2 * arch/arm/mach-pxa/time.c
4 * PXA clocksource, clockevents, and OST interrupt handlers.
5 * Copyright (c) 2007 by Bill Gatliff <bgat@billgatliff.com>.
7 * Derived from Nicolas Pitre's PXA timer handler Copyright (c) 2001
8 * by MontaVista Software, Inc. (Nico, your code rocks!)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/clockchips.h>
19 #include <linux/sched.h>
21 #include <asm/div64.h>
22 #include <asm/cnt32_to_63.h>
23 #include <asm/mach/irq.h>
24 #include <asm/mach/time.h>
25 #include <asm/arch/pxa-regs.h>
26 #include <asm/mach-types.h>
29 * This is PXA's sched_clock implementation. This has a resolution
30 * of at least 308 ns and a maximum value of 208 days.
32 * The return value is guaranteed to be monotonic in that range as
33 * long as there is always less than 582 seconds between successive
34 * calls to sched_clock() which should always be the case in practice.
37 #define OSCR2NS_SCALE_FACTOR 10
39 static unsigned long oscr2ns_scale;
41 static void __init set_oscr2ns_scale(unsigned long oscr_rate)
43 unsigned long long v = 1000000000ULL << OSCR2NS_SCALE_FACTOR;
47 * We want an even value to automatically clear the top bit
48 * returned by cnt32_to_63() without an additional run time
49 * instruction. So if the LSB is 1 then round it up.
51 if (oscr2ns_scale & 1)
55 unsigned long long sched_clock(void)
57 unsigned long long v = cnt32_to_63(OSCR);
58 return (v * oscr2ns_scale) >> OSCR2NS_SCALE_FACTOR;
63 pxa_ost0_interrupt(int irq, void *dev_id)
66 struct clock_event_device *c = dev_id;
68 if (c->mode == CLOCK_EVT_MODE_ONESHOT) {
69 /* Disarm the compare/match, signal the event. */
72 } else if (c->mode == CLOCK_EVT_MODE_PERIODIC) {
73 /* Call the event handler as many times as necessary
74 * to recover missed events, if any (if we update
75 * OSMR0 and OSCR0 is still ahead of us, we've missed
76 * the event). As we're dealing with that, re-arm the
77 * compare/match for the next event.
81 * There's a latency between the instruction that
82 * writes to OSMR0 and the actual commit to the
83 * physical hardware, because the CPU doesn't (have
84 * to) run at bus speed, there's a write buffer
85 * between the CPU and the bus, etc. etc. So if the
86 * target OSCR0 is "very close", to the OSMR0 load
87 * value, the update to OSMR0 might not get to the
88 * hardware in time and we'll miss that interrupt.
90 * To be safe, if the new OSMR0 is "very close" to the
91 * target OSCR0 value, we call the event_handler as
92 * though the event actually happened. According to
93 * Nico's comment in the previous version of this
94 * code, experience has shown that 6 OSCR ticks is
95 * "very close" but he went with 8. We will use 16,
96 * based on the results of testing on PXA270.
98 * To be doubly sure, we also tell clkevt via
99 * clockevents_register_device() not to ask for
100 * anything that might put us "very close".
102 #define MIN_OSCR_DELTA 16
105 next_match = (OSMR0 += LATCH);
107 } while (((signed long)(next_match - OSCR) <= MIN_OSCR_DELTA)
108 && (c->mode == CLOCK_EVT_MODE_PERIODIC));
115 pxa_osmr0_set_next_event(unsigned long delta, struct clock_event_device *dev)
117 unsigned long irqflags;
119 raw_local_irq_save(irqflags);
120 OSMR0 = OSCR + delta;
123 raw_local_irq_restore(irqflags);
128 pxa_osmr0_set_mode(enum clock_event_mode mode, struct clock_event_device *dev)
130 unsigned long irqflags;
133 case CLOCK_EVT_MODE_PERIODIC:
134 raw_local_irq_save(irqflags);
135 OSMR0 = OSCR + LATCH;
138 raw_local_irq_restore(irqflags);
141 case CLOCK_EVT_MODE_ONESHOT:
142 raw_local_irq_save(irqflags);
144 raw_local_irq_restore(irqflags);
147 case CLOCK_EVT_MODE_UNUSED:
148 case CLOCK_EVT_MODE_SHUTDOWN:
149 /* initializing, released, or preparing for suspend */
150 raw_local_irq_save(irqflags);
152 raw_local_irq_restore(irqflags);
157 static struct clock_event_device ckevt_pxa_osmr0 = {
159 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
162 .cpumask = CPU_MASK_CPU0,
163 .set_next_event = pxa_osmr0_set_next_event,
164 .set_mode = pxa_osmr0_set_mode,
167 static cycle_t pxa_read_oscr(void)
172 static struct clocksource cksrc_pxa_oscr0 = {
175 .read = pxa_read_oscr,
176 .mask = CLOCKSOURCE_MASK(32),
178 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
181 static struct irqaction pxa_ost0_irq = {
183 .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
184 .handler = pxa_ost0_interrupt,
185 .dev_id = &ckevt_pxa_osmr0,
188 static void __init pxa_timer_init(void)
190 unsigned long clock_tick_rate;
193 OSSR = OSSR_M0 | OSSR_M1 | OSSR_M2 | OSSR_M3;
195 if (cpu_is_pxa21x() || cpu_is_pxa25x())
196 clock_tick_rate = 3686400;
197 else if (machine_is_mainstone())
198 clock_tick_rate = 3249600;
200 clock_tick_rate = 3250000;
202 set_oscr2ns_scale(clock_tick_rate);
204 ckevt_pxa_osmr0.mult =
205 div_sc(clock_tick_rate, NSEC_PER_SEC, ckevt_pxa_osmr0.shift);
206 ckevt_pxa_osmr0.max_delta_ns =
207 clockevent_delta2ns(0x7fffffff, &ckevt_pxa_osmr0);
208 ckevt_pxa_osmr0.min_delta_ns =
209 clockevent_delta2ns(MIN_OSCR_DELTA, &ckevt_pxa_osmr0) + 1;
211 cksrc_pxa_oscr0.mult =
212 clocksource_hz2mult(clock_tick_rate, cksrc_pxa_oscr0.shift);
214 setup_irq(IRQ_OST0, &pxa_ost0_irq);
216 clocksource_register(&cksrc_pxa_oscr0);
217 clockevents_register_device(&ckevt_pxa_osmr0);
221 static unsigned long osmr[4], oier;
223 static void pxa_timer_suspend(void)
232 static void pxa_timer_resume(void)
241 * OSCR0 is the system timer, which has to increase
242 * monotonically until it rolls over in hardware. The value
243 * (OSMR0 - LATCH) is OSCR0 at the most recent system tick,
244 * which is a handy value to restore to OSCR0.
246 OSCR = OSMR0 - LATCH;
249 #define pxa_timer_suspend NULL
250 #define pxa_timer_resume NULL
253 struct sys_timer pxa_timer = {
254 .init = pxa_timer_init,
255 .suspend = pxa_timer_suspend,
256 .resume = pxa_timer_resume,