2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
88 #include <asm/uaccess.h>
89 #include <asm/unistd.h>
91 #include <net/compat.h>
94 #include <linux/netfilter.h>
96 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
97 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
98 unsigned long nr_segs, loff_t pos);
99 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
100 unsigned long nr_segs, loff_t pos);
101 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
103 static int sock_close(struct inode *inode, struct file *file);
104 static unsigned int sock_poll(struct file *file,
105 struct poll_table_struct *wait);
106 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
108 static long compat_sock_ioctl(struct file *file,
109 unsigned int cmd, unsigned long arg);
111 static int sock_fasync(int fd, struct file *filp, int on);
112 static ssize_t sock_sendpage(struct file *file, struct page *page,
113 int offset, size_t size, loff_t *ppos, int more);
116 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
117 * in the operation structures but are done directly via the socketcall() multiplexor.
120 static const struct file_operations socket_file_ops = {
121 .owner = THIS_MODULE,
123 .aio_read = sock_aio_read,
124 .aio_write = sock_aio_write,
126 .unlocked_ioctl = sock_ioctl,
128 .compat_ioctl = compat_sock_ioctl,
131 .open = sock_no_open, /* special open code to disallow open via /proc */
132 .release = sock_close,
133 .fasync = sock_fasync,
134 .sendpage = sock_sendpage,
135 .splice_write = generic_splice_sendpage,
139 * The protocol list. Each protocol is registered in here.
142 static DEFINE_SPINLOCK(net_family_lock);
143 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
146 * Statistics counters of the socket lists
149 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
153 * Move socket addresses back and forth across the kernel/user
154 * divide and look after the messy bits.
157 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
158 16 for IP, 16 for IPX,
161 must be at least one bigger than
162 the AF_UNIX size (see net/unix/af_unix.c
167 * move_addr_to_kernel - copy a socket address into kernel space
168 * @uaddr: Address in user space
169 * @kaddr: Address in kernel space
170 * @ulen: Length in user space
172 * The address is copied into kernel space. If the provided address is
173 * too long an error code of -EINVAL is returned. If the copy gives
174 * invalid addresses -EFAULT is returned. On a success 0 is returned.
177 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
179 if (ulen < 0 || ulen > MAX_SOCK_ADDR)
183 if (copy_from_user(kaddr, uaddr, ulen))
185 return audit_sockaddr(ulen, kaddr);
189 * move_addr_to_user - copy an address to user space
190 * @kaddr: kernel space address
191 * @klen: length of address in kernel
192 * @uaddr: user space address
193 * @ulen: pointer to user length field
195 * The value pointed to by ulen on entry is the buffer length available.
196 * This is overwritten with the buffer space used. -EINVAL is returned
197 * if an overlong buffer is specified or a negative buffer size. -EFAULT
198 * is returned if either the buffer or the length field are not
200 * After copying the data up to the limit the user specifies, the true
201 * length of the data is written over the length limit the user
202 * specified. Zero is returned for a success.
205 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
211 err = get_user(len, ulen);
216 if (len < 0 || len > MAX_SOCK_ADDR)
219 if (audit_sockaddr(klen, kaddr))
221 if (copy_to_user(uaddr, kaddr, len))
225 * "fromlen shall refer to the value before truncation.."
228 return __put_user(klen, ulen);
231 #define SOCKFS_MAGIC 0x534F434B
233 static struct kmem_cache *sock_inode_cachep __read_mostly;
235 static struct inode *sock_alloc_inode(struct super_block *sb)
237 struct socket_alloc *ei;
239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
242 init_waitqueue_head(&ei->socket.wait);
244 ei->socket.fasync_list = NULL;
245 ei->socket.state = SS_UNCONNECTED;
246 ei->socket.flags = 0;
247 ei->socket.ops = NULL;
248 ei->socket.sk = NULL;
249 ei->socket.file = NULL;
251 return &ei->vfs_inode;
254 static void sock_destroy_inode(struct inode *inode)
256 kmem_cache_free(sock_inode_cachep,
257 container_of(inode, struct socket_alloc, vfs_inode));
260 static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags)
262 struct socket_alloc *ei = (struct socket_alloc *)foo;
264 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR))
265 == SLAB_CTOR_CONSTRUCTOR)
266 inode_init_once(&ei->vfs_inode);
269 static int init_inodecache(void)
271 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
272 sizeof(struct socket_alloc),
274 (SLAB_HWCACHE_ALIGN |
275 SLAB_RECLAIM_ACCOUNT |
279 if (sock_inode_cachep == NULL)
284 static struct super_operations sockfs_ops = {
285 .alloc_inode = sock_alloc_inode,
286 .destroy_inode =sock_destroy_inode,
287 .statfs = simple_statfs,
290 static int sockfs_get_sb(struct file_system_type *fs_type,
291 int flags, const char *dev_name, void *data,
292 struct vfsmount *mnt)
294 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
298 static struct vfsmount *sock_mnt __read_mostly;
300 static struct file_system_type sock_fs_type = {
302 .get_sb = sockfs_get_sb,
303 .kill_sb = kill_anon_super,
306 static int sockfs_delete_dentry(struct dentry *dentry)
309 * At creation time, we pretended this dentry was hashed
310 * (by clearing DCACHE_UNHASHED bit in d_flags)
311 * At delete time, we restore the truth : not hashed.
312 * (so that dput() can proceed correctly)
314 dentry->d_flags |= DCACHE_UNHASHED;
317 static struct dentry_operations sockfs_dentry_operations = {
318 .d_delete = sockfs_delete_dentry,
322 * Obtains the first available file descriptor and sets it up for use.
324 * These functions create file structures and maps them to fd space
325 * of the current process. On success it returns file descriptor
326 * and file struct implicitly stored in sock->file.
327 * Note that another thread may close file descriptor before we return
328 * from this function. We use the fact that now we do not refer
329 * to socket after mapping. If one day we will need it, this
330 * function will increment ref. count on file by 1.
332 * In any case returned fd MAY BE not valid!
333 * This race condition is unavoidable
334 * with shared fd spaces, we cannot solve it inside kernel,
335 * but we take care of internal coherence yet.
338 static int sock_alloc_fd(struct file **filep)
342 fd = get_unused_fd();
343 if (likely(fd >= 0)) {
344 struct file *file = get_empty_filp();
347 if (unlikely(!file)) {
356 static int sock_attach_fd(struct socket *sock, struct file *file)
361 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
365 file->f_path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
366 if (unlikely(!file->f_path.dentry))
369 file->f_path.dentry->d_op = &sockfs_dentry_operations;
371 * We dont want to push this dentry into global dentry hash table.
372 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
373 * This permits a working /proc/$pid/fd/XXX on sockets
375 file->f_path.dentry->d_flags &= ~DCACHE_UNHASHED;
376 d_instantiate(file->f_path.dentry, SOCK_INODE(sock));
377 file->f_path.mnt = mntget(sock_mnt);
378 file->f_mapping = file->f_path.dentry->d_inode->i_mapping;
381 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
382 file->f_mode = FMODE_READ | FMODE_WRITE;
383 file->f_flags = O_RDWR;
385 file->private_data = sock;
390 int sock_map_fd(struct socket *sock)
392 struct file *newfile;
393 int fd = sock_alloc_fd(&newfile);
395 if (likely(fd >= 0)) {
396 int err = sock_attach_fd(sock, newfile);
398 if (unlikely(err < 0)) {
403 fd_install(fd, newfile);
408 static struct socket *sock_from_file(struct file *file, int *err)
410 if (file->f_op == &socket_file_ops)
411 return file->private_data; /* set in sock_map_fd */
418 * sockfd_lookup - Go from a file number to its socket slot
420 * @err: pointer to an error code return
422 * The file handle passed in is locked and the socket it is bound
423 * too is returned. If an error occurs the err pointer is overwritten
424 * with a negative errno code and NULL is returned. The function checks
425 * for both invalid handles and passing a handle which is not a socket.
427 * On a success the socket object pointer is returned.
430 struct socket *sockfd_lookup(int fd, int *err)
441 sock = sock_from_file(file, err);
447 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
453 file = fget_light(fd, fput_needed);
455 sock = sock_from_file(file, err);
458 fput_light(file, *fput_needed);
464 * sock_alloc - allocate a socket
466 * Allocate a new inode and socket object. The two are bound together
467 * and initialised. The socket is then returned. If we are out of inodes
471 static struct socket *sock_alloc(void)
476 inode = new_inode(sock_mnt->mnt_sb);
480 sock = SOCKET_I(inode);
482 inode->i_mode = S_IFSOCK | S_IRWXUGO;
483 inode->i_uid = current->fsuid;
484 inode->i_gid = current->fsgid;
486 get_cpu_var(sockets_in_use)++;
487 put_cpu_var(sockets_in_use);
492 * In theory you can't get an open on this inode, but /proc provides
493 * a back door. Remember to keep it shut otherwise you'll let the
494 * creepy crawlies in.
497 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
502 const struct file_operations bad_sock_fops = {
503 .owner = THIS_MODULE,
504 .open = sock_no_open,
508 * sock_release - close a socket
509 * @sock: socket to close
511 * The socket is released from the protocol stack if it has a release
512 * callback, and the inode is then released if the socket is bound to
513 * an inode not a file.
516 void sock_release(struct socket *sock)
519 struct module *owner = sock->ops->owner;
521 sock->ops->release(sock);
526 if (sock->fasync_list)
527 printk(KERN_ERR "sock_release: fasync list not empty!\n");
529 get_cpu_var(sockets_in_use)--;
530 put_cpu_var(sockets_in_use);
532 iput(SOCK_INODE(sock));
538 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
539 struct msghdr *msg, size_t size)
541 struct sock_iocb *si = kiocb_to_siocb(iocb);
549 err = security_socket_sendmsg(sock, msg, size);
553 return sock->ops->sendmsg(iocb, sock, msg, size);
556 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
559 struct sock_iocb siocb;
562 init_sync_kiocb(&iocb, NULL);
563 iocb.private = &siocb;
564 ret = __sock_sendmsg(&iocb, sock, msg, size);
565 if (-EIOCBQUEUED == ret)
566 ret = wait_on_sync_kiocb(&iocb);
570 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
571 struct kvec *vec, size_t num, size_t size)
573 mm_segment_t oldfs = get_fs();
578 * the following is safe, since for compiler definitions of kvec and
579 * iovec are identical, yielding the same in-core layout and alignment
581 msg->msg_iov = (struct iovec *)vec;
582 msg->msg_iovlen = num;
583 result = sock_sendmsg(sock, msg, size);
589 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
591 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
594 ktime_t kt = skb->tstamp;
596 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
598 /* Race occurred between timestamp enabling and packet
599 receiving. Fill in the current time for now. */
601 kt = ktime_get_real();
603 tv = ktime_to_timeval(kt);
604 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
607 /* Race occurred between timestamp enabling and packet
608 receiving. Fill in the current time for now. */
610 kt = ktime_get_real();
612 ts = ktime_to_timespec(kt);
613 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
617 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
619 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
620 struct msghdr *msg, size_t size, int flags)
623 struct sock_iocb *si = kiocb_to_siocb(iocb);
631 err = security_socket_recvmsg(sock, msg, size, flags);
635 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
638 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
639 size_t size, int flags)
642 struct sock_iocb siocb;
645 init_sync_kiocb(&iocb, NULL);
646 iocb.private = &siocb;
647 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
648 if (-EIOCBQUEUED == ret)
649 ret = wait_on_sync_kiocb(&iocb);
653 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
654 struct kvec *vec, size_t num, size_t size, int flags)
656 mm_segment_t oldfs = get_fs();
661 * the following is safe, since for compiler definitions of kvec and
662 * iovec are identical, yielding the same in-core layout and alignment
664 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
665 result = sock_recvmsg(sock, msg, size, flags);
670 static void sock_aio_dtor(struct kiocb *iocb)
672 kfree(iocb->private);
675 static ssize_t sock_sendpage(struct file *file, struct page *page,
676 int offset, size_t size, loff_t *ppos, int more)
681 sock = file->private_data;
683 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
687 return sock->ops->sendpage(sock, page, offset, size, flags);
690 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
691 struct sock_iocb *siocb)
693 if (!is_sync_kiocb(iocb)) {
694 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
697 iocb->ki_dtor = sock_aio_dtor;
701 iocb->private = siocb;
705 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
706 struct file *file, const struct iovec *iov,
707 unsigned long nr_segs)
709 struct socket *sock = file->private_data;
713 for (i = 0; i < nr_segs; i++)
714 size += iov[i].iov_len;
716 msg->msg_name = NULL;
717 msg->msg_namelen = 0;
718 msg->msg_control = NULL;
719 msg->msg_controllen = 0;
720 msg->msg_iov = (struct iovec *)iov;
721 msg->msg_iovlen = nr_segs;
722 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
724 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
727 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
728 unsigned long nr_segs, loff_t pos)
730 struct sock_iocb siocb, *x;
735 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
739 x = alloc_sock_iocb(iocb, &siocb);
742 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
745 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
746 struct file *file, const struct iovec *iov,
747 unsigned long nr_segs)
749 struct socket *sock = file->private_data;
753 for (i = 0; i < nr_segs; i++)
754 size += iov[i].iov_len;
756 msg->msg_name = NULL;
757 msg->msg_namelen = 0;
758 msg->msg_control = NULL;
759 msg->msg_controllen = 0;
760 msg->msg_iov = (struct iovec *)iov;
761 msg->msg_iovlen = nr_segs;
762 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
763 if (sock->type == SOCK_SEQPACKET)
764 msg->msg_flags |= MSG_EOR;
766 return __sock_sendmsg(iocb, sock, msg, size);
769 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
770 unsigned long nr_segs, loff_t pos)
772 struct sock_iocb siocb, *x;
777 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
780 x = alloc_sock_iocb(iocb, &siocb);
784 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
788 * Atomic setting of ioctl hooks to avoid race
789 * with module unload.
792 static DEFINE_MUTEX(br_ioctl_mutex);
793 static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL;
795 void brioctl_set(int (*hook) (unsigned int, void __user *))
797 mutex_lock(&br_ioctl_mutex);
798 br_ioctl_hook = hook;
799 mutex_unlock(&br_ioctl_mutex);
802 EXPORT_SYMBOL(brioctl_set);
804 static DEFINE_MUTEX(vlan_ioctl_mutex);
805 static int (*vlan_ioctl_hook) (void __user *arg);
807 void vlan_ioctl_set(int (*hook) (void __user *))
809 mutex_lock(&vlan_ioctl_mutex);
810 vlan_ioctl_hook = hook;
811 mutex_unlock(&vlan_ioctl_mutex);
814 EXPORT_SYMBOL(vlan_ioctl_set);
816 static DEFINE_MUTEX(dlci_ioctl_mutex);
817 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
819 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
821 mutex_lock(&dlci_ioctl_mutex);
822 dlci_ioctl_hook = hook;
823 mutex_unlock(&dlci_ioctl_mutex);
826 EXPORT_SYMBOL(dlci_ioctl_set);
829 * With an ioctl, arg may well be a user mode pointer, but we don't know
830 * what to do with it - that's up to the protocol still.
833 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
836 void __user *argp = (void __user *)arg;
839 sock = file->private_data;
840 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
841 err = dev_ioctl(cmd, argp);
843 #ifdef CONFIG_WIRELESS_EXT
844 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
845 err = dev_ioctl(cmd, argp);
847 #endif /* CONFIG_WIRELESS_EXT */
852 if (get_user(pid, (int __user *)argp))
854 err = f_setown(sock->file, pid, 1);
858 err = put_user(f_getown(sock->file),
867 request_module("bridge");
869 mutex_lock(&br_ioctl_mutex);
871 err = br_ioctl_hook(cmd, argp);
872 mutex_unlock(&br_ioctl_mutex);
877 if (!vlan_ioctl_hook)
878 request_module("8021q");
880 mutex_lock(&vlan_ioctl_mutex);
882 err = vlan_ioctl_hook(argp);
883 mutex_unlock(&vlan_ioctl_mutex);
888 if (!dlci_ioctl_hook)
889 request_module("dlci");
891 if (dlci_ioctl_hook) {
892 mutex_lock(&dlci_ioctl_mutex);
893 err = dlci_ioctl_hook(cmd, argp);
894 mutex_unlock(&dlci_ioctl_mutex);
898 err = sock->ops->ioctl(sock, cmd, arg);
901 * If this ioctl is unknown try to hand it down
904 if (err == -ENOIOCTLCMD)
905 err = dev_ioctl(cmd, argp);
911 int sock_create_lite(int family, int type, int protocol, struct socket **res)
914 struct socket *sock = NULL;
916 err = security_socket_create(family, type, protocol, 1);
927 err = security_socket_post_create(sock, family, type, protocol, 1);
940 /* No kernel lock held - perfect */
941 static unsigned int sock_poll(struct file *file, poll_table *wait)
946 * We can't return errors to poll, so it's either yes or no.
948 sock = file->private_data;
949 return sock->ops->poll(file, sock, wait);
952 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
954 struct socket *sock = file->private_data;
956 return sock->ops->mmap(file, sock, vma);
959 static int sock_close(struct inode *inode, struct file *filp)
962 * It was possible the inode is NULL we were
963 * closing an unfinished socket.
967 printk(KERN_DEBUG "sock_close: NULL inode\n");
970 sock_fasync(-1, filp, 0);
971 sock_release(SOCKET_I(inode));
976 * Update the socket async list
978 * Fasync_list locking strategy.
980 * 1. fasync_list is modified only under process context socket lock
981 * i.e. under semaphore.
982 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
983 * or under socket lock.
984 * 3. fasync_list can be used from softirq context, so that
985 * modification under socket lock have to be enhanced with
986 * write_lock_bh(&sk->sk_callback_lock).
990 static int sock_fasync(int fd, struct file *filp, int on)
992 struct fasync_struct *fa, *fna = NULL, **prev;
997 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1002 sock = filp->private_data;
1012 prev = &(sock->fasync_list);
1014 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1015 if (fa->fa_file == filp)
1020 write_lock_bh(&sk->sk_callback_lock);
1022 write_unlock_bh(&sk->sk_callback_lock);
1027 fna->fa_file = filp;
1029 fna->magic = FASYNC_MAGIC;
1030 fna->fa_next = sock->fasync_list;
1031 write_lock_bh(&sk->sk_callback_lock);
1032 sock->fasync_list = fna;
1033 write_unlock_bh(&sk->sk_callback_lock);
1036 write_lock_bh(&sk->sk_callback_lock);
1037 *prev = fa->fa_next;
1038 write_unlock_bh(&sk->sk_callback_lock);
1044 release_sock(sock->sk);
1048 /* This function may be called only under socket lock or callback_lock */
1050 int sock_wake_async(struct socket *sock, int how, int band)
1052 if (!sock || !sock->fasync_list)
1057 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1061 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1066 __kill_fasync(sock->fasync_list, SIGIO, band);
1069 __kill_fasync(sock->fasync_list, SIGURG, band);
1074 static int __sock_create(int family, int type, int protocol,
1075 struct socket **res, int kern)
1078 struct socket *sock;
1079 const struct net_proto_family *pf;
1082 * Check protocol is in range
1084 if (family < 0 || family >= NPROTO)
1085 return -EAFNOSUPPORT;
1086 if (type < 0 || type >= SOCK_MAX)
1091 This uglymoron is moved from INET layer to here to avoid
1092 deadlock in module load.
1094 if (family == PF_INET && type == SOCK_PACKET) {
1098 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1104 err = security_socket_create(family, type, protocol, kern);
1109 * Allocate the socket and allow the family to set things up. if
1110 * the protocol is 0, the family is instructed to select an appropriate
1113 sock = sock_alloc();
1115 if (net_ratelimit())
1116 printk(KERN_WARNING "socket: no more sockets\n");
1117 return -ENFILE; /* Not exactly a match, but its the
1118 closest posix thing */
1123 #if defined(CONFIG_KMOD)
1124 /* Attempt to load a protocol module if the find failed.
1126 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1127 * requested real, full-featured networking support upon configuration.
1128 * Otherwise module support will break!
1130 if (net_families[family] == NULL)
1131 request_module("net-pf-%d", family);
1135 pf = rcu_dereference(net_families[family]);
1136 err = -EAFNOSUPPORT;
1141 * We will call the ->create function, that possibly is in a loadable
1142 * module, so we have to bump that loadable module refcnt first.
1144 if (!try_module_get(pf->owner))
1147 /* Now protected by module ref count */
1150 err = pf->create(sock, protocol);
1152 goto out_module_put;
1155 * Now to bump the refcnt of the [loadable] module that owns this
1156 * socket at sock_release time we decrement its refcnt.
1158 if (!try_module_get(sock->ops->owner))
1159 goto out_module_busy;
1162 * Now that we're done with the ->create function, the [loadable]
1163 * module can have its refcnt decremented
1165 module_put(pf->owner);
1166 err = security_socket_post_create(sock, family, type, protocol, kern);
1174 err = -EAFNOSUPPORT;
1177 module_put(pf->owner);
1184 goto out_sock_release;
1187 int sock_create(int family, int type, int protocol, struct socket **res)
1189 return __sock_create(family, type, protocol, res, 0);
1192 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1194 return __sock_create(family, type, protocol, res, 1);
1197 asmlinkage long sys_socket(int family, int type, int protocol)
1200 struct socket *sock;
1202 retval = sock_create(family, type, protocol, &sock);
1206 retval = sock_map_fd(sock);
1211 /* It may be already another descriptor 8) Not kernel problem. */
1220 * Create a pair of connected sockets.
1223 asmlinkage long sys_socketpair(int family, int type, int protocol,
1224 int __user *usockvec)
1226 struct socket *sock1, *sock2;
1228 struct file *newfile1, *newfile2;
1231 * Obtain the first socket and check if the underlying protocol
1232 * supports the socketpair call.
1235 err = sock_create(family, type, protocol, &sock1);
1239 err = sock_create(family, type, protocol, &sock2);
1243 err = sock1->ops->socketpair(sock1, sock2);
1245 goto out_release_both;
1247 fd1 = sock_alloc_fd(&newfile1);
1248 if (unlikely(fd1 < 0))
1249 goto out_release_both;
1251 fd2 = sock_alloc_fd(&newfile2);
1252 if (unlikely(fd2 < 0)) {
1255 goto out_release_both;
1258 err = sock_attach_fd(sock1, newfile1);
1259 if (unlikely(err < 0)) {
1263 err = sock_attach_fd(sock2, newfile2);
1264 if (unlikely(err < 0)) {
1269 err = audit_fd_pair(fd1, fd2);
1276 fd_install(fd1, newfile1);
1277 fd_install(fd2, newfile2);
1278 /* fd1 and fd2 may be already another descriptors.
1279 * Not kernel problem.
1282 err = put_user(fd1, &usockvec[0]);
1284 err = put_user(fd2, &usockvec[1]);
1293 sock_release(sock2);
1295 sock_release(sock1);
1301 sock_release(sock1);
1304 sock_release(sock2);
1312 * Bind a name to a socket. Nothing much to do here since it's
1313 * the protocol's responsibility to handle the local address.
1315 * We move the socket address to kernel space before we call
1316 * the protocol layer (having also checked the address is ok).
1319 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1321 struct socket *sock;
1322 char address[MAX_SOCK_ADDR];
1323 int err, fput_needed;
1325 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1327 err = move_addr_to_kernel(umyaddr, addrlen, address);
1329 err = security_socket_bind(sock,
1330 (struct sockaddr *)address,
1333 err = sock->ops->bind(sock,
1337 fput_light(sock->file, fput_needed);
1343 * Perform a listen. Basically, we allow the protocol to do anything
1344 * necessary for a listen, and if that works, we mark the socket as
1345 * ready for listening.
1348 int sysctl_somaxconn __read_mostly = SOMAXCONN;
1350 asmlinkage long sys_listen(int fd, int backlog)
1352 struct socket *sock;
1353 int err, fput_needed;
1355 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1357 if ((unsigned)backlog > sysctl_somaxconn)
1358 backlog = sysctl_somaxconn;
1360 err = security_socket_listen(sock, backlog);
1362 err = sock->ops->listen(sock, backlog);
1364 fput_light(sock->file, fput_needed);
1370 * For accept, we attempt to create a new socket, set up the link
1371 * with the client, wake up the client, then return the new
1372 * connected fd. We collect the address of the connector in kernel
1373 * space and move it to user at the very end. This is unclean because
1374 * we open the socket then return an error.
1376 * 1003.1g adds the ability to recvmsg() to query connection pending
1377 * status to recvmsg. We need to add that support in a way thats
1378 * clean when we restucture accept also.
1381 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1382 int __user *upeer_addrlen)
1384 struct socket *sock, *newsock;
1385 struct file *newfile;
1386 int err, len, newfd, fput_needed;
1387 char address[MAX_SOCK_ADDR];
1389 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1394 if (!(newsock = sock_alloc()))
1397 newsock->type = sock->type;
1398 newsock->ops = sock->ops;
1401 * We don't need try_module_get here, as the listening socket (sock)
1402 * has the protocol module (sock->ops->owner) held.
1404 __module_get(newsock->ops->owner);
1406 newfd = sock_alloc_fd(&newfile);
1407 if (unlikely(newfd < 0)) {
1409 sock_release(newsock);
1413 err = sock_attach_fd(newsock, newfile);
1417 err = security_socket_accept(sock, newsock);
1421 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1425 if (upeer_sockaddr) {
1426 if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1428 err = -ECONNABORTED;
1431 err = move_addr_to_user(address, len, upeer_sockaddr,
1437 /* File flags are not inherited via accept() unlike another OSes. */
1439 fd_install(newfd, newfile);
1442 security_socket_post_accept(sock, newsock);
1445 fput_light(sock->file, fput_needed);
1449 sock_release(newsock);
1451 put_unused_fd(newfd);
1455 put_unused_fd(newfd);
1460 * Attempt to connect to a socket with the server address. The address
1461 * is in user space so we verify it is OK and move it to kernel space.
1463 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1466 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1467 * other SEQPACKET protocols that take time to connect() as it doesn't
1468 * include the -EINPROGRESS status for such sockets.
1471 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1474 struct socket *sock;
1475 char address[MAX_SOCK_ADDR];
1476 int err, fput_needed;
1478 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1481 err = move_addr_to_kernel(uservaddr, addrlen, address);
1486 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1490 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1491 sock->file->f_flags);
1493 fput_light(sock->file, fput_needed);
1499 * Get the local address ('name') of a socket object. Move the obtained
1500 * name to user space.
1503 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1504 int __user *usockaddr_len)
1506 struct socket *sock;
1507 char address[MAX_SOCK_ADDR];
1508 int len, err, fput_needed;
1510 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1514 err = security_socket_getsockname(sock);
1518 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1521 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1524 fput_light(sock->file, fput_needed);
1530 * Get the remote address ('name') of a socket object. Move the obtained
1531 * name to user space.
1534 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1535 int __user *usockaddr_len)
1537 struct socket *sock;
1538 char address[MAX_SOCK_ADDR];
1539 int len, err, fput_needed;
1541 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1543 err = security_socket_getpeername(sock);
1545 fput_light(sock->file, fput_needed);
1550 sock->ops->getname(sock, (struct sockaddr *)address, &len,
1553 err = move_addr_to_user(address, len, usockaddr,
1555 fput_light(sock->file, fput_needed);
1561 * Send a datagram to a given address. We move the address into kernel
1562 * space and check the user space data area is readable before invoking
1566 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1567 unsigned flags, struct sockaddr __user *addr,
1570 struct socket *sock;
1571 char address[MAX_SOCK_ADDR];
1576 struct file *sock_file;
1578 sock_file = fget_light(fd, &fput_needed);
1583 sock = sock_from_file(sock_file, &err);
1586 iov.iov_base = buff;
1588 msg.msg_name = NULL;
1591 msg.msg_control = NULL;
1592 msg.msg_controllen = 0;
1593 msg.msg_namelen = 0;
1595 err = move_addr_to_kernel(addr, addr_len, address);
1598 msg.msg_name = address;
1599 msg.msg_namelen = addr_len;
1601 if (sock->file->f_flags & O_NONBLOCK)
1602 flags |= MSG_DONTWAIT;
1603 msg.msg_flags = flags;
1604 err = sock_sendmsg(sock, &msg, len);
1607 fput_light(sock_file, fput_needed);
1613 * Send a datagram down a socket.
1616 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1618 return sys_sendto(fd, buff, len, flags, NULL, 0);
1622 * Receive a frame from the socket and optionally record the address of the
1623 * sender. We verify the buffers are writable and if needed move the
1624 * sender address from kernel to user space.
1627 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1628 unsigned flags, struct sockaddr __user *addr,
1629 int __user *addr_len)
1631 struct socket *sock;
1634 char address[MAX_SOCK_ADDR];
1636 struct file *sock_file;
1639 sock_file = fget_light(fd, &fput_needed);
1644 sock = sock_from_file(sock_file, &err);
1648 msg.msg_control = NULL;
1649 msg.msg_controllen = 0;
1653 iov.iov_base = ubuf;
1654 msg.msg_name = address;
1655 msg.msg_namelen = MAX_SOCK_ADDR;
1656 if (sock->file->f_flags & O_NONBLOCK)
1657 flags |= MSG_DONTWAIT;
1658 err = sock_recvmsg(sock, &msg, size, flags);
1660 if (err >= 0 && addr != NULL) {
1661 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1666 fput_light(sock_file, fput_needed);
1672 * Receive a datagram from a socket.
1675 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1678 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1682 * Set a socket option. Because we don't know the option lengths we have
1683 * to pass the user mode parameter for the protocols to sort out.
1686 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1687 char __user *optval, int optlen)
1689 int err, fput_needed;
1690 struct socket *sock;
1695 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1697 err = security_socket_setsockopt(sock, level, optname);
1701 if (level == SOL_SOCKET)
1703 sock_setsockopt(sock, level, optname, optval,
1707 sock->ops->setsockopt(sock, level, optname, optval,
1710 fput_light(sock->file, fput_needed);
1716 * Get a socket option. Because we don't know the option lengths we have
1717 * to pass a user mode parameter for the protocols to sort out.
1720 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1721 char __user *optval, int __user *optlen)
1723 int err, fput_needed;
1724 struct socket *sock;
1726 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1728 err = security_socket_getsockopt(sock, level, optname);
1732 if (level == SOL_SOCKET)
1734 sock_getsockopt(sock, level, optname, optval,
1738 sock->ops->getsockopt(sock, level, optname, optval,
1741 fput_light(sock->file, fput_needed);
1747 * Shutdown a socket.
1750 asmlinkage long sys_shutdown(int fd, int how)
1752 int err, fput_needed;
1753 struct socket *sock;
1755 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1757 err = security_socket_shutdown(sock, how);
1759 err = sock->ops->shutdown(sock, how);
1760 fput_light(sock->file, fput_needed);
1765 /* A couple of helpful macros for getting the address of the 32/64 bit
1766 * fields which are the same type (int / unsigned) on our platforms.
1768 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1769 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1770 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1773 * BSD sendmsg interface
1776 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1778 struct compat_msghdr __user *msg_compat =
1779 (struct compat_msghdr __user *)msg;
1780 struct socket *sock;
1781 char address[MAX_SOCK_ADDR];
1782 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1783 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1784 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1785 /* 20 is size of ipv6_pktinfo */
1786 unsigned char *ctl_buf = ctl;
1787 struct msghdr msg_sys;
1788 int err, ctl_len, iov_size, total_len;
1792 if (MSG_CMSG_COMPAT & flags) {
1793 if (get_compat_msghdr(&msg_sys, msg_compat))
1796 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1799 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1803 /* do not move before msg_sys is valid */
1805 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1808 /* Check whether to allocate the iovec area */
1810 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1811 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1812 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1817 /* This will also move the address data into kernel space */
1818 if (MSG_CMSG_COMPAT & flags) {
1819 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1821 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1828 if (msg_sys.msg_controllen > INT_MAX)
1830 ctl_len = msg_sys.msg_controllen;
1831 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1833 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1837 ctl_buf = msg_sys.msg_control;
1838 ctl_len = msg_sys.msg_controllen;
1839 } else if (ctl_len) {
1840 if (ctl_len > sizeof(ctl)) {
1841 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1842 if (ctl_buf == NULL)
1847 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1848 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1849 * checking falls down on this.
1851 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1854 msg_sys.msg_control = ctl_buf;
1856 msg_sys.msg_flags = flags;
1858 if (sock->file->f_flags & O_NONBLOCK)
1859 msg_sys.msg_flags |= MSG_DONTWAIT;
1860 err = sock_sendmsg(sock, &msg_sys, total_len);
1864 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1866 if (iov != iovstack)
1867 sock_kfree_s(sock->sk, iov, iov_size);
1869 fput_light(sock->file, fput_needed);
1875 * BSD recvmsg interface
1878 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1881 struct compat_msghdr __user *msg_compat =
1882 (struct compat_msghdr __user *)msg;
1883 struct socket *sock;
1884 struct iovec iovstack[UIO_FASTIOV];
1885 struct iovec *iov = iovstack;
1886 struct msghdr msg_sys;
1887 unsigned long cmsg_ptr;
1888 int err, iov_size, total_len, len;
1891 /* kernel mode address */
1892 char addr[MAX_SOCK_ADDR];
1894 /* user mode address pointers */
1895 struct sockaddr __user *uaddr;
1896 int __user *uaddr_len;
1898 if (MSG_CMSG_COMPAT & flags) {
1899 if (get_compat_msghdr(&msg_sys, msg_compat))
1902 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1905 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1910 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1913 /* Check whether to allocate the iovec area */
1915 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1916 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1917 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1923 * Save the user-mode address (verify_iovec will change the
1924 * kernel msghdr to use the kernel address space)
1927 uaddr = (void __user *)msg_sys.msg_name;
1928 uaddr_len = COMPAT_NAMELEN(msg);
1929 if (MSG_CMSG_COMPAT & flags) {
1930 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1932 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1937 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1938 msg_sys.msg_flags = 0;
1939 if (MSG_CMSG_COMPAT & flags)
1940 msg_sys.msg_flags = MSG_CMSG_COMPAT;
1942 if (sock->file->f_flags & O_NONBLOCK)
1943 flags |= MSG_DONTWAIT;
1944 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1949 if (uaddr != NULL) {
1950 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1955 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1959 if (MSG_CMSG_COMPAT & flags)
1960 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1961 &msg_compat->msg_controllen);
1963 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1964 &msg->msg_controllen);
1970 if (iov != iovstack)
1971 sock_kfree_s(sock->sk, iov, iov_size);
1973 fput_light(sock->file, fput_needed);
1978 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1980 /* Argument list sizes for sys_socketcall */
1981 #define AL(x) ((x) * sizeof(unsigned long))
1982 static const unsigned char nargs[18]={
1983 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1984 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1985 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1991 * System call vectors.
1993 * Argument checking cleaned up. Saved 20% in size.
1994 * This function doesn't need to set the kernel lock because
1995 * it is set by the callees.
1998 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
2001 unsigned long a0, a1;
2004 if (call < 1 || call > SYS_RECVMSG)
2007 /* copy_from_user should be SMP safe. */
2008 if (copy_from_user(a, args, nargs[call]))
2011 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2020 err = sys_socket(a0, a1, a[2]);
2023 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2026 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2029 err = sys_listen(a0, a1);
2033 sys_accept(a0, (struct sockaddr __user *)a1,
2034 (int __user *)a[2]);
2036 case SYS_GETSOCKNAME:
2038 sys_getsockname(a0, (struct sockaddr __user *)a1,
2039 (int __user *)a[2]);
2041 case SYS_GETPEERNAME:
2043 sys_getpeername(a0, (struct sockaddr __user *)a1,
2044 (int __user *)a[2]);
2046 case SYS_SOCKETPAIR:
2047 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2050 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2053 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2054 (struct sockaddr __user *)a[4], a[5]);
2057 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2060 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2061 (struct sockaddr __user *)a[4],
2062 (int __user *)a[5]);
2065 err = sys_shutdown(a0, a1);
2067 case SYS_SETSOCKOPT:
2068 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2070 case SYS_GETSOCKOPT:
2072 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2073 (int __user *)a[4]);
2076 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2079 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2088 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2091 * sock_register - add a socket protocol handler
2092 * @ops: description of protocol
2094 * This function is called by a protocol handler that wants to
2095 * advertise its address family, and have it linked into the
2096 * socket interface. The value ops->family coresponds to the
2097 * socket system call protocol family.
2099 int sock_register(const struct net_proto_family *ops)
2103 if (ops->family >= NPROTO) {
2104 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2109 spin_lock(&net_family_lock);
2110 if (net_families[ops->family])
2113 net_families[ops->family] = ops;
2116 spin_unlock(&net_family_lock);
2118 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2123 * sock_unregister - remove a protocol handler
2124 * @family: protocol family to remove
2126 * This function is called by a protocol handler that wants to
2127 * remove its address family, and have it unlinked from the
2128 * new socket creation.
2130 * If protocol handler is a module, then it can use module reference
2131 * counts to protect against new references. If protocol handler is not
2132 * a module then it needs to provide its own protection in
2133 * the ops->create routine.
2135 void sock_unregister(int family)
2137 BUG_ON(family < 0 || family >= NPROTO);
2139 spin_lock(&net_family_lock);
2140 net_families[family] = NULL;
2141 spin_unlock(&net_family_lock);
2145 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2148 static int __init sock_init(void)
2151 * Initialize sock SLAB cache.
2157 * Initialize skbuff SLAB cache
2162 * Initialize the protocols module.
2166 register_filesystem(&sock_fs_type);
2167 sock_mnt = kern_mount(&sock_fs_type);
2169 /* The real protocol initialization is performed in later initcalls.
2172 #ifdef CONFIG_NETFILTER
2179 core_initcall(sock_init); /* early initcall */
2181 #ifdef CONFIG_PROC_FS
2182 void socket_seq_show(struct seq_file *seq)
2187 for_each_possible_cpu(cpu)
2188 counter += per_cpu(sockets_in_use, cpu);
2190 /* It can be negative, by the way. 8) */
2194 seq_printf(seq, "sockets: used %d\n", counter);
2196 #endif /* CONFIG_PROC_FS */
2198 #ifdef CONFIG_COMPAT
2199 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2202 struct socket *sock = file->private_data;
2203 int ret = -ENOIOCTLCMD;
2205 if (sock->ops->compat_ioctl)
2206 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2212 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2214 return sock->ops->bind(sock, addr, addrlen);
2217 int kernel_listen(struct socket *sock, int backlog)
2219 return sock->ops->listen(sock, backlog);
2222 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2224 struct sock *sk = sock->sk;
2227 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2232 err = sock->ops->accept(sock, *newsock, flags);
2234 sock_release(*newsock);
2238 (*newsock)->ops = sock->ops;
2244 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2247 return sock->ops->connect(sock, addr, addrlen, flags);
2250 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2253 return sock->ops->getname(sock, addr, addrlen, 0);
2256 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2259 return sock->ops->getname(sock, addr, addrlen, 1);
2262 int kernel_getsockopt(struct socket *sock, int level, int optname,
2263 char *optval, int *optlen)
2265 mm_segment_t oldfs = get_fs();
2269 if (level == SOL_SOCKET)
2270 err = sock_getsockopt(sock, level, optname, optval, optlen);
2272 err = sock->ops->getsockopt(sock, level, optname, optval,
2278 int kernel_setsockopt(struct socket *sock, int level, int optname,
2279 char *optval, int optlen)
2281 mm_segment_t oldfs = get_fs();
2285 if (level == SOL_SOCKET)
2286 err = sock_setsockopt(sock, level, optname, optval, optlen);
2288 err = sock->ops->setsockopt(sock, level, optname, optval,
2294 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2295 size_t size, int flags)
2297 if (sock->ops->sendpage)
2298 return sock->ops->sendpage(sock, page, offset, size, flags);
2300 return sock_no_sendpage(sock, page, offset, size, flags);
2303 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2305 mm_segment_t oldfs = get_fs();
2309 err = sock->ops->ioctl(sock, cmd, arg);
2315 /* ABI emulation layers need these two */
2316 EXPORT_SYMBOL(move_addr_to_kernel);
2317 EXPORT_SYMBOL(move_addr_to_user);
2318 EXPORT_SYMBOL(sock_create);
2319 EXPORT_SYMBOL(sock_create_kern);
2320 EXPORT_SYMBOL(sock_create_lite);
2321 EXPORT_SYMBOL(sock_map_fd);
2322 EXPORT_SYMBOL(sock_recvmsg);
2323 EXPORT_SYMBOL(sock_register);
2324 EXPORT_SYMBOL(sock_release);
2325 EXPORT_SYMBOL(sock_sendmsg);
2326 EXPORT_SYMBOL(sock_unregister);
2327 EXPORT_SYMBOL(sock_wake_async);
2328 EXPORT_SYMBOL(sockfd_lookup);
2329 EXPORT_SYMBOL(kernel_sendmsg);
2330 EXPORT_SYMBOL(kernel_recvmsg);
2331 EXPORT_SYMBOL(kernel_bind);
2332 EXPORT_SYMBOL(kernel_listen);
2333 EXPORT_SYMBOL(kernel_accept);
2334 EXPORT_SYMBOL(kernel_connect);
2335 EXPORT_SYMBOL(kernel_getsockname);
2336 EXPORT_SYMBOL(kernel_getpeername);
2337 EXPORT_SYMBOL(kernel_getsockopt);
2338 EXPORT_SYMBOL(kernel_setsockopt);
2339 EXPORT_SYMBOL(kernel_sendpage);
2340 EXPORT_SYMBOL(kernel_sock_ioctl);