2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
29 #include "print-tree.h"
30 #include "transaction.h"
33 #include "ref-cache.h"
34 #include "free-space-cache.h"
36 #define PENDING_EXTENT_INSERT 0
37 #define PENDING_EXTENT_DELETE 1
38 #define PENDING_BACKREF_UPDATE 2
40 struct pending_extent_op {
49 struct list_head list;
53 static int __btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans,
54 struct btrfs_root *root, u64 parent,
55 u64 root_objectid, u64 ref_generation,
56 u64 owner, struct btrfs_key *ins,
58 static int update_reserved_extents(struct btrfs_root *root,
59 u64 bytenr, u64 num, int reserve);
60 static int update_block_group(struct btrfs_trans_handle *trans,
61 struct btrfs_root *root,
62 u64 bytenr, u64 num_bytes, int alloc,
64 static noinline int __btrfs_free_extent(struct btrfs_trans_handle *trans,
65 struct btrfs_root *root,
66 u64 bytenr, u64 num_bytes, u64 parent,
67 u64 root_objectid, u64 ref_generation,
68 u64 owner_objectid, int pin,
71 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
72 struct btrfs_root *extent_root, u64 alloc_bytes,
73 u64 flags, int force);
75 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
77 return (cache->flags & bits) == bits;
81 * this adds the block group to the fs_info rb tree for the block group
84 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
85 struct btrfs_block_group_cache *block_group)
88 struct rb_node *parent = NULL;
89 struct btrfs_block_group_cache *cache;
91 spin_lock(&info->block_group_cache_lock);
92 p = &info->block_group_cache_tree.rb_node;
96 cache = rb_entry(parent, struct btrfs_block_group_cache,
98 if (block_group->key.objectid < cache->key.objectid) {
100 } else if (block_group->key.objectid > cache->key.objectid) {
103 spin_unlock(&info->block_group_cache_lock);
108 rb_link_node(&block_group->cache_node, parent, p);
109 rb_insert_color(&block_group->cache_node,
110 &info->block_group_cache_tree);
111 spin_unlock(&info->block_group_cache_lock);
117 * This will return the block group at or after bytenr if contains is 0, else
118 * it will return the block group that contains the bytenr
120 static struct btrfs_block_group_cache *
121 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
124 struct btrfs_block_group_cache *cache, *ret = NULL;
128 spin_lock(&info->block_group_cache_lock);
129 n = info->block_group_cache_tree.rb_node;
132 cache = rb_entry(n, struct btrfs_block_group_cache,
134 end = cache->key.objectid + cache->key.offset - 1;
135 start = cache->key.objectid;
137 if (bytenr < start) {
138 if (!contains && (!ret || start < ret->key.objectid))
141 } else if (bytenr > start) {
142 if (contains && bytenr <= end) {
153 atomic_inc(&ret->count);
154 spin_unlock(&info->block_group_cache_lock);
160 * this is only called by cache_block_group, since we could have freed extents
161 * we need to check the pinned_extents for any extents that can't be used yet
162 * since their free space will be released as soon as the transaction commits.
164 static int add_new_free_space(struct btrfs_block_group_cache *block_group,
165 struct btrfs_fs_info *info, u64 start, u64 end)
167 u64 extent_start, extent_end, size;
170 while (start < end) {
171 ret = find_first_extent_bit(&info->pinned_extents, start,
172 &extent_start, &extent_end,
177 if (extent_start == start) {
178 start = extent_end + 1;
179 } else if (extent_start > start && extent_start < end) {
180 size = extent_start - start;
181 ret = btrfs_add_free_space(block_group, start,
184 start = extent_end + 1;
192 ret = btrfs_add_free_space(block_group, start, size);
199 static int remove_sb_from_cache(struct btrfs_root *root,
200 struct btrfs_block_group_cache *cache)
207 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
208 bytenr = btrfs_sb_offset(i);
209 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
210 cache->key.objectid, bytenr, 0,
211 &logical, &nr, &stripe_len);
214 btrfs_remove_free_space(cache, logical[nr],
222 static int cache_block_group(struct btrfs_root *root,
223 struct btrfs_block_group_cache *block_group)
225 struct btrfs_path *path;
227 struct btrfs_key key;
228 struct extent_buffer *leaf;
235 root = root->fs_info->extent_root;
237 if (block_group->cached)
240 path = btrfs_alloc_path();
246 * we get into deadlocks with paths held by callers of this function.
247 * since the alloc_mutex is protecting things right now, just
248 * skip the locking here
250 path->skip_locking = 1;
251 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
254 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
255 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
260 leaf = path->nodes[0];
261 slot = path->slots[0];
262 if (slot >= btrfs_header_nritems(leaf)) {
263 ret = btrfs_next_leaf(root, path);
271 btrfs_item_key_to_cpu(leaf, &key, slot);
272 if (key.objectid < block_group->key.objectid)
275 if (key.objectid >= block_group->key.objectid +
276 block_group->key.offset)
279 if (btrfs_key_type(&key) == BTRFS_EXTENT_ITEM_KEY) {
280 add_new_free_space(block_group, root->fs_info, last,
283 last = key.objectid + key.offset;
289 add_new_free_space(block_group, root->fs_info, last,
290 block_group->key.objectid +
291 block_group->key.offset);
293 block_group->cached = 1;
294 remove_sb_from_cache(root, block_group);
297 btrfs_free_path(path);
302 * return the block group that starts at or after bytenr
304 static struct btrfs_block_group_cache *
305 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
307 struct btrfs_block_group_cache *cache;
309 cache = block_group_cache_tree_search(info, bytenr, 0);
315 * return the block group that contains the given bytenr
317 struct btrfs_block_group_cache *btrfs_lookup_block_group(
318 struct btrfs_fs_info *info,
321 struct btrfs_block_group_cache *cache;
323 cache = block_group_cache_tree_search(info, bytenr, 1);
328 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
330 if (atomic_dec_and_test(&cache->count))
334 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
337 struct list_head *head = &info->space_info;
338 struct btrfs_space_info *found;
341 list_for_each_entry_rcu(found, head, list) {
342 if (found->flags == flags) {
352 * after adding space to the filesystem, we need to clear the full flags
353 * on all the space infos.
355 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
357 struct list_head *head = &info->space_info;
358 struct btrfs_space_info *found;
361 list_for_each_entry_rcu(found, head, list)
366 static u64 div_factor(u64 num, int factor)
375 u64 btrfs_find_block_group(struct btrfs_root *root,
376 u64 search_start, u64 search_hint, int owner)
378 struct btrfs_block_group_cache *cache;
380 u64 last = max(search_hint, search_start);
387 cache = btrfs_lookup_first_block_group(root->fs_info, last);
391 spin_lock(&cache->lock);
392 last = cache->key.objectid + cache->key.offset;
393 used = btrfs_block_group_used(&cache->item);
395 if ((full_search || !cache->ro) &&
396 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
397 if (used + cache->pinned + cache->reserved <
398 div_factor(cache->key.offset, factor)) {
399 group_start = cache->key.objectid;
400 spin_unlock(&cache->lock);
401 btrfs_put_block_group(cache);
405 spin_unlock(&cache->lock);
406 btrfs_put_block_group(cache);
414 if (!full_search && factor < 10) {
424 /* simple helper to search for an existing extent at a given offset */
425 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
428 struct btrfs_key key;
429 struct btrfs_path *path;
431 path = btrfs_alloc_path();
433 key.objectid = start;
435 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
436 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
438 btrfs_free_path(path);
443 * Back reference rules. Back refs have three main goals:
445 * 1) differentiate between all holders of references to an extent so that
446 * when a reference is dropped we can make sure it was a valid reference
447 * before freeing the extent.
449 * 2) Provide enough information to quickly find the holders of an extent
450 * if we notice a given block is corrupted or bad.
452 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
453 * maintenance. This is actually the same as #2, but with a slightly
454 * different use case.
456 * File extents can be referenced by:
458 * - multiple snapshots, subvolumes, or different generations in one subvol
459 * - different files inside a single subvolume
460 * - different offsets inside a file (bookend extents in file.c)
462 * The extent ref structure has fields for:
464 * - Objectid of the subvolume root
465 * - Generation number of the tree holding the reference
466 * - objectid of the file holding the reference
467 * - number of references holding by parent node (alway 1 for tree blocks)
469 * Btree leaf may hold multiple references to a file extent. In most cases,
470 * these references are from same file and the corresponding offsets inside
471 * the file are close together.
473 * When a file extent is allocated the fields are filled in:
474 * (root_key.objectid, trans->transid, inode objectid, 1)
476 * When a leaf is cow'd new references are added for every file extent found
477 * in the leaf. It looks similar to the create case, but trans->transid will
478 * be different when the block is cow'd.
480 * (root_key.objectid, trans->transid, inode objectid,
481 * number of references in the leaf)
483 * When a file extent is removed either during snapshot deletion or
484 * file truncation, we find the corresponding back reference and check
485 * the following fields:
487 * (btrfs_header_owner(leaf), btrfs_header_generation(leaf),
490 * Btree extents can be referenced by:
492 * - Different subvolumes
493 * - Different generations of the same subvolume
495 * When a tree block is created, back references are inserted:
497 * (root->root_key.objectid, trans->transid, level, 1)
499 * When a tree block is cow'd, new back references are added for all the
500 * blocks it points to. If the tree block isn't in reference counted root,
501 * the old back references are removed. These new back references are of
502 * the form (trans->transid will have increased since creation):
504 * (root->root_key.objectid, trans->transid, level, 1)
506 * When a backref is in deleting, the following fields are checked:
508 * if backref was for a tree root:
509 * (btrfs_header_owner(itself), btrfs_header_generation(itself), level)
511 * (btrfs_header_owner(parent), btrfs_header_generation(parent), level)
513 * Back Reference Key composing:
515 * The key objectid corresponds to the first byte in the extent, the key
516 * type is set to BTRFS_EXTENT_REF_KEY, and the key offset is the first
517 * byte of parent extent. If a extent is tree root, the key offset is set
518 * to the key objectid.
521 static noinline int lookup_extent_backref(struct btrfs_trans_handle *trans,
522 struct btrfs_root *root,
523 struct btrfs_path *path,
524 u64 bytenr, u64 parent,
525 u64 ref_root, u64 ref_generation,
526 u64 owner_objectid, int del)
528 struct btrfs_key key;
529 struct btrfs_extent_ref *ref;
530 struct extent_buffer *leaf;
534 key.objectid = bytenr;
535 key.type = BTRFS_EXTENT_REF_KEY;
538 ret = btrfs_search_slot(trans, root, &key, path, del ? -1 : 0, 1);
546 leaf = path->nodes[0];
547 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref);
548 ref_objectid = btrfs_ref_objectid(leaf, ref);
549 if (btrfs_ref_root(leaf, ref) != ref_root ||
550 btrfs_ref_generation(leaf, ref) != ref_generation ||
551 (ref_objectid != owner_objectid &&
552 ref_objectid != BTRFS_MULTIPLE_OBJECTIDS)) {
562 static noinline int insert_extent_backref(struct btrfs_trans_handle *trans,
563 struct btrfs_root *root,
564 struct btrfs_path *path,
565 u64 bytenr, u64 parent,
566 u64 ref_root, u64 ref_generation,
570 struct btrfs_key key;
571 struct extent_buffer *leaf;
572 struct btrfs_extent_ref *ref;
576 key.objectid = bytenr;
577 key.type = BTRFS_EXTENT_REF_KEY;
580 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*ref));
582 leaf = path->nodes[0];
583 ref = btrfs_item_ptr(leaf, path->slots[0],
584 struct btrfs_extent_ref);
585 btrfs_set_ref_root(leaf, ref, ref_root);
586 btrfs_set_ref_generation(leaf, ref, ref_generation);
587 btrfs_set_ref_objectid(leaf, ref, owner_objectid);
588 btrfs_set_ref_num_refs(leaf, ref, refs_to_add);
589 } else if (ret == -EEXIST) {
592 BUG_ON(owner_objectid < BTRFS_FIRST_FREE_OBJECTID);
593 leaf = path->nodes[0];
594 ref = btrfs_item_ptr(leaf, path->slots[0],
595 struct btrfs_extent_ref);
596 if (btrfs_ref_root(leaf, ref) != ref_root ||
597 btrfs_ref_generation(leaf, ref) != ref_generation) {
603 num_refs = btrfs_ref_num_refs(leaf, ref);
604 BUG_ON(num_refs == 0);
605 btrfs_set_ref_num_refs(leaf, ref, num_refs + refs_to_add);
607 existing_owner = btrfs_ref_objectid(leaf, ref);
608 if (existing_owner != owner_objectid &&
609 existing_owner != BTRFS_MULTIPLE_OBJECTIDS) {
610 btrfs_set_ref_objectid(leaf, ref,
611 BTRFS_MULTIPLE_OBJECTIDS);
617 btrfs_unlock_up_safe(path, 1);
618 btrfs_mark_buffer_dirty(path->nodes[0]);
620 btrfs_release_path(root, path);
624 static noinline int remove_extent_backref(struct btrfs_trans_handle *trans,
625 struct btrfs_root *root,
626 struct btrfs_path *path,
629 struct extent_buffer *leaf;
630 struct btrfs_extent_ref *ref;
634 leaf = path->nodes[0];
635 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref);
636 num_refs = btrfs_ref_num_refs(leaf, ref);
637 BUG_ON(num_refs < refs_to_drop);
638 num_refs -= refs_to_drop;
640 ret = btrfs_del_item(trans, root, path);
642 btrfs_set_ref_num_refs(leaf, ref, num_refs);
643 btrfs_mark_buffer_dirty(leaf);
645 btrfs_release_path(root, path);
649 #ifdef BIO_RW_DISCARD
650 static void btrfs_issue_discard(struct block_device *bdev,
653 blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL);
657 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
660 #ifdef BIO_RW_DISCARD
662 u64 map_length = num_bytes;
663 struct btrfs_multi_bio *multi = NULL;
665 /* Tell the block device(s) that the sectors can be discarded */
666 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
667 bytenr, &map_length, &multi, 0);
669 struct btrfs_bio_stripe *stripe = multi->stripes;
672 if (map_length > num_bytes)
673 map_length = num_bytes;
675 for (i = 0; i < multi->num_stripes; i++, stripe++) {
676 btrfs_issue_discard(stripe->dev->bdev,
689 static int __btrfs_update_extent_ref(struct btrfs_trans_handle *trans,
690 struct btrfs_root *root, u64 bytenr,
692 u64 orig_parent, u64 parent,
693 u64 orig_root, u64 ref_root,
694 u64 orig_generation, u64 ref_generation,
698 int pin = owner_objectid < BTRFS_FIRST_FREE_OBJECTID;
700 ret = btrfs_update_delayed_ref(trans, bytenr, num_bytes,
701 orig_parent, parent, orig_root,
702 ref_root, orig_generation,
703 ref_generation, owner_objectid, pin);
708 int btrfs_update_extent_ref(struct btrfs_trans_handle *trans,
709 struct btrfs_root *root, u64 bytenr,
710 u64 num_bytes, u64 orig_parent, u64 parent,
711 u64 ref_root, u64 ref_generation,
715 if (ref_root == BTRFS_TREE_LOG_OBJECTID &&
716 owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
719 ret = __btrfs_update_extent_ref(trans, root, bytenr, num_bytes,
720 orig_parent, parent, ref_root,
721 ref_root, ref_generation,
722 ref_generation, owner_objectid);
725 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
726 struct btrfs_root *root, u64 bytenr,
728 u64 orig_parent, u64 parent,
729 u64 orig_root, u64 ref_root,
730 u64 orig_generation, u64 ref_generation,
735 ret = btrfs_add_delayed_ref(trans, bytenr, num_bytes, parent, ref_root,
736 ref_generation, owner_objectid,
737 BTRFS_ADD_DELAYED_REF, 0);
742 static noinline_for_stack int add_extent_ref(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
744 u64 num_bytes, u64 parent, u64 ref_root,
745 u64 ref_generation, u64 owner_objectid,
748 struct btrfs_path *path;
750 struct btrfs_key key;
751 struct extent_buffer *l;
752 struct btrfs_extent_item *item;
755 path = btrfs_alloc_path();
760 path->leave_spinning = 1;
761 key.objectid = bytenr;
762 key.type = BTRFS_EXTENT_ITEM_KEY;
763 key.offset = num_bytes;
765 /* first find the extent item and update its reference count */
766 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
769 btrfs_set_path_blocking(path);
775 btrfs_free_path(path);
780 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
781 if (key.objectid != bytenr) {
782 btrfs_print_leaf(root->fs_info->extent_root, path->nodes[0]);
783 printk(KERN_ERR "btrfs wanted %llu found %llu\n",
784 (unsigned long long)bytenr,
785 (unsigned long long)key.objectid);
788 BUG_ON(key.type != BTRFS_EXTENT_ITEM_KEY);
790 item = btrfs_item_ptr(l, path->slots[0], struct btrfs_extent_item);
792 refs = btrfs_extent_refs(l, item);
793 btrfs_set_extent_refs(l, item, refs + refs_to_add);
794 btrfs_unlock_up_safe(path, 1);
796 btrfs_mark_buffer_dirty(path->nodes[0]);
798 btrfs_release_path(root->fs_info->extent_root, path);
801 path->leave_spinning = 1;
803 /* now insert the actual backref */
804 ret = insert_extent_backref(trans, root->fs_info->extent_root,
805 path, bytenr, parent,
806 ref_root, ref_generation,
807 owner_objectid, refs_to_add);
809 btrfs_free_path(path);
813 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
814 struct btrfs_root *root,
815 u64 bytenr, u64 num_bytes, u64 parent,
816 u64 ref_root, u64 ref_generation,
820 if (ref_root == BTRFS_TREE_LOG_OBJECTID &&
821 owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
824 ret = __btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, parent,
825 0, ref_root, 0, ref_generation,
830 static int drop_delayed_ref(struct btrfs_trans_handle *trans,
831 struct btrfs_root *root,
832 struct btrfs_delayed_ref_node *node)
835 struct btrfs_delayed_ref *ref = btrfs_delayed_node_to_ref(node);
837 BUG_ON(node->ref_mod == 0);
838 ret = __btrfs_free_extent(trans, root, node->bytenr, node->num_bytes,
839 node->parent, ref->root, ref->generation,
840 ref->owner_objectid, ref->pin, node->ref_mod);
845 /* helper function to actually process a single delayed ref entry */
846 static noinline int run_one_delayed_ref(struct btrfs_trans_handle *trans,
847 struct btrfs_root *root,
848 struct btrfs_delayed_ref_node *node,
852 struct btrfs_delayed_ref *ref;
854 if (node->parent == (u64)-1) {
855 struct btrfs_delayed_ref_head *head;
857 * we've hit the end of the chain and we were supposed
858 * to insert this extent into the tree. But, it got
859 * deleted before we ever needed to insert it, so all
860 * we have to do is clean up the accounting
862 if (insert_reserved) {
863 update_reserved_extents(root, node->bytenr,
866 head = btrfs_delayed_node_to_head(node);
867 mutex_unlock(&head->mutex);
871 ref = btrfs_delayed_node_to_ref(node);
872 if (ref->action == BTRFS_ADD_DELAYED_REF) {
873 if (insert_reserved) {
874 struct btrfs_key ins;
876 ins.objectid = node->bytenr;
877 ins.offset = node->num_bytes;
878 ins.type = BTRFS_EXTENT_ITEM_KEY;
880 /* record the full extent allocation */
881 ret = __btrfs_alloc_reserved_extent(trans, root,
882 node->parent, ref->root,
883 ref->generation, ref->owner_objectid,
884 &ins, node->ref_mod);
885 update_reserved_extents(root, node->bytenr,
888 /* just add one backref */
889 ret = add_extent_ref(trans, root, node->bytenr,
891 node->parent, ref->root, ref->generation,
892 ref->owner_objectid, node->ref_mod);
895 } else if (ref->action == BTRFS_DROP_DELAYED_REF) {
896 WARN_ON(insert_reserved);
897 ret = drop_delayed_ref(trans, root, node);
902 static noinline struct btrfs_delayed_ref_node *
903 select_delayed_ref(struct btrfs_delayed_ref_head *head)
905 struct rb_node *node;
906 struct btrfs_delayed_ref_node *ref;
907 int action = BTRFS_ADD_DELAYED_REF;
910 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
911 * this prevents ref count from going down to zero when
912 * there still are pending delayed ref.
914 node = rb_prev(&head->node.rb_node);
918 ref = rb_entry(node, struct btrfs_delayed_ref_node,
920 if (ref->bytenr != head->node.bytenr)
922 if (btrfs_delayed_node_to_ref(ref)->action == action)
924 node = rb_prev(node);
926 if (action == BTRFS_ADD_DELAYED_REF) {
927 action = BTRFS_DROP_DELAYED_REF;
933 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
934 struct btrfs_root *root,
935 struct list_head *cluster)
937 struct btrfs_delayed_ref_root *delayed_refs;
938 struct btrfs_delayed_ref_node *ref;
939 struct btrfs_delayed_ref_head *locked_ref = NULL;
942 int must_insert_reserved = 0;
944 delayed_refs = &trans->transaction->delayed_refs;
947 /* pick a new head ref from the cluster list */
948 if (list_empty(cluster))
951 locked_ref = list_entry(cluster->next,
952 struct btrfs_delayed_ref_head, cluster);
954 /* grab the lock that says we are going to process
955 * all the refs for this head */
956 ret = btrfs_delayed_ref_lock(trans, locked_ref);
959 * we may have dropped the spin lock to get the head
960 * mutex lock, and that might have given someone else
961 * time to free the head. If that's true, it has been
962 * removed from our list and we can move on.
964 if (ret == -EAGAIN) {
972 * record the must insert reserved flag before we
973 * drop the spin lock.
975 must_insert_reserved = locked_ref->must_insert_reserved;
976 locked_ref->must_insert_reserved = 0;
979 * locked_ref is the head node, so we have to go one
980 * node back for any delayed ref updates
982 ref = select_delayed_ref(locked_ref);
984 /* All delayed refs have been processed, Go ahead
985 * and send the head node to run_one_delayed_ref,
986 * so that any accounting fixes can happen
988 ref = &locked_ref->node;
989 list_del_init(&locked_ref->cluster);
994 rb_erase(&ref->rb_node, &delayed_refs->root);
995 delayed_refs->num_entries--;
996 spin_unlock(&delayed_refs->lock);
998 ret = run_one_delayed_ref(trans, root, ref,
999 must_insert_reserved);
1001 btrfs_put_delayed_ref(ref);
1005 spin_lock(&delayed_refs->lock);
1011 * this starts processing the delayed reference count updates and
1012 * extent insertions we have queued up so far. count can be
1013 * 0, which means to process everything in the tree at the start
1014 * of the run (but not newly added entries), or it can be some target
1015 * number you'd like to process.
1017 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1018 struct btrfs_root *root, unsigned long count)
1020 struct rb_node *node;
1021 struct btrfs_delayed_ref_root *delayed_refs;
1022 struct btrfs_delayed_ref_node *ref;
1023 struct list_head cluster;
1025 int run_all = count == (unsigned long)-1;
1028 if (root == root->fs_info->extent_root)
1029 root = root->fs_info->tree_root;
1031 delayed_refs = &trans->transaction->delayed_refs;
1032 INIT_LIST_HEAD(&cluster);
1034 spin_lock(&delayed_refs->lock);
1036 count = delayed_refs->num_entries * 2;
1040 if (!(run_all || run_most) &&
1041 delayed_refs->num_heads_ready < 64)
1045 * go find something we can process in the rbtree. We start at
1046 * the beginning of the tree, and then build a cluster
1047 * of refs to process starting at the first one we are able to
1050 ret = btrfs_find_ref_cluster(trans, &cluster,
1051 delayed_refs->run_delayed_start);
1055 ret = run_clustered_refs(trans, root, &cluster);
1058 count -= min_t(unsigned long, ret, count);
1065 node = rb_first(&delayed_refs->root);
1068 count = (unsigned long)-1;
1071 ref = rb_entry(node, struct btrfs_delayed_ref_node,
1073 if (btrfs_delayed_ref_is_head(ref)) {
1074 struct btrfs_delayed_ref_head *head;
1076 head = btrfs_delayed_node_to_head(ref);
1077 atomic_inc(&ref->refs);
1079 spin_unlock(&delayed_refs->lock);
1080 mutex_lock(&head->mutex);
1081 mutex_unlock(&head->mutex);
1083 btrfs_put_delayed_ref(ref);
1087 node = rb_next(node);
1089 spin_unlock(&delayed_refs->lock);
1090 schedule_timeout(1);
1094 spin_unlock(&delayed_refs->lock);
1098 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
1099 struct btrfs_root *root, u64 objectid, u64 bytenr)
1101 struct btrfs_root *extent_root = root->fs_info->extent_root;
1102 struct btrfs_path *path;
1103 struct extent_buffer *leaf;
1104 struct btrfs_extent_ref *ref_item;
1105 struct btrfs_key key;
1106 struct btrfs_key found_key;
1112 key.objectid = bytenr;
1113 key.offset = (u64)-1;
1114 key.type = BTRFS_EXTENT_ITEM_KEY;
1116 path = btrfs_alloc_path();
1117 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1123 if (path->slots[0] == 0)
1127 leaf = path->nodes[0];
1128 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1130 if (found_key.objectid != bytenr ||
1131 found_key.type != BTRFS_EXTENT_ITEM_KEY)
1134 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1136 leaf = path->nodes[0];
1137 nritems = btrfs_header_nritems(leaf);
1138 if (path->slots[0] >= nritems) {
1139 ret = btrfs_next_leaf(extent_root, path);
1146 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1147 if (found_key.objectid != bytenr)
1150 if (found_key.type != BTRFS_EXTENT_REF_KEY) {
1155 ref_item = btrfs_item_ptr(leaf, path->slots[0],
1156 struct btrfs_extent_ref);
1157 ref_root = btrfs_ref_root(leaf, ref_item);
1158 if ((ref_root != root->root_key.objectid &&
1159 ref_root != BTRFS_TREE_LOG_OBJECTID) ||
1160 objectid != btrfs_ref_objectid(leaf, ref_item)) {
1164 if (btrfs_ref_generation(leaf, ref_item) <= last_snapshot) {
1173 btrfs_free_path(path);
1177 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1178 struct extent_buffer *buf, u32 nr_extents)
1180 struct btrfs_key key;
1181 struct btrfs_file_extent_item *fi;
1189 if (!root->ref_cows)
1192 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1194 root_gen = root->root_key.offset;
1197 root_gen = trans->transid - 1;
1200 level = btrfs_header_level(buf);
1201 nritems = btrfs_header_nritems(buf);
1204 struct btrfs_leaf_ref *ref;
1205 struct btrfs_extent_info *info;
1207 ref = btrfs_alloc_leaf_ref(root, nr_extents);
1213 ref->root_gen = root_gen;
1214 ref->bytenr = buf->start;
1215 ref->owner = btrfs_header_owner(buf);
1216 ref->generation = btrfs_header_generation(buf);
1217 ref->nritems = nr_extents;
1218 info = ref->extents;
1220 for (i = 0; nr_extents > 0 && i < nritems; i++) {
1222 btrfs_item_key_to_cpu(buf, &key, i);
1223 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
1225 fi = btrfs_item_ptr(buf, i,
1226 struct btrfs_file_extent_item);
1227 if (btrfs_file_extent_type(buf, fi) ==
1228 BTRFS_FILE_EXTENT_INLINE)
1230 disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
1231 if (disk_bytenr == 0)
1234 info->bytenr = disk_bytenr;
1236 btrfs_file_extent_disk_num_bytes(buf, fi);
1237 info->objectid = key.objectid;
1238 info->offset = key.offset;
1242 ret = btrfs_add_leaf_ref(root, ref, shared);
1243 if (ret == -EEXIST && shared) {
1244 struct btrfs_leaf_ref *old;
1245 old = btrfs_lookup_leaf_ref(root, ref->bytenr);
1247 btrfs_remove_leaf_ref(root, old);
1248 btrfs_free_leaf_ref(root, old);
1249 ret = btrfs_add_leaf_ref(root, ref, shared);
1252 btrfs_free_leaf_ref(root, ref);
1258 /* when a block goes through cow, we update the reference counts of
1259 * everything that block points to. The internal pointers of the block
1260 * can be in just about any order, and it is likely to have clusters of
1261 * things that are close together and clusters of things that are not.
1263 * To help reduce the seeks that come with updating all of these reference
1264 * counts, sort them by byte number before actual updates are done.
1266 * struct refsort is used to match byte number to slot in the btree block.
1267 * we sort based on the byte number and then use the slot to actually
1270 * struct refsort is smaller than strcut btrfs_item and smaller than
1271 * struct btrfs_key_ptr. Since we're currently limited to the page size
1272 * for a btree block, there's no way for a kmalloc of refsorts for a
1273 * single node to be bigger than a page.
1281 * for passing into sort()
1283 static int refsort_cmp(const void *a_void, const void *b_void)
1285 const struct refsort *a = a_void;
1286 const struct refsort *b = b_void;
1288 if (a->bytenr < b->bytenr)
1290 if (a->bytenr > b->bytenr)
1296 noinline int btrfs_inc_ref(struct btrfs_trans_handle *trans,
1297 struct btrfs_root *root,
1298 struct extent_buffer *orig_buf,
1299 struct extent_buffer *buf, u32 *nr_extents)
1305 u64 orig_generation;
1306 struct refsort *sorted;
1308 u32 nr_file_extents = 0;
1309 struct btrfs_key key;
1310 struct btrfs_file_extent_item *fi;
1317 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
1318 u64, u64, u64, u64, u64, u64, u64, u64, u64);
1320 ref_root = btrfs_header_owner(buf);
1321 ref_generation = btrfs_header_generation(buf);
1322 orig_root = btrfs_header_owner(orig_buf);
1323 orig_generation = btrfs_header_generation(orig_buf);
1325 nritems = btrfs_header_nritems(buf);
1326 level = btrfs_header_level(buf);
1328 sorted = kmalloc(sizeof(struct refsort) * nritems, GFP_NOFS);
1331 if (root->ref_cows) {
1332 process_func = __btrfs_inc_extent_ref;
1335 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
1338 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID)
1340 process_func = __btrfs_update_extent_ref;
1344 * we make two passes through the items. In the first pass we
1345 * only record the byte number and slot. Then we sort based on
1346 * byte number and do the actual work based on the sorted results
1348 for (i = 0; i < nritems; i++) {
1351 btrfs_item_key_to_cpu(buf, &key, i);
1352 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
1354 fi = btrfs_item_ptr(buf, i,
1355 struct btrfs_file_extent_item);
1356 if (btrfs_file_extent_type(buf, fi) ==
1357 BTRFS_FILE_EXTENT_INLINE)
1359 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
1364 sorted[refi].bytenr = bytenr;
1365 sorted[refi].slot = i;
1368 bytenr = btrfs_node_blockptr(buf, i);
1369 sorted[refi].bytenr = bytenr;
1370 sorted[refi].slot = i;
1375 * if refi == 0, we didn't actually put anything into the sorted
1376 * array and we're done
1381 sort(sorted, refi, sizeof(struct refsort), refsort_cmp, NULL);
1383 for (i = 0; i < refi; i++) {
1385 slot = sorted[i].slot;
1386 bytenr = sorted[i].bytenr;
1389 btrfs_item_key_to_cpu(buf, &key, slot);
1390 fi = btrfs_item_ptr(buf, slot,
1391 struct btrfs_file_extent_item);
1393 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
1397 ret = process_func(trans, root, bytenr,
1398 btrfs_file_extent_disk_num_bytes(buf, fi),
1399 orig_buf->start, buf->start,
1400 orig_root, ref_root,
1401 orig_generation, ref_generation,
1410 ret = process_func(trans, root, bytenr, buf->len,
1411 orig_buf->start, buf->start,
1412 orig_root, ref_root,
1413 orig_generation, ref_generation,
1426 *nr_extents = nr_file_extents;
1428 *nr_extents = nritems;
1437 int btrfs_update_ref(struct btrfs_trans_handle *trans,
1438 struct btrfs_root *root, struct extent_buffer *orig_buf,
1439 struct extent_buffer *buf, int start_slot, int nr)
1446 u64 orig_generation;
1447 struct btrfs_key key;
1448 struct btrfs_file_extent_item *fi;
1454 BUG_ON(start_slot < 0);
1455 BUG_ON(start_slot + nr > btrfs_header_nritems(buf));
1457 ref_root = btrfs_header_owner(buf);
1458 ref_generation = btrfs_header_generation(buf);
1459 orig_root = btrfs_header_owner(orig_buf);
1460 orig_generation = btrfs_header_generation(orig_buf);
1461 level = btrfs_header_level(buf);
1463 if (!root->ref_cows) {
1465 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
1468 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID)
1472 for (i = 0, slot = start_slot; i < nr; i++, slot++) {
1475 btrfs_item_key_to_cpu(buf, &key, slot);
1476 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
1478 fi = btrfs_item_ptr(buf, slot,
1479 struct btrfs_file_extent_item);
1480 if (btrfs_file_extent_type(buf, fi) ==
1481 BTRFS_FILE_EXTENT_INLINE)
1483 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
1486 ret = __btrfs_update_extent_ref(trans, root, bytenr,
1487 btrfs_file_extent_disk_num_bytes(buf, fi),
1488 orig_buf->start, buf->start,
1489 orig_root, ref_root, orig_generation,
1490 ref_generation, key.objectid);
1494 bytenr = btrfs_node_blockptr(buf, slot);
1495 ret = __btrfs_update_extent_ref(trans, root, bytenr,
1496 buf->len, orig_buf->start,
1497 buf->start, orig_root, ref_root,
1498 orig_generation, ref_generation,
1510 static int write_one_cache_group(struct btrfs_trans_handle *trans,
1511 struct btrfs_root *root,
1512 struct btrfs_path *path,
1513 struct btrfs_block_group_cache *cache)
1516 struct btrfs_root *extent_root = root->fs_info->extent_root;
1518 struct extent_buffer *leaf;
1520 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
1525 leaf = path->nodes[0];
1526 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
1527 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
1528 btrfs_mark_buffer_dirty(leaf);
1529 btrfs_release_path(extent_root, path);
1537 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
1538 struct btrfs_root *root)
1540 struct btrfs_block_group_cache *cache, *entry;
1544 struct btrfs_path *path;
1547 path = btrfs_alloc_path();
1553 spin_lock(&root->fs_info->block_group_cache_lock);
1554 for (n = rb_first(&root->fs_info->block_group_cache_tree);
1555 n; n = rb_next(n)) {
1556 entry = rb_entry(n, struct btrfs_block_group_cache,
1563 spin_unlock(&root->fs_info->block_group_cache_lock);
1569 last += cache->key.offset;
1571 err = write_one_cache_group(trans, root,
1574 * if we fail to write the cache group, we want
1575 * to keep it marked dirty in hopes that a later
1583 btrfs_free_path(path);
1587 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
1589 struct btrfs_block_group_cache *block_group;
1592 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1593 if (!block_group || block_group->ro)
1596 btrfs_put_block_group(block_group);
1600 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
1601 u64 total_bytes, u64 bytes_used,
1602 struct btrfs_space_info **space_info)
1604 struct btrfs_space_info *found;
1606 found = __find_space_info(info, flags);
1608 spin_lock(&found->lock);
1609 found->total_bytes += total_bytes;
1610 found->bytes_used += bytes_used;
1612 spin_unlock(&found->lock);
1613 *space_info = found;
1616 found = kzalloc(sizeof(*found), GFP_NOFS);
1620 INIT_LIST_HEAD(&found->block_groups);
1621 init_rwsem(&found->groups_sem);
1622 spin_lock_init(&found->lock);
1623 found->flags = flags;
1624 found->total_bytes = total_bytes;
1625 found->bytes_used = bytes_used;
1626 found->bytes_pinned = 0;
1627 found->bytes_reserved = 0;
1628 found->bytes_readonly = 0;
1629 found->bytes_delalloc = 0;
1631 found->force_alloc = 0;
1632 *space_info = found;
1633 list_add_rcu(&found->list, &info->space_info);
1637 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1639 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
1640 BTRFS_BLOCK_GROUP_RAID1 |
1641 BTRFS_BLOCK_GROUP_RAID10 |
1642 BTRFS_BLOCK_GROUP_DUP);
1644 if (flags & BTRFS_BLOCK_GROUP_DATA)
1645 fs_info->avail_data_alloc_bits |= extra_flags;
1646 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1647 fs_info->avail_metadata_alloc_bits |= extra_flags;
1648 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1649 fs_info->avail_system_alloc_bits |= extra_flags;
1653 static void set_block_group_readonly(struct btrfs_block_group_cache *cache)
1655 spin_lock(&cache->space_info->lock);
1656 spin_lock(&cache->lock);
1658 cache->space_info->bytes_readonly += cache->key.offset -
1659 btrfs_block_group_used(&cache->item);
1662 spin_unlock(&cache->lock);
1663 spin_unlock(&cache->space_info->lock);
1666 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
1668 u64 num_devices = root->fs_info->fs_devices->rw_devices;
1670 if (num_devices == 1)
1671 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
1672 if (num_devices < 4)
1673 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
1675 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
1676 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
1677 BTRFS_BLOCK_GROUP_RAID10))) {
1678 flags &= ~BTRFS_BLOCK_GROUP_DUP;
1681 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
1682 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
1683 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
1686 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
1687 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
1688 (flags & BTRFS_BLOCK_GROUP_RAID10) |
1689 (flags & BTRFS_BLOCK_GROUP_DUP)))
1690 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
1694 static u64 btrfs_get_alloc_profile(struct btrfs_root *root, u64 data)
1696 struct btrfs_fs_info *info = root->fs_info;
1700 alloc_profile = info->avail_data_alloc_bits &
1701 info->data_alloc_profile;
1702 data = BTRFS_BLOCK_GROUP_DATA | alloc_profile;
1703 } else if (root == root->fs_info->chunk_root) {
1704 alloc_profile = info->avail_system_alloc_bits &
1705 info->system_alloc_profile;
1706 data = BTRFS_BLOCK_GROUP_SYSTEM | alloc_profile;
1708 alloc_profile = info->avail_metadata_alloc_bits &
1709 info->metadata_alloc_profile;
1710 data = BTRFS_BLOCK_GROUP_METADATA | alloc_profile;
1713 return btrfs_reduce_alloc_profile(root, data);
1716 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
1720 alloc_target = btrfs_get_alloc_profile(root, 1);
1721 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
1726 * for now this just makes sure we have at least 5% of our metadata space free
1729 int btrfs_check_metadata_free_space(struct btrfs_root *root)
1731 struct btrfs_fs_info *info = root->fs_info;
1732 struct btrfs_space_info *meta_sinfo;
1733 u64 alloc_target, thresh;
1734 int committed = 0, ret;
1736 /* get the space info for where the metadata will live */
1737 alloc_target = btrfs_get_alloc_profile(root, 0);
1738 meta_sinfo = __find_space_info(info, alloc_target);
1741 spin_lock(&meta_sinfo->lock);
1742 if (!meta_sinfo->full)
1743 thresh = meta_sinfo->total_bytes * 80;
1745 thresh = meta_sinfo->total_bytes * 95;
1747 do_div(thresh, 100);
1749 if (meta_sinfo->bytes_used + meta_sinfo->bytes_reserved +
1750 meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly > thresh) {
1751 struct btrfs_trans_handle *trans;
1752 if (!meta_sinfo->full) {
1753 meta_sinfo->force_alloc = 1;
1754 spin_unlock(&meta_sinfo->lock);
1756 trans = btrfs_start_transaction(root, 1);
1760 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
1761 2 * 1024 * 1024, alloc_target, 0);
1762 btrfs_end_transaction(trans, root);
1765 spin_unlock(&meta_sinfo->lock);
1769 trans = btrfs_join_transaction(root, 1);
1772 ret = btrfs_commit_transaction(trans, root);
1779 spin_unlock(&meta_sinfo->lock);
1785 * This will check the space that the inode allocates from to make sure we have
1786 * enough space for bytes.
1788 int btrfs_check_data_free_space(struct btrfs_root *root, struct inode *inode,
1791 struct btrfs_space_info *data_sinfo;
1792 int ret = 0, committed = 0;
1794 /* make sure bytes are sectorsize aligned */
1795 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
1797 data_sinfo = BTRFS_I(inode)->space_info;
1799 /* make sure we have enough space to handle the data first */
1800 spin_lock(&data_sinfo->lock);
1801 if (data_sinfo->total_bytes - data_sinfo->bytes_used -
1802 data_sinfo->bytes_delalloc - data_sinfo->bytes_reserved -
1803 data_sinfo->bytes_pinned - data_sinfo->bytes_readonly -
1804 data_sinfo->bytes_may_use < bytes) {
1805 struct btrfs_trans_handle *trans;
1808 * if we don't have enough free bytes in this space then we need
1809 * to alloc a new chunk.
1811 if (!data_sinfo->full) {
1814 data_sinfo->force_alloc = 1;
1815 spin_unlock(&data_sinfo->lock);
1817 alloc_target = btrfs_get_alloc_profile(root, 1);
1818 trans = btrfs_start_transaction(root, 1);
1822 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
1823 bytes + 2 * 1024 * 1024,
1825 btrfs_end_transaction(trans, root);
1830 spin_unlock(&data_sinfo->lock);
1832 /* commit the current transaction and try again */
1835 trans = btrfs_join_transaction(root, 1);
1838 ret = btrfs_commit_transaction(trans, root);
1844 printk(KERN_ERR "no space left, need %llu, %llu delalloc bytes"
1845 ", %llu bytes_used, %llu bytes_reserved, "
1846 "%llu bytes_pinned, %llu bytes_readonly, %llu may use"
1847 "%llu total\n", (unsigned long long)bytes,
1848 (unsigned long long)data_sinfo->bytes_delalloc,
1849 (unsigned long long)data_sinfo->bytes_used,
1850 (unsigned long long)data_sinfo->bytes_reserved,
1851 (unsigned long long)data_sinfo->bytes_pinned,
1852 (unsigned long long)data_sinfo->bytes_readonly,
1853 (unsigned long long)data_sinfo->bytes_may_use,
1854 (unsigned long long)data_sinfo->total_bytes);
1857 data_sinfo->bytes_may_use += bytes;
1858 BTRFS_I(inode)->reserved_bytes += bytes;
1859 spin_unlock(&data_sinfo->lock);
1861 return btrfs_check_metadata_free_space(root);
1865 * if there was an error for whatever reason after calling
1866 * btrfs_check_data_free_space, call this so we can cleanup the counters.
1868 void btrfs_free_reserved_data_space(struct btrfs_root *root,
1869 struct inode *inode, u64 bytes)
1871 struct btrfs_space_info *data_sinfo;
1873 /* make sure bytes are sectorsize aligned */
1874 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
1876 data_sinfo = BTRFS_I(inode)->space_info;
1877 spin_lock(&data_sinfo->lock);
1878 data_sinfo->bytes_may_use -= bytes;
1879 BTRFS_I(inode)->reserved_bytes -= bytes;
1880 spin_unlock(&data_sinfo->lock);
1883 /* called when we are adding a delalloc extent to the inode's io_tree */
1884 void btrfs_delalloc_reserve_space(struct btrfs_root *root, struct inode *inode,
1887 struct btrfs_space_info *data_sinfo;
1889 /* get the space info for where this inode will be storing its data */
1890 data_sinfo = BTRFS_I(inode)->space_info;
1892 /* make sure we have enough space to handle the data first */
1893 spin_lock(&data_sinfo->lock);
1894 data_sinfo->bytes_delalloc += bytes;
1897 * we are adding a delalloc extent without calling
1898 * btrfs_check_data_free_space first. This happens on a weird
1899 * writepage condition, but shouldn't hurt our accounting
1901 if (unlikely(bytes > BTRFS_I(inode)->reserved_bytes)) {
1902 data_sinfo->bytes_may_use -= BTRFS_I(inode)->reserved_bytes;
1903 BTRFS_I(inode)->reserved_bytes = 0;
1905 data_sinfo->bytes_may_use -= bytes;
1906 BTRFS_I(inode)->reserved_bytes -= bytes;
1909 spin_unlock(&data_sinfo->lock);
1912 /* called when we are clearing an delalloc extent from the inode's io_tree */
1913 void btrfs_delalloc_free_space(struct btrfs_root *root, struct inode *inode,
1916 struct btrfs_space_info *info;
1918 info = BTRFS_I(inode)->space_info;
1920 spin_lock(&info->lock);
1921 info->bytes_delalloc -= bytes;
1922 spin_unlock(&info->lock);
1925 static void force_metadata_allocation(struct btrfs_fs_info *info)
1927 struct list_head *head = &info->space_info;
1928 struct btrfs_space_info *found;
1931 list_for_each_entry_rcu(found, head, list) {
1932 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
1933 found->force_alloc = 1;
1938 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
1939 struct btrfs_root *extent_root, u64 alloc_bytes,
1940 u64 flags, int force)
1942 struct btrfs_space_info *space_info;
1943 struct btrfs_fs_info *fs_info = extent_root->fs_info;
1947 mutex_lock(&fs_info->chunk_mutex);
1949 flags = btrfs_reduce_alloc_profile(extent_root, flags);
1951 space_info = __find_space_info(extent_root->fs_info, flags);
1953 ret = update_space_info(extent_root->fs_info, flags,
1957 BUG_ON(!space_info);
1959 spin_lock(&space_info->lock);
1960 if (space_info->force_alloc) {
1962 space_info->force_alloc = 0;
1964 if (space_info->full) {
1965 spin_unlock(&space_info->lock);
1969 thresh = space_info->total_bytes - space_info->bytes_readonly;
1970 thresh = div_factor(thresh, 6);
1972 (space_info->bytes_used + space_info->bytes_pinned +
1973 space_info->bytes_reserved + alloc_bytes) < thresh) {
1974 spin_unlock(&space_info->lock);
1977 spin_unlock(&space_info->lock);
1980 * if we're doing a data chunk, go ahead and make sure that
1981 * we keep a reasonable number of metadata chunks allocated in the
1984 if (flags & BTRFS_BLOCK_GROUP_DATA) {
1985 fs_info->data_chunk_allocations++;
1986 if (!(fs_info->data_chunk_allocations %
1987 fs_info->metadata_ratio))
1988 force_metadata_allocation(fs_info);
1991 ret = btrfs_alloc_chunk(trans, extent_root, flags);
1993 space_info->full = 1;
1995 mutex_unlock(&extent_root->fs_info->chunk_mutex);
1999 static int update_block_group(struct btrfs_trans_handle *trans,
2000 struct btrfs_root *root,
2001 u64 bytenr, u64 num_bytes, int alloc,
2004 struct btrfs_block_group_cache *cache;
2005 struct btrfs_fs_info *info = root->fs_info;
2006 u64 total = num_bytes;
2011 cache = btrfs_lookup_block_group(info, bytenr);
2014 byte_in_group = bytenr - cache->key.objectid;
2015 WARN_ON(byte_in_group > cache->key.offset);
2017 spin_lock(&cache->space_info->lock);
2018 spin_lock(&cache->lock);
2020 old_val = btrfs_block_group_used(&cache->item);
2021 num_bytes = min(total, cache->key.offset - byte_in_group);
2023 old_val += num_bytes;
2024 cache->space_info->bytes_used += num_bytes;
2026 cache->space_info->bytes_readonly -= num_bytes;
2027 btrfs_set_block_group_used(&cache->item, old_val);
2028 spin_unlock(&cache->lock);
2029 spin_unlock(&cache->space_info->lock);
2031 old_val -= num_bytes;
2032 cache->space_info->bytes_used -= num_bytes;
2034 cache->space_info->bytes_readonly += num_bytes;
2035 btrfs_set_block_group_used(&cache->item, old_val);
2036 spin_unlock(&cache->lock);
2037 spin_unlock(&cache->space_info->lock);
2041 ret = btrfs_discard_extent(root, bytenr,
2045 ret = btrfs_add_free_space(cache, bytenr,
2050 btrfs_put_block_group(cache);
2052 bytenr += num_bytes;
2057 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
2059 struct btrfs_block_group_cache *cache;
2062 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
2066 bytenr = cache->key.objectid;
2067 btrfs_put_block_group(cache);
2072 int btrfs_update_pinned_extents(struct btrfs_root *root,
2073 u64 bytenr, u64 num, int pin)
2076 struct btrfs_block_group_cache *cache;
2077 struct btrfs_fs_info *fs_info = root->fs_info;
2080 set_extent_dirty(&fs_info->pinned_extents,
2081 bytenr, bytenr + num - 1, GFP_NOFS);
2083 clear_extent_dirty(&fs_info->pinned_extents,
2084 bytenr, bytenr + num - 1, GFP_NOFS);
2088 cache = btrfs_lookup_block_group(fs_info, bytenr);
2090 len = min(num, cache->key.offset -
2091 (bytenr - cache->key.objectid));
2093 spin_lock(&cache->space_info->lock);
2094 spin_lock(&cache->lock);
2095 cache->pinned += len;
2096 cache->space_info->bytes_pinned += len;
2097 spin_unlock(&cache->lock);
2098 spin_unlock(&cache->space_info->lock);
2099 fs_info->total_pinned += len;
2101 spin_lock(&cache->space_info->lock);
2102 spin_lock(&cache->lock);
2103 cache->pinned -= len;
2104 cache->space_info->bytes_pinned -= len;
2105 spin_unlock(&cache->lock);
2106 spin_unlock(&cache->space_info->lock);
2107 fs_info->total_pinned -= len;
2109 btrfs_add_free_space(cache, bytenr, len);
2111 btrfs_put_block_group(cache);
2118 static int update_reserved_extents(struct btrfs_root *root,
2119 u64 bytenr, u64 num, int reserve)
2122 struct btrfs_block_group_cache *cache;
2123 struct btrfs_fs_info *fs_info = root->fs_info;
2126 cache = btrfs_lookup_block_group(fs_info, bytenr);
2128 len = min(num, cache->key.offset -
2129 (bytenr - cache->key.objectid));
2131 spin_lock(&cache->space_info->lock);
2132 spin_lock(&cache->lock);
2134 cache->reserved += len;
2135 cache->space_info->bytes_reserved += len;
2137 cache->reserved -= len;
2138 cache->space_info->bytes_reserved -= len;
2140 spin_unlock(&cache->lock);
2141 spin_unlock(&cache->space_info->lock);
2142 btrfs_put_block_group(cache);
2149 int btrfs_copy_pinned(struct btrfs_root *root, struct extent_io_tree *copy)
2154 struct extent_io_tree *pinned_extents = &root->fs_info->pinned_extents;
2158 ret = find_first_extent_bit(pinned_extents, last,
2159 &start, &end, EXTENT_DIRTY);
2162 set_extent_dirty(copy, start, end, GFP_NOFS);
2168 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
2169 struct btrfs_root *root,
2170 struct extent_io_tree *unpin)
2177 ret = find_first_extent_bit(unpin, 0, &start, &end,
2182 ret = btrfs_discard_extent(root, start, end + 1 - start);
2184 /* unlocks the pinned mutex */
2185 btrfs_update_pinned_extents(root, start, end + 1 - start, 0);
2186 clear_extent_dirty(unpin, start, end, GFP_NOFS);
2193 static int pin_down_bytes(struct btrfs_trans_handle *trans,
2194 struct btrfs_root *root,
2195 struct btrfs_path *path,
2196 u64 bytenr, u64 num_bytes, int is_data,
2197 struct extent_buffer **must_clean)
2200 struct extent_buffer *buf;
2205 buf = btrfs_find_tree_block(root, bytenr, num_bytes);
2209 /* we can reuse a block if it hasn't been written
2210 * and it is from this transaction. We can't
2211 * reuse anything from the tree log root because
2212 * it has tiny sub-transactions.
2214 if (btrfs_buffer_uptodate(buf, 0) &&
2215 btrfs_try_tree_lock(buf)) {
2216 u64 header_owner = btrfs_header_owner(buf);
2217 u64 header_transid = btrfs_header_generation(buf);
2218 if (header_owner != BTRFS_TREE_LOG_OBJECTID &&
2219 header_owner != BTRFS_TREE_RELOC_OBJECTID &&
2220 header_owner != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2221 header_transid == trans->transid &&
2222 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2226 btrfs_tree_unlock(buf);
2228 free_extent_buffer(buf);
2230 btrfs_set_path_blocking(path);
2231 /* unlocks the pinned mutex */
2232 btrfs_update_pinned_extents(root, bytenr, num_bytes, 1);
2239 * remove an extent from the root, returns 0 on success
2241 static int __free_extent(struct btrfs_trans_handle *trans,
2242 struct btrfs_root *root,
2243 u64 bytenr, u64 num_bytes, u64 parent,
2244 u64 root_objectid, u64 ref_generation,
2245 u64 owner_objectid, int pin, int mark_free,
2248 struct btrfs_path *path;
2249 struct btrfs_key key;
2250 struct btrfs_fs_info *info = root->fs_info;
2251 struct btrfs_root *extent_root = info->extent_root;
2252 struct extent_buffer *leaf;
2254 int extent_slot = 0;
2255 int found_extent = 0;
2257 struct btrfs_extent_item *ei;
2260 key.objectid = bytenr;
2261 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
2262 key.offset = num_bytes;
2263 path = btrfs_alloc_path();
2268 path->leave_spinning = 1;
2269 ret = lookup_extent_backref(trans, extent_root, path,
2270 bytenr, parent, root_objectid,
2271 ref_generation, owner_objectid, 1);
2273 struct btrfs_key found_key;
2274 extent_slot = path->slots[0];
2275 while (extent_slot > 0) {
2277 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2279 if (found_key.objectid != bytenr)
2281 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
2282 found_key.offset == num_bytes) {
2286 if (path->slots[0] - extent_slot > 5)
2289 if (!found_extent) {
2290 ret = remove_extent_backref(trans, extent_root, path,
2293 btrfs_release_path(extent_root, path);
2294 path->leave_spinning = 1;
2295 ret = btrfs_search_slot(trans, extent_root,
2298 printk(KERN_ERR "umm, got %d back from search"
2299 ", was looking for %llu\n", ret,
2300 (unsigned long long)bytenr);
2301 btrfs_print_leaf(extent_root, path->nodes[0]);
2304 extent_slot = path->slots[0];
2307 btrfs_print_leaf(extent_root, path->nodes[0]);
2309 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
2310 "parent %llu root %llu gen %llu owner %llu\n",
2311 (unsigned long long)bytenr,
2312 (unsigned long long)parent,
2313 (unsigned long long)root_objectid,
2314 (unsigned long long)ref_generation,
2315 (unsigned long long)owner_objectid);
2318 leaf = path->nodes[0];
2319 ei = btrfs_item_ptr(leaf, extent_slot,
2320 struct btrfs_extent_item);
2321 refs = btrfs_extent_refs(leaf, ei);
2324 * we're not allowed to delete the extent item if there
2325 * are other delayed ref updates pending
2328 BUG_ON(refs < refs_to_drop);
2329 refs -= refs_to_drop;
2330 btrfs_set_extent_refs(leaf, ei, refs);
2331 btrfs_mark_buffer_dirty(leaf);
2333 if (refs == 0 && found_extent &&
2334 path->slots[0] == extent_slot + 1) {
2335 struct btrfs_extent_ref *ref;
2336 ref = btrfs_item_ptr(leaf, path->slots[0],
2337 struct btrfs_extent_ref);
2338 BUG_ON(btrfs_ref_num_refs(leaf, ref) != refs_to_drop);
2339 /* if the back ref and the extent are next to each other
2340 * they get deleted below in one shot
2342 path->slots[0] = extent_slot;
2344 } else if (found_extent) {
2345 /* otherwise delete the extent back ref */
2346 ret = remove_extent_backref(trans, extent_root, path,
2349 /* if refs are 0, we need to setup the path for deletion */
2351 btrfs_release_path(extent_root, path);
2352 path->leave_spinning = 1;
2353 ret = btrfs_search_slot(trans, extent_root, &key, path,
2362 struct extent_buffer *must_clean = NULL;
2365 ret = pin_down_bytes(trans, root, path,
2367 owner_objectid >= BTRFS_FIRST_FREE_OBJECTID,
2374 /* block accounting for super block */
2375 spin_lock(&info->delalloc_lock);
2376 super_used = btrfs_super_bytes_used(&info->super_copy);
2377 btrfs_set_super_bytes_used(&info->super_copy,
2378 super_used - num_bytes);
2380 /* block accounting for root item */
2381 root_used = btrfs_root_used(&root->root_item);
2382 btrfs_set_root_used(&root->root_item,
2383 root_used - num_bytes);
2384 spin_unlock(&info->delalloc_lock);
2387 * it is going to be very rare for someone to be waiting
2388 * on the block we're freeing. del_items might need to
2389 * schedule, so rather than get fancy, just force it
2393 btrfs_set_lock_blocking(must_clean);
2395 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
2398 btrfs_release_path(extent_root, path);
2401 clean_tree_block(NULL, root, must_clean);
2402 btrfs_tree_unlock(must_clean);
2403 free_extent_buffer(must_clean);
2406 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
2407 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
2410 invalidate_mapping_pages(info->btree_inode->i_mapping,
2411 bytenr >> PAGE_CACHE_SHIFT,
2412 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
2415 ret = update_block_group(trans, root, bytenr, num_bytes, 0,
2419 btrfs_free_path(path);
2424 * remove an extent from the root, returns 0 on success
2426 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2427 struct btrfs_root *root,
2428 u64 bytenr, u64 num_bytes, u64 parent,
2429 u64 root_objectid, u64 ref_generation,
2430 u64 owner_objectid, int pin,
2433 WARN_ON(num_bytes < root->sectorsize);
2436 * if metadata always pin
2437 * if data pin when any transaction has committed this
2439 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID ||
2440 ref_generation != trans->transid)
2443 if (ref_generation != trans->transid)
2446 return __free_extent(trans, root, bytenr, num_bytes, parent,
2447 root_objectid, ref_generation,
2448 owner_objectid, pin, pin == 0, refs_to_drop);
2452 * when we free an extent, it is possible (and likely) that we free the last
2453 * delayed ref for that extent as well. This searches the delayed ref tree for
2454 * a given extent, and if there are no other delayed refs to be processed, it
2455 * removes it from the tree.
2457 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2458 struct btrfs_root *root, u64 bytenr)
2460 struct btrfs_delayed_ref_head *head;
2461 struct btrfs_delayed_ref_root *delayed_refs;
2462 struct btrfs_delayed_ref_node *ref;
2463 struct rb_node *node;
2466 delayed_refs = &trans->transaction->delayed_refs;
2467 spin_lock(&delayed_refs->lock);
2468 head = btrfs_find_delayed_ref_head(trans, bytenr);
2472 node = rb_prev(&head->node.rb_node);
2476 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2478 /* there are still entries for this ref, we can't drop it */
2479 if (ref->bytenr == bytenr)
2483 * waiting for the lock here would deadlock. If someone else has it
2484 * locked they are already in the process of dropping it anyway
2486 if (!mutex_trylock(&head->mutex))
2490 * at this point we have a head with no other entries. Go
2491 * ahead and process it.
2493 head->node.in_tree = 0;
2494 rb_erase(&head->node.rb_node, &delayed_refs->root);
2496 delayed_refs->num_entries--;
2499 * we don't take a ref on the node because we're removing it from the
2500 * tree, so we just steal the ref the tree was holding.
2502 delayed_refs->num_heads--;
2503 if (list_empty(&head->cluster))
2504 delayed_refs->num_heads_ready--;
2506 list_del_init(&head->cluster);
2507 spin_unlock(&delayed_refs->lock);
2509 ret = run_one_delayed_ref(trans, root->fs_info->tree_root,
2510 &head->node, head->must_insert_reserved);
2512 btrfs_put_delayed_ref(&head->node);
2515 spin_unlock(&delayed_refs->lock);
2519 int btrfs_free_extent(struct btrfs_trans_handle *trans,
2520 struct btrfs_root *root,
2521 u64 bytenr, u64 num_bytes, u64 parent,
2522 u64 root_objectid, u64 ref_generation,
2523 u64 owner_objectid, int pin)
2528 * tree log blocks never actually go into the extent allocation
2529 * tree, just update pinning info and exit early.
2531 * data extents referenced by the tree log do need to have
2532 * their reference counts bumped.
2534 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID &&
2535 owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
2536 /* unlocks the pinned mutex */
2537 btrfs_update_pinned_extents(root, bytenr, num_bytes, 1);
2538 update_reserved_extents(root, bytenr, num_bytes, 0);
2541 ret = btrfs_add_delayed_ref(trans, bytenr, num_bytes, parent,
2542 root_objectid, ref_generation,
2544 BTRFS_DROP_DELAYED_REF, 1);
2546 ret = check_ref_cleanup(trans, root, bytenr);
2552 static u64 stripe_align(struct btrfs_root *root, u64 val)
2554 u64 mask = ((u64)root->stripesize - 1);
2555 u64 ret = (val + mask) & ~mask;
2560 * walks the btree of allocated extents and find a hole of a given size.
2561 * The key ins is changed to record the hole:
2562 * ins->objectid == block start
2563 * ins->flags = BTRFS_EXTENT_ITEM_KEY
2564 * ins->offset == number of blocks
2565 * Any available blocks before search_start are skipped.
2567 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
2568 struct btrfs_root *orig_root,
2569 u64 num_bytes, u64 empty_size,
2570 u64 search_start, u64 search_end,
2571 u64 hint_byte, struct btrfs_key *ins,
2572 u64 exclude_start, u64 exclude_nr,
2576 struct btrfs_root *root = orig_root->fs_info->extent_root;
2577 struct btrfs_free_cluster *last_ptr = NULL;
2578 struct btrfs_block_group_cache *block_group = NULL;
2579 int empty_cluster = 2 * 1024 * 1024;
2580 int allowed_chunk_alloc = 0;
2581 struct btrfs_space_info *space_info;
2582 int last_ptr_loop = 0;
2585 WARN_ON(num_bytes < root->sectorsize);
2586 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
2590 space_info = __find_space_info(root->fs_info, data);
2592 if (orig_root->ref_cows || empty_size)
2593 allowed_chunk_alloc = 1;
2595 if (data & BTRFS_BLOCK_GROUP_METADATA) {
2596 last_ptr = &root->fs_info->meta_alloc_cluster;
2597 if (!btrfs_test_opt(root, SSD))
2598 empty_cluster = 64 * 1024;
2601 if ((data & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(root, SSD)) {
2602 last_ptr = &root->fs_info->data_alloc_cluster;
2606 spin_lock(&last_ptr->lock);
2607 if (last_ptr->block_group)
2608 hint_byte = last_ptr->window_start;
2609 spin_unlock(&last_ptr->lock);
2612 search_start = max(search_start, first_logical_byte(root, 0));
2613 search_start = max(search_start, hint_byte);
2620 if (search_start == hint_byte) {
2621 block_group = btrfs_lookup_block_group(root->fs_info,
2623 if (block_group && block_group_bits(block_group, data)) {
2624 down_read(&space_info->groups_sem);
2625 goto have_block_group;
2626 } else if (block_group) {
2627 btrfs_put_block_group(block_group);
2632 down_read(&space_info->groups_sem);
2633 list_for_each_entry(block_group, &space_info->block_groups, list) {
2636 atomic_inc(&block_group->count);
2637 search_start = block_group->key.objectid;
2640 if (unlikely(!block_group->cached)) {
2641 mutex_lock(&block_group->cache_mutex);
2642 ret = cache_block_group(root, block_group);
2643 mutex_unlock(&block_group->cache_mutex);
2645 btrfs_put_block_group(block_group);
2650 if (unlikely(block_group->ro))
2655 * the refill lock keeps out other
2656 * people trying to start a new cluster
2658 spin_lock(&last_ptr->refill_lock);
2659 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
2660 num_bytes, search_start);
2662 /* we have a block, we're done */
2663 spin_unlock(&last_ptr->refill_lock);
2667 spin_lock(&last_ptr->lock);
2669 * whoops, this cluster doesn't actually point to
2670 * this block group. Get a ref on the block
2671 * group is does point to and try again
2673 if (!last_ptr_loop && last_ptr->block_group &&
2674 last_ptr->block_group != block_group) {
2676 btrfs_put_block_group(block_group);
2677 block_group = last_ptr->block_group;
2678 atomic_inc(&block_group->count);
2679 spin_unlock(&last_ptr->lock);
2680 spin_unlock(&last_ptr->refill_lock);
2683 search_start = block_group->key.objectid;
2684 goto have_block_group;
2686 spin_unlock(&last_ptr->lock);
2689 * this cluster didn't work out, free it and
2692 btrfs_return_cluster_to_free_space(NULL, last_ptr);
2696 /* allocate a cluster in this block group */
2697 ret = btrfs_find_space_cluster(trans,
2698 block_group, last_ptr,
2700 empty_cluster + empty_size);
2703 * now pull our allocation out of this
2706 offset = btrfs_alloc_from_cluster(block_group,
2707 last_ptr, num_bytes,
2710 /* we found one, proceed */
2711 spin_unlock(&last_ptr->refill_lock);
2716 * at this point we either didn't find a cluster
2717 * or we weren't able to allocate a block from our
2718 * cluster. Free the cluster we've been trying
2719 * to use, and go to the next block group
2722 btrfs_return_cluster_to_free_space(NULL,
2724 spin_unlock(&last_ptr->refill_lock);
2727 spin_unlock(&last_ptr->refill_lock);
2730 offset = btrfs_find_space_for_alloc(block_group, search_start,
2731 num_bytes, empty_size);
2735 search_start = stripe_align(root, offset);
2737 /* move on to the next group */
2738 if (search_start + num_bytes >= search_end) {
2739 btrfs_add_free_space(block_group, offset, num_bytes);
2743 /* move on to the next group */
2744 if (search_start + num_bytes >
2745 block_group->key.objectid + block_group->key.offset) {
2746 btrfs_add_free_space(block_group, offset, num_bytes);
2750 if (exclude_nr > 0 &&
2751 (search_start + num_bytes > exclude_start &&
2752 search_start < exclude_start + exclude_nr)) {
2753 search_start = exclude_start + exclude_nr;
2755 btrfs_add_free_space(block_group, offset, num_bytes);
2757 * if search_start is still in this block group
2758 * then we just re-search this block group
2760 if (search_start >= block_group->key.objectid &&
2761 search_start < (block_group->key.objectid +
2762 block_group->key.offset))
2763 goto have_block_group;
2767 ins->objectid = search_start;
2768 ins->offset = num_bytes;
2770 if (offset < search_start)
2771 btrfs_add_free_space(block_group, offset,
2772 search_start - offset);
2773 BUG_ON(offset > search_start);
2775 /* we are all good, lets return */
2778 btrfs_put_block_group(block_group);
2780 up_read(&space_info->groups_sem);
2782 /* loop == 0, try to find a clustered alloc in every block group
2783 * loop == 1, try again after forcing a chunk allocation
2784 * loop == 2, set empty_size and empty_cluster to 0 and try again
2786 if (!ins->objectid && loop < 3 &&
2787 (empty_size || empty_cluster || allowed_chunk_alloc)) {
2793 if (allowed_chunk_alloc) {
2794 ret = do_chunk_alloc(trans, root, num_bytes +
2795 2 * 1024 * 1024, data, 1);
2796 allowed_chunk_alloc = 0;
2798 space_info->force_alloc = 1;
2806 } else if (!ins->objectid) {
2810 /* we found what we needed */
2811 if (ins->objectid) {
2812 if (!(data & BTRFS_BLOCK_GROUP_DATA))
2813 trans->block_group = block_group->key.objectid;
2815 btrfs_put_block_group(block_group);
2822 static void dump_space_info(struct btrfs_space_info *info, u64 bytes)
2824 struct btrfs_block_group_cache *cache;
2826 printk(KERN_INFO "space_info has %llu free, is %sfull\n",
2827 (unsigned long long)(info->total_bytes - info->bytes_used -
2828 info->bytes_pinned - info->bytes_reserved),
2829 (info->full) ? "" : "not ");
2830 printk(KERN_INFO "space_info total=%llu, pinned=%llu, delalloc=%llu,"
2831 " may_use=%llu, used=%llu\n",
2832 (unsigned long long)info->total_bytes,
2833 (unsigned long long)info->bytes_pinned,
2834 (unsigned long long)info->bytes_delalloc,
2835 (unsigned long long)info->bytes_may_use,
2836 (unsigned long long)info->bytes_used);
2838 down_read(&info->groups_sem);
2839 list_for_each_entry(cache, &info->block_groups, list) {
2840 spin_lock(&cache->lock);
2841 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
2842 "%llu pinned %llu reserved\n",
2843 (unsigned long long)cache->key.objectid,
2844 (unsigned long long)cache->key.offset,
2845 (unsigned long long)btrfs_block_group_used(&cache->item),
2846 (unsigned long long)cache->pinned,
2847 (unsigned long long)cache->reserved);
2848 btrfs_dump_free_space(cache, bytes);
2849 spin_unlock(&cache->lock);
2851 up_read(&info->groups_sem);
2854 static int __btrfs_reserve_extent(struct btrfs_trans_handle *trans,
2855 struct btrfs_root *root,
2856 u64 num_bytes, u64 min_alloc_size,
2857 u64 empty_size, u64 hint_byte,
2858 u64 search_end, struct btrfs_key *ins,
2862 u64 search_start = 0;
2863 struct btrfs_fs_info *info = root->fs_info;
2865 data = btrfs_get_alloc_profile(root, data);
2868 * the only place that sets empty_size is btrfs_realloc_node, which
2869 * is not called recursively on allocations
2871 if (empty_size || root->ref_cows) {
2872 if (!(data & BTRFS_BLOCK_GROUP_METADATA)) {
2873 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
2875 BTRFS_BLOCK_GROUP_METADATA |
2876 (info->metadata_alloc_profile &
2877 info->avail_metadata_alloc_bits), 0);
2879 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
2880 num_bytes + 2 * 1024 * 1024, data, 0);
2883 WARN_ON(num_bytes < root->sectorsize);
2884 ret = find_free_extent(trans, root, num_bytes, empty_size,
2885 search_start, search_end, hint_byte, ins,
2886 trans->alloc_exclude_start,
2887 trans->alloc_exclude_nr, data);
2889 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
2890 num_bytes = num_bytes >> 1;
2891 num_bytes = num_bytes & ~(root->sectorsize - 1);
2892 num_bytes = max(num_bytes, min_alloc_size);
2893 do_chunk_alloc(trans, root->fs_info->extent_root,
2894 num_bytes, data, 1);
2898 struct btrfs_space_info *sinfo;
2900 sinfo = __find_space_info(root->fs_info, data);
2901 printk(KERN_ERR "btrfs allocation failed flags %llu, "
2902 "wanted %llu\n", (unsigned long long)data,
2903 (unsigned long long)num_bytes);
2904 dump_space_info(sinfo, num_bytes);
2911 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
2913 struct btrfs_block_group_cache *cache;
2916 cache = btrfs_lookup_block_group(root->fs_info, start);
2918 printk(KERN_ERR "Unable to find block group for %llu\n",
2919 (unsigned long long)start);
2923 ret = btrfs_discard_extent(root, start, len);
2925 btrfs_add_free_space(cache, start, len);
2926 btrfs_put_block_group(cache);
2927 update_reserved_extents(root, start, len, 0);
2932 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
2933 struct btrfs_root *root,
2934 u64 num_bytes, u64 min_alloc_size,
2935 u64 empty_size, u64 hint_byte,
2936 u64 search_end, struct btrfs_key *ins,
2940 ret = __btrfs_reserve_extent(trans, root, num_bytes, min_alloc_size,
2941 empty_size, hint_byte, search_end, ins,
2943 update_reserved_extents(root, ins->objectid, ins->offset, 1);
2947 static int __btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans,
2948 struct btrfs_root *root, u64 parent,
2949 u64 root_objectid, u64 ref_generation,
2950 u64 owner, struct btrfs_key *ins,
2956 u64 num_bytes = ins->offset;
2958 struct btrfs_fs_info *info = root->fs_info;
2959 struct btrfs_root *extent_root = info->extent_root;
2960 struct btrfs_extent_item *extent_item;
2961 struct btrfs_extent_ref *ref;
2962 struct btrfs_path *path;
2963 struct btrfs_key keys[2];
2966 parent = ins->objectid;
2968 /* block accounting for super block */
2969 spin_lock(&info->delalloc_lock);
2970 super_used = btrfs_super_bytes_used(&info->super_copy);
2971 btrfs_set_super_bytes_used(&info->super_copy, super_used + num_bytes);
2973 /* block accounting for root item */
2974 root_used = btrfs_root_used(&root->root_item);
2975 btrfs_set_root_used(&root->root_item, root_used + num_bytes);
2976 spin_unlock(&info->delalloc_lock);
2978 memcpy(&keys[0], ins, sizeof(*ins));
2979 keys[1].objectid = ins->objectid;
2980 keys[1].type = BTRFS_EXTENT_REF_KEY;
2981 keys[1].offset = parent;
2982 sizes[0] = sizeof(*extent_item);
2983 sizes[1] = sizeof(*ref);
2985 path = btrfs_alloc_path();
2988 path->leave_spinning = 1;
2989 ret = btrfs_insert_empty_items(trans, extent_root, path, keys,
2993 extent_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2994 struct btrfs_extent_item);
2995 btrfs_set_extent_refs(path->nodes[0], extent_item, ref_mod);
2996 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2997 struct btrfs_extent_ref);
2999 btrfs_set_ref_root(path->nodes[0], ref, root_objectid);
3000 btrfs_set_ref_generation(path->nodes[0], ref, ref_generation);
3001 btrfs_set_ref_objectid(path->nodes[0], ref, owner);
3002 btrfs_set_ref_num_refs(path->nodes[0], ref, ref_mod);
3004 btrfs_mark_buffer_dirty(path->nodes[0]);
3006 trans->alloc_exclude_start = 0;
3007 trans->alloc_exclude_nr = 0;
3008 btrfs_free_path(path);
3013 ret = update_block_group(trans, root, ins->objectid,
3016 printk(KERN_ERR "btrfs update block group failed for %llu "
3017 "%llu\n", (unsigned long long)ins->objectid,
3018 (unsigned long long)ins->offset);
3025 int btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans,
3026 struct btrfs_root *root, u64 parent,
3027 u64 root_objectid, u64 ref_generation,
3028 u64 owner, struct btrfs_key *ins)
3032 if (root_objectid == BTRFS_TREE_LOG_OBJECTID)
3035 ret = btrfs_add_delayed_ref(trans, ins->objectid,
3036 ins->offset, parent, root_objectid,
3037 ref_generation, owner,
3038 BTRFS_ADD_DELAYED_EXTENT, 0);
3044 * this is used by the tree logging recovery code. It records that
3045 * an extent has been allocated and makes sure to clear the free
3046 * space cache bits as well
3048 int btrfs_alloc_logged_extent(struct btrfs_trans_handle *trans,
3049 struct btrfs_root *root, u64 parent,
3050 u64 root_objectid, u64 ref_generation,
3051 u64 owner, struct btrfs_key *ins)
3054 struct btrfs_block_group_cache *block_group;
3056 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
3057 mutex_lock(&block_group->cache_mutex);
3058 cache_block_group(root, block_group);
3059 mutex_unlock(&block_group->cache_mutex);
3061 ret = btrfs_remove_free_space(block_group, ins->objectid,
3064 btrfs_put_block_group(block_group);
3065 ret = __btrfs_alloc_reserved_extent(trans, root, parent, root_objectid,
3066 ref_generation, owner, ins, 1);
3071 * finds a free extent and does all the dirty work required for allocation
3072 * returns the key for the extent through ins, and a tree buffer for
3073 * the first block of the extent through buf.
3075 * returns 0 if everything worked, non-zero otherwise.
3077 int btrfs_alloc_extent(struct btrfs_trans_handle *trans,
3078 struct btrfs_root *root,
3079 u64 num_bytes, u64 parent, u64 min_alloc_size,
3080 u64 root_objectid, u64 ref_generation,
3081 u64 owner_objectid, u64 empty_size, u64 hint_byte,
3082 u64 search_end, struct btrfs_key *ins, u64 data)
3085 ret = __btrfs_reserve_extent(trans, root, num_bytes,
3086 min_alloc_size, empty_size, hint_byte,
3087 search_end, ins, data);
3089 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
3090 ret = btrfs_add_delayed_ref(trans, ins->objectid,
3091 ins->offset, parent, root_objectid,
3092 ref_generation, owner_objectid,
3093 BTRFS_ADD_DELAYED_EXTENT, 0);
3096 update_reserved_extents(root, ins->objectid, ins->offset, 1);
3100 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
3101 struct btrfs_root *root,
3102 u64 bytenr, u32 blocksize,
3105 struct extent_buffer *buf;
3107 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
3109 return ERR_PTR(-ENOMEM);
3110 btrfs_set_header_generation(buf, trans->transid);
3111 btrfs_set_buffer_lockdep_class(buf, level);
3112 btrfs_tree_lock(buf);
3113 clean_tree_block(trans, root, buf);
3115 btrfs_set_lock_blocking(buf);
3116 btrfs_set_buffer_uptodate(buf);
3118 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
3119 set_extent_dirty(&root->dirty_log_pages, buf->start,
3120 buf->start + buf->len - 1, GFP_NOFS);
3122 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
3123 buf->start + buf->len - 1, GFP_NOFS);
3125 trans->blocks_used++;
3126 /* this returns a buffer locked for blocking */
3131 * helper function to allocate a block for a given tree
3132 * returns the tree buffer or NULL.
3134 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
3135 struct btrfs_root *root,
3136 u32 blocksize, u64 parent,
3143 struct btrfs_key ins;
3145 struct extent_buffer *buf;
3147 ret = btrfs_alloc_extent(trans, root, blocksize, parent, blocksize,
3148 root_objectid, ref_generation, level,
3149 empty_size, hint, (u64)-1, &ins, 0);
3152 return ERR_PTR(ret);
3155 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
3160 int btrfs_drop_leaf_ref(struct btrfs_trans_handle *trans,
3161 struct btrfs_root *root, struct extent_buffer *leaf)
3164 u64 leaf_generation;
3165 struct refsort *sorted;
3166 struct btrfs_key key;
3167 struct btrfs_file_extent_item *fi;
3174 BUG_ON(!btrfs_is_leaf(leaf));
3175 nritems = btrfs_header_nritems(leaf);
3176 leaf_owner = btrfs_header_owner(leaf);
3177 leaf_generation = btrfs_header_generation(leaf);
3179 sorted = kmalloc(sizeof(*sorted) * nritems, GFP_NOFS);
3180 /* we do this loop twice. The first time we build a list
3181 * of the extents we have a reference on, then we sort the list
3182 * by bytenr. The second time around we actually do the
3185 for (i = 0; i < nritems; i++) {
3189 btrfs_item_key_to_cpu(leaf, &key, i);
3191 /* only extents have references, skip everything else */
3192 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3195 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3197 /* inline extents live in the btree, they don't have refs */
3198 if (btrfs_file_extent_type(leaf, fi) ==
3199 BTRFS_FILE_EXTENT_INLINE)
3202 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
3204 /* holes don't have refs */
3205 if (disk_bytenr == 0)
3208 sorted[refi].bytenr = disk_bytenr;
3209 sorted[refi].slot = i;
3216 sort(sorted, refi, sizeof(struct refsort), refsort_cmp, NULL);
3218 for (i = 0; i < refi; i++) {
3221 disk_bytenr = sorted[i].bytenr;
3222 slot = sorted[i].slot;
3226 btrfs_item_key_to_cpu(leaf, &key, slot);
3227 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3230 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
3232 ret = btrfs_free_extent(trans, root, disk_bytenr,
3233 btrfs_file_extent_disk_num_bytes(leaf, fi),
3234 leaf->start, leaf_owner, leaf_generation,
3238 atomic_inc(&root->fs_info->throttle_gen);
3239 wake_up(&root->fs_info->transaction_throttle);
3247 static noinline int cache_drop_leaf_ref(struct btrfs_trans_handle *trans,
3248 struct btrfs_root *root,
3249 struct btrfs_leaf_ref *ref)
3253 struct btrfs_extent_info *info;
3254 struct refsort *sorted;
3256 if (ref->nritems == 0)
3259 sorted = kmalloc(sizeof(*sorted) * ref->nritems, GFP_NOFS);
3260 for (i = 0; i < ref->nritems; i++) {
3261 sorted[i].bytenr = ref->extents[i].bytenr;
3264 sort(sorted, ref->nritems, sizeof(struct refsort), refsort_cmp, NULL);
3267 * the items in the ref were sorted when the ref was inserted
3268 * into the ref cache, so this is already in order
3270 for (i = 0; i < ref->nritems; i++) {
3271 info = ref->extents + sorted[i].slot;
3272 ret = btrfs_free_extent(trans, root, info->bytenr,
3273 info->num_bytes, ref->bytenr,
3274 ref->owner, ref->generation,
3277 atomic_inc(&root->fs_info->throttle_gen);
3278 wake_up(&root->fs_info->transaction_throttle);
3289 static int drop_snap_lookup_refcount(struct btrfs_trans_handle *trans,
3290 struct btrfs_root *root, u64 start,
3295 ret = btrfs_lookup_extent_ref(trans, root, start, len, refs);
3298 #if 0 /* some debugging code in case we see problems here */
3299 /* if the refs count is one, it won't get increased again. But
3300 * if the ref count is > 1, someone may be decreasing it at
3301 * the same time we are.
3304 struct extent_buffer *eb = NULL;
3305 eb = btrfs_find_create_tree_block(root, start, len);
3307 btrfs_tree_lock(eb);
3309 mutex_lock(&root->fs_info->alloc_mutex);
3310 ret = lookup_extent_ref(NULL, root, start, len, refs);
3312 mutex_unlock(&root->fs_info->alloc_mutex);
3315 btrfs_tree_unlock(eb);
3316 free_extent_buffer(eb);
3319 printk(KERN_ERR "btrfs block %llu went down to one "
3320 "during drop_snap\n", (unsigned long long)start);
3331 * this is used while deleting old snapshots, and it drops the refs
3332 * on a whole subtree starting from a level 1 node.
3334 * The idea is to sort all the leaf pointers, and then drop the
3335 * ref on all the leaves in order. Most of the time the leaves
3336 * will have ref cache entries, so no leaf IOs will be required to
3337 * find the extents they have references on.
3339 * For each leaf, any references it has are also dropped in order
3341 * This ends up dropping the references in something close to optimal
3342 * order for reading and modifying the extent allocation tree.
3344 static noinline int drop_level_one_refs(struct btrfs_trans_handle *trans,
3345 struct btrfs_root *root,
3346 struct btrfs_path *path)
3351 struct extent_buffer *eb = path->nodes[1];
3352 struct extent_buffer *leaf;
3353 struct btrfs_leaf_ref *ref;
3354 struct refsort *sorted = NULL;
3355 int nritems = btrfs_header_nritems(eb);
3359 int slot = path->slots[1];
3360 u32 blocksize = btrfs_level_size(root, 0);
3366 root_owner = btrfs_header_owner(eb);
3367 root_gen = btrfs_header_generation(eb);
3368 sorted = kmalloc(sizeof(*sorted) * nritems, GFP_NOFS);
3371 * step one, sort all the leaf pointers so we don't scribble
3372 * randomly into the extent allocation tree
3374 for (i = slot; i < nritems; i++) {
3375 sorted[refi].bytenr = btrfs_node_blockptr(eb, i);
3376 sorted[refi].slot = i;
3381 * nritems won't be zero, but if we're picking up drop_snapshot
3382 * after a crash, slot might be > 0, so double check things
3388 sort(sorted, refi, sizeof(struct refsort), refsort_cmp, NULL);
3391 * the first loop frees everything the leaves point to
3393 for (i = 0; i < refi; i++) {
3396 bytenr = sorted[i].bytenr;
3399 * check the reference count on this leaf. If it is > 1
3400 * we just decrement it below and don't update any
3401 * of the refs the leaf points to.
3403 ret = drop_snap_lookup_refcount(trans, root, bytenr,
3409 ptr_gen = btrfs_node_ptr_generation(eb, sorted[i].slot);
3412 * the leaf only had one reference, which means the
3413 * only thing pointing to this leaf is the snapshot
3414 * we're deleting. It isn't possible for the reference
3415 * count to increase again later
3417 * The reference cache is checked for the leaf,
3418 * and if found we'll be able to drop any refs held by
3419 * the leaf without needing to read it in.
3421 ref = btrfs_lookup_leaf_ref(root, bytenr);
3422 if (ref && ref->generation != ptr_gen) {
3423 btrfs_free_leaf_ref(root, ref);
3427 ret = cache_drop_leaf_ref(trans, root, ref);
3429 btrfs_remove_leaf_ref(root, ref);
3430 btrfs_free_leaf_ref(root, ref);
3433 * the leaf wasn't in the reference cache, so
3434 * we have to read it.
3436 leaf = read_tree_block(root, bytenr, blocksize,
3438 ret = btrfs_drop_leaf_ref(trans, root, leaf);
3440 free_extent_buffer(leaf);
3442 atomic_inc(&root->fs_info->throttle_gen);
3443 wake_up(&root->fs_info->transaction_throttle);
3448 * run through the loop again to free the refs on the leaves.
3449 * This is faster than doing it in the loop above because
3450 * the leaves are likely to be clustered together. We end up
3451 * working in nice chunks on the extent allocation tree.
3453 for (i = 0; i < refi; i++) {
3454 bytenr = sorted[i].bytenr;
3455 ret = btrfs_free_extent(trans, root, bytenr,
3456 blocksize, eb->start,
3457 root_owner, root_gen, 0, 1);
3460 atomic_inc(&root->fs_info->throttle_gen);
3461 wake_up(&root->fs_info->transaction_throttle);
3468 * update the path to show we've processed the entire level 1
3469 * node. This will get saved into the root's drop_snapshot_progress
3470 * field so these drops are not repeated again if this transaction
3473 path->slots[1] = nritems;
3478 * helper function for drop_snapshot, this walks down the tree dropping ref
3479 * counts as it goes.
3481 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
3482 struct btrfs_root *root,
3483 struct btrfs_path *path, int *level)
3489 struct extent_buffer *next;
3490 struct extent_buffer *cur;
3491 struct extent_buffer *parent;
3496 WARN_ON(*level < 0);
3497 WARN_ON(*level >= BTRFS_MAX_LEVEL);
3498 ret = drop_snap_lookup_refcount(trans, root, path->nodes[*level]->start,
3499 path->nodes[*level]->len, &refs);
3505 * walk down to the last node level and free all the leaves
3507 while (*level >= 0) {
3508 WARN_ON(*level < 0);
3509 WARN_ON(*level >= BTRFS_MAX_LEVEL);
3510 cur = path->nodes[*level];
3512 if (btrfs_header_level(cur) != *level)
3515 if (path->slots[*level] >=
3516 btrfs_header_nritems(cur))
3519 /* the new code goes down to level 1 and does all the
3520 * leaves pointed to that node in bulk. So, this check
3521 * for level 0 will always be false.
3523 * But, the disk format allows the drop_snapshot_progress
3524 * field in the root to leave things in a state where
3525 * a leaf will need cleaning up here. If someone crashes
3526 * with the old code and then boots with the new code,
3527 * we might find a leaf here.
3530 ret = btrfs_drop_leaf_ref(trans, root, cur);
3536 * once we get to level one, process the whole node
3537 * at once, including everything below it.
3540 ret = drop_level_one_refs(trans, root, path);
3545 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
3546 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
3547 blocksize = btrfs_level_size(root, *level - 1);
3549 ret = drop_snap_lookup_refcount(trans, root, bytenr,
3554 * if there is more than one reference, we don't need
3555 * to read that node to drop any references it has. We
3556 * just drop the ref we hold on that node and move on to the
3557 * next slot in this level.
3560 parent = path->nodes[*level];
3561 root_owner = btrfs_header_owner(parent);
3562 root_gen = btrfs_header_generation(parent);
3563 path->slots[*level]++;
3565 ret = btrfs_free_extent(trans, root, bytenr,
3566 blocksize, parent->start,
3567 root_owner, root_gen,
3571 atomic_inc(&root->fs_info->throttle_gen);
3572 wake_up(&root->fs_info->transaction_throttle);
3579 * we need to keep freeing things in the next level down.
3580 * read the block and loop around to process it
3582 next = read_tree_block(root, bytenr, blocksize, ptr_gen);
3583 WARN_ON(*level <= 0);
3584 if (path->nodes[*level-1])
3585 free_extent_buffer(path->nodes[*level-1]);
3586 path->nodes[*level-1] = next;
3587 *level = btrfs_header_level(next);
3588 path->slots[*level] = 0;
3592 WARN_ON(*level < 0);
3593 WARN_ON(*level >= BTRFS_MAX_LEVEL);
3595 if (path->nodes[*level] == root->node) {
3596 parent = path->nodes[*level];
3597 bytenr = path->nodes[*level]->start;
3599 parent = path->nodes[*level + 1];
3600 bytenr = btrfs_node_blockptr(parent, path->slots[*level + 1]);
3603 blocksize = btrfs_level_size(root, *level);
3604 root_owner = btrfs_header_owner(parent);
3605 root_gen = btrfs_header_generation(parent);
3608 * cleanup and free the reference on the last node
3611 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
3612 parent->start, root_owner, root_gen,
3614 free_extent_buffer(path->nodes[*level]);
3615 path->nodes[*level] = NULL;
3625 * helper function for drop_subtree, this function is similar to
3626 * walk_down_tree. The main difference is that it checks reference
3627 * counts while tree blocks are locked.
3629 static noinline int walk_down_subtree(struct btrfs_trans_handle *trans,
3630 struct btrfs_root *root,
3631 struct btrfs_path *path, int *level)
3633 struct extent_buffer *next;
3634 struct extent_buffer *cur;
3635 struct extent_buffer *parent;
3642 cur = path->nodes[*level];
3643 ret = btrfs_lookup_extent_ref(trans, root, cur->start, cur->len,
3649 while (*level >= 0) {
3650 cur = path->nodes[*level];
3652 ret = btrfs_drop_leaf_ref(trans, root, cur);
3654 clean_tree_block(trans, root, cur);
3657 if (path->slots[*level] >= btrfs_header_nritems(cur)) {
3658 clean_tree_block(trans, root, cur);
3662 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
3663 blocksize = btrfs_level_size(root, *level - 1);
3664 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
3666 next = read_tree_block(root, bytenr, blocksize, ptr_gen);
3667 btrfs_tree_lock(next);
3668 btrfs_set_lock_blocking(next);
3670 ret = btrfs_lookup_extent_ref(trans, root, bytenr, blocksize,
3674 parent = path->nodes[*level];
3675 ret = btrfs_free_extent(trans, root, bytenr,
3676 blocksize, parent->start,
3677 btrfs_header_owner(parent),
3678 btrfs_header_generation(parent),
3681 path->slots[*level]++;
3682 btrfs_tree_unlock(next);
3683 free_extent_buffer(next);
3687 *level = btrfs_header_level(next);
3688 path->nodes[*level] = next;
3689 path->slots[*level] = 0;
3690 path->locks[*level] = 1;
3694 parent = path->nodes[*level + 1];
3695 bytenr = path->nodes[*level]->start;
3696 blocksize = path->nodes[*level]->len;
3698 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
3699 parent->start, btrfs_header_owner(parent),
3700 btrfs_header_generation(parent), *level, 1);
3703 if (path->locks[*level]) {
3704 btrfs_tree_unlock(path->nodes[*level]);
3705 path->locks[*level] = 0;
3707 free_extent_buffer(path->nodes[*level]);
3708 path->nodes[*level] = NULL;
3715 * helper for dropping snapshots. This walks back up the tree in the path
3716 * to find the first node higher up where we haven't yet gone through
3719 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
3720 struct btrfs_root *root,
3721 struct btrfs_path *path,
3722 int *level, int max_level)
3726 struct btrfs_root_item *root_item = &root->root_item;
3731 for (i = *level; i < max_level && path->nodes[i]; i++) {
3732 slot = path->slots[i];
3733 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
3734 struct extent_buffer *node;
3735 struct btrfs_disk_key disk_key;
3738 * there is more work to do in this level.
3739 * Update the drop_progress marker to reflect
3740 * the work we've done so far, and then bump
3743 node = path->nodes[i];
3746 WARN_ON(*level == 0);
3747 btrfs_node_key(node, &disk_key, path->slots[i]);
3748 memcpy(&root_item->drop_progress,
3749 &disk_key, sizeof(disk_key));
3750 root_item->drop_level = i;
3753 struct extent_buffer *parent;
3756 * this whole node is done, free our reference
3757 * on it and go up one level
3759 if (path->nodes[*level] == root->node)
3760 parent = path->nodes[*level];
3762 parent = path->nodes[*level + 1];
3764 root_owner = btrfs_header_owner(parent);
3765 root_gen = btrfs_header_generation(parent);
3767 clean_tree_block(trans, root, path->nodes[*level]);
3768 ret = btrfs_free_extent(trans, root,
3769 path->nodes[*level]->start,
3770 path->nodes[*level]->len,
3771 parent->start, root_owner,
3772 root_gen, *level, 1);
3774 if (path->locks[*level]) {
3775 btrfs_tree_unlock(path->nodes[*level]);
3776 path->locks[*level] = 0;
3778 free_extent_buffer(path->nodes[*level]);
3779 path->nodes[*level] = NULL;
3787 * drop the reference count on the tree rooted at 'snap'. This traverses
3788 * the tree freeing any blocks that have a ref count of zero after being
3791 int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
3797 struct btrfs_path *path;
3801 struct btrfs_root_item *root_item = &root->root_item;
3803 WARN_ON(!mutex_is_locked(&root->fs_info->drop_mutex));
3804 path = btrfs_alloc_path();
3807 level = btrfs_header_level(root->node);
3809 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
3810 path->nodes[level] = root->node;
3811 extent_buffer_get(root->node);
3812 path->slots[level] = 0;
3814 struct btrfs_key key;
3815 struct btrfs_disk_key found_key;
3816 struct extent_buffer *node;
3818 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
3819 level = root_item->drop_level;
3820 path->lowest_level = level;
3821 wret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3826 node = path->nodes[level];
3827 btrfs_node_key(node, &found_key, path->slots[level]);
3828 WARN_ON(memcmp(&found_key, &root_item->drop_progress,
3829 sizeof(found_key)));
3831 * unlock our path, this is safe because only this
3832 * function is allowed to delete this snapshot
3834 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3835 if (path->nodes[i] && path->locks[i]) {
3837 btrfs_tree_unlock(path->nodes[i]);
3842 unsigned long update;
3843 wret = walk_down_tree(trans, root, path, &level);
3849 wret = walk_up_tree(trans, root, path, &level,
3855 if (trans->transaction->in_commit ||
3856 trans->transaction->delayed_refs.flushing) {
3860 atomic_inc(&root->fs_info->throttle_gen);
3861 wake_up(&root->fs_info->transaction_throttle);
3862 for (update_count = 0; update_count < 16; update_count++) {
3863 update = trans->delayed_ref_updates;
3864 trans->delayed_ref_updates = 0;
3866 btrfs_run_delayed_refs(trans, root, update);
3871 for (i = 0; i <= orig_level; i++) {
3872 if (path->nodes[i]) {
3873 free_extent_buffer(path->nodes[i]);
3874 path->nodes[i] = NULL;
3878 btrfs_free_path(path);
3882 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3883 struct btrfs_root *root,
3884 struct extent_buffer *node,
3885 struct extent_buffer *parent)
3887 struct btrfs_path *path;
3893 path = btrfs_alloc_path();
3896 btrfs_assert_tree_locked(parent);
3897 parent_level = btrfs_header_level(parent);
3898 extent_buffer_get(parent);
3899 path->nodes[parent_level] = parent;
3900 path->slots[parent_level] = btrfs_header_nritems(parent);
3902 btrfs_assert_tree_locked(node);
3903 level = btrfs_header_level(node);
3904 extent_buffer_get(node);
3905 path->nodes[level] = node;
3906 path->slots[level] = 0;
3909 wret = walk_down_subtree(trans, root, path, &level);
3915 wret = walk_up_tree(trans, root, path, &level, parent_level);
3922 btrfs_free_path(path);
3926 static unsigned long calc_ra(unsigned long start, unsigned long last,
3929 return min(last, start + nr - 1);
3932 static noinline int relocate_inode_pages(struct inode *inode, u64 start,
3937 unsigned long first_index;
3938 unsigned long last_index;
3941 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3942 struct file_ra_state *ra;
3943 struct btrfs_ordered_extent *ordered;
3944 unsigned int total_read = 0;
3945 unsigned int total_dirty = 0;
3948 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3950 mutex_lock(&inode->i_mutex);
3951 first_index = start >> PAGE_CACHE_SHIFT;
3952 last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
3954 /* make sure the dirty trick played by the caller work */
3955 ret = invalidate_inode_pages2_range(inode->i_mapping,
3956 first_index, last_index);
3960 file_ra_state_init(ra, inode->i_mapping);
3962 for (i = first_index ; i <= last_index; i++) {
3963 if (total_read % ra->ra_pages == 0) {
3964 btrfs_force_ra(inode->i_mapping, ra, NULL, i,
3965 calc_ra(i, last_index, ra->ra_pages));
3969 if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
3971 page = grab_cache_page(inode->i_mapping, i);
3976 if (!PageUptodate(page)) {
3977 btrfs_readpage(NULL, page);
3979 if (!PageUptodate(page)) {
3981 page_cache_release(page);
3986 wait_on_page_writeback(page);
3988 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
3989 page_end = page_start + PAGE_CACHE_SIZE - 1;
3990 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3992 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3994 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3996 page_cache_release(page);
3997 btrfs_start_ordered_extent(inode, ordered, 1);
3998 btrfs_put_ordered_extent(ordered);
4001 set_page_extent_mapped(page);
4003 if (i == first_index)
4004 set_extent_bits(io_tree, page_start, page_end,
4005 EXTENT_BOUNDARY, GFP_NOFS);
4006 btrfs_set_extent_delalloc(inode, page_start, page_end);
4008 set_page_dirty(page);
4011 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4013 page_cache_release(page);
4018 mutex_unlock(&inode->i_mutex);
4019 balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
4023 static noinline int relocate_data_extent(struct inode *reloc_inode,
4024 struct btrfs_key *extent_key,
4027 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
4028 struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
4029 struct extent_map *em;
4030 u64 start = extent_key->objectid - offset;
4031 u64 end = start + extent_key->offset - 1;
4033 em = alloc_extent_map(GFP_NOFS);
4034 BUG_ON(!em || IS_ERR(em));
4037 em->len = extent_key->offset;
4038 em->block_len = extent_key->offset;
4039 em->block_start = extent_key->objectid;
4040 em->bdev = root->fs_info->fs_devices->latest_bdev;
4041 set_bit(EXTENT_FLAG_PINNED, &em->flags);
4043 /* setup extent map to cheat btrfs_readpage */
4044 lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
4047 spin_lock(&em_tree->lock);
4048 ret = add_extent_mapping(em_tree, em);
4049 spin_unlock(&em_tree->lock);
4050 if (ret != -EEXIST) {
4051 free_extent_map(em);
4054 btrfs_drop_extent_cache(reloc_inode, start, end, 0);
4056 unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
4058 return relocate_inode_pages(reloc_inode, start, extent_key->offset);
4061 struct btrfs_ref_path {
4063 u64 nodes[BTRFS_MAX_LEVEL];
4065 u64 root_generation;
4072 struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
4073 u64 new_nodes[BTRFS_MAX_LEVEL];
4076 struct disk_extent {
4087 static int is_cowonly_root(u64 root_objectid)
4089 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
4090 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
4091 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
4092 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
4093 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
4094 root_objectid == BTRFS_CSUM_TREE_OBJECTID)
4099 static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
4100 struct btrfs_root *extent_root,
4101 struct btrfs_ref_path *ref_path,
4104 struct extent_buffer *leaf;
4105 struct btrfs_path *path;
4106 struct btrfs_extent_ref *ref;
4107 struct btrfs_key key;
4108 struct btrfs_key found_key;
4114 path = btrfs_alloc_path();
4119 ref_path->lowest_level = -1;
4120 ref_path->current_level = -1;
4121 ref_path->shared_level = -1;
4125 level = ref_path->current_level - 1;
4126 while (level >= -1) {
4128 if (level < ref_path->lowest_level)
4132 bytenr = ref_path->nodes[level];
4134 bytenr = ref_path->extent_start;
4135 BUG_ON(bytenr == 0);
4137 parent = ref_path->nodes[level + 1];
4138 ref_path->nodes[level + 1] = 0;
4139 ref_path->current_level = level;
4140 BUG_ON(parent == 0);
4142 key.objectid = bytenr;
4143 key.offset = parent + 1;
4144 key.type = BTRFS_EXTENT_REF_KEY;
4146 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
4151 leaf = path->nodes[0];
4152 nritems = btrfs_header_nritems(leaf);
4153 if (path->slots[0] >= nritems) {
4154 ret = btrfs_next_leaf(extent_root, path);
4159 leaf = path->nodes[0];
4162 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4163 if (found_key.objectid == bytenr &&
4164 found_key.type == BTRFS_EXTENT_REF_KEY) {
4165 if (level < ref_path->shared_level)
4166 ref_path->shared_level = level;
4171 btrfs_release_path(extent_root, path);
4174 /* reached lowest level */
4178 level = ref_path->current_level;
4179 while (level < BTRFS_MAX_LEVEL - 1) {
4183 bytenr = ref_path->nodes[level];
4185 bytenr = ref_path->extent_start;
4187 BUG_ON(bytenr == 0);
4189 key.objectid = bytenr;
4191 key.type = BTRFS_EXTENT_REF_KEY;
4193 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
4197 leaf = path->nodes[0];
4198 nritems = btrfs_header_nritems(leaf);
4199 if (path->slots[0] >= nritems) {
4200 ret = btrfs_next_leaf(extent_root, path);
4204 /* the extent was freed by someone */
4205 if (ref_path->lowest_level == level)
4207 btrfs_release_path(extent_root, path);
4210 leaf = path->nodes[0];
4213 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4214 if (found_key.objectid != bytenr ||
4215 found_key.type != BTRFS_EXTENT_REF_KEY) {
4216 /* the extent was freed by someone */
4217 if (ref_path->lowest_level == level) {
4221 btrfs_release_path(extent_root, path);
4225 ref = btrfs_item_ptr(leaf, path->slots[0],
4226 struct btrfs_extent_ref);
4227 ref_objectid = btrfs_ref_objectid(leaf, ref);
4228 if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4230 level = (int)ref_objectid;
4231 BUG_ON(level >= BTRFS_MAX_LEVEL);
4232 ref_path->lowest_level = level;
4233 ref_path->current_level = level;
4234 ref_path->nodes[level] = bytenr;
4236 WARN_ON(ref_objectid != level);
4239 WARN_ON(level != -1);
4243 if (ref_path->lowest_level == level) {
4244 ref_path->owner_objectid = ref_objectid;
4245 ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
4249 * the block is tree root or the block isn't in reference
4252 if (found_key.objectid == found_key.offset ||
4253 is_cowonly_root(btrfs_ref_root(leaf, ref))) {
4254 ref_path->root_objectid = btrfs_ref_root(leaf, ref);
4255 ref_path->root_generation =
4256 btrfs_ref_generation(leaf, ref);
4258 /* special reference from the tree log */
4259 ref_path->nodes[0] = found_key.offset;
4260 ref_path->current_level = 0;
4267 BUG_ON(ref_path->nodes[level] != 0);
4268 ref_path->nodes[level] = found_key.offset;
4269 ref_path->current_level = level;
4272 * the reference was created in the running transaction,
4273 * no need to continue walking up.
4275 if (btrfs_ref_generation(leaf, ref) == trans->transid) {
4276 ref_path->root_objectid = btrfs_ref_root(leaf, ref);
4277 ref_path->root_generation =
4278 btrfs_ref_generation(leaf, ref);
4283 btrfs_release_path(extent_root, path);
4286 /* reached max tree level, but no tree root found. */
4289 btrfs_free_path(path);
4293 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
4294 struct btrfs_root *extent_root,
4295 struct btrfs_ref_path *ref_path,
4298 memset(ref_path, 0, sizeof(*ref_path));
4299 ref_path->extent_start = extent_start;
4301 return __next_ref_path(trans, extent_root, ref_path, 1);
4304 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
4305 struct btrfs_root *extent_root,
4306 struct btrfs_ref_path *ref_path)
4308 return __next_ref_path(trans, extent_root, ref_path, 0);
4311 static noinline int get_new_locations(struct inode *reloc_inode,
4312 struct btrfs_key *extent_key,
4313 u64 offset, int no_fragment,
4314 struct disk_extent **extents,
4317 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
4318 struct btrfs_path *path;
4319 struct btrfs_file_extent_item *fi;
4320 struct extent_buffer *leaf;
4321 struct disk_extent *exts = *extents;
4322 struct btrfs_key found_key;
4327 int max = *nr_extents;
4330 WARN_ON(!no_fragment && *extents);
4333 exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
4338 path = btrfs_alloc_path();
4341 cur_pos = extent_key->objectid - offset;
4342 last_byte = extent_key->objectid + extent_key->offset;
4343 ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
4353 leaf = path->nodes[0];
4354 nritems = btrfs_header_nritems(leaf);
4355 if (path->slots[0] >= nritems) {
4356 ret = btrfs_next_leaf(root, path);
4361 leaf = path->nodes[0];
4364 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4365 if (found_key.offset != cur_pos ||
4366 found_key.type != BTRFS_EXTENT_DATA_KEY ||
4367 found_key.objectid != reloc_inode->i_ino)
4370 fi = btrfs_item_ptr(leaf, path->slots[0],
4371 struct btrfs_file_extent_item);
4372 if (btrfs_file_extent_type(leaf, fi) !=
4373 BTRFS_FILE_EXTENT_REG ||
4374 btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
4378 struct disk_extent *old = exts;
4380 exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
4381 memcpy(exts, old, sizeof(*exts) * nr);
4382 if (old != *extents)
4386 exts[nr].disk_bytenr =
4387 btrfs_file_extent_disk_bytenr(leaf, fi);
4388 exts[nr].disk_num_bytes =
4389 btrfs_file_extent_disk_num_bytes(leaf, fi);
4390 exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
4391 exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
4392 exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
4393 exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
4394 exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
4395 exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
4397 BUG_ON(exts[nr].offset > 0);
4398 BUG_ON(exts[nr].compression || exts[nr].encryption);
4399 BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
4401 cur_pos += exts[nr].num_bytes;
4404 if (cur_pos + offset >= last_byte)
4414 BUG_ON(cur_pos + offset > last_byte);
4415 if (cur_pos + offset < last_byte) {
4421 btrfs_free_path(path);
4423 if (exts != *extents)
4432 static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
4433 struct btrfs_root *root,
4434 struct btrfs_path *path,
4435 struct btrfs_key *extent_key,
4436 struct btrfs_key *leaf_key,
4437 struct btrfs_ref_path *ref_path,
4438 struct disk_extent *new_extents,
4441 struct extent_buffer *leaf;
4442 struct btrfs_file_extent_item *fi;
4443 struct inode *inode = NULL;
4444 struct btrfs_key key;
4449 u64 search_end = (u64)-1;
4452 int extent_locked = 0;
4456 memcpy(&key, leaf_key, sizeof(key));
4457 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
4458 if (key.objectid < ref_path->owner_objectid ||
4459 (key.objectid == ref_path->owner_objectid &&
4460 key.type < BTRFS_EXTENT_DATA_KEY)) {
4461 key.objectid = ref_path->owner_objectid;
4462 key.type = BTRFS_EXTENT_DATA_KEY;
4468 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4472 leaf = path->nodes[0];
4473 nritems = btrfs_header_nritems(leaf);
4475 if (extent_locked && ret > 0) {
4477 * the file extent item was modified by someone
4478 * before the extent got locked.
4480 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
4481 lock_end, GFP_NOFS);
4485 if (path->slots[0] >= nritems) {
4486 if (++nr_scaned > 2)
4489 BUG_ON(extent_locked);
4490 ret = btrfs_next_leaf(root, path);
4495 leaf = path->nodes[0];
4496 nritems = btrfs_header_nritems(leaf);
4499 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4501 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
4502 if ((key.objectid > ref_path->owner_objectid) ||
4503 (key.objectid == ref_path->owner_objectid &&
4504 key.type > BTRFS_EXTENT_DATA_KEY) ||
4505 key.offset >= search_end)
4509 if (inode && key.objectid != inode->i_ino) {
4510 BUG_ON(extent_locked);
4511 btrfs_release_path(root, path);
4512 mutex_unlock(&inode->i_mutex);
4518 if (key.type != BTRFS_EXTENT_DATA_KEY) {
4523 fi = btrfs_item_ptr(leaf, path->slots[0],
4524 struct btrfs_file_extent_item);
4525 extent_type = btrfs_file_extent_type(leaf, fi);
4526 if ((extent_type != BTRFS_FILE_EXTENT_REG &&
4527 extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
4528 (btrfs_file_extent_disk_bytenr(leaf, fi) !=
4529 extent_key->objectid)) {
4535 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
4536 ext_offset = btrfs_file_extent_offset(leaf, fi);
4538 if (search_end == (u64)-1) {
4539 search_end = key.offset - ext_offset +
4540 btrfs_file_extent_ram_bytes(leaf, fi);
4543 if (!extent_locked) {
4544 lock_start = key.offset;
4545 lock_end = lock_start + num_bytes - 1;
4547 if (lock_start > key.offset ||
4548 lock_end + 1 < key.offset + num_bytes) {
4549 unlock_extent(&BTRFS_I(inode)->io_tree,
4550 lock_start, lock_end, GFP_NOFS);
4556 btrfs_release_path(root, path);
4558 inode = btrfs_iget_locked(root->fs_info->sb,
4559 key.objectid, root);
4560 if (inode->i_state & I_NEW) {
4561 BTRFS_I(inode)->root = root;
4562 BTRFS_I(inode)->location.objectid =
4564 BTRFS_I(inode)->location.type =
4565 BTRFS_INODE_ITEM_KEY;
4566 BTRFS_I(inode)->location.offset = 0;
4567 btrfs_read_locked_inode(inode);
4568 unlock_new_inode(inode);
4571 * some code call btrfs_commit_transaction while
4572 * holding the i_mutex, so we can't use mutex_lock
4575 if (is_bad_inode(inode) ||
4576 !mutex_trylock(&inode->i_mutex)) {
4579 key.offset = (u64)-1;
4584 if (!extent_locked) {
4585 struct btrfs_ordered_extent *ordered;
4587 btrfs_release_path(root, path);
4589 lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
4590 lock_end, GFP_NOFS);
4591 ordered = btrfs_lookup_first_ordered_extent(inode,
4594 ordered->file_offset <= lock_end &&
4595 ordered->file_offset + ordered->len > lock_start) {
4596 unlock_extent(&BTRFS_I(inode)->io_tree,
4597 lock_start, lock_end, GFP_NOFS);
4598 btrfs_start_ordered_extent(inode, ordered, 1);
4599 btrfs_put_ordered_extent(ordered);
4600 key.offset += num_bytes;
4604 btrfs_put_ordered_extent(ordered);
4610 if (nr_extents == 1) {
4611 /* update extent pointer in place */
4612 btrfs_set_file_extent_disk_bytenr(leaf, fi,
4613 new_extents[0].disk_bytenr);
4614 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
4615 new_extents[0].disk_num_bytes);
4616 btrfs_mark_buffer_dirty(leaf);
4618 btrfs_drop_extent_cache(inode, key.offset,
4619 key.offset + num_bytes - 1, 0);
4621 ret = btrfs_inc_extent_ref(trans, root,
4622 new_extents[0].disk_bytenr,
4623 new_extents[0].disk_num_bytes,
4625 root->root_key.objectid,
4630 ret = btrfs_free_extent(trans, root,
4631 extent_key->objectid,
4634 btrfs_header_owner(leaf),
4635 btrfs_header_generation(leaf),
4639 btrfs_release_path(root, path);
4640 key.offset += num_bytes;
4648 * drop old extent pointer at first, then insert the
4649 * new pointers one bye one
4651 btrfs_release_path(root, path);
4652 ret = btrfs_drop_extents(trans, root, inode, key.offset,
4653 key.offset + num_bytes,
4654 key.offset, &alloc_hint);
4657 for (i = 0; i < nr_extents; i++) {
4658 if (ext_offset >= new_extents[i].num_bytes) {
4659 ext_offset -= new_extents[i].num_bytes;
4662 extent_len = min(new_extents[i].num_bytes -
4663 ext_offset, num_bytes);
4665 ret = btrfs_insert_empty_item(trans, root,
4670 leaf = path->nodes[0];
4671 fi = btrfs_item_ptr(leaf, path->slots[0],
4672 struct btrfs_file_extent_item);
4673 btrfs_set_file_extent_generation(leaf, fi,
4675 btrfs_set_file_extent_type(leaf, fi,
4676 BTRFS_FILE_EXTENT_REG);
4677 btrfs_set_file_extent_disk_bytenr(leaf, fi,
4678 new_extents[i].disk_bytenr);
4679 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
4680 new_extents[i].disk_num_bytes);
4681 btrfs_set_file_extent_ram_bytes(leaf, fi,
4682 new_extents[i].ram_bytes);
4684 btrfs_set_file_extent_compression(leaf, fi,
4685 new_extents[i].compression);
4686 btrfs_set_file_extent_encryption(leaf, fi,
4687 new_extents[i].encryption);
4688 btrfs_set_file_extent_other_encoding(leaf, fi,
4689 new_extents[i].other_encoding);
4691 btrfs_set_file_extent_num_bytes(leaf, fi,
4693 ext_offset += new_extents[i].offset;
4694 btrfs_set_file_extent_offset(leaf, fi,
4696 btrfs_mark_buffer_dirty(leaf);
4698 btrfs_drop_extent_cache(inode, key.offset,
4699 key.offset + extent_len - 1, 0);
4701 ret = btrfs_inc_extent_ref(trans, root,
4702 new_extents[i].disk_bytenr,
4703 new_extents[i].disk_num_bytes,
4705 root->root_key.objectid,
4706 trans->transid, key.objectid);
4708 btrfs_release_path(root, path);
4710 inode_add_bytes(inode, extent_len);
4713 num_bytes -= extent_len;
4714 key.offset += extent_len;
4719 BUG_ON(i >= nr_extents);
4723 if (extent_locked) {
4724 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
4725 lock_end, GFP_NOFS);
4729 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
4730 key.offset >= search_end)
4737 btrfs_release_path(root, path);
4739 mutex_unlock(&inode->i_mutex);
4740 if (extent_locked) {
4741 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
4742 lock_end, GFP_NOFS);
4749 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
4750 struct btrfs_root *root,
4751 struct extent_buffer *buf, u64 orig_start)
4756 BUG_ON(btrfs_header_generation(buf) != trans->transid);
4757 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
4759 level = btrfs_header_level(buf);
4761 struct btrfs_leaf_ref *ref;
4762 struct btrfs_leaf_ref *orig_ref;
4764 orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
4768 ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
4770 btrfs_free_leaf_ref(root, orig_ref);
4774 ref->nritems = orig_ref->nritems;
4775 memcpy(ref->extents, orig_ref->extents,
4776 sizeof(ref->extents[0]) * ref->nritems);
4778 btrfs_free_leaf_ref(root, orig_ref);
4780 ref->root_gen = trans->transid;
4781 ref->bytenr = buf->start;
4782 ref->owner = btrfs_header_owner(buf);
4783 ref->generation = btrfs_header_generation(buf);
4785 ret = btrfs_add_leaf_ref(root, ref, 0);
4787 btrfs_free_leaf_ref(root, ref);
4792 static noinline int invalidate_extent_cache(struct btrfs_root *root,
4793 struct extent_buffer *leaf,
4794 struct btrfs_block_group_cache *group,
4795 struct btrfs_root *target_root)
4797 struct btrfs_key key;
4798 struct inode *inode = NULL;
4799 struct btrfs_file_extent_item *fi;
4801 u64 skip_objectid = 0;
4805 nritems = btrfs_header_nritems(leaf);
4806 for (i = 0; i < nritems; i++) {
4807 btrfs_item_key_to_cpu(leaf, &key, i);
4808 if (key.objectid == skip_objectid ||
4809 key.type != BTRFS_EXTENT_DATA_KEY)
4811 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
4812 if (btrfs_file_extent_type(leaf, fi) ==
4813 BTRFS_FILE_EXTENT_INLINE)
4815 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
4817 if (!inode || inode->i_ino != key.objectid) {
4819 inode = btrfs_ilookup(target_root->fs_info->sb,
4820 key.objectid, target_root, 1);
4823 skip_objectid = key.objectid;
4826 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
4828 lock_extent(&BTRFS_I(inode)->io_tree, key.offset,
4829 key.offset + num_bytes - 1, GFP_NOFS);
4830 btrfs_drop_extent_cache(inode, key.offset,
4831 key.offset + num_bytes - 1, 1);
4832 unlock_extent(&BTRFS_I(inode)->io_tree, key.offset,
4833 key.offset + num_bytes - 1, GFP_NOFS);
4840 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
4841 struct btrfs_root *root,
4842 struct extent_buffer *leaf,
4843 struct btrfs_block_group_cache *group,
4844 struct inode *reloc_inode)
4846 struct btrfs_key key;
4847 struct btrfs_key extent_key;
4848 struct btrfs_file_extent_item *fi;
4849 struct btrfs_leaf_ref *ref;
4850 struct disk_extent *new_extent;
4859 new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
4860 BUG_ON(!new_extent);
4862 ref = btrfs_lookup_leaf_ref(root, leaf->start);
4866 nritems = btrfs_header_nritems(leaf);
4867 for (i = 0; i < nritems; i++) {
4868 btrfs_item_key_to_cpu(leaf, &key, i);
4869 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
4871 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
4872 if (btrfs_file_extent_type(leaf, fi) ==
4873 BTRFS_FILE_EXTENT_INLINE)
4875 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
4876 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
4881 if (bytenr >= group->key.objectid + group->key.offset ||
4882 bytenr + num_bytes <= group->key.objectid)
4885 extent_key.objectid = bytenr;
4886 extent_key.offset = num_bytes;
4887 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4889 ret = get_new_locations(reloc_inode, &extent_key,
4890 group->key.objectid, 1,
4891 &new_extent, &nr_extent);
4896 BUG_ON(ref->extents[ext_index].bytenr != bytenr);
4897 BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
4898 ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
4899 ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
4901 btrfs_set_file_extent_disk_bytenr(leaf, fi,
4902 new_extent->disk_bytenr);
4903 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
4904 new_extent->disk_num_bytes);
4905 btrfs_mark_buffer_dirty(leaf);
4907 ret = btrfs_inc_extent_ref(trans, root,
4908 new_extent->disk_bytenr,
4909 new_extent->disk_num_bytes,
4911 root->root_key.objectid,
4912 trans->transid, key.objectid);
4915 ret = btrfs_free_extent(trans, root,
4916 bytenr, num_bytes, leaf->start,
4917 btrfs_header_owner(leaf),
4918 btrfs_header_generation(leaf),
4924 BUG_ON(ext_index + 1 != ref->nritems);
4925 btrfs_free_leaf_ref(root, ref);
4929 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
4930 struct btrfs_root *root)
4932 struct btrfs_root *reloc_root;
4935 if (root->reloc_root) {
4936 reloc_root = root->reloc_root;
4937 root->reloc_root = NULL;
4938 list_add(&reloc_root->dead_list,
4939 &root->fs_info->dead_reloc_roots);
4941 btrfs_set_root_bytenr(&reloc_root->root_item,
4942 reloc_root->node->start);
4943 btrfs_set_root_level(&root->root_item,
4944 btrfs_header_level(reloc_root->node));
4945 memset(&reloc_root->root_item.drop_progress, 0,
4946 sizeof(struct btrfs_disk_key));
4947 reloc_root->root_item.drop_level = 0;
4949 ret = btrfs_update_root(trans, root->fs_info->tree_root,
4950 &reloc_root->root_key,
4951 &reloc_root->root_item);
4957 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
4959 struct btrfs_trans_handle *trans;
4960 struct btrfs_root *reloc_root;
4961 struct btrfs_root *prev_root = NULL;
4962 struct list_head dead_roots;
4966 INIT_LIST_HEAD(&dead_roots);
4967 list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
4969 while (!list_empty(&dead_roots)) {
4970 reloc_root = list_entry(dead_roots.prev,
4971 struct btrfs_root, dead_list);
4972 list_del_init(&reloc_root->dead_list);
4974 BUG_ON(reloc_root->commit_root != NULL);
4976 trans = btrfs_join_transaction(root, 1);
4979 mutex_lock(&root->fs_info->drop_mutex);
4980 ret = btrfs_drop_snapshot(trans, reloc_root);
4983 mutex_unlock(&root->fs_info->drop_mutex);
4985 nr = trans->blocks_used;
4986 ret = btrfs_end_transaction(trans, root);
4988 btrfs_btree_balance_dirty(root, nr);
4991 free_extent_buffer(reloc_root->node);
4993 ret = btrfs_del_root(trans, root->fs_info->tree_root,
4994 &reloc_root->root_key);
4996 mutex_unlock(&root->fs_info->drop_mutex);
4998 nr = trans->blocks_used;
4999 ret = btrfs_end_transaction(trans, root);
5001 btrfs_btree_balance_dirty(root, nr);
5004 prev_root = reloc_root;
5007 btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
5013 int btrfs_add_dead_reloc_root(struct btrfs_root *root)
5015 list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
5019 int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
5021 struct btrfs_root *reloc_root;
5022 struct btrfs_trans_handle *trans;
5023 struct btrfs_key location;
5027 mutex_lock(&root->fs_info->tree_reloc_mutex);
5028 ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
5030 found = !list_empty(&root->fs_info->dead_reloc_roots);
5031 mutex_unlock(&root->fs_info->tree_reloc_mutex);
5034 trans = btrfs_start_transaction(root, 1);
5036 ret = btrfs_commit_transaction(trans, root);
5040 location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
5041 location.offset = (u64)-1;
5042 location.type = BTRFS_ROOT_ITEM_KEY;
5044 reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
5045 BUG_ON(!reloc_root);
5046 btrfs_orphan_cleanup(reloc_root);
5050 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
5051 struct btrfs_root *root)
5053 struct btrfs_root *reloc_root;
5054 struct extent_buffer *eb;
5055 struct btrfs_root_item *root_item;
5056 struct btrfs_key root_key;
5059 BUG_ON(!root->ref_cows);
5060 if (root->reloc_root)
5063 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
5066 ret = btrfs_copy_root(trans, root, root->commit_root,
5067 &eb, BTRFS_TREE_RELOC_OBJECTID);
5070 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
5071 root_key.offset = root->root_key.objectid;
5072 root_key.type = BTRFS_ROOT_ITEM_KEY;
5074 memcpy(root_item, &root->root_item, sizeof(root_item));
5075 btrfs_set_root_refs(root_item, 0);
5076 btrfs_set_root_bytenr(root_item, eb->start);
5077 btrfs_set_root_level(root_item, btrfs_header_level(eb));
5078 btrfs_set_root_generation(root_item, trans->transid);
5080 btrfs_tree_unlock(eb);
5081 free_extent_buffer(eb);
5083 ret = btrfs_insert_root(trans, root->fs_info->tree_root,
5084 &root_key, root_item);
5088 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
5090 BUG_ON(!reloc_root);
5091 reloc_root->last_trans = trans->transid;
5092 reloc_root->commit_root = NULL;
5093 reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
5095 root->reloc_root = reloc_root;
5100 * Core function of space balance.
5102 * The idea is using reloc trees to relocate tree blocks in reference
5103 * counted roots. There is one reloc tree for each subvol, and all
5104 * reloc trees share same root key objectid. Reloc trees are snapshots
5105 * of the latest committed roots of subvols (root->commit_root).
5107 * To relocate a tree block referenced by a subvol, there are two steps.
5108 * COW the block through subvol's reloc tree, then update block pointer
5109 * in the subvol to point to the new block. Since all reloc trees share
5110 * same root key objectid, doing special handing for tree blocks owned
5111 * by them is easy. Once a tree block has been COWed in one reloc tree,
5112 * we can use the resulting new block directly when the same block is
5113 * required to COW again through other reloc trees. By this way, relocated
5114 * tree blocks are shared between reloc trees, so they are also shared
5117 static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
5118 struct btrfs_root *root,
5119 struct btrfs_path *path,
5120 struct btrfs_key *first_key,
5121 struct btrfs_ref_path *ref_path,
5122 struct btrfs_block_group_cache *group,
5123 struct inode *reloc_inode)
5125 struct btrfs_root *reloc_root;
5126 struct extent_buffer *eb = NULL;
5127 struct btrfs_key *keys;
5131 int lowest_level = 0;
5134 if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
5135 lowest_level = ref_path->owner_objectid;
5137 if (!root->ref_cows) {
5138 path->lowest_level = lowest_level;
5139 ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
5141 path->lowest_level = 0;
5142 btrfs_release_path(root, path);
5146 mutex_lock(&root->fs_info->tree_reloc_mutex);
5147 ret = init_reloc_tree(trans, root);
5149 reloc_root = root->reloc_root;
5151 shared_level = ref_path->shared_level;
5152 ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
5154 keys = ref_path->node_keys;
5155 nodes = ref_path->new_nodes;
5156 memset(&keys[shared_level + 1], 0,
5157 sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
5158 memset(&nodes[shared_level + 1], 0,
5159 sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
5161 if (nodes[lowest_level] == 0) {
5162 path->lowest_level = lowest_level;
5163 ret = btrfs_search_slot(trans, reloc_root, first_key, path,
5166 for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
5167 eb = path->nodes[level];
5168 if (!eb || eb == reloc_root->node)
5170 nodes[level] = eb->start;
5172 btrfs_item_key_to_cpu(eb, &keys[level], 0);
5174 btrfs_node_key_to_cpu(eb, &keys[level], 0);
5177 ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
5178 eb = path->nodes[0];
5179 ret = replace_extents_in_leaf(trans, reloc_root, eb,
5180 group, reloc_inode);
5183 btrfs_release_path(reloc_root, path);
5185 ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
5191 * replace tree blocks in the fs tree with tree blocks in
5194 ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
5197 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
5198 ret = btrfs_search_slot(trans, reloc_root, first_key, path,
5201 extent_buffer_get(path->nodes[0]);
5202 eb = path->nodes[0];
5203 btrfs_release_path(reloc_root, path);
5204 ret = invalidate_extent_cache(reloc_root, eb, group, root);
5206 free_extent_buffer(eb);
5209 mutex_unlock(&root->fs_info->tree_reloc_mutex);
5210 path->lowest_level = 0;
5214 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
5215 struct btrfs_root *root,
5216 struct btrfs_path *path,
5217 struct btrfs_key *first_key,
5218 struct btrfs_ref_path *ref_path)
5222 ret = relocate_one_path(trans, root, path, first_key,
5223 ref_path, NULL, NULL);
5229 static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
5230 struct btrfs_root *extent_root,
5231 struct btrfs_path *path,
5232 struct btrfs_key *extent_key)
5236 ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
5239 ret = btrfs_del_item(trans, extent_root, path);
5241 btrfs_release_path(extent_root, path);
5245 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
5246 struct btrfs_ref_path *ref_path)
5248 struct btrfs_key root_key;
5250 root_key.objectid = ref_path->root_objectid;
5251 root_key.type = BTRFS_ROOT_ITEM_KEY;
5252 if (is_cowonly_root(ref_path->root_objectid))
5253 root_key.offset = 0;
5255 root_key.offset = (u64)-1;
5257 return btrfs_read_fs_root_no_name(fs_info, &root_key);
5260 static noinline int relocate_one_extent(struct btrfs_root *extent_root,
5261 struct btrfs_path *path,
5262 struct btrfs_key *extent_key,
5263 struct btrfs_block_group_cache *group,
5264 struct inode *reloc_inode, int pass)
5266 struct btrfs_trans_handle *trans;
5267 struct btrfs_root *found_root;
5268 struct btrfs_ref_path *ref_path = NULL;
5269 struct disk_extent *new_extents = NULL;
5274 struct btrfs_key first_key;
5278 trans = btrfs_start_transaction(extent_root, 1);
5281 if (extent_key->objectid == 0) {
5282 ret = del_extent_zero(trans, extent_root, path, extent_key);
5286 ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
5292 for (loops = 0; ; loops++) {
5294 ret = btrfs_first_ref_path(trans, extent_root, ref_path,
5295 extent_key->objectid);
5297 ret = btrfs_next_ref_path(trans, extent_root, ref_path);
5304 if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
5305 ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
5308 found_root = read_ref_root(extent_root->fs_info, ref_path);
5309 BUG_ON(!found_root);
5311 * for reference counted tree, only process reference paths
5312 * rooted at the latest committed root.
5314 if (found_root->ref_cows &&
5315 ref_path->root_generation != found_root->root_key.offset)
5318 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
5321 * copy data extents to new locations
5323 u64 group_start = group->key.objectid;
5324 ret = relocate_data_extent(reloc_inode,
5333 level = ref_path->owner_objectid;
5336 if (prev_block != ref_path->nodes[level]) {
5337 struct extent_buffer *eb;
5338 u64 block_start = ref_path->nodes[level];
5339 u64 block_size = btrfs_level_size(found_root, level);
5341 eb = read_tree_block(found_root, block_start,
5343 btrfs_tree_lock(eb);
5344 BUG_ON(level != btrfs_header_level(eb));
5347 btrfs_item_key_to_cpu(eb, &first_key, 0);
5349 btrfs_node_key_to_cpu(eb, &first_key, 0);
5351 btrfs_tree_unlock(eb);
5352 free_extent_buffer(eb);
5353 prev_block = block_start;
5356 mutex_lock(&extent_root->fs_info->trans_mutex);
5357 btrfs_record_root_in_trans(found_root);
5358 mutex_unlock(&extent_root->fs_info->trans_mutex);
5359 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
5361 * try to update data extent references while
5362 * keeping metadata shared between snapshots.
5365 ret = relocate_one_path(trans, found_root,
5366 path, &first_key, ref_path,
5367 group, reloc_inode);
5373 * use fallback method to process the remaining
5377 u64 group_start = group->key.objectid;
5378 new_extents = kmalloc(sizeof(*new_extents),
5381 ret = get_new_locations(reloc_inode,
5389 ret = replace_one_extent(trans, found_root,
5391 &first_key, ref_path,
5392 new_extents, nr_extents);
5394 ret = relocate_tree_block(trans, found_root, path,
5395 &first_key, ref_path);
5402 btrfs_end_transaction(trans, extent_root);
5408 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
5411 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
5412 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
5414 num_devices = root->fs_info->fs_devices->rw_devices;
5415 if (num_devices == 1) {
5416 stripped |= BTRFS_BLOCK_GROUP_DUP;
5417 stripped = flags & ~stripped;
5419 /* turn raid0 into single device chunks */
5420 if (flags & BTRFS_BLOCK_GROUP_RAID0)
5423 /* turn mirroring into duplication */
5424 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
5425 BTRFS_BLOCK_GROUP_RAID10))
5426 return stripped | BTRFS_BLOCK_GROUP_DUP;
5429 /* they already had raid on here, just return */
5430 if (flags & stripped)
5433 stripped |= BTRFS_BLOCK_GROUP_DUP;
5434 stripped = flags & ~stripped;
5436 /* switch duplicated blocks with raid1 */
5437 if (flags & BTRFS_BLOCK_GROUP_DUP)
5438 return stripped | BTRFS_BLOCK_GROUP_RAID1;
5440 /* turn single device chunks into raid0 */
5441 return stripped | BTRFS_BLOCK_GROUP_RAID0;
5446 static int __alloc_chunk_for_shrink(struct btrfs_root *root,
5447 struct btrfs_block_group_cache *shrink_block_group,
5450 struct btrfs_trans_handle *trans;
5451 u64 new_alloc_flags;
5454 spin_lock(&shrink_block_group->lock);
5455 if (btrfs_block_group_used(&shrink_block_group->item) > 0) {
5456 spin_unlock(&shrink_block_group->lock);
5458 trans = btrfs_start_transaction(root, 1);
5459 spin_lock(&shrink_block_group->lock);
5461 new_alloc_flags = update_block_group_flags(root,
5462 shrink_block_group->flags);
5463 if (new_alloc_flags != shrink_block_group->flags) {
5465 btrfs_block_group_used(&shrink_block_group->item);
5467 calc = shrink_block_group->key.offset;
5469 spin_unlock(&shrink_block_group->lock);
5471 do_chunk_alloc(trans, root->fs_info->extent_root,
5472 calc + 2 * 1024 * 1024, new_alloc_flags, force);
5474 btrfs_end_transaction(trans, root);
5476 spin_unlock(&shrink_block_group->lock);
5480 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
5481 struct btrfs_root *root,
5482 u64 objectid, u64 size)
5484 struct btrfs_path *path;
5485 struct btrfs_inode_item *item;
5486 struct extent_buffer *leaf;
5489 path = btrfs_alloc_path();
5493 path->leave_spinning = 1;
5494 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
5498 leaf = path->nodes[0];
5499 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
5500 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
5501 btrfs_set_inode_generation(leaf, item, 1);
5502 btrfs_set_inode_size(leaf, item, size);
5503 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
5504 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS);
5505 btrfs_mark_buffer_dirty(leaf);
5506 btrfs_release_path(root, path);
5508 btrfs_free_path(path);
5512 static noinline struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
5513 struct btrfs_block_group_cache *group)
5515 struct inode *inode = NULL;
5516 struct btrfs_trans_handle *trans;
5517 struct btrfs_root *root;
5518 struct btrfs_key root_key;
5519 u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
5522 root_key.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
5523 root_key.type = BTRFS_ROOT_ITEM_KEY;
5524 root_key.offset = (u64)-1;
5525 root = btrfs_read_fs_root_no_name(fs_info, &root_key);
5527 return ERR_CAST(root);
5529 trans = btrfs_start_transaction(root, 1);
5532 err = btrfs_find_free_objectid(trans, root, objectid, &objectid);
5536 err = __insert_orphan_inode(trans, root, objectid, group->key.offset);
5539 err = btrfs_insert_file_extent(trans, root, objectid, 0, 0, 0,
5540 group->key.offset, 0, group->key.offset,
5544 inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
5545 if (inode->i_state & I_NEW) {
5546 BTRFS_I(inode)->root = root;
5547 BTRFS_I(inode)->location.objectid = objectid;
5548 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5549 BTRFS_I(inode)->location.offset = 0;
5550 btrfs_read_locked_inode(inode);
5551 unlock_new_inode(inode);
5552 BUG_ON(is_bad_inode(inode));
5556 BTRFS_I(inode)->index_cnt = group->key.objectid;
5558 err = btrfs_orphan_add(trans, inode);
5560 btrfs_end_transaction(trans, root);
5564 inode = ERR_PTR(err);
5569 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
5572 struct btrfs_ordered_sum *sums;
5573 struct btrfs_sector_sum *sector_sum;
5574 struct btrfs_ordered_extent *ordered;
5575 struct btrfs_root *root = BTRFS_I(inode)->root;
5576 struct list_head list;
5581 INIT_LIST_HEAD(&list);
5583 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
5584 BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
5586 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
5587 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
5588 disk_bytenr + len - 1, &list);
5590 while (!list_empty(&list)) {
5591 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
5592 list_del_init(&sums->list);
5594 sector_sum = sums->sums;
5595 sums->bytenr = ordered->start;
5598 while (offset < sums->len) {
5599 sector_sum->bytenr += ordered->start - disk_bytenr;
5601 offset += root->sectorsize;
5604 btrfs_add_ordered_sum(inode, ordered, sums);
5606 btrfs_put_ordered_extent(ordered);
5610 int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start)
5612 struct btrfs_trans_handle *trans;
5613 struct btrfs_path *path;
5614 struct btrfs_fs_info *info = root->fs_info;
5615 struct extent_buffer *leaf;
5616 struct inode *reloc_inode;
5617 struct btrfs_block_group_cache *block_group;
5618 struct btrfs_key key;
5627 root = root->fs_info->extent_root;
5629 block_group = btrfs_lookup_block_group(info, group_start);
5630 BUG_ON(!block_group);
5632 printk(KERN_INFO "btrfs relocating block group %llu flags %llu\n",
5633 (unsigned long long)block_group->key.objectid,
5634 (unsigned long long)block_group->flags);
5636 path = btrfs_alloc_path();
5639 reloc_inode = create_reloc_inode(info, block_group);
5640 BUG_ON(IS_ERR(reloc_inode));
5642 __alloc_chunk_for_shrink(root, block_group, 1);
5643 set_block_group_readonly(block_group);
5645 btrfs_start_delalloc_inodes(info->tree_root);
5646 btrfs_wait_ordered_extents(info->tree_root, 0);
5651 key.objectid = block_group->key.objectid;
5654 cur_byte = key.objectid;
5656 trans = btrfs_start_transaction(info->tree_root, 1);
5657 btrfs_commit_transaction(trans, info->tree_root);
5659 mutex_lock(&root->fs_info->cleaner_mutex);
5660 btrfs_clean_old_snapshots(info->tree_root);
5661 btrfs_remove_leaf_refs(info->tree_root, (u64)-1, 1);
5662 mutex_unlock(&root->fs_info->cleaner_mutex);
5664 trans = btrfs_start_transaction(info->tree_root, 1);
5665 btrfs_commit_transaction(trans, info->tree_root);
5668 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5672 leaf = path->nodes[0];
5673 nritems = btrfs_header_nritems(leaf);
5674 if (path->slots[0] >= nritems) {
5675 ret = btrfs_next_leaf(root, path);
5682 leaf = path->nodes[0];
5683 nritems = btrfs_header_nritems(leaf);
5686 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5688 if (key.objectid >= block_group->key.objectid +
5689 block_group->key.offset)
5692 if (progress && need_resched()) {
5693 btrfs_release_path(root, path);
5700 if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY ||
5701 key.objectid + key.offset <= cur_byte) {
5707 cur_byte = key.objectid + key.offset;
5708 btrfs_release_path(root, path);
5710 __alloc_chunk_for_shrink(root, block_group, 0);
5711 ret = relocate_one_extent(root, path, &key, block_group,
5717 key.objectid = cur_byte;
5722 btrfs_release_path(root, path);
5725 btrfs_wait_ordered_range(reloc_inode, 0, (u64)-1);
5726 invalidate_mapping_pages(reloc_inode->i_mapping, 0, -1);
5729 if (total_found > 0) {
5730 printk(KERN_INFO "btrfs found %llu extents in pass %d\n",
5731 (unsigned long long)total_found, pass);
5733 if (total_found == skipped && pass > 2) {
5735 reloc_inode = create_reloc_inode(info, block_group);
5741 /* delete reloc_inode */
5744 /* unpin extents in this range */
5745 trans = btrfs_start_transaction(info->tree_root, 1);
5746 btrfs_commit_transaction(trans, info->tree_root);
5748 spin_lock(&block_group->lock);
5749 WARN_ON(block_group->pinned > 0);
5750 WARN_ON(block_group->reserved > 0);
5751 WARN_ON(btrfs_block_group_used(&block_group->item) > 0);
5752 spin_unlock(&block_group->lock);
5753 btrfs_put_block_group(block_group);
5756 btrfs_free_path(path);
5760 static int find_first_block_group(struct btrfs_root *root,
5761 struct btrfs_path *path, struct btrfs_key *key)
5764 struct btrfs_key found_key;
5765 struct extent_buffer *leaf;
5768 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
5773 slot = path->slots[0];
5774 leaf = path->nodes[0];
5775 if (slot >= btrfs_header_nritems(leaf)) {
5776 ret = btrfs_next_leaf(root, path);
5783 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5785 if (found_key.objectid >= key->objectid &&
5786 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
5797 int btrfs_free_block_groups(struct btrfs_fs_info *info)
5799 struct btrfs_block_group_cache *block_group;
5800 struct btrfs_space_info *space_info;
5803 spin_lock(&info->block_group_cache_lock);
5804 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
5805 block_group = rb_entry(n, struct btrfs_block_group_cache,
5807 rb_erase(&block_group->cache_node,
5808 &info->block_group_cache_tree);
5809 spin_unlock(&info->block_group_cache_lock);
5811 btrfs_remove_free_space_cache(block_group);
5812 down_write(&block_group->space_info->groups_sem);
5813 list_del(&block_group->list);
5814 up_write(&block_group->space_info->groups_sem);
5816 WARN_ON(atomic_read(&block_group->count) != 1);
5819 spin_lock(&info->block_group_cache_lock);
5821 spin_unlock(&info->block_group_cache_lock);
5823 /* now that all the block groups are freed, go through and
5824 * free all the space_info structs. This is only called during
5825 * the final stages of unmount, and so we know nobody is
5826 * using them. We call synchronize_rcu() once before we start,
5827 * just to be on the safe side.
5831 while(!list_empty(&info->space_info)) {
5832 space_info = list_entry(info->space_info.next,
5833 struct btrfs_space_info,
5836 list_del(&space_info->list);
5842 int btrfs_read_block_groups(struct btrfs_root *root)
5844 struct btrfs_path *path;
5846 struct btrfs_block_group_cache *cache;
5847 struct btrfs_fs_info *info = root->fs_info;
5848 struct btrfs_space_info *space_info;
5849 struct btrfs_key key;
5850 struct btrfs_key found_key;
5851 struct extent_buffer *leaf;
5853 root = info->extent_root;
5856 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
5857 path = btrfs_alloc_path();
5862 ret = find_first_block_group(root, path, &key);
5870 leaf = path->nodes[0];
5871 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5872 cache = kzalloc(sizeof(*cache), GFP_NOFS);
5878 atomic_set(&cache->count, 1);
5879 spin_lock_init(&cache->lock);
5880 spin_lock_init(&cache->tree_lock);
5881 mutex_init(&cache->cache_mutex);
5882 INIT_LIST_HEAD(&cache->list);
5883 INIT_LIST_HEAD(&cache->cluster_list);
5884 read_extent_buffer(leaf, &cache->item,
5885 btrfs_item_ptr_offset(leaf, path->slots[0]),
5886 sizeof(cache->item));
5887 memcpy(&cache->key, &found_key, sizeof(found_key));
5889 key.objectid = found_key.objectid + found_key.offset;
5890 btrfs_release_path(root, path);
5891 cache->flags = btrfs_block_group_flags(&cache->item);
5893 ret = update_space_info(info, cache->flags, found_key.offset,
5894 btrfs_block_group_used(&cache->item),
5897 cache->space_info = space_info;
5898 down_write(&space_info->groups_sem);
5899 list_add_tail(&cache->list, &space_info->block_groups);
5900 up_write(&space_info->groups_sem);
5902 ret = btrfs_add_block_group_cache(root->fs_info, cache);
5905 set_avail_alloc_bits(root->fs_info, cache->flags);
5906 if (btrfs_chunk_readonly(root, cache->key.objectid))
5907 set_block_group_readonly(cache);
5911 btrfs_free_path(path);
5915 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
5916 struct btrfs_root *root, u64 bytes_used,
5917 u64 type, u64 chunk_objectid, u64 chunk_offset,
5921 struct btrfs_root *extent_root;
5922 struct btrfs_block_group_cache *cache;
5924 extent_root = root->fs_info->extent_root;
5926 root->fs_info->last_trans_log_full_commit = trans->transid;
5928 cache = kzalloc(sizeof(*cache), GFP_NOFS);
5932 cache->key.objectid = chunk_offset;
5933 cache->key.offset = size;
5934 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
5935 atomic_set(&cache->count, 1);
5936 spin_lock_init(&cache->lock);
5937 spin_lock_init(&cache->tree_lock);
5938 mutex_init(&cache->cache_mutex);
5939 INIT_LIST_HEAD(&cache->list);
5940 INIT_LIST_HEAD(&cache->cluster_list);
5942 btrfs_set_block_group_used(&cache->item, bytes_used);
5943 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
5944 cache->flags = type;
5945 btrfs_set_block_group_flags(&cache->item, type);
5947 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
5948 &cache->space_info);
5950 down_write(&cache->space_info->groups_sem);
5951 list_add_tail(&cache->list, &cache->space_info->block_groups);
5952 up_write(&cache->space_info->groups_sem);
5954 ret = btrfs_add_block_group_cache(root->fs_info, cache);
5957 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
5958 sizeof(cache->item));
5961 set_avail_alloc_bits(extent_root->fs_info, type);
5966 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
5967 struct btrfs_root *root, u64 group_start)
5969 struct btrfs_path *path;
5970 struct btrfs_block_group_cache *block_group;
5971 struct btrfs_key key;
5974 root = root->fs_info->extent_root;
5976 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
5977 BUG_ON(!block_group);
5978 BUG_ON(!block_group->ro);
5980 memcpy(&key, &block_group->key, sizeof(key));
5982 path = btrfs_alloc_path();
5985 spin_lock(&root->fs_info->block_group_cache_lock);
5986 rb_erase(&block_group->cache_node,
5987 &root->fs_info->block_group_cache_tree);
5988 spin_unlock(&root->fs_info->block_group_cache_lock);
5989 btrfs_remove_free_space_cache(block_group);
5990 down_write(&block_group->space_info->groups_sem);
5991 list_del(&block_group->list);
5992 up_write(&block_group->space_info->groups_sem);
5994 spin_lock(&block_group->space_info->lock);
5995 block_group->space_info->total_bytes -= block_group->key.offset;
5996 block_group->space_info->bytes_readonly -= block_group->key.offset;
5997 spin_unlock(&block_group->space_info->lock);
5998 block_group->space_info->full = 0;
6000 btrfs_put_block_group(block_group);
6001 btrfs_put_block_group(block_group);
6003 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
6009 ret = btrfs_del_item(trans, root, path);
6011 btrfs_free_path(path);