type;
1194                         pdg->sz--;
1195                         skb = skb_get(pd->skb);
1196                         purge_partial_datagram(lh);
1197                         spin_unlock_irqrestore(&pdg->lock, flags);
1198                 } else {
1199                         /* Datagram is not complete, we're done for the
1200                          * moment. */
1201                         spin_unlock_irqrestore(&pdg->lock, flags);
1202                         return 0;
1203                 }
1204         } /* unframgented datagram or fragmented one */
1205
1206         /* Write metadata, and then pass to the receive level */
1207         skb->dev = dev;
1208         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
1209
1210         /* Parse the encapsulation header. This actually does the job of
1211          * converting to an ethernet frame header, aswell as arp
1212          * conversion if needed. ARP conversion is easier in this
1213          * direction, since we are using ethernet as our backend.  */
1214         skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1215                                               ether_type);
1216
1217         spin_lock_irqsave(&priv->lock, flags);
1218
1219         if (!skb->protocol) {
1220                 priv->stats.rx_errors++;
1221                 priv->stats.rx_dropped++;
1222                 dev_kfree_skb_any(skb);
1223         } else if (netif_rx(skb) == NET_RX_DROP) {
1224                 priv->stats.rx_errors++;
1225                 priv->stats.rx_dropped++;
1226         } else {
1227                 priv->stats.rx_packets++;
1228                 priv->stats.rx_bytes += skb->len;
1229         }
1230
1231         spin_unlock_irqrestore(&priv->lock, flags);
1232
1233 bad_proto:
1234         if (netif_queue_stopped(dev))
1235                 netif_wake_queue(dev);
1236
1237         dev->last_rx = jiffies;
1238
1239         return 0;
1240 }
1241
1242 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1243                            quadlet_t *data, u64 addr, size_t len, u16 flags)
1244 {
1245         struct eth1394_host_info *hi;
1246
1247         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1248         if (unlikely(!hi)) {
1249                 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1250                                 host->id);
1251                 return RCODE_ADDRESS_ERROR;
1252         }
1253
1254         if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1255                 return RCODE_ADDRESS_ERROR;
1256         else
1257                 return RCODE_COMPLETE;
1258 }
1259
1260 static void ether1394_iso(struct hpsb_iso *iso)
1261 {
1262         quadlet_t *data;
1263         char *buf;
1264         struct eth1394_host_info *hi;
1265         struct net_device *dev;
1266         struct eth1394_priv *priv;
1267         unsigned int len;
1268         u32 specifier_id;
1269         u16 source_id;
1270         int i;
1271         int nready;
1272
1273         hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1274         if (unlikely(!hi)) {
1275                 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1276                                 iso->host->id);
1277                 return;
1278         }
1279
1280         dev = hi->dev;
1281
1282         nready = hpsb_iso_n_ready(iso);
1283         for (i = 0; i < nready; i++) {
1284                 struct hpsb_iso_packet_info *info =
1285                         &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1286                 data = (quadlet_t *)(iso->data_buf.kvirt + info->offset);
1287
1288                 /* skip over GASP header */
1289                 buf = (char *)data + 8;
1290                 len = info->len - 8;
1291
1292                 specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1293                                (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1294                 source_id = be32_to_cpu(data[0]) >> 16;
1295
1296                 priv = netdev_priv(dev);
1297
1298                 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1299                     || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1300                         /* This packet is not for us */
1301                         continue;
1302                 }
1303                 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1304                                        buf, len);
1305         }
1306
1307         hpsb_iso_recv_release_packets(iso, i);
1308
1309         dev->last_rx = jiffies;
1310 }
1311
1312 /******************************************
1313  * Datagram transmission code
1314  ******************************************/
1315
1316 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1317  * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1318  * needs to be munged a bit.  The remainder of the arphdr is formatted based
1319  * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1320  * judge.
1321  *
1322  * Now that the EUI is used for the hardware address all we need to do to make
1323  * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1324  * speed, and unicast FIFO address information between the sender_unique_id
1325  * and the IP addresses.
1326  */
1327 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1328                                      struct net_device *dev)
1329 {
1330         struct eth1394_priv *priv = netdev_priv(dev);
1331         struct arphdr *arp = (struct arphdr *)skb->data;
1332         unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1333         struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1334
1335         arp1394->hw_addr_len    = 16;
1336         arp1394->sip            = *(u32*)(arp_ptr + ETH1394_ALEN);
1337         arp1394->max_rec        = priv->host->csr.max_rec;
1338         arp1394->sspd           = priv->host->csr.lnk_spd;
1339         arp1394->fifo_hi        = htons(priv->local_fifo >> 32);
1340         arp1394->fifo_lo        = htonl(priv->local_fifo & ~0x0);
1341 }
1342
1343 /* We need to encapsulate the standard header with our own. We use the
1344  * ethernet header's proto for our own. */
1345 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1346                                                __be16 proto,
1347                                                union eth1394_hdr *hdr,
1348                                                u16 dg_size, u16 dgl)
1349 {
1350         unsigned int adj_max_payload =
1351                                 max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1352
1353         /* Does it all fit in one packet? */
1354         if (dg_size <= adj_max_payload) {
1355                 hdr->uf.lf = ETH1394_HDR_LF_UF;
1356                 hdr->uf.ether_type = proto;
1357         } else {
1358                 hdr->ff.lf = ETH1394_HDR_LF_FF;
1359                 hdr->ff.ether_type = proto;
1360                 hdr->ff.dg_size = dg_size - 1;
1361                 hdr->ff.dgl = dgl;
1362                 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1363         }
1364         return (dg_size + adj_max_payload - 1) / adj_max_payload;
1365 }
1366
1367 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1368                                           unsigned int max_payload,
1369                                           union eth1394_hdr *hdr)
1370 {
1371         union eth1394_hdr *bufhdr;
1372         int ftype = hdr->common.lf;
1373         int hdrsz = hdr_type_len[ftype];
1374         unsigned int adj_max_payload = max_payload - hdrsz;
1375
1376         switch (ftype) {
1377         case ETH1394_HDR_LF_UF:
1378                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1379                 bufhdr->words.word1 = htons(hdr->words.word1);
1380                 bufhdr->words.word2 = hdr->words.word2;
1381                 break;
1382
1383         case ETH1394_HDR_LF_FF:
1384                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1385                 bufhdr->words.word1 = htons(hdr->words.word1);
1386                 bufhdr->words.word2 = hdr->words.word2;
1387                 bufhdr->words.word3 = htons(hdr->words.word3);
1388                 bufhdr->words.word4 = 0;
1389
1390                 /* Set frag type here for future interior fragments */
1391                 hdr->common.lf = ETH1394_HDR_LF_IF;
1392                 hdr->sf.fg_off = 0;
1393                 break;
1394
1395         default:
1396                 hdr->sf.fg_off += adj_max_payload;
1397                 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1398                 if (max_payload >= skb->len)
1399                         hdr->common.lf = ETH1394_HDR_LF_LF;
1400                 bufhdr->words.word1 = htons(hdr->words.word1);
1401                 bufhdr->words.word2 = htons(hdr->words.word2);
1402                 bufhdr->words.word3 = htons(hdr->words.word3);
1403                 bufhdr->words.word4 = 0;
1404         }
1405         return min(max_payload, skb->len);
1406 }
1407
1408 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1409 {
1410         struct hpsb_packet *p;
1411
1412         p = hpsb_alloc_packet(0);
1413         if (p) {
1414                 p->host = host;
1415                 p->generation = get_hpsb_generation(host);
1416                 p->type = hpsb_async;
1417         }
1418         return p;
1419 }
1420
1421 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1422                                        struct hpsb_host *host, nodeid_t node,
1423                                        u64 addr, void *data, int tx_len)
1424 {
1425         p->node_id = node;
1426
1427         if (hpsb_get_tlabel(p))
1428                 return -EAGAIN;
1429
1430         p->tcode = TCODE_WRITEB;
1431         p->header_size = 16;
1432         p->expect_response = 1;
1433         p->header[0] =
1434                 p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1435         p->header[1] = host->node_id << 16 | addr >> 32;
1436         p->header[2] = addr & 0xffffffff;
1437         p->header[3] = tx_len << 16;
1438         p->data_size = (tx_len + 3) & ~3;
1439         p->data = data;
1440
1441         return 0;
1442 }
1443
1444 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1445                                        struct eth1394_priv *priv,
1446                                        struct sk_buff *skb, int length)
1447 {
1448         p->header_size = 4;
1449         p->tcode = TCODE_STREAM_DATA;
1450
1451         p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1452                        TCODE_STREAM_DATA << 4;
1453         p->data_size = length;
1454         p->data = (quadlet_t *)skb->data - 2;
1455         p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1456                                  ETHER1394_GASP_SPECIFIER_ID_HI);
1457         p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1458                                  ETHER1394_GASP_VERSION);
1459
1460         p->speed_code = priv->bc_sspd;
1461
1462         /* prevent hpsb_send_packet() from overriding our speed code */
1463         p->node_id = LOCAL_BUS | ALL_NODES;
1464 }
1465
1466 static void ether1394_free_packet(struct hpsb_packet *packet)
1467 {
1468         if (packet->tcode != TCODE_STREAM_DATA)
1469                 hpsb_free_tlabel(packet);
1470         hpsb_free_packet(packet);
1471 }
1472
1473 static void ether1394_complete_cb(void *__ptask);
1474
1475 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1476 {
1477         struct eth1394_priv *priv = ptask->priv;
1478         struct hpsb_packet *packet = NULL;
1479
1480         packet = ether1394_alloc_common_packet(priv->host);
1481         if (!packet)
1482                 return -ENOMEM;
1483
1484         if (ptask->tx_type == ETH1394_GASP) {
1485                 int length = tx_len + 2 * sizeof(quadlet_t);
1486
1487                 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1488         } else if (ether1394_prep_write_packet(packet, priv->host,
1489                                                ptask->dest_node,
1490                                                ptask->addr, ptask->skb->data,
1491                                                tx_len)) {
1492                 hpsb_free_packet(packet);
1493                 return -EAGAIN;
1494         }
1495
1496         ptask->packet = packet;
1497         hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1498                                       ptask);
1499
1500         if (hpsb_send_packet(packet) < 0) {
1501                 ether1394_free_packet(packet);
1502                 return -EIO;
1503         }
1504
1505         return 0;
1506 }
1507
1508 /* Task function to be run when a datagram transmission is completed */
1509 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1510 {
1511         struct sk_buff *skb = ptask->skb;
1512         struct eth1394_priv *priv = netdev_priv(skb->dev);
1513         unsigned long flags;
1514
1515         /* Statistics */
1516         spin_lock_irqsave(&priv->lock, flags);
1517         if (fail) {
1518                 priv->stats.tx_dropped++;
1519                 priv->stats.tx_errors++;
1520         } else {
1521                 priv->stats.tx_bytes += skb->len;
1522                 priv->stats.tx_packets++;
1523         }
1524         spin_unlock_irqrestore(&priv->lock, flags);
1525
1526         dev_kfree_skb_any(skb);
1527         kmem_cache_free(packet_task_cache, ptask);
1528 }
1529
1530 /* Callback for when a packet has been sent and the status of that packet is
1531  * known */
1532 static void ether1394_complete_cb(void *__ptask)
1533 {
1534         struct packet_task *ptask = (struct packet_task *)__ptask;
1535         struct hpsb_packet *packet = ptask->packet;
1536         int fail = 0;
1537
1538         if (packet->tcode != TCODE_STREAM_DATA)
1539                 fail = hpsb_packet_success(packet);
1540
1541         ether1394_free_packet(packet);
1542
1543         ptask->outstanding_pkts--;
1544         if (ptask->outstanding_pkts > 0 && !fail) {
1545                 int tx_len, err;
1546
1547                 /* Add the encapsulation header to the fragment */
1548                 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1549                                                &ptask->hdr);
1550                 err = ether1394_send_packet(ptask, tx_len);
1551                 if (err) {
1552                         if (err == -EAGAIN)
1553                                 ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
1554
1555                         ether1394_dg_complete(ptask, 1);
1556                 }
1557         } else {
1558                 ether1394_dg_complete(ptask, fail);
1559         }
1560 }
1561
1562 /* Transmit a packet (called by kernel) */
1563 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
1564 {
1565         struct eth1394hdr hdr_buf;
1566         struct eth1394_priv *priv = netdev_priv(dev);
1567         __be16 proto;
1568         unsigned long flags;
1569         nodeid_t dest_node;
1570         eth1394_tx_type tx_type;
1571         unsigned int tx_len;
1572         unsigned int max_payload;
1573         u16 dg_size;
1574         u16 dgl;
1575         struct packet_task *ptask;
1576         struct eth1394_node_ref *node;
1577         struct eth1394_node_info *node_info = NULL;
1578
1579         ptask = kmem_cache_alloc(packet_task_cache, GFP_ATOMIC);
1580         if (ptask == NULL)
1581                 goto fail;
1582
1583         /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1584          * it does not set our validity bit. We need to compensate for
1585          * that somewhere else, but not in eth1394. */
1586 #if 0
1587         if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000)
1588                 goto fail;
1589 #endif
1590
1591         skb = skb_share_check(skb, GFP_ATOMIC);
1592         if (!skb)
1593                 goto fail;
1594
1595         /* Get rid of the fake eth1394 header, but first make a copy.
1596          * We might need to rebuild the header on tx failure. */
1597         memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1598         skb_pull(skb, ETH1394_HLEN);
1599
1600         proto = hdr_buf.h_proto;
1601         dg_size = skb->len;
1602
1603         /* Set the transmission type for the packet.  ARP packets and IP
1604          * broadcast packets are sent via GASP. */
1605         if (memcmp(hdr_buf.h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1606             proto == htons(ETH_P_ARP) ||
1607             (proto == htons(ETH_P_IP) &&
1608              IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1609                 tx_type = ETH1394_GASP;
1610                 dest_node = LOCAL_BUS | ALL_NODES;
1611                 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1612                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1613                 dgl = priv->bc_dgl;
1614                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1615                         priv->bc_dgl++;
1616         } else {
1617                 __be64 guid = get_unaligned((u64 *)hdr_buf.h_dest);
1618
1619                 node = eth1394_find_node_guid(&priv->ip_node_list,
1620                                               be64_to_cpu(guid));
1621                 if (!node)
1622                         goto fail;
1623
1624                 node_info =
1625                     (struct eth1394_node_info *)node->ud->device.driver_data;
1626                 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE)
1627                         goto fail;
1628
1629                 dest_node = node->ud->ne->nodeid;
1630                 max_payload = node_info->maxpayload;
1631                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1632
1633                 dgl = node_info->dgl;
1634                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1635                         node_info->dgl++;
1636                 tx_type = ETH1394_WRREQ;
1637         }
1638
1639         /* If this is an ARP packet, convert it */
1640         if (proto == htons(ETH_P_ARP))
1641                 ether1394_arp_to_1394arp(skb, dev);
1642
1643         ptask->hdr.words.word1 = 0;
1644         ptask->hdr.words.word2 = 0;
1645         ptask->hdr.words.word3 = 0;
1646         ptask->hdr.words.word4 = 0;
1647         ptask->skb = skb;
1648         ptask->priv = priv;
1649         ptask->tx_type = tx_type;
1650
1651         if (tx_type != ETH1394_GASP) {
1652                 u64 addr;
1653
1654                 spin_lock_irqsave(&priv->lock, flags);
1655                 addr = node_info->fifo;
1656                 spin_unlock_irqrestore(&priv->lock, flags);
1657
1658                 ptask->addr = addr;
1659                 ptask->dest_node = dest_node;
1660         }
1661
1662         ptask->tx_type = tx_type;
1663         ptask->max_payload = max_payload;
1664         ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1665                                         proto, &ptask->hdr, dg_size, dgl);
1666
1667         /* Add the encapsulation header to the fragment */
1668         tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1669         dev->trans_start = jiffies;
1670         if (ether1394_send_packet(ptask, tx_len)) {
1671                 if (dest_node == (LOCAL_BUS | ALL_NODES))
1672                         goto fail;
1673
1674                 /* At this point we want to restore the packet.  When we return
1675                  * here with NETDEV_TX_BUSY we will get another entrance in this
1676                  * routine with the same skb and we need it to look the same.
1677                  * So we pull 4 more bytes, then build the header again. */
1678                 skb_pull(skb, 4);
1679                 ether1394_header(skb, dev, ntohs(hdr_buf.h_proto),
1680                                  hdr_buf.h_dest, NULL, 0);
1681
1682                 /* Most failures of ether1394_send_packet are recoverable. */
1683                 netif_stop_queue(dev);
1684                 priv->wake_node = dest_node;
1685                 schedule_work(&priv->wake);
1686                 kmem_cache_free(packet_task_cache, ptask);
1687                 return NETDEV_TX_BUSY;
1688         }
1689
1690         return NETDEV_TX_OK;
1691 fail:
1692         if (ptask)
1693                 kmem_cache_free(packet_task_cache, ptask);
1694
1695         if (skb != NULL)
1696                 dev_kfree_skb(skb);
1697
1698         spin_lock_irqsave(&priv->lock, flags);
1699         priv->stats.tx_dropped++;
1700         priv->stats.tx_errors++;
1701         spin_unlock_irqrestore(&priv->lock, flags);
1702
1703         /*
1704          * FIXME: According to a patch from 2003-02-26, "returning non-zero
1705          * causes serious problems" here, allegedly.  Before that patch,
1706          * -ERRNO was returned which is not appropriate under Linux 2.6.
1707          * Perhaps more needs to be done?  Stop the queue in serious
1708          * conditions and restart it elsewhere?
1709          */
1710         /* return NETDEV_TX_BUSY; */
1711         return NETDEV_TX_OK;
1712 }
1713
1714 static void ether1394_get_drvinfo(struct net_device *dev,
1715                                   struct ethtool_drvinfo *info)
1716 {
1717         strcpy(info->driver, driver_name);
1718         strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
1719 }
1720
1721 static struct ethtool_ops ethtool_ops = {
1722         .get_drvinfo = ether1394_get_drvinfo
1723 };
1724
1725 static int __init ether1394_init_module(void)
1726 {
1727         int err;
1728
1729         packet_task_cache = kmem_cache_create("packet_task",
1730                                               sizeof(struct packet_task),
1731                                               0, 0, NULL);
1732         if (!packet_task_cache)
1733                 return -ENOMEM;
1734
1735         hpsb_register_highlevel(&eth1394_highlevel);
1736         err = hpsb_register_protocol(&eth1394_proto_driver);
1737         if (err) {
1738                 hpsb_unregister_highlevel(&eth1394_highlevel);
1739                 kmem_cache_destroy(packet_task_cache);
1740         }
1741         return err;
1742 }
1743
1744 static void __exit ether1394_exit_module(void)
1745 {
1746         hpsb_unregister_protocol(&eth1394_proto_driver);
1747         hpsb_unregister_highlevel(&eth1394_highlevel);
1748         kmem_cache_destroy(packet_task_cache);
1749 }
1750
1751 module_init(ether1394_init_module);
1752 module_exit(ether1394_exit_module);