2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
64 static unsigned int ata_busy_sleep (struct ata_port *ap,
65 unsigned long tmout_pat,
67 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
68 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
69 static void ata_set_mode(struct ata_port *ap);
70 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
71 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
72 static int fgb(u32 bitmap);
73 static int ata_choose_xfer_mode(const struct ata_port *ap,
75 unsigned int *xfer_shift_out);
76 static void __ata_qc_complete(struct ata_queued_cmd *qc);
78 static unsigned int ata_unique_id = 1;
79 static struct workqueue_struct *ata_wq;
81 int atapi_enabled = 0;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 MODULE_AUTHOR("Jeff Garzik");
86 MODULE_DESCRIPTION("Library module for ATA devices");
87 MODULE_LICENSE("GPL");
88 MODULE_VERSION(DRV_VERSION);
91 * ata_tf_load_pio - send taskfile registers to host controller
92 * @ap: Port to which output is sent
93 * @tf: ATA taskfile register set
95 * Outputs ATA taskfile to standard ATA host controller.
98 * Inherited from caller.
101 static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf)
103 struct ata_ioports *ioaddr = &ap->ioaddr;
104 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
106 if (tf->ctl != ap->last_ctl) {
107 outb(tf->ctl, ioaddr->ctl_addr);
108 ap->last_ctl = tf->ctl;
112 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
113 outb(tf->hob_feature, ioaddr->feature_addr);
114 outb(tf->hob_nsect, ioaddr->nsect_addr);
115 outb(tf->hob_lbal, ioaddr->lbal_addr);
116 outb(tf->hob_lbam, ioaddr->lbam_addr);
117 outb(tf->hob_lbah, ioaddr->lbah_addr);
118 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
127 outb(tf->feature, ioaddr->feature_addr);
128 outb(tf->nsect, ioaddr->nsect_addr);
129 outb(tf->lbal, ioaddr->lbal_addr);
130 outb(tf->lbam, ioaddr->lbam_addr);
131 outb(tf->lbah, ioaddr->lbah_addr);
132 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
140 if (tf->flags & ATA_TFLAG_DEVICE) {
141 outb(tf->device, ioaddr->device_addr);
142 VPRINTK("device 0x%X\n", tf->device);
149 * ata_tf_load_mmio - send taskfile registers to host controller
150 * @ap: Port to which output is sent
151 * @tf: ATA taskfile register set
153 * Outputs ATA taskfile to standard ATA host controller using MMIO.
156 * Inherited from caller.
159 static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
161 struct ata_ioports *ioaddr = &ap->ioaddr;
162 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
164 if (tf->ctl != ap->last_ctl) {
165 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
166 ap->last_ctl = tf->ctl;
170 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
171 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
172 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
173 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
174 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
175 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
176 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
185 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
186 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
187 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
188 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
189 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
190 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
198 if (tf->flags & ATA_TFLAG_DEVICE) {
199 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
200 VPRINTK("device 0x%X\n", tf->device);
208 * ata_tf_load - send taskfile registers to host controller
209 * @ap: Port to which output is sent
210 * @tf: ATA taskfile register set
212 * Outputs ATA taskfile to standard ATA host controller using MMIO
213 * or PIO as indicated by the ATA_FLAG_MMIO flag.
214 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
215 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
216 * hob_lbal, hob_lbam, and hob_lbah.
218 * This function waits for idle (!BUSY and !DRQ) after writing
219 * registers. If the control register has a new value, this
220 * function also waits for idle after writing control and before
221 * writing the remaining registers.
223 * May be used as the tf_load() entry in ata_port_operations.
226 * Inherited from caller.
228 void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
230 if (ap->flags & ATA_FLAG_MMIO)
231 ata_tf_load_mmio(ap, tf);
233 ata_tf_load_pio(ap, tf);
237 * ata_exec_command_pio - issue ATA command to host controller
238 * @ap: port to which command is being issued
239 * @tf: ATA taskfile register set
241 * Issues PIO write to ATA command register, with proper
242 * synchronization with interrupt handler / other threads.
245 * spin_lock_irqsave(host_set lock)
248 static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf)
250 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
252 outb(tf->command, ap->ioaddr.command_addr);
258 * ata_exec_command_mmio - issue ATA command to host controller
259 * @ap: port to which command is being issued
260 * @tf: ATA taskfile register set
262 * Issues MMIO write to ATA command register, with proper
263 * synchronization with interrupt handler / other threads.
266 * spin_lock_irqsave(host_set lock)
269 static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
271 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
273 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
279 * ata_exec_command - issue ATA command to host controller
280 * @ap: port to which command is being issued
281 * @tf: ATA taskfile register set
283 * Issues PIO/MMIO write to ATA command register, with proper
284 * synchronization with interrupt handler / other threads.
287 * spin_lock_irqsave(host_set lock)
289 void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
291 if (ap->flags & ATA_FLAG_MMIO)
292 ata_exec_command_mmio(ap, tf);
294 ata_exec_command_pio(ap, tf);
298 * ata_tf_to_host - issue ATA taskfile to host controller
299 * @ap: port to which command is being issued
300 * @tf: ATA taskfile register set
302 * Issues ATA taskfile register set to ATA host controller,
303 * with proper synchronization with interrupt handler and
307 * spin_lock_irqsave(host_set lock)
310 static inline void ata_tf_to_host(struct ata_port *ap,
311 const struct ata_taskfile *tf)
313 ap->ops->tf_load(ap, tf);
314 ap->ops->exec_command(ap, tf);
318 * ata_tf_read_pio - input device's ATA taskfile shadow registers
319 * @ap: Port from which input is read
320 * @tf: ATA taskfile register set for storing input
322 * Reads ATA taskfile registers for currently-selected device
326 * Inherited from caller.
329 static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
331 struct ata_ioports *ioaddr = &ap->ioaddr;
333 tf->command = ata_check_status(ap);
334 tf->feature = inb(ioaddr->error_addr);
335 tf->nsect = inb(ioaddr->nsect_addr);
336 tf->lbal = inb(ioaddr->lbal_addr);
337 tf->lbam = inb(ioaddr->lbam_addr);
338 tf->lbah = inb(ioaddr->lbah_addr);
339 tf->device = inb(ioaddr->device_addr);
341 if (tf->flags & ATA_TFLAG_LBA48) {
342 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
343 tf->hob_feature = inb(ioaddr->error_addr);
344 tf->hob_nsect = inb(ioaddr->nsect_addr);
345 tf->hob_lbal = inb(ioaddr->lbal_addr);
346 tf->hob_lbam = inb(ioaddr->lbam_addr);
347 tf->hob_lbah = inb(ioaddr->lbah_addr);
352 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
353 * @ap: Port from which input is read
354 * @tf: ATA taskfile register set for storing input
356 * Reads ATA taskfile registers for currently-selected device
360 * Inherited from caller.
363 static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
365 struct ata_ioports *ioaddr = &ap->ioaddr;
367 tf->command = ata_check_status(ap);
368 tf->feature = readb((void __iomem *)ioaddr->error_addr);
369 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
370 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
371 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
372 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
373 tf->device = readb((void __iomem *)ioaddr->device_addr);
375 if (tf->flags & ATA_TFLAG_LBA48) {
376 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
377 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
378 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
379 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
380 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
381 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
387 * ata_tf_read - input device's ATA taskfile shadow registers
388 * @ap: Port from which input is read
389 * @tf: ATA taskfile register set for storing input
391 * Reads ATA taskfile registers for currently-selected device
394 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
395 * is set, also reads the hob registers.
397 * May be used as the tf_read() entry in ata_port_operations.
400 * Inherited from caller.
402 void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
404 if (ap->flags & ATA_FLAG_MMIO)
405 ata_tf_read_mmio(ap, tf);
407 ata_tf_read_pio(ap, tf);
411 * ata_check_status_pio - Read device status reg & clear interrupt
412 * @ap: port where the device is
414 * Reads ATA taskfile status register for currently-selected device
415 * and return its value. This also clears pending interrupts
419 * Inherited from caller.
421 static u8 ata_check_status_pio(struct ata_port *ap)
423 return inb(ap->ioaddr.status_addr);
427 * ata_check_status_mmio - Read device status reg & clear interrupt
428 * @ap: port where the device is
430 * Reads ATA taskfile status register for currently-selected device
431 * via MMIO and return its value. This also clears pending interrupts
435 * Inherited from caller.
437 static u8 ata_check_status_mmio(struct ata_port *ap)
439 return readb((void __iomem *) ap->ioaddr.status_addr);
444 * ata_check_status - Read device status reg & clear interrupt
445 * @ap: port where the device is
447 * Reads ATA taskfile status register for currently-selected device
448 * and return its value. This also clears pending interrupts
451 * May be used as the check_status() entry in ata_port_operations.
454 * Inherited from caller.
456 u8 ata_check_status(struct ata_port *ap)
458 if (ap->flags & ATA_FLAG_MMIO)
459 return ata_check_status_mmio(ap);
460 return ata_check_status_pio(ap);
465 * ata_altstatus - Read device alternate status reg
466 * @ap: port where the device is
468 * Reads ATA taskfile alternate status register for
469 * currently-selected device and return its value.
471 * Note: may NOT be used as the check_altstatus() entry in
472 * ata_port_operations.
475 * Inherited from caller.
477 u8 ata_altstatus(struct ata_port *ap)
479 if (ap->ops->check_altstatus)
480 return ap->ops->check_altstatus(ap);
482 if (ap->flags & ATA_FLAG_MMIO)
483 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
484 return inb(ap->ioaddr.altstatus_addr);
489 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
490 * @tf: Taskfile to convert
491 * @fis: Buffer into which data will output
492 * @pmp: Port multiplier port
494 * Converts a standard ATA taskfile to a Serial ATA
495 * FIS structure (Register - Host to Device).
498 * Inherited from caller.
501 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
503 fis[0] = 0x27; /* Register - Host to Device FIS */
504 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
505 bit 7 indicates Command FIS */
506 fis[2] = tf->command;
507 fis[3] = tf->feature;
514 fis[8] = tf->hob_lbal;
515 fis[9] = tf->hob_lbam;
516 fis[10] = tf->hob_lbah;
517 fis[11] = tf->hob_feature;
520 fis[13] = tf->hob_nsect;
531 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
532 * @fis: Buffer from which data will be input
533 * @tf: Taskfile to output
535 * Converts a serial ATA FIS structure to a standard ATA taskfile.
538 * Inherited from caller.
541 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
543 tf->command = fis[2]; /* status */
544 tf->feature = fis[3]; /* error */
551 tf->hob_lbal = fis[8];
552 tf->hob_lbam = fis[9];
553 tf->hob_lbah = fis[10];
556 tf->hob_nsect = fis[13];
559 static const u8 ata_rw_cmds[] = {
563 ATA_CMD_READ_MULTI_EXT,
564 ATA_CMD_WRITE_MULTI_EXT,
568 ATA_CMD_WRITE_MULTI_FUA_EXT,
572 ATA_CMD_PIO_READ_EXT,
573 ATA_CMD_PIO_WRITE_EXT,
586 ATA_CMD_WRITE_FUA_EXT
590 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
591 * @qc: command to examine and configure
593 * Examine the device configuration and tf->flags to calculate
594 * the proper read/write commands and protocol to use.
599 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
601 struct ata_taskfile *tf = &qc->tf;
602 struct ata_device *dev = qc->dev;
605 int index, fua, lba48, write;
607 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
608 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
609 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
611 if (dev->flags & ATA_DFLAG_PIO) {
612 tf->protocol = ATA_PROT_PIO;
613 index = dev->multi_count ? 0 : 8;
615 tf->protocol = ATA_PROT_DMA;
619 cmd = ata_rw_cmds[index + fua + lba48 + write];
627 static const char * const xfer_mode_str[] = {
647 * ata_udma_string - convert UDMA bit offset to string
648 * @mask: mask of bits supported; only highest bit counts.
650 * Determine string which represents the highest speed
651 * (highest bit in @udma_mask).
657 * Constant C string representing highest speed listed in
658 * @udma_mask, or the constant C string "<n/a>".
661 static const char *ata_mode_string(unsigned int mask)
665 for (i = 7; i >= 0; i--)
668 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
671 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
678 return xfer_mode_str[i];
682 * ata_pio_devchk - PATA device presence detection
683 * @ap: ATA channel to examine
684 * @device: Device to examine (starting at zero)
686 * This technique was originally described in
687 * Hale Landis's ATADRVR (www.ata-atapi.com), and
688 * later found its way into the ATA/ATAPI spec.
690 * Write a pattern to the ATA shadow registers,
691 * and if a device is present, it will respond by
692 * correctly storing and echoing back the
693 * ATA shadow register contents.
699 static unsigned int ata_pio_devchk(struct ata_port *ap,
702 struct ata_ioports *ioaddr = &ap->ioaddr;
705 ap->ops->dev_select(ap, device);
707 outb(0x55, ioaddr->nsect_addr);
708 outb(0xaa, ioaddr->lbal_addr);
710 outb(0xaa, ioaddr->nsect_addr);
711 outb(0x55, ioaddr->lbal_addr);
713 outb(0x55, ioaddr->nsect_addr);
714 outb(0xaa, ioaddr->lbal_addr);
716 nsect = inb(ioaddr->nsect_addr);
717 lbal = inb(ioaddr->lbal_addr);
719 if ((nsect == 0x55) && (lbal == 0xaa))
720 return 1; /* we found a device */
722 return 0; /* nothing found */
726 * ata_mmio_devchk - PATA device presence detection
727 * @ap: ATA channel to examine
728 * @device: Device to examine (starting at zero)
730 * This technique was originally described in
731 * Hale Landis's ATADRVR (www.ata-atapi.com), and
732 * later found its way into the ATA/ATAPI spec.
734 * Write a pattern to the ATA shadow registers,
735 * and if a device is present, it will respond by
736 * correctly storing and echoing back the
737 * ATA shadow register contents.
743 static unsigned int ata_mmio_devchk(struct ata_port *ap,
746 struct ata_ioports *ioaddr = &ap->ioaddr;
749 ap->ops->dev_select(ap, device);
751 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
752 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
754 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
755 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
757 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
758 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
760 nsect = readb((void __iomem *) ioaddr->nsect_addr);
761 lbal = readb((void __iomem *) ioaddr->lbal_addr);
763 if ((nsect == 0x55) && (lbal == 0xaa))
764 return 1; /* we found a device */
766 return 0; /* nothing found */
770 * ata_devchk - PATA device presence detection
771 * @ap: ATA channel to examine
772 * @device: Device to examine (starting at zero)
774 * Dispatch ATA device presence detection, depending
775 * on whether we are using PIO or MMIO to talk to the
776 * ATA shadow registers.
782 static unsigned int ata_devchk(struct ata_port *ap,
785 if (ap->flags & ATA_FLAG_MMIO)
786 return ata_mmio_devchk(ap, device);
787 return ata_pio_devchk(ap, device);
791 * ata_dev_classify - determine device type based on ATA-spec signature
792 * @tf: ATA taskfile register set for device to be identified
794 * Determine from taskfile register contents whether a device is
795 * ATA or ATAPI, as per "Signature and persistence" section
796 * of ATA/PI spec (volume 1, sect 5.14).
802 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
803 * the event of failure.
806 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
808 /* Apple's open source Darwin code hints that some devices only
809 * put a proper signature into the LBA mid/high registers,
810 * So, we only check those. It's sufficient for uniqueness.
813 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
814 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
815 DPRINTK("found ATA device by sig\n");
819 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
820 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
821 DPRINTK("found ATAPI device by sig\n");
822 return ATA_DEV_ATAPI;
825 DPRINTK("unknown device\n");
826 return ATA_DEV_UNKNOWN;
830 * ata_dev_try_classify - Parse returned ATA device signature
831 * @ap: ATA channel to examine
832 * @device: Device to examine (starting at zero)
834 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
835 * an ATA/ATAPI-defined set of values is placed in the ATA
836 * shadow registers, indicating the results of device detection
839 * Select the ATA device, and read the values from the ATA shadow
840 * registers. Then parse according to the Error register value,
841 * and the spec-defined values examined by ata_dev_classify().
847 static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
849 struct ata_device *dev = &ap->device[device];
850 struct ata_taskfile tf;
854 ap->ops->dev_select(ap, device);
856 memset(&tf, 0, sizeof(tf));
858 ap->ops->tf_read(ap, &tf);
861 dev->class = ATA_DEV_NONE;
863 /* see if device passed diags */
866 else if ((device == 0) && (err == 0x81))
871 /* determine if device if ATA or ATAPI */
872 class = ata_dev_classify(&tf);
873 if (class == ATA_DEV_UNKNOWN)
875 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
884 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
885 * @id: IDENTIFY DEVICE results we will examine
886 * @s: string into which data is output
887 * @ofs: offset into identify device page
888 * @len: length of string to return. must be an even number.
890 * The strings in the IDENTIFY DEVICE page are broken up into
891 * 16-bit chunks. Run through the string, and output each
892 * 8-bit chunk linearly, regardless of platform.
898 void ata_dev_id_string(const u16 *id, unsigned char *s,
899 unsigned int ofs, unsigned int len)
919 * ata_noop_dev_select - Select device 0/1 on ATA bus
920 * @ap: ATA channel to manipulate
921 * @device: ATA device (numbered from zero) to select
923 * This function performs no actual function.
925 * May be used as the dev_select() entry in ata_port_operations.
930 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
936 * ata_std_dev_select - Select device 0/1 on ATA bus
937 * @ap: ATA channel to manipulate
938 * @device: ATA device (numbered from zero) to select
940 * Use the method defined in the ATA specification to
941 * make either device 0, or device 1, active on the
942 * ATA channel. Works with both PIO and MMIO.
944 * May be used as the dev_select() entry in ata_port_operations.
950 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
955 tmp = ATA_DEVICE_OBS;
957 tmp = ATA_DEVICE_OBS | ATA_DEV1;
959 if (ap->flags & ATA_FLAG_MMIO) {
960 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
962 outb(tmp, ap->ioaddr.device_addr);
964 ata_pause(ap); /* needed; also flushes, for mmio */
968 * ata_dev_select - Select device 0/1 on ATA bus
969 * @ap: ATA channel to manipulate
970 * @device: ATA device (numbered from zero) to select
971 * @wait: non-zero to wait for Status register BSY bit to clear
972 * @can_sleep: non-zero if context allows sleeping
974 * Use the method defined in the ATA specification to
975 * make either device 0, or device 1, active on the
978 * This is a high-level version of ata_std_dev_select(),
979 * which additionally provides the services of inserting
980 * the proper pauses and status polling, where needed.
986 void ata_dev_select(struct ata_port *ap, unsigned int device,
987 unsigned int wait, unsigned int can_sleep)
989 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
990 ap->id, device, wait);
995 ap->ops->dev_select(ap, device);
998 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1005 * ata_dump_id - IDENTIFY DEVICE info debugging output
1006 * @dev: Device whose IDENTIFY DEVICE page we will dump
1008 * Dump selected 16-bit words from a detected device's
1009 * IDENTIFY PAGE page.
1015 static inline void ata_dump_id(const struct ata_device *dev)
1017 DPRINTK("49==0x%04x "
1027 DPRINTK("80==0x%04x "
1037 DPRINTK("88==0x%04x "
1044 * Compute the PIO modes available for this device. This is not as
1045 * trivial as it seems if we must consider early devices correctly.
1047 * FIXME: pre IDE drive timing (do we care ?).
1050 static unsigned int ata_pio_modes(const struct ata_device *adev)
1054 /* Usual case. Word 53 indicates word 64 is valid */
1055 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1056 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
1062 /* If word 64 isn't valid then Word 51 high byte holds the PIO timing
1063 number for the maximum. Turn it into a mask and return it */
1064 modes = (2 << ((adev->id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF)) - 1 ;
1066 /* But wait.. there's more. Design your standards by committee and
1067 you too can get a free iordy field to process. However its the
1068 speeds not the modes that are supported... Note drivers using the
1069 timing API will get this right anyway */
1072 struct ata_exec_internal_arg {
1073 unsigned int err_mask;
1074 struct ata_taskfile *tf;
1075 struct completion *waiting;
1078 int ata_qc_complete_internal(struct ata_queued_cmd *qc)
1080 struct ata_exec_internal_arg *arg = qc->private_data;
1081 struct completion *waiting = arg->waiting;
1083 if (!(qc->err_mask & ~AC_ERR_DEV))
1084 qc->ap->ops->tf_read(qc->ap, arg->tf);
1085 arg->err_mask = qc->err_mask;
1086 arg->waiting = NULL;
1093 * ata_exec_internal - execute libata internal command
1094 * @ap: Port to which the command is sent
1095 * @dev: Device to which the command is sent
1096 * @tf: Taskfile registers for the command and the result
1097 * @dma_dir: Data tranfer direction of the command
1098 * @buf: Data buffer of the command
1099 * @buflen: Length of data buffer
1101 * Executes libata internal command with timeout. @tf contains
1102 * command on entry and result on return. Timeout and error
1103 * conditions are reported via return value. No recovery action
1104 * is taken after a command times out. It's caller's duty to
1105 * clean up after timeout.
1108 * None. Should be called with kernel context, might sleep.
1112 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
1113 struct ata_taskfile *tf,
1114 int dma_dir, void *buf, unsigned int buflen)
1116 u8 command = tf->command;
1117 struct ata_queued_cmd *qc;
1118 DECLARE_COMPLETION(wait);
1119 unsigned long flags;
1120 struct ata_exec_internal_arg arg;
1122 spin_lock_irqsave(&ap->host_set->lock, flags);
1124 qc = ata_qc_new_init(ap, dev);
1128 qc->dma_dir = dma_dir;
1129 if (dma_dir != DMA_NONE) {
1130 ata_sg_init_one(qc, buf, buflen);
1131 qc->nsect = buflen / ATA_SECT_SIZE;
1134 arg.waiting = &wait;
1136 qc->private_data = &arg;
1137 qc->complete_fn = ata_qc_complete_internal;
1139 if (ata_qc_issue(qc))
1142 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1144 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1145 spin_lock_irqsave(&ap->host_set->lock, flags);
1147 /* We're racing with irq here. If we lose, the
1148 * following test prevents us from completing the qc
1149 * again. If completion irq occurs after here but
1150 * before the caller cleans up, it will result in a
1151 * spurious interrupt. We can live with that.
1154 qc->err_mask = AC_ERR_OTHER;
1155 ata_qc_complete(qc);
1156 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1160 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1163 return arg.err_mask;
1167 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1168 return AC_ERR_OTHER;
1172 * ata_pio_need_iordy - check if iordy needed
1175 * Check if the current speed of the device requires IORDY. Used
1176 * by various controllers for chip configuration.
1179 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1182 int speed = adev->pio_mode - XFER_PIO_0;
1189 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1191 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1192 pio = adev->id[ATA_ID_EIDE_PIO];
1193 /* Is the speed faster than the drive allows non IORDY ? */
1195 /* This is cycle times not frequency - watch the logic! */
1196 if (pio > 240) /* PIO2 is 240nS per cycle */
1205 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1206 * @ap: port on which device we wish to probe resides
1207 * @device: device bus address, starting at zero
1209 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1210 * command, and read back the 512-byte device information page.
1211 * The device information page is fed to us via the standard
1212 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1213 * using standard PIO-IN paths)
1215 * After reading the device information page, we use several
1216 * bits of information from it to initialize data structures
1217 * that will be used during the lifetime of the ata_device.
1218 * Other data from the info page is used to disqualify certain
1219 * older ATA devices we do not wish to support.
1222 * Inherited from caller. Some functions called by this function
1223 * obtain the host_set lock.
1226 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1228 struct ata_device *dev = &ap->device[device];
1229 unsigned int major_version;
1231 unsigned long xfer_modes;
1232 unsigned int using_edd;
1233 struct ata_taskfile tf;
1234 unsigned int err_mask;
1237 if (!ata_dev_present(dev)) {
1238 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1243 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1248 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1250 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1251 dev->class == ATA_DEV_NONE);
1253 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1256 ata_tf_init(ap, &tf, device);
1258 if (dev->class == ATA_DEV_ATA) {
1259 tf.command = ATA_CMD_ID_ATA;
1260 DPRINTK("do ATA identify\n");
1262 tf.command = ATA_CMD_ID_ATAPI;
1263 DPRINTK("do ATAPI identify\n");
1266 tf.protocol = ATA_PROT_PIO;
1268 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
1269 dev->id, sizeof(dev->id));
1272 if (err_mask & ~AC_ERR_DEV)
1276 * arg! EDD works for all test cases, but seems to return
1277 * the ATA signature for some ATAPI devices. Until the
1278 * reason for this is found and fixed, we fix up the mess
1279 * here. If IDENTIFY DEVICE returns command aborted
1280 * (as ATAPI devices do), then we issue an
1281 * IDENTIFY PACKET DEVICE.
1283 * ATA software reset (SRST, the default) does not appear
1284 * to have this problem.
1286 if ((using_edd) && (dev->class == ATA_DEV_ATA)) {
1287 u8 err = tf.feature;
1288 if (err & ATA_ABORTED) {
1289 dev->class = ATA_DEV_ATAPI;
1296 swap_buf_le16(dev->id, ATA_ID_WORDS);
1298 /* print device capabilities */
1299 printk(KERN_DEBUG "ata%u: dev %u cfg "
1300 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1301 ap->id, device, dev->id[49],
1302 dev->id[82], dev->id[83], dev->id[84],
1303 dev->id[85], dev->id[86], dev->id[87],
1307 * common ATA, ATAPI feature tests
1310 /* we require DMA support (bits 8 of word 49) */
1311 if (!ata_id_has_dma(dev->id)) {
1312 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1316 /* quick-n-dirty find max transfer mode; for printk only */
1317 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1319 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1321 xfer_modes = ata_pio_modes(dev);
1325 /* ATA-specific feature tests */
1326 if (dev->class == ATA_DEV_ATA) {
1327 if (!ata_id_is_ata(dev->id)) /* sanity check */
1330 /* get major version */
1331 tmp = dev->id[ATA_ID_MAJOR_VER];
1332 for (major_version = 14; major_version >= 1; major_version--)
1333 if (tmp & (1 << major_version))
1337 * The exact sequence expected by certain pre-ATA4 drives is:
1340 * INITIALIZE DEVICE PARAMETERS
1342 * Some drives were very specific about that exact sequence.
1344 if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
1345 ata_dev_init_params(ap, dev);
1347 /* current CHS translation info (id[53-58]) might be
1348 * changed. reread the identify device info.
1350 ata_dev_reread_id(ap, dev);
1353 if (ata_id_has_lba(dev->id)) {
1354 dev->flags |= ATA_DFLAG_LBA;
1356 if (ata_id_has_lba48(dev->id)) {
1357 dev->flags |= ATA_DFLAG_LBA48;
1358 dev->n_sectors = ata_id_u64(dev->id, 100);
1360 dev->n_sectors = ata_id_u32(dev->id, 60);
1363 /* print device info to dmesg */
1364 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1367 ata_mode_string(xfer_modes),
1368 (unsigned long long)dev->n_sectors,
1369 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1373 /* Default translation */
1374 dev->cylinders = dev->id[1];
1375 dev->heads = dev->id[3];
1376 dev->sectors = dev->id[6];
1377 dev->n_sectors = dev->cylinders * dev->heads * dev->sectors;
1379 if (ata_id_current_chs_valid(dev->id)) {
1380 /* Current CHS translation is valid. */
1381 dev->cylinders = dev->id[54];
1382 dev->heads = dev->id[55];
1383 dev->sectors = dev->id[56];
1385 dev->n_sectors = ata_id_u32(dev->id, 57);
1388 /* print device info to dmesg */
1389 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1392 ata_mode_string(xfer_modes),
1393 (unsigned long long)dev->n_sectors,
1394 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1398 ap->host->max_cmd_len = 16;
1401 /* ATAPI-specific feature tests */
1402 else if (dev->class == ATA_DEV_ATAPI) {
1403 if (ata_id_is_ata(dev->id)) /* sanity check */
1406 rc = atapi_cdb_len(dev->id);
1407 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1408 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1411 ap->cdb_len = (unsigned int) rc;
1412 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1414 /* print device info to dmesg */
1415 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1417 ata_mode_string(xfer_modes));
1420 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1424 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1427 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1428 DPRINTK("EXIT, err\n");
1432 static inline u8 ata_dev_knobble(const struct ata_port *ap)
1434 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1438 * ata_dev_config - Run device specific handlers and check for
1439 * SATA->PATA bridges
1446 void ata_dev_config(struct ata_port *ap, unsigned int i)
1448 /* limit bridge transfers to udma5, 200 sectors */
1449 if (ata_dev_knobble(ap)) {
1450 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1451 ap->id, ap->device->devno);
1452 ap->udma_mask &= ATA_UDMA5;
1453 ap->host->max_sectors = ATA_MAX_SECTORS;
1454 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1455 ap->device->flags |= ATA_DFLAG_LOCK_SECTORS;
1458 if (ap->ops->dev_config)
1459 ap->ops->dev_config(ap, &ap->device[i]);
1463 * ata_bus_probe - Reset and probe ATA bus
1466 * Master ATA bus probing function. Initiates a hardware-dependent
1467 * bus reset, then attempts to identify any devices found on
1471 * PCI/etc. bus probe sem.
1474 * Zero on success, non-zero on error.
1477 static int ata_bus_probe(struct ata_port *ap)
1479 unsigned int i, found = 0;
1481 ap->ops->phy_reset(ap);
1482 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1485 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1486 ata_dev_identify(ap, i);
1487 if (ata_dev_present(&ap->device[i])) {
1489 ata_dev_config(ap,i);
1493 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1494 goto err_out_disable;
1497 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1498 goto err_out_disable;
1503 ap->ops->port_disable(ap);
1509 * ata_port_probe - Mark port as enabled
1510 * @ap: Port for which we indicate enablement
1512 * Modify @ap data structure such that the system
1513 * thinks that the entire port is enabled.
1515 * LOCKING: host_set lock, or some other form of
1519 void ata_port_probe(struct ata_port *ap)
1521 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1525 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1526 * @ap: SATA port associated with target SATA PHY.
1528 * This function issues commands to standard SATA Sxxx
1529 * PHY registers, to wake up the phy (and device), and
1530 * clear any reset condition.
1533 * PCI/etc. bus probe sem.
1536 void __sata_phy_reset(struct ata_port *ap)
1539 unsigned long timeout = jiffies + (HZ * 5);
1541 if (ap->flags & ATA_FLAG_SATA_RESET) {
1542 /* issue phy wake/reset */
1543 scr_write_flush(ap, SCR_CONTROL, 0x301);
1544 /* Couldn't find anything in SATA I/II specs, but
1545 * AHCI-1.1 10.4.2 says at least 1 ms. */
1548 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1550 /* wait for phy to become ready, if necessary */
1553 sstatus = scr_read(ap, SCR_STATUS);
1554 if ((sstatus & 0xf) != 1)
1556 } while (time_before(jiffies, timeout));
1558 /* TODO: phy layer with polling, timeouts, etc. */
1559 sstatus = scr_read(ap, SCR_STATUS);
1560 if (sata_dev_present(ap)) {
1564 tmp = (sstatus >> 4) & 0xf;
1567 else if (tmp & (1 << 1))
1570 speed = "<unknown>";
1571 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1572 ap->id, speed, sstatus);
1575 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1577 ata_port_disable(ap);
1580 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1583 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1584 ata_port_disable(ap);
1588 ap->cbl = ATA_CBL_SATA;
1592 * sata_phy_reset - Reset SATA bus.
1593 * @ap: SATA port associated with target SATA PHY.
1595 * This function resets the SATA bus, and then probes
1596 * the bus for devices.
1599 * PCI/etc. bus probe sem.
1602 void sata_phy_reset(struct ata_port *ap)
1604 __sata_phy_reset(ap);
1605 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1611 * ata_port_disable - Disable port.
1612 * @ap: Port to be disabled.
1614 * Modify @ap data structure such that the system
1615 * thinks that the entire port is disabled, and should
1616 * never attempt to probe or communicate with devices
1619 * LOCKING: host_set lock, or some other form of
1623 void ata_port_disable(struct ata_port *ap)
1625 ap->device[0].class = ATA_DEV_NONE;
1626 ap->device[1].class = ATA_DEV_NONE;
1627 ap->flags |= ATA_FLAG_PORT_DISABLED;
1631 * This mode timing computation functionality is ported over from
1632 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1635 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1636 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1637 * for PIO 5, which is a nonstandard extension and UDMA6, which
1638 * is currently supported only by Maxtor drives.
1641 static const struct ata_timing ata_timing[] = {
1643 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1644 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1645 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1646 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1648 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1649 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1650 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1652 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1654 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1655 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1656 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1658 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1659 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1660 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1662 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1663 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1664 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1666 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1667 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1668 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1670 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1675 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1676 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1678 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1680 q->setup = EZ(t->setup * 1000, T);
1681 q->act8b = EZ(t->act8b * 1000, T);
1682 q->rec8b = EZ(t->rec8b * 1000, T);
1683 q->cyc8b = EZ(t->cyc8b * 1000, T);
1684 q->active = EZ(t->active * 1000, T);
1685 q->recover = EZ(t->recover * 1000, T);
1686 q->cycle = EZ(t->cycle * 1000, T);
1687 q->udma = EZ(t->udma * 1000, UT);
1690 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1691 struct ata_timing *m, unsigned int what)
1693 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1694 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1695 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1696 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1697 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1698 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1699 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1700 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1703 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1705 const struct ata_timing *t;
1707 for (t = ata_timing; t->mode != speed; t++)
1708 if (t->mode == 0xFF)
1713 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1714 struct ata_timing *t, int T, int UT)
1716 const struct ata_timing *s;
1717 struct ata_timing p;
1723 if (!(s = ata_timing_find_mode(speed)))
1726 memcpy(t, s, sizeof(*s));
1729 * If the drive is an EIDE drive, it can tell us it needs extended
1730 * PIO/MW_DMA cycle timing.
1733 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1734 memset(&p, 0, sizeof(p));
1735 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1736 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1737 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1738 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1739 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1741 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1745 * Convert the timing to bus clock counts.
1748 ata_timing_quantize(t, t, T, UT);
1751 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
1752 * and some other commands. We have to ensure that the DMA cycle timing is
1753 * slower/equal than the fastest PIO timing.
1756 if (speed > XFER_PIO_4) {
1757 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1758 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1762 * Lenghten active & recovery time so that cycle time is correct.
1765 if (t->act8b + t->rec8b < t->cyc8b) {
1766 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1767 t->rec8b = t->cyc8b - t->act8b;
1770 if (t->active + t->recover < t->cycle) {
1771 t->active += (t->cycle - (t->active + t->recover)) / 2;
1772 t->recover = t->cycle - t->active;
1778 static const struct {
1781 } xfer_mode_classes[] = {
1782 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1783 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1784 { ATA_SHIFT_PIO, XFER_PIO_0 },
1787 static u8 base_from_shift(unsigned int shift)
1791 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1792 if (xfer_mode_classes[i].shift == shift)
1793 return xfer_mode_classes[i].base;
1798 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1803 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1806 if (dev->xfer_shift == ATA_SHIFT_PIO)
1807 dev->flags |= ATA_DFLAG_PIO;
1809 ata_dev_set_xfermode(ap, dev);
1811 base = base_from_shift(dev->xfer_shift);
1812 ofs = dev->xfer_mode - base;
1813 idx = ofs + dev->xfer_shift;
1814 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1816 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1817 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1819 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1820 ap->id, dev->devno, xfer_mode_str[idx]);
1823 static int ata_host_set_pio(struct ata_port *ap)
1829 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1832 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1836 base = base_from_shift(ATA_SHIFT_PIO);
1837 xfer_mode = base + x;
1839 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1840 (int)base, (int)xfer_mode, mask, x);
1842 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1843 struct ata_device *dev = &ap->device[i];
1844 if (ata_dev_present(dev)) {
1845 dev->pio_mode = xfer_mode;
1846 dev->xfer_mode = xfer_mode;
1847 dev->xfer_shift = ATA_SHIFT_PIO;
1848 if (ap->ops->set_piomode)
1849 ap->ops->set_piomode(ap, dev);
1856 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1857 unsigned int xfer_shift)
1861 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1862 struct ata_device *dev = &ap->device[i];
1863 if (ata_dev_present(dev)) {
1864 dev->dma_mode = xfer_mode;
1865 dev->xfer_mode = xfer_mode;
1866 dev->xfer_shift = xfer_shift;
1867 if (ap->ops->set_dmamode)
1868 ap->ops->set_dmamode(ap, dev);
1874 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1875 * @ap: port on which timings will be programmed
1877 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1880 * PCI/etc. bus probe sem.
1883 static void ata_set_mode(struct ata_port *ap)
1885 unsigned int xfer_shift;
1889 /* step 1: always set host PIO timings */
1890 rc = ata_host_set_pio(ap);
1894 /* step 2: choose the best data xfer mode */
1895 xfer_mode = xfer_shift = 0;
1896 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1900 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1901 if (xfer_shift != ATA_SHIFT_PIO)
1902 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1904 /* step 4: update devices' xfer mode */
1905 ata_dev_set_mode(ap, &ap->device[0]);
1906 ata_dev_set_mode(ap, &ap->device[1]);
1908 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1911 if (ap->ops->post_set_mode)
1912 ap->ops->post_set_mode(ap);
1917 ata_port_disable(ap);
1921 * ata_busy_sleep - sleep until BSY clears, or timeout
1922 * @ap: port containing status register to be polled
1923 * @tmout_pat: impatience timeout
1924 * @tmout: overall timeout
1926 * Sleep until ATA Status register bit BSY clears,
1927 * or a timeout occurs.
1933 static unsigned int ata_busy_sleep (struct ata_port *ap,
1934 unsigned long tmout_pat,
1935 unsigned long tmout)
1937 unsigned long timer_start, timeout;
1940 status = ata_busy_wait(ap, ATA_BUSY, 300);
1941 timer_start = jiffies;
1942 timeout = timer_start + tmout_pat;
1943 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1945 status = ata_busy_wait(ap, ATA_BUSY, 3);
1948 if (status & ATA_BUSY)
1949 printk(KERN_WARNING "ata%u is slow to respond, "
1950 "please be patient\n", ap->id);
1952 timeout = timer_start + tmout;
1953 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1955 status = ata_chk_status(ap);
1958 if (status & ATA_BUSY) {
1959 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1960 ap->id, tmout / HZ);
1967 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1969 struct ata_ioports *ioaddr = &ap->ioaddr;
1970 unsigned int dev0 = devmask & (1 << 0);
1971 unsigned int dev1 = devmask & (1 << 1);
1972 unsigned long timeout;
1974 /* if device 0 was found in ata_devchk, wait for its
1978 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1980 /* if device 1 was found in ata_devchk, wait for
1981 * register access, then wait for BSY to clear
1983 timeout = jiffies + ATA_TMOUT_BOOT;
1987 ap->ops->dev_select(ap, 1);
1988 if (ap->flags & ATA_FLAG_MMIO) {
1989 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1990 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1992 nsect = inb(ioaddr->nsect_addr);
1993 lbal = inb(ioaddr->lbal_addr);
1995 if ((nsect == 1) && (lbal == 1))
1997 if (time_after(jiffies, timeout)) {
2001 msleep(50); /* give drive a breather */
2004 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2006 /* is all this really necessary? */
2007 ap->ops->dev_select(ap, 0);
2009 ap->ops->dev_select(ap, 1);
2011 ap->ops->dev_select(ap, 0);
2015 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
2016 * @ap: Port to reset and probe
2018 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
2019 * probe the bus. Not often used these days.
2022 * PCI/etc. bus probe sem.
2023 * Obtains host_set lock.
2027 static unsigned int ata_bus_edd(struct ata_port *ap)
2029 struct ata_taskfile tf;
2030 unsigned long flags;
2032 /* set up execute-device-diag (bus reset) taskfile */
2033 /* also, take interrupts to a known state (disabled) */
2034 DPRINTK("execute-device-diag\n");
2035 ata_tf_init(ap, &tf, 0);
2037 tf.command = ATA_CMD_EDD;
2038 tf.protocol = ATA_PROT_NODATA;
2041 spin_lock_irqsave(&ap->host_set->lock, flags);
2042 ata_tf_to_host(ap, &tf);
2043 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2045 /* spec says at least 2ms. but who knows with those
2046 * crazy ATAPI devices...
2050 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2053 static unsigned int ata_bus_softreset(struct ata_port *ap,
2054 unsigned int devmask)
2056 struct ata_ioports *ioaddr = &ap->ioaddr;
2058 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2060 /* software reset. causes dev0 to be selected */
2061 if (ap->flags & ATA_FLAG_MMIO) {
2062 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2063 udelay(20); /* FIXME: flush */
2064 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2065 udelay(20); /* FIXME: flush */
2066 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2068 outb(ap->ctl, ioaddr->ctl_addr);
2070 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2072 outb(ap->ctl, ioaddr->ctl_addr);
2075 /* spec mandates ">= 2ms" before checking status.
2076 * We wait 150ms, because that was the magic delay used for
2077 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2078 * between when the ATA command register is written, and then
2079 * status is checked. Because waiting for "a while" before
2080 * checking status is fine, post SRST, we perform this magic
2081 * delay here as well.
2085 ata_bus_post_reset(ap, devmask);
2091 * ata_bus_reset - reset host port and associated ATA channel
2092 * @ap: port to reset
2094 * This is typically the first time we actually start issuing
2095 * commands to the ATA channel. We wait for BSY to clear, then
2096 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2097 * result. Determine what devices, if any, are on the channel
2098 * by looking at the device 0/1 error register. Look at the signature
2099 * stored in each device's taskfile registers, to determine if
2100 * the device is ATA or ATAPI.
2103 * PCI/etc. bus probe sem.
2104 * Obtains host_set lock.
2107 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2110 void ata_bus_reset(struct ata_port *ap)
2112 struct ata_ioports *ioaddr = &ap->ioaddr;
2113 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2115 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
2117 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2119 /* determine if device 0/1 are present */
2120 if (ap->flags & ATA_FLAG_SATA_RESET)
2123 dev0 = ata_devchk(ap, 0);
2125 dev1 = ata_devchk(ap, 1);
2129 devmask |= (1 << 0);
2131 devmask |= (1 << 1);
2133 /* select device 0 again */
2134 ap->ops->dev_select(ap, 0);
2136 /* issue bus reset */
2137 if (ap->flags & ATA_FLAG_SRST)
2138 rc = ata_bus_softreset(ap, devmask);
2139 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
2140 /* set up device control */
2141 if (ap->flags & ATA_FLAG_MMIO)
2142 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2144 outb(ap->ctl, ioaddr->ctl_addr);
2145 rc = ata_bus_edd(ap);
2152 * determine by signature whether we have ATA or ATAPI devices
2154 err = ata_dev_try_classify(ap, 0);
2155 if ((slave_possible) && (err != 0x81))
2156 ata_dev_try_classify(ap, 1);
2158 /* re-enable interrupts */
2159 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2162 /* is double-select really necessary? */
2163 if (ap->device[1].class != ATA_DEV_NONE)
2164 ap->ops->dev_select(ap, 1);
2165 if (ap->device[0].class != ATA_DEV_NONE)
2166 ap->ops->dev_select(ap, 0);
2168 /* if no devices were detected, disable this port */
2169 if ((ap->device[0].class == ATA_DEV_NONE) &&
2170 (ap->device[1].class == ATA_DEV_NONE))
2173 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2174 /* set up device control for ATA_FLAG_SATA_RESET */
2175 if (ap->flags & ATA_FLAG_MMIO)
2176 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2178 outb(ap->ctl, ioaddr->ctl_addr);
2185 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2186 ap->ops->port_disable(ap);
2191 static void ata_pr_blacklisted(const struct ata_port *ap,
2192 const struct ata_device *dev)
2194 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2195 ap->id, dev->devno);
2198 static const char * const ata_dma_blacklist [] = {
2217 "Toshiba CD-ROM XM-6202B",
2218 "TOSHIBA CD-ROM XM-1702BC",
2220 "E-IDE CD-ROM CR-840",
2223 "SAMSUNG CD-ROM SC-148C",
2224 "SAMSUNG CD-ROM SC",
2226 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2230 static int ata_dma_blacklisted(const struct ata_device *dev)
2232 unsigned char model_num[40];
2237 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2240 len = strnlen(s, sizeof(model_num));
2242 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2243 while ((len > 0) && (s[len - 1] == ' ')) {
2248 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2249 if (!strncmp(ata_dma_blacklist[i], s, len))
2255 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
2257 const struct ata_device *master, *slave;
2260 master = &ap->device[0];
2261 slave = &ap->device[1];
2263 assert (ata_dev_present(master) || ata_dev_present(slave));
2265 if (shift == ATA_SHIFT_UDMA) {
2266 mask = ap->udma_mask;
2267 if (ata_dev_present(master)) {
2268 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
2269 if (ata_dma_blacklisted(master)) {
2271 ata_pr_blacklisted(ap, master);
2274 if (ata_dev_present(slave)) {
2275 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
2276 if (ata_dma_blacklisted(slave)) {
2278 ata_pr_blacklisted(ap, slave);
2282 else if (shift == ATA_SHIFT_MWDMA) {
2283 mask = ap->mwdma_mask;
2284 if (ata_dev_present(master)) {
2285 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2286 if (ata_dma_blacklisted(master)) {
2288 ata_pr_blacklisted(ap, master);
2291 if (ata_dev_present(slave)) {
2292 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2293 if (ata_dma_blacklisted(slave)) {
2295 ata_pr_blacklisted(ap, slave);
2299 else if (shift == ATA_SHIFT_PIO) {
2300 mask = ap->pio_mask;
2301 if (ata_dev_present(master)) {
2302 /* spec doesn't return explicit support for
2303 * PIO0-2, so we fake it
2305 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2310 if (ata_dev_present(slave)) {
2311 /* spec doesn't return explicit support for
2312 * PIO0-2, so we fake it
2314 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2321 mask = 0xffffffff; /* shut up compiler warning */
2328 /* find greatest bit */
2329 static int fgb(u32 bitmap)
2334 for (i = 0; i < 32; i++)
2335 if (bitmap & (1 << i))
2342 * ata_choose_xfer_mode - attempt to find best transfer mode
2343 * @ap: Port for which an xfer mode will be selected
2344 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2345 * @xfer_shift_out: (output) bit shift that selects this mode
2347 * Based on host and device capabilities, determine the
2348 * maximum transfer mode that is amenable to all.
2351 * PCI/etc. bus probe sem.
2354 * Zero on success, negative on error.
2357 static int ata_choose_xfer_mode(const struct ata_port *ap,
2359 unsigned int *xfer_shift_out)
2361 unsigned int mask, shift;
2364 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2365 shift = xfer_mode_classes[i].shift;
2366 mask = ata_get_mode_mask(ap, shift);
2370 *xfer_mode_out = xfer_mode_classes[i].base + x;
2371 *xfer_shift_out = shift;
2380 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2381 * @ap: Port associated with device @dev
2382 * @dev: Device to which command will be sent
2384 * Issue SET FEATURES - XFER MODE command to device @dev
2388 * PCI/etc. bus probe sem.
2391 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2393 struct ata_taskfile tf;
2395 /* set up set-features taskfile */
2396 DPRINTK("set features - xfer mode\n");
2398 ata_tf_init(ap, &tf, dev->devno);
2399 tf.command = ATA_CMD_SET_FEATURES;
2400 tf.feature = SETFEATURES_XFER;
2401 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2402 tf.protocol = ATA_PROT_NODATA;
2403 tf.nsect = dev->xfer_mode;
2405 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2406 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2408 ata_port_disable(ap);
2415 * ata_dev_reread_id - Reread the device identify device info
2416 * @ap: port where the device is
2417 * @dev: device to reread the identify device info
2422 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
2424 struct ata_taskfile tf;
2426 ata_tf_init(ap, &tf, dev->devno);
2428 if (dev->class == ATA_DEV_ATA) {
2429 tf.command = ATA_CMD_ID_ATA;
2430 DPRINTK("do ATA identify\n");
2432 tf.command = ATA_CMD_ID_ATAPI;
2433 DPRINTK("do ATAPI identify\n");
2436 tf.flags |= ATA_TFLAG_DEVICE;
2437 tf.protocol = ATA_PROT_PIO;
2439 if (ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
2440 dev->id, sizeof(dev->id)))
2443 swap_buf_le16(dev->id, ATA_ID_WORDS);
2451 printk(KERN_ERR "ata%u: failed to reread ID, disabled\n", ap->id);
2452 ata_port_disable(ap);
2456 * ata_dev_init_params - Issue INIT DEV PARAMS command
2457 * @ap: Port associated with device @dev
2458 * @dev: Device to which command will be sent
2463 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
2465 struct ata_taskfile tf;
2466 u16 sectors = dev->id[6];
2467 u16 heads = dev->id[3];
2469 /* Number of sectors per track 1-255. Number of heads 1-16 */
2470 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2473 /* set up init dev params taskfile */
2474 DPRINTK("init dev params \n");
2476 ata_tf_init(ap, &tf, dev->devno);
2477 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2478 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2479 tf.protocol = ATA_PROT_NODATA;
2481 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2483 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2484 printk(KERN_ERR "ata%u: failed to init parameters, disabled\n",
2486 ata_port_disable(ap);
2493 * ata_sg_clean - Unmap DMA memory associated with command
2494 * @qc: Command containing DMA memory to be released
2496 * Unmap all mapped DMA memory associated with this command.
2499 * spin_lock_irqsave(host_set lock)
2502 static void ata_sg_clean(struct ata_queued_cmd *qc)
2504 struct ata_port *ap = qc->ap;
2505 struct scatterlist *sg = qc->__sg;
2506 int dir = qc->dma_dir;
2507 void *pad_buf = NULL;
2509 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2512 if (qc->flags & ATA_QCFLAG_SINGLE)
2513 assert(qc->n_elem == 1);
2515 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2517 /* if we padded the buffer out to 32-bit bound, and data
2518 * xfer direction is from-device, we must copy from the
2519 * pad buffer back into the supplied buffer
2521 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2522 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2524 if (qc->flags & ATA_QCFLAG_SG) {
2526 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2527 /* restore last sg */
2528 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2530 struct scatterlist *psg = &qc->pad_sgent;
2531 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2532 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2533 kunmap_atomic(addr, KM_IRQ0);
2536 if (sg_dma_len(&sg[0]) > 0)
2537 dma_unmap_single(ap->host_set->dev,
2538 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2541 sg->length += qc->pad_len;
2543 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2544 pad_buf, qc->pad_len);
2547 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2552 * ata_fill_sg - Fill PCI IDE PRD table
2553 * @qc: Metadata associated with taskfile to be transferred
2555 * Fill PCI IDE PRD (scatter-gather) table with segments
2556 * associated with the current disk command.
2559 * spin_lock_irqsave(host_set lock)
2562 static void ata_fill_sg(struct ata_queued_cmd *qc)
2564 struct ata_port *ap = qc->ap;
2565 struct scatterlist *sg;
2568 assert(qc->__sg != NULL);
2569 assert(qc->n_elem > 0);
2572 ata_for_each_sg(sg, qc) {
2576 /* determine if physical DMA addr spans 64K boundary.
2577 * Note h/w doesn't support 64-bit, so we unconditionally
2578 * truncate dma_addr_t to u32.
2580 addr = (u32) sg_dma_address(sg);
2581 sg_len = sg_dma_len(sg);
2584 offset = addr & 0xffff;
2586 if ((offset + sg_len) > 0x10000)
2587 len = 0x10000 - offset;
2589 ap->prd[idx].addr = cpu_to_le32(addr);
2590 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2591 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2600 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2603 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2604 * @qc: Metadata associated with taskfile to check
2606 * Allow low-level driver to filter ATA PACKET commands, returning
2607 * a status indicating whether or not it is OK to use DMA for the
2608 * supplied PACKET command.
2611 * spin_lock_irqsave(host_set lock)
2613 * RETURNS: 0 when ATAPI DMA can be used
2616 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2618 struct ata_port *ap = qc->ap;
2619 int rc = 0; /* Assume ATAPI DMA is OK by default */
2621 if (ap->ops->check_atapi_dma)
2622 rc = ap->ops->check_atapi_dma(qc);
2627 * ata_qc_prep - Prepare taskfile for submission
2628 * @qc: Metadata associated with taskfile to be prepared
2630 * Prepare ATA taskfile for submission.
2633 * spin_lock_irqsave(host_set lock)
2635 void ata_qc_prep(struct ata_queued_cmd *qc)
2637 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2644 * ata_sg_init_one - Associate command with memory buffer
2645 * @qc: Command to be associated
2646 * @buf: Memory buffer
2647 * @buflen: Length of memory buffer, in bytes.
2649 * Initialize the data-related elements of queued_cmd @qc
2650 * to point to a single memory buffer, @buf of byte length @buflen.
2653 * spin_lock_irqsave(host_set lock)
2656 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2658 struct scatterlist *sg;
2660 qc->flags |= ATA_QCFLAG_SINGLE;
2662 memset(&qc->sgent, 0, sizeof(qc->sgent));
2663 qc->__sg = &qc->sgent;
2665 qc->orig_n_elem = 1;
2669 sg_init_one(sg, buf, buflen);
2673 * ata_sg_init - Associate command with scatter-gather table.
2674 * @qc: Command to be associated
2675 * @sg: Scatter-gather table.
2676 * @n_elem: Number of elements in s/g table.
2678 * Initialize the data-related elements of queued_cmd @qc
2679 * to point to a scatter-gather table @sg, containing @n_elem
2683 * spin_lock_irqsave(host_set lock)
2686 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2687 unsigned int n_elem)
2689 qc->flags |= ATA_QCFLAG_SG;
2691 qc->n_elem = n_elem;
2692 qc->orig_n_elem = n_elem;
2696 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2697 * @qc: Command with memory buffer to be mapped.
2699 * DMA-map the memory buffer associated with queued_cmd @qc.
2702 * spin_lock_irqsave(host_set lock)
2705 * Zero on success, negative on error.
2708 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2710 struct ata_port *ap = qc->ap;
2711 int dir = qc->dma_dir;
2712 struct scatterlist *sg = qc->__sg;
2713 dma_addr_t dma_address;
2715 /* we must lengthen transfers to end on a 32-bit boundary */
2716 qc->pad_len = sg->length & 3;
2718 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2719 struct scatterlist *psg = &qc->pad_sgent;
2721 assert(qc->dev->class == ATA_DEV_ATAPI);
2723 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2725 if (qc->tf.flags & ATA_TFLAG_WRITE)
2726 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2729 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2730 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2732 sg->length -= qc->pad_len;
2734 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2735 sg->length, qc->pad_len);
2739 sg_dma_address(sg) = 0;
2743 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2745 if (dma_mapping_error(dma_address)) {
2747 sg->length += qc->pad_len;
2751 sg_dma_address(sg) = dma_address;
2753 sg_dma_len(sg) = sg->length;
2755 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2756 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2762 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2763 * @qc: Command with scatter-gather table to be mapped.
2765 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2768 * spin_lock_irqsave(host_set lock)
2771 * Zero on success, negative on error.
2775 static int ata_sg_setup(struct ata_queued_cmd *qc)
2777 struct ata_port *ap = qc->ap;
2778 struct scatterlist *sg = qc->__sg;
2779 struct scatterlist *lsg = &sg[qc->n_elem - 1];
2780 int n_elem, pre_n_elem, dir, trim_sg = 0;
2782 VPRINTK("ENTER, ata%u\n", ap->id);
2783 assert(qc->flags & ATA_QCFLAG_SG);
2785 /* we must lengthen transfers to end on a 32-bit boundary */
2786 qc->pad_len = lsg->length & 3;
2788 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2789 struct scatterlist *psg = &qc->pad_sgent;
2790 unsigned int offset;
2792 assert(qc->dev->class == ATA_DEV_ATAPI);
2794 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2797 * psg->page/offset are used to copy to-be-written
2798 * data in this function or read data in ata_sg_clean.
2800 offset = lsg->offset + lsg->length - qc->pad_len;
2801 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
2802 psg->offset = offset_in_page(offset);
2804 if (qc->tf.flags & ATA_TFLAG_WRITE) {
2805 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2806 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
2807 kunmap_atomic(addr, KM_IRQ0);
2810 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2811 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2813 lsg->length -= qc->pad_len;
2814 if (lsg->length == 0)
2817 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2818 qc->n_elem - 1, lsg->length, qc->pad_len);
2821 pre_n_elem = qc->n_elem;
2822 if (trim_sg && pre_n_elem)
2831 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
2833 /* restore last sg */
2834 lsg->length += qc->pad_len;
2838 DPRINTK("%d sg elements mapped\n", n_elem);
2841 qc->n_elem = n_elem;
2847 * ata_poll_qc_complete - turn irq back on and finish qc
2848 * @qc: Command to complete
2849 * @err_mask: ATA status register content
2852 * None. (grabs host lock)
2855 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
2857 struct ata_port *ap = qc->ap;
2858 unsigned long flags;
2860 spin_lock_irqsave(&ap->host_set->lock, flags);
2861 ap->flags &= ~ATA_FLAG_NOINTR;
2863 ata_qc_complete(qc);
2864 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2869 * @ap: the target ata_port
2872 * None. (executing in kernel thread context)
2875 * timeout value to use
2878 static unsigned long ata_pio_poll(struct ata_port *ap)
2880 struct ata_queued_cmd *qc;
2882 unsigned int poll_state = HSM_ST_UNKNOWN;
2883 unsigned int reg_state = HSM_ST_UNKNOWN;
2885 qc = ata_qc_from_tag(ap, ap->active_tag);
2888 switch (ap->hsm_task_state) {
2891 poll_state = HSM_ST_POLL;
2895 case HSM_ST_LAST_POLL:
2896 poll_state = HSM_ST_LAST_POLL;
2897 reg_state = HSM_ST_LAST;
2904 status = ata_chk_status(ap);
2905 if (status & ATA_BUSY) {
2906 if (time_after(jiffies, ap->pio_task_timeout)) {
2907 qc->err_mask |= AC_ERR_ATA_BUS;
2908 ap->hsm_task_state = HSM_ST_TMOUT;
2911 ap->hsm_task_state = poll_state;
2912 return ATA_SHORT_PAUSE;
2915 ap->hsm_task_state = reg_state;
2920 * ata_pio_complete - check if drive is busy or idle
2921 * @ap: the target ata_port
2924 * None. (executing in kernel thread context)
2927 * Non-zero if qc completed, zero otherwise.
2930 static int ata_pio_complete (struct ata_port *ap)
2932 struct ata_queued_cmd *qc;
2936 * This is purely heuristic. This is a fast path. Sometimes when
2937 * we enter, BSY will be cleared in a chk-status or two. If not,
2938 * the drive is probably seeking or something. Snooze for a couple
2939 * msecs, then chk-status again. If still busy, fall back to
2940 * HSM_ST_POLL state.
2942 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
2943 if (drv_stat & ATA_BUSY) {
2945 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
2946 if (drv_stat & ATA_BUSY) {
2947 ap->hsm_task_state = HSM_ST_LAST_POLL;
2948 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
2953 qc = ata_qc_from_tag(ap, ap->active_tag);
2956 drv_stat = ata_wait_idle(ap);
2957 if (!ata_ok(drv_stat)) {
2958 qc->err_mask |= __ac_err_mask(drv_stat);
2959 ap->hsm_task_state = HSM_ST_ERR;
2963 ap->hsm_task_state = HSM_ST_IDLE;
2965 assert(qc->err_mask == 0);
2966 ata_poll_qc_complete(qc);
2968 /* another command may start at this point */
2975 * swap_buf_le16 - swap halves of 16-words in place
2976 * @buf: Buffer to swap
2977 * @buf_words: Number of 16-bit words in buffer.
2979 * Swap halves of 16-bit words if needed to convert from
2980 * little-endian byte order to native cpu byte order, or
2984 * Inherited from caller.
2986 void swap_buf_le16(u16 *buf, unsigned int buf_words)
2991 for (i = 0; i < buf_words; i++)
2992 buf[i] = le16_to_cpu(buf[i]);
2993 #endif /* __BIG_ENDIAN */
2997 * ata_mmio_data_xfer - Transfer data by MMIO
2998 * @ap: port to read/write
3000 * @buflen: buffer length
3001 * @write_data: read/write
3003 * Transfer data from/to the device data register by MMIO.
3006 * Inherited from caller.
3009 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3010 unsigned int buflen, int write_data)
3013 unsigned int words = buflen >> 1;
3014 u16 *buf16 = (u16 *) buf;
3015 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3017 /* Transfer multiple of 2 bytes */
3019 for (i = 0; i < words; i++)
3020 writew(le16_to_cpu(buf16[i]), mmio);
3022 for (i = 0; i < words; i++)
3023 buf16[i] = cpu_to_le16(readw(mmio));
3026 /* Transfer trailing 1 byte, if any. */
3027 if (unlikely(buflen & 0x01)) {
3028 u16 align_buf[1] = { 0 };
3029 unsigned char *trailing_buf = buf + buflen - 1;
3032 memcpy(align_buf, trailing_buf, 1);
3033 writew(le16_to_cpu(align_buf[0]), mmio);
3035 align_buf[0] = cpu_to_le16(readw(mmio));
3036 memcpy(trailing_buf, align_buf, 1);
3042 * ata_pio_data_xfer - Transfer data by PIO
3043 * @ap: port to read/write
3045 * @buflen: buffer length
3046 * @write_data: read/write
3048 * Transfer data from/to the device data register by PIO.
3051 * Inherited from caller.
3054 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3055 unsigned int buflen, int write_data)
3057 unsigned int words = buflen >> 1;
3059 /* Transfer multiple of 2 bytes */
3061 outsw(ap->ioaddr.data_addr, buf, words);
3063 insw(ap->ioaddr.data_addr, buf, words);
3065 /* Transfer trailing 1 byte, if any. */
3066 if (unlikely(buflen & 0x01)) {
3067 u16 align_buf[1] = { 0 };
3068 unsigned char *trailing_buf = buf + buflen - 1;
3071 memcpy(align_buf, trailing_buf, 1);
3072 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3074 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3075 memcpy(trailing_buf, align_buf, 1);
3081 * ata_data_xfer - Transfer data from/to the data register.
3082 * @ap: port to read/write
3084 * @buflen: buffer length
3085 * @do_write: read/write
3087 * Transfer data from/to the device data register.
3090 * Inherited from caller.
3093 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3094 unsigned int buflen, int do_write)
3096 if (ap->flags & ATA_FLAG_MMIO)
3097 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3099 ata_pio_data_xfer(ap, buf, buflen, do_write);
3103 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3104 * @qc: Command on going
3106 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3109 * Inherited from caller.
3112 static void ata_pio_sector(struct ata_queued_cmd *qc)
3114 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3115 struct scatterlist *sg = qc->__sg;
3116 struct ata_port *ap = qc->ap;
3118 unsigned int offset;
3121 if (qc->cursect == (qc->nsect - 1))
3122 ap->hsm_task_state = HSM_ST_LAST;
3124 page = sg[qc->cursg].page;
3125 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3127 /* get the current page and offset */
3128 page = nth_page(page, (offset >> PAGE_SHIFT));
3129 offset %= PAGE_SIZE;
3131 buf = kmap(page) + offset;
3136 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3141 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3143 /* do the actual data transfer */
3144 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3145 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3151 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3152 * @qc: Command on going
3153 * @bytes: number of bytes
3155 * Transfer Transfer data from/to the ATAPI device.
3158 * Inherited from caller.
3162 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3164 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3165 struct scatterlist *sg = qc->__sg;
3166 struct ata_port *ap = qc->ap;
3169 unsigned int offset, count;
3171 if (qc->curbytes + bytes >= qc->nbytes)
3172 ap->hsm_task_state = HSM_ST_LAST;
3175 if (unlikely(qc->cursg >= qc->n_elem)) {
3177 * The end of qc->sg is reached and the device expects
3178 * more data to transfer. In order not to overrun qc->sg
3179 * and fulfill length specified in the byte count register,
3180 * - for read case, discard trailing data from the device
3181 * - for write case, padding zero data to the device
3183 u16 pad_buf[1] = { 0 };
3184 unsigned int words = bytes >> 1;
3187 if (words) /* warning if bytes > 1 */
3188 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3191 for (i = 0; i < words; i++)
3192 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3194 ap->hsm_task_state = HSM_ST_LAST;
3198 sg = &qc->__sg[qc->cursg];
3201 offset = sg->offset + qc->cursg_ofs;
3203 /* get the current page and offset */
3204 page = nth_page(page, (offset >> PAGE_SHIFT));
3205 offset %= PAGE_SIZE;
3207 /* don't overrun current sg */
3208 count = min(sg->length - qc->cursg_ofs, bytes);
3210 /* don't cross page boundaries */
3211 count = min(count, (unsigned int)PAGE_SIZE - offset);
3213 buf = kmap(page) + offset;
3216 qc->curbytes += count;
3217 qc->cursg_ofs += count;
3219 if (qc->cursg_ofs == sg->length) {
3224 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3226 /* do the actual data transfer */
3227 ata_data_xfer(ap, buf, count, do_write);
3236 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3237 * @qc: Command on going
3239 * Transfer Transfer data from/to the ATAPI device.
3242 * Inherited from caller.
3245 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3247 struct ata_port *ap = qc->ap;
3248 struct ata_device *dev = qc->dev;
3249 unsigned int ireason, bc_lo, bc_hi, bytes;
3250 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3252 ap->ops->tf_read(ap, &qc->tf);
3253 ireason = qc->tf.nsect;
3254 bc_lo = qc->tf.lbam;
3255 bc_hi = qc->tf.lbah;
3256 bytes = (bc_hi << 8) | bc_lo;
3258 /* shall be cleared to zero, indicating xfer of data */
3259 if (ireason & (1 << 0))
3262 /* make sure transfer direction matches expected */
3263 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3264 if (do_write != i_write)
3267 __atapi_pio_bytes(qc, bytes);
3272 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3273 ap->id, dev->devno);
3274 qc->err_mask |= AC_ERR_ATA_BUS;
3275 ap->hsm_task_state = HSM_ST_ERR;
3279 * ata_pio_block - start PIO on a block
3280 * @ap: the target ata_port
3283 * None. (executing in kernel thread context)
3286 static void ata_pio_block(struct ata_port *ap)
3288 struct ata_queued_cmd *qc;
3292 * This is purely heuristic. This is a fast path.
3293 * Sometimes when we enter, BSY will be cleared in
3294 * a chk-status or two. If not, the drive is probably seeking
3295 * or something. Snooze for a couple msecs, then
3296 * chk-status again. If still busy, fall back to
3297 * HSM_ST_POLL state.
3299 status = ata_busy_wait(ap, ATA_BUSY, 5);
3300 if (status & ATA_BUSY) {
3302 status = ata_busy_wait(ap, ATA_BUSY, 10);
3303 if (status & ATA_BUSY) {
3304 ap->hsm_task_state = HSM_ST_POLL;
3305 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3310 qc = ata_qc_from_tag(ap, ap->active_tag);
3314 if (status & (ATA_ERR | ATA_DF)) {
3315 qc->err_mask |= AC_ERR_DEV;
3316 ap->hsm_task_state = HSM_ST_ERR;
3320 /* transfer data if any */
3321 if (is_atapi_taskfile(&qc->tf)) {
3322 /* DRQ=0 means no more data to transfer */
3323 if ((status & ATA_DRQ) == 0) {
3324 ap->hsm_task_state = HSM_ST_LAST;
3328 atapi_pio_bytes(qc);
3330 /* handle BSY=0, DRQ=0 as error */
3331 if ((status & ATA_DRQ) == 0) {
3332 qc->err_mask |= AC_ERR_ATA_BUS;
3333 ap->hsm_task_state = HSM_ST_ERR;
3341 static void ata_pio_error(struct ata_port *ap)
3343 struct ata_queued_cmd *qc;
3345 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3347 qc = ata_qc_from_tag(ap, ap->active_tag);
3350 /* make sure qc->err_mask is available to
3351 * know what's wrong and recover
3353 assert(qc->err_mask);
3355 ap->hsm_task_state = HSM_ST_IDLE;
3357 ata_poll_qc_complete(qc);
3360 static void ata_pio_task(void *_data)
3362 struct ata_port *ap = _data;
3363 unsigned long timeout;
3370 switch (ap->hsm_task_state) {
3379 qc_completed = ata_pio_complete(ap);
3383 case HSM_ST_LAST_POLL:
3384 timeout = ata_pio_poll(ap);
3394 queue_delayed_work(ata_wq, &ap->pio_task, timeout);
3395 else if (!qc_completed)
3400 * ata_qc_timeout - Handle timeout of queued command
3401 * @qc: Command that timed out
3403 * Some part of the kernel (currently, only the SCSI layer)
3404 * has noticed that the active command on port @ap has not
3405 * completed after a specified length of time. Handle this
3406 * condition by disabling DMA (if necessary) and completing
3407 * transactions, with error if necessary.
3409 * This also handles the case of the "lost interrupt", where
3410 * for some reason (possibly hardware bug, possibly driver bug)
3411 * an interrupt was not delivered to the driver, even though the
3412 * transaction completed successfully.
3415 * Inherited from SCSI layer (none, can sleep)
3418 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3420 struct ata_port *ap = qc->ap;
3421 struct ata_host_set *host_set = ap->host_set;
3422 u8 host_stat = 0, drv_stat;
3423 unsigned long flags;
3427 spin_lock_irqsave(&host_set->lock, flags);
3429 /* hack alert! We cannot use the supplied completion
3430 * function from inside the ->eh_strategy_handler() thread.
3431 * libata is the only user of ->eh_strategy_handler() in
3432 * any kernel, so the default scsi_done() assumes it is
3433 * not being called from the SCSI EH.
3435 qc->scsidone = scsi_finish_command;
3437 switch (qc->tf.protocol) {
3440 case ATA_PROT_ATAPI_DMA:
3441 host_stat = ap->ops->bmdma_status(ap);
3443 /* before we do anything else, clear DMA-Start bit */
3444 ap->ops->bmdma_stop(qc);
3450 drv_stat = ata_chk_status(ap);
3452 /* ack bmdma irq events */
3453 ap->ops->irq_clear(ap);
3455 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3456 ap->id, qc->tf.command, drv_stat, host_stat);
3458 /* complete taskfile transaction */
3459 qc->err_mask |= ac_err_mask(drv_stat);
3460 ata_qc_complete(qc);
3464 spin_unlock_irqrestore(&host_set->lock, flags);
3470 * ata_eng_timeout - Handle timeout of queued command
3471 * @ap: Port on which timed-out command is active
3473 * Some part of the kernel (currently, only the SCSI layer)
3474 * has noticed that the active command on port @ap has not
3475 * completed after a specified length of time. Handle this
3476 * condition by disabling DMA (if necessary) and completing
3477 * transactions, with error if necessary.
3479 * This also handles the case of the "lost interrupt", where
3480 * for some reason (possibly hardware bug, possibly driver bug)
3481 * an interrupt was not delivered to the driver, even though the
3482 * transaction completed successfully.
3485 * Inherited from SCSI layer (none, can sleep)
3488 void ata_eng_timeout(struct ata_port *ap)
3490 struct ata_queued_cmd *qc;
3494 qc = ata_qc_from_tag(ap, ap->active_tag);
3498 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
3508 * ata_qc_new - Request an available ATA command, for queueing
3509 * @ap: Port associated with device @dev
3510 * @dev: Device from whom we request an available command structure
3516 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3518 struct ata_queued_cmd *qc = NULL;
3521 for (i = 0; i < ATA_MAX_QUEUE; i++)
3522 if (!test_and_set_bit(i, &ap->qactive)) {
3523 qc = ata_qc_from_tag(ap, i);
3534 * ata_qc_new_init - Request an available ATA command, and initialize it
3535 * @ap: Port associated with device @dev
3536 * @dev: Device from whom we request an available command structure
3542 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3543 struct ata_device *dev)
3545 struct ata_queued_cmd *qc;
3547 qc = ata_qc_new(ap);
3559 static void __ata_qc_complete(struct ata_queued_cmd *qc)
3561 struct ata_port *ap = qc->ap;
3566 if (likely(ata_tag_valid(tag))) {
3567 if (tag == ap->active_tag)
3568 ap->active_tag = ATA_TAG_POISON;
3569 qc->tag = ATA_TAG_POISON;
3570 clear_bit(tag, &ap->qactive);
3575 * ata_qc_free - free unused ata_queued_cmd
3576 * @qc: Command to complete
3578 * Designed to free unused ata_queued_cmd object
3579 * in case something prevents using it.
3582 * spin_lock_irqsave(host_set lock)
3584 void ata_qc_free(struct ata_queued_cmd *qc)
3586 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3588 __ata_qc_complete(qc);
3592 * ata_qc_complete - Complete an active ATA command
3593 * @qc: Command to complete
3594 * @err_mask: ATA Status register contents
3596 * Indicate to the mid and upper layers that an ATA
3597 * command has completed, with either an ok or not-ok status.
3600 * spin_lock_irqsave(host_set lock)
3603 void ata_qc_complete(struct ata_queued_cmd *qc)
3607 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3608 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3610 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3613 /* atapi: mark qc as inactive to prevent the interrupt handler
3614 * from completing the command twice later, before the error handler
3615 * is called. (when rc != 0 and atapi request sense is needed)
3617 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3619 /* call completion callback */
3620 rc = qc->complete_fn(qc);
3622 /* if callback indicates not to complete command (non-zero),
3623 * return immediately
3628 __ata_qc_complete(qc);
3633 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3635 struct ata_port *ap = qc->ap;
3637 switch (qc->tf.protocol) {
3639 case ATA_PROT_ATAPI_DMA:
3642 case ATA_PROT_ATAPI:
3644 case ATA_PROT_PIO_MULT:
3645 if (ap->flags & ATA_FLAG_PIO_DMA)
3658 * ata_qc_issue - issue taskfile to device
3659 * @qc: command to issue to device
3661 * Prepare an ATA command to submission to device.
3662 * This includes mapping the data into a DMA-able
3663 * area, filling in the S/G table, and finally
3664 * writing the taskfile to hardware, starting the command.
3667 * spin_lock_irqsave(host_set lock)
3670 * Zero on success, negative on error.
3673 int ata_qc_issue(struct ata_queued_cmd *qc)
3675 struct ata_port *ap = qc->ap;
3677 if (ata_should_dma_map(qc)) {
3678 if (qc->flags & ATA_QCFLAG_SG) {
3679 if (ata_sg_setup(qc))
3681 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3682 if (ata_sg_setup_one(qc))
3686 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3689 ap->ops->qc_prep(qc);
3691 qc->ap->active_tag = qc->tag;
3692 qc->flags |= ATA_QCFLAG_ACTIVE;
3694 return ap->ops->qc_issue(qc);
3702 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3703 * @qc: command to issue to device
3705 * Using various libata functions and hooks, this function
3706 * starts an ATA command. ATA commands are grouped into
3707 * classes called "protocols", and issuing each type of protocol
3708 * is slightly different.
3710 * May be used as the qc_issue() entry in ata_port_operations.
3713 * spin_lock_irqsave(host_set lock)
3716 * Zero on success, negative on error.
3719 int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3721 struct ata_port *ap = qc->ap;
3723 ata_dev_select(ap, qc->dev->devno, 1, 0);
3725 switch (qc->tf.protocol) {
3726 case ATA_PROT_NODATA:
3727 ata_tf_to_host(ap, &qc->tf);
3731 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3732 ap->ops->bmdma_setup(qc); /* set up bmdma */
3733 ap->ops->bmdma_start(qc); /* initiate bmdma */
3736 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3737 ata_qc_set_polling(qc);
3738 ata_tf_to_host(ap, &qc->tf);
3739 ap->hsm_task_state = HSM_ST;
3740 queue_work(ata_wq, &ap->pio_task);
3743 case ATA_PROT_ATAPI:
3744 ata_qc_set_polling(qc);
3745 ata_tf_to_host(ap, &qc->tf);
3746 queue_work(ata_wq, &ap->packet_task);
3749 case ATA_PROT_ATAPI_NODATA:
3750 ap->flags |= ATA_FLAG_NOINTR;
3751 ata_tf_to_host(ap, &qc->tf);
3752 queue_work(ata_wq, &ap->packet_task);
3755 case ATA_PROT_ATAPI_DMA:
3756 ap->flags |= ATA_FLAG_NOINTR;
3757 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3758 ap->ops->bmdma_setup(qc); /* set up bmdma */
3759 queue_work(ata_wq, &ap->packet_task);
3771 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
3772 * @qc: Info associated with this ATA transaction.
3775 * spin_lock_irqsave(host_set lock)
3778 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3780 struct ata_port *ap = qc->ap;
3781 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3783 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3785 /* load PRD table addr. */
3786 mb(); /* make sure PRD table writes are visible to controller */
3787 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3789 /* specify data direction, triple-check start bit is clear */
3790 dmactl = readb(mmio + ATA_DMA_CMD);
3791 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3793 dmactl |= ATA_DMA_WR;
3794 writeb(dmactl, mmio + ATA_DMA_CMD);
3796 /* issue r/w command */
3797 ap->ops->exec_command(ap, &qc->tf);
3801 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
3802 * @qc: Info associated with this ATA transaction.
3805 * spin_lock_irqsave(host_set lock)
3808 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3810 struct ata_port *ap = qc->ap;
3811 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3814 /* start host DMA transaction */
3815 dmactl = readb(mmio + ATA_DMA_CMD);
3816 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3818 /* Strictly, one may wish to issue a readb() here, to
3819 * flush the mmio write. However, control also passes
3820 * to the hardware at this point, and it will interrupt
3821 * us when we are to resume control. So, in effect,
3822 * we don't care when the mmio write flushes.
3823 * Further, a read of the DMA status register _immediately_
3824 * following the write may not be what certain flaky hardware
3825 * is expected, so I think it is best to not add a readb()
3826 * without first all the MMIO ATA cards/mobos.
3827 * Or maybe I'm just being paranoid.
3832 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3833 * @qc: Info associated with this ATA transaction.
3836 * spin_lock_irqsave(host_set lock)
3839 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3841 struct ata_port *ap = qc->ap;
3842 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3845 /* load PRD table addr. */
3846 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3848 /* specify data direction, triple-check start bit is clear */
3849 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3850 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3852 dmactl |= ATA_DMA_WR;
3853 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3855 /* issue r/w command */
3856 ap->ops->exec_command(ap, &qc->tf);
3860 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3861 * @qc: Info associated with this ATA transaction.
3864 * spin_lock_irqsave(host_set lock)
3867 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3869 struct ata_port *ap = qc->ap;
3872 /* start host DMA transaction */
3873 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3874 outb(dmactl | ATA_DMA_START,
3875 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3880 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3881 * @qc: Info associated with this ATA transaction.
3883 * Writes the ATA_DMA_START flag to the DMA command register.
3885 * May be used as the bmdma_start() entry in ata_port_operations.
3888 * spin_lock_irqsave(host_set lock)
3890 void ata_bmdma_start(struct ata_queued_cmd *qc)
3892 if (qc->ap->flags & ATA_FLAG_MMIO)
3893 ata_bmdma_start_mmio(qc);
3895 ata_bmdma_start_pio(qc);
3900 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3901 * @qc: Info associated with this ATA transaction.
3903 * Writes address of PRD table to device's PRD Table Address
3904 * register, sets the DMA control register, and calls
3905 * ops->exec_command() to start the transfer.
3907 * May be used as the bmdma_setup() entry in ata_port_operations.
3910 * spin_lock_irqsave(host_set lock)
3912 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3914 if (qc->ap->flags & ATA_FLAG_MMIO)
3915 ata_bmdma_setup_mmio(qc);
3917 ata_bmdma_setup_pio(qc);
3922 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
3923 * @ap: Port associated with this ATA transaction.
3925 * Clear interrupt and error flags in DMA status register.
3927 * May be used as the irq_clear() entry in ata_port_operations.
3930 * spin_lock_irqsave(host_set lock)
3933 void ata_bmdma_irq_clear(struct ata_port *ap)
3935 if (ap->flags & ATA_FLAG_MMIO) {
3936 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3937 writeb(readb(mmio), mmio);
3939 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3940 outb(inb(addr), addr);
3947 * ata_bmdma_status - Read PCI IDE BMDMA status
3948 * @ap: Port associated with this ATA transaction.
3950 * Read and return BMDMA status register.
3952 * May be used as the bmdma_status() entry in ata_port_operations.
3955 * spin_lock_irqsave(host_set lock)
3958 u8 ata_bmdma_status(struct ata_port *ap)
3961 if (ap->flags & ATA_FLAG_MMIO) {
3962 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3963 host_stat = readb(mmio + ATA_DMA_STATUS);
3965 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3971 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3972 * @qc: Command we are ending DMA for
3974 * Clears the ATA_DMA_START flag in the dma control register
3976 * May be used as the bmdma_stop() entry in ata_port_operations.
3979 * spin_lock_irqsave(host_set lock)
3982 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3984 struct ata_port *ap = qc->ap;
3985 if (ap->flags & ATA_FLAG_MMIO) {
3986 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3988 /* clear start/stop bit */
3989 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3990 mmio + ATA_DMA_CMD);
3992 /* clear start/stop bit */
3993 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
3994 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3997 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3998 ata_altstatus(ap); /* dummy read */
4002 * ata_host_intr - Handle host interrupt for given (port, task)
4003 * @ap: Port on which interrupt arrived (possibly...)
4004 * @qc: Taskfile currently active in engine
4006 * Handle host interrupt for given queued command. Currently,
4007 * only DMA interrupts are handled. All other commands are
4008 * handled via polling with interrupts disabled (nIEN bit).
4011 * spin_lock_irqsave(host_set lock)
4014 * One if interrupt was handled, zero if not (shared irq).
4017 inline unsigned int ata_host_intr (struct ata_port *ap,
4018 struct ata_queued_cmd *qc)
4020 u8 status, host_stat;
4022 switch (qc->tf.protocol) {
4025 case ATA_PROT_ATAPI_DMA:
4026 case ATA_PROT_ATAPI:
4027 /* check status of DMA engine */
4028 host_stat = ap->ops->bmdma_status(ap);
4029 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4031 /* if it's not our irq... */
4032 if (!(host_stat & ATA_DMA_INTR))
4035 /* before we do anything else, clear DMA-Start bit */
4036 ap->ops->bmdma_stop(qc);
4040 case ATA_PROT_ATAPI_NODATA:
4041 case ATA_PROT_NODATA:
4042 /* check altstatus */
4043 status = ata_altstatus(ap);
4044 if (status & ATA_BUSY)
4047 /* check main status, clearing INTRQ */
4048 status = ata_chk_status(ap);
4049 if (unlikely(status & ATA_BUSY))
4051 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4052 ap->id, qc->tf.protocol, status);
4054 /* ack bmdma irq events */
4055 ap->ops->irq_clear(ap);
4057 /* complete taskfile transaction */
4058 qc->err_mask |= ac_err_mask(status);
4059 ata_qc_complete(qc);
4066 return 1; /* irq handled */
4069 ap->stats.idle_irq++;
4072 if ((ap->stats.idle_irq % 1000) == 0) {
4074 ata_irq_ack(ap, 0); /* debug trap */
4075 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4078 return 0; /* irq not handled */
4082 * ata_interrupt - Default ATA host interrupt handler
4083 * @irq: irq line (unused)
4084 * @dev_instance: pointer to our ata_host_set information structure
4087 * Default interrupt handler for PCI IDE devices. Calls
4088 * ata_host_intr() for each port that is not disabled.
4091 * Obtains host_set lock during operation.
4094 * IRQ_NONE or IRQ_HANDLED.
4097 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4099 struct ata_host_set *host_set = dev_instance;
4101 unsigned int handled = 0;
4102 unsigned long flags;
4104 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4105 spin_lock_irqsave(&host_set->lock, flags);
4107 for (i = 0; i < host_set->n_ports; i++) {
4108 struct ata_port *ap;
4110 ap = host_set->ports[i];
4112 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
4113 struct ata_queued_cmd *qc;
4115 qc = ata_qc_from_tag(ap, ap->active_tag);
4116 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4117 (qc->flags & ATA_QCFLAG_ACTIVE))
4118 handled |= ata_host_intr(ap, qc);
4122 spin_unlock_irqrestore(&host_set->lock, flags);
4124 return IRQ_RETVAL(handled);
4128 * atapi_packet_task - Write CDB bytes to hardware
4129 * @_data: Port to which ATAPI device is attached.
4131 * When device has indicated its readiness to accept
4132 * a CDB, this function is called. Send the CDB.
4133 * If DMA is to be performed, exit immediately.
4134 * Otherwise, we are in polling mode, so poll
4135 * status under operation succeeds or fails.
4138 * Kernel thread context (may sleep)
4141 static void atapi_packet_task(void *_data)
4143 struct ata_port *ap = _data;
4144 struct ata_queued_cmd *qc;
4147 qc = ata_qc_from_tag(ap, ap->active_tag);
4149 assert(qc->flags & ATA_QCFLAG_ACTIVE);
4151 /* sleep-wait for BSY to clear */
4152 DPRINTK("busy wait\n");
4153 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
4154 qc->err_mask |= AC_ERR_ATA_BUS;
4158 /* make sure DRQ is set */
4159 status = ata_chk_status(ap);
4160 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
4161 qc->err_mask |= AC_ERR_ATA_BUS;
4166 DPRINTK("send cdb\n");
4167 assert(ap->cdb_len >= 12);
4169 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4170 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4171 unsigned long flags;
4173 /* Once we're done issuing command and kicking bmdma,
4174 * irq handler takes over. To not lose irq, we need
4175 * to clear NOINTR flag before sending cdb, but
4176 * interrupt handler shouldn't be invoked before we're
4177 * finished. Hence, the following locking.
4179 spin_lock_irqsave(&ap->host_set->lock, flags);
4180 ap->flags &= ~ATA_FLAG_NOINTR;
4181 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4182 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4183 ap->ops->bmdma_start(qc); /* initiate bmdma */
4184 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4186 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4188 /* PIO commands are handled by polling */
4189 ap->hsm_task_state = HSM_ST;
4190 queue_work(ata_wq, &ap->pio_task);
4196 ata_poll_qc_complete(qc);
4201 * ata_port_start - Set port up for dma.
4202 * @ap: Port to initialize
4204 * Called just after data structures for each port are
4205 * initialized. Allocates space for PRD table.
4207 * May be used as the port_start() entry in ata_port_operations.
4210 * Inherited from caller.
4214 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4215 * without filling any other registers
4217 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4220 struct ata_taskfile tf;
4223 ata_tf_init(ap, &tf, dev->devno);
4226 tf.flags |= ATA_TFLAG_DEVICE;
4227 tf.protocol = ATA_PROT_NODATA;
4229 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4231 printk(KERN_ERR "%s: ata command failed: %d\n",
4237 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4241 if (!ata_try_flush_cache(dev))
4244 if (ata_id_has_flush_ext(dev->id))
4245 cmd = ATA_CMD_FLUSH_EXT;
4247 cmd = ATA_CMD_FLUSH;
4249 return ata_do_simple_cmd(ap, dev, cmd);
4252 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4254 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4257 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4259 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4263 * ata_device_resume - wakeup a previously suspended devices
4265 * Kick the drive back into action, by sending it an idle immediate
4266 * command and making sure its transfer mode matches between drive
4270 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4272 if (ap->flags & ATA_FLAG_SUSPENDED) {
4273 ap->flags &= ~ATA_FLAG_SUSPENDED;
4276 if (!ata_dev_present(dev))
4278 if (dev->class == ATA_DEV_ATA)
4279 ata_start_drive(ap, dev);
4285 * ata_device_suspend - prepare a device for suspend
4287 * Flush the cache on the drive, if appropriate, then issue a
4288 * standbynow command.
4291 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
4293 if (!ata_dev_present(dev))
4295 if (dev->class == ATA_DEV_ATA)
4296 ata_flush_cache(ap, dev);
4298 ata_standby_drive(ap, dev);
4299 ap->flags |= ATA_FLAG_SUSPENDED;
4303 int ata_port_start (struct ata_port *ap)
4305 struct device *dev = ap->host_set->dev;
4308 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4312 rc = ata_pad_alloc(ap, dev);
4314 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4318 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4325 * ata_port_stop - Undo ata_port_start()
4326 * @ap: Port to shut down
4328 * Frees the PRD table.
4330 * May be used as the port_stop() entry in ata_port_operations.
4333 * Inherited from caller.
4336 void ata_port_stop (struct ata_port *ap)
4338 struct device *dev = ap->host_set->dev;
4340 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4341 ata_pad_free(ap, dev);
4344 void ata_host_stop (struct ata_host_set *host_set)
4346 if (host_set->mmio_base)
4347 iounmap(host_set->mmio_base);
4352 * ata_host_remove - Unregister SCSI host structure with upper layers
4353 * @ap: Port to unregister
4354 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4357 * Inherited from caller.
4360 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4362 struct Scsi_Host *sh = ap->host;
4367 scsi_remove_host(sh);
4369 ap->ops->port_stop(ap);
4373 * ata_host_init - Initialize an ata_port structure
4374 * @ap: Structure to initialize
4375 * @host: associated SCSI mid-layer structure
4376 * @host_set: Collection of hosts to which @ap belongs
4377 * @ent: Probe information provided by low-level driver
4378 * @port_no: Port number associated with this ata_port
4380 * Initialize a new ata_port structure, and its associated
4384 * Inherited from caller.
4387 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4388 struct ata_host_set *host_set,
4389 const struct ata_probe_ent *ent, unsigned int port_no)
4395 host->max_channel = 1;
4396 host->unique_id = ata_unique_id++;
4397 host->max_cmd_len = 12;
4399 ap->flags = ATA_FLAG_PORT_DISABLED;
4400 ap->id = host->unique_id;
4402 ap->ctl = ATA_DEVCTL_OBS;
4403 ap->host_set = host_set;
4404 ap->port_no = port_no;
4406 ent->legacy_mode ? ent->hard_port_no : port_no;
4407 ap->pio_mask = ent->pio_mask;
4408 ap->mwdma_mask = ent->mwdma_mask;
4409 ap->udma_mask = ent->udma_mask;
4410 ap->flags |= ent->host_flags;
4411 ap->ops = ent->port_ops;
4412 ap->cbl = ATA_CBL_NONE;
4413 ap->active_tag = ATA_TAG_POISON;
4414 ap->last_ctl = 0xFF;
4416 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
4417 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4419 for (i = 0; i < ATA_MAX_DEVICES; i++)
4420 ap->device[i].devno = i;
4423 ap->stats.unhandled_irq = 1;
4424 ap->stats.idle_irq = 1;
4427 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4431 * ata_host_add - Attach low-level ATA driver to system
4432 * @ent: Information provided by low-level driver
4433 * @host_set: Collections of ports to which we add
4434 * @port_no: Port number associated with this host
4436 * Attach low-level ATA driver to system.
4439 * PCI/etc. bus probe sem.
4442 * New ata_port on success, for NULL on error.
4445 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4446 struct ata_host_set *host_set,
4447 unsigned int port_no)
4449 struct Scsi_Host *host;
4450 struct ata_port *ap;
4454 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4458 ap = (struct ata_port *) &host->hostdata[0];
4460 ata_host_init(ap, host, host_set, ent, port_no);
4462 rc = ap->ops->port_start(ap);
4469 scsi_host_put(host);
4474 * ata_device_add - Register hardware device with ATA and SCSI layers
4475 * @ent: Probe information describing hardware device to be registered
4477 * This function processes the information provided in the probe
4478 * information struct @ent, allocates the necessary ATA and SCSI
4479 * host information structures, initializes them, and registers
4480 * everything with requisite kernel subsystems.
4482 * This function requests irqs, probes the ATA bus, and probes
4486 * PCI/etc. bus probe sem.
4489 * Number of ports registered. Zero on error (no ports registered).
4492 int ata_device_add(const struct ata_probe_ent *ent)
4494 unsigned int count = 0, i;
4495 struct device *dev = ent->dev;
4496 struct ata_host_set *host_set;
4499 /* alloc a container for our list of ATA ports (buses) */
4500 host_set = kzalloc(sizeof(struct ata_host_set) +
4501 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4504 spin_lock_init(&host_set->lock);
4506 host_set->dev = dev;
4507 host_set->n_ports = ent->n_ports;
4508 host_set->irq = ent->irq;
4509 host_set->mmio_base = ent->mmio_base;
4510 host_set->private_data = ent->private_data;
4511 host_set->ops = ent->port_ops;
4513 /* register each port bound to this device */
4514 for (i = 0; i < ent->n_ports; i++) {
4515 struct ata_port *ap;
4516 unsigned long xfer_mode_mask;
4518 ap = ata_host_add(ent, host_set, i);
4522 host_set->ports[i] = ap;
4523 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4524 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4525 (ap->pio_mask << ATA_SHIFT_PIO);
4527 /* print per-port info to dmesg */
4528 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4529 "bmdma 0x%lX irq %lu\n",
4531 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4532 ata_mode_string(xfer_mode_mask),
4533 ap->ioaddr.cmd_addr,
4534 ap->ioaddr.ctl_addr,
4535 ap->ioaddr.bmdma_addr,
4539 host_set->ops->irq_clear(ap);
4546 /* obtain irq, that is shared between channels */
4547 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4548 DRV_NAME, host_set))
4551 /* perform each probe synchronously */
4552 DPRINTK("probe begin\n");
4553 for (i = 0; i < count; i++) {
4554 struct ata_port *ap;
4557 ap = host_set->ports[i];
4559 DPRINTK("ata%u: probe begin\n", ap->id);
4560 rc = ata_bus_probe(ap);
4561 DPRINTK("ata%u: probe end\n", ap->id);
4564 /* FIXME: do something useful here?
4565 * Current libata behavior will
4566 * tear down everything when
4567 * the module is removed
4568 * or the h/w is unplugged.
4572 rc = scsi_add_host(ap->host, dev);
4574 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4576 /* FIXME: do something useful here */
4577 /* FIXME: handle unconditional calls to
4578 * scsi_scan_host and ata_host_remove, below,
4584 /* probes are done, now scan each port's disk(s) */
4585 DPRINTK("probe begin\n");
4586 for (i = 0; i < count; i++) {
4587 struct ata_port *ap = host_set->ports[i];
4589 ata_scsi_scan_host(ap);
4592 dev_set_drvdata(dev, host_set);
4594 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4595 return ent->n_ports; /* success */
4598 for (i = 0; i < count; i++) {
4599 ata_host_remove(host_set->ports[i], 1);
4600 scsi_host_put(host_set->ports[i]->host);
4604 VPRINTK("EXIT, returning 0\n");
4609 * ata_host_set_remove - PCI layer callback for device removal
4610 * @host_set: ATA host set that was removed
4612 * Unregister all objects associated with this host set. Free those
4616 * Inherited from calling layer (may sleep).
4619 void ata_host_set_remove(struct ata_host_set *host_set)
4621 struct ata_port *ap;
4624 for (i = 0; i < host_set->n_ports; i++) {
4625 ap = host_set->ports[i];
4626 scsi_remove_host(ap->host);
4629 free_irq(host_set->irq, host_set);
4631 for (i = 0; i < host_set->n_ports; i++) {
4632 ap = host_set->ports[i];
4634 ata_scsi_release(ap->host);
4636 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4637 struct ata_ioports *ioaddr = &ap->ioaddr;
4639 if (ioaddr->cmd_addr == 0x1f0)
4640 release_region(0x1f0, 8);
4641 else if (ioaddr->cmd_addr == 0x170)
4642 release_region(0x170, 8);
4645 scsi_host_put(ap->host);
4648 if (host_set->ops->host_stop)
4649 host_set->ops->host_stop(host_set);
4655 * ata_scsi_release - SCSI layer callback hook for host unload
4656 * @host: libata host to be unloaded
4658 * Performs all duties necessary to shut down a libata port...
4659 * Kill port kthread, disable port, and release resources.
4662 * Inherited from SCSI layer.
4668 int ata_scsi_release(struct Scsi_Host *host)
4670 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4674 ap->ops->port_disable(ap);
4675 ata_host_remove(ap, 0);
4682 * ata_std_ports - initialize ioaddr with standard port offsets.
4683 * @ioaddr: IO address structure to be initialized
4685 * Utility function which initializes data_addr, error_addr,
4686 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4687 * device_addr, status_addr, and command_addr to standard offsets
4688 * relative to cmd_addr.
4690 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4693 void ata_std_ports(struct ata_ioports *ioaddr)
4695 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4696 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4697 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4698 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4699 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4700 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4701 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4702 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4703 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4704 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4707 static struct ata_probe_ent *
4708 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
4710 struct ata_probe_ent *probe_ent;
4712 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
4714 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
4715 kobject_name(&(dev->kobj)));
4719 INIT_LIST_HEAD(&probe_ent->node);
4720 probe_ent->dev = dev;
4722 probe_ent->sht = port->sht;
4723 probe_ent->host_flags = port->host_flags;
4724 probe_ent->pio_mask = port->pio_mask;
4725 probe_ent->mwdma_mask = port->mwdma_mask;
4726 probe_ent->udma_mask = port->udma_mask;
4727 probe_ent->port_ops = port->port_ops;
4736 void ata_pci_host_stop (struct ata_host_set *host_set)
4738 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4740 pci_iounmap(pdev, host_set->mmio_base);
4744 * ata_pci_init_native_mode - Initialize native-mode driver
4745 * @pdev: pci device to be initialized
4746 * @port: array[2] of pointers to port info structures.
4747 * @ports: bitmap of ports present
4749 * Utility function which allocates and initializes an
4750 * ata_probe_ent structure for a standard dual-port
4751 * PIO-based IDE controller. The returned ata_probe_ent
4752 * structure can be passed to ata_device_add(). The returned
4753 * ata_probe_ent structure should then be freed with kfree().
4755 * The caller need only pass the address of the primary port, the
4756 * secondary will be deduced automatically. If the device has non
4757 * standard secondary port mappings this function can be called twice,
4758 * once for each interface.
4761 struct ata_probe_ent *
4762 ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports)
4764 struct ata_probe_ent *probe_ent =
4765 ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
4771 probe_ent->irq = pdev->irq;
4772 probe_ent->irq_flags = SA_SHIRQ;
4773 probe_ent->private_data = port[0]->private_data;
4775 if (ports & ATA_PORT_PRIMARY) {
4776 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0);
4777 probe_ent->port[p].altstatus_addr =
4778 probe_ent->port[p].ctl_addr =
4779 pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
4780 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4);
4781 ata_std_ports(&probe_ent->port[p]);
4785 if (ports & ATA_PORT_SECONDARY) {
4786 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2);
4787 probe_ent->port[p].altstatus_addr =
4788 probe_ent->port[p].ctl_addr =
4789 pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
4790 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4) + 8;
4791 ata_std_ports(&probe_ent->port[p]);
4795 probe_ent->n_ports = p;
4799 static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info *port, int port_num)
4801 struct ata_probe_ent *probe_ent;
4803 probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port);
4807 probe_ent->legacy_mode = 1;
4808 probe_ent->n_ports = 1;
4809 probe_ent->hard_port_no = port_num;
4810 probe_ent->private_data = port->private_data;
4815 probe_ent->irq = 14;
4816 probe_ent->port[0].cmd_addr = 0x1f0;
4817 probe_ent->port[0].altstatus_addr =
4818 probe_ent->port[0].ctl_addr = 0x3f6;
4821 probe_ent->irq = 15;
4822 probe_ent->port[0].cmd_addr = 0x170;
4823 probe_ent->port[0].altstatus_addr =
4824 probe_ent->port[0].ctl_addr = 0x376;
4827 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4) + 8 * port_num;
4828 ata_std_ports(&probe_ent->port[0]);
4833 * ata_pci_init_one - Initialize/register PCI IDE host controller
4834 * @pdev: Controller to be initialized
4835 * @port_info: Information from low-level host driver
4836 * @n_ports: Number of ports attached to host controller
4838 * This is a helper function which can be called from a driver's
4839 * xxx_init_one() probe function if the hardware uses traditional
4840 * IDE taskfile registers.
4842 * This function calls pci_enable_device(), reserves its register
4843 * regions, sets the dma mask, enables bus master mode, and calls
4847 * Inherited from PCI layer (may sleep).
4850 * Zero on success, negative on errno-based value on error.
4853 int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
4854 unsigned int n_ports)
4856 struct ata_probe_ent *probe_ent = NULL, *probe_ent2 = NULL;
4857 struct ata_port_info *port[2];
4859 unsigned int legacy_mode = 0;
4860 int disable_dev_on_err = 1;
4865 port[0] = port_info[0];
4867 port[1] = port_info[1];
4871 if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
4872 && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
4873 /* TODO: What if one channel is in native mode ... */
4874 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
4875 mask = (1 << 2) | (1 << 0);
4876 if ((tmp8 & mask) != mask)
4877 legacy_mode = (1 << 3);
4881 if ((!legacy_mode) && (n_ports > 2)) {
4882 printk(KERN_ERR "ata: BUG: native mode, n_ports > 2\n");
4887 /* FIXME: Really for ATA it isn't safe because the device may be
4888 multi-purpose and we want to leave it alone if it was already
4889 enabled. Secondly for shared use as Arjan says we want refcounting
4891 Checking dev->is_enabled is insufficient as this is not set at
4892 boot for the primary video which is BIOS enabled
4895 rc = pci_enable_device(pdev);
4899 rc = pci_request_regions(pdev, DRV_NAME);
4901 disable_dev_on_err = 0;
4905 /* FIXME: Should use platform specific mappers for legacy port ranges */
4907 if (!request_region(0x1f0, 8, "libata")) {
4908 struct resource *conflict, res;
4910 res.end = 0x1f0 + 8 - 1;
4911 conflict = ____request_resource(&ioport_resource, &res);
4912 if (!strcmp(conflict->name, "libata"))
4913 legacy_mode |= (1 << 0);
4915 disable_dev_on_err = 0;
4916 printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
4919 legacy_mode |= (1 << 0);
4921 if (!request_region(0x170, 8, "libata")) {
4922 struct resource *conflict, res;
4924 res.end = 0x170 + 8 - 1;
4925 conflict = ____request_resource(&ioport_resource, &res);
4926 if (!strcmp(conflict->name, "libata"))
4927 legacy_mode |= (1 << 1);
4929 disable_dev_on_err = 0;
4930 printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
4933 legacy_mode |= (1 << 1);
4936 /* we have legacy mode, but all ports are unavailable */
4937 if (legacy_mode == (1 << 3)) {
4939 goto err_out_regions;
4942 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
4944 goto err_out_regions;
4945 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
4947 goto err_out_regions;
4950 if (legacy_mode & (1 << 0))
4951 probe_ent = ata_pci_init_legacy_port(pdev, port[0], 0);
4952 if (legacy_mode & (1 << 1))
4953 probe_ent2 = ata_pci_init_legacy_port(pdev, port[1], 1);
4956 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY);
4958 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY);
4960 if (!probe_ent && !probe_ent2) {
4962 goto err_out_regions;
4965 pci_set_master(pdev);
4967 /* FIXME: check ata_device_add return */
4969 if (legacy_mode & (1 << 0))
4970 ata_device_add(probe_ent);
4971 if (legacy_mode & (1 << 1))
4972 ata_device_add(probe_ent2);
4974 ata_device_add(probe_ent);
4982 if (legacy_mode & (1 << 0))
4983 release_region(0x1f0, 8);
4984 if (legacy_mode & (1 << 1))
4985 release_region(0x170, 8);
4986 pci_release_regions(pdev);
4988 if (disable_dev_on_err)
4989 pci_disable_device(pdev);
4994 * ata_pci_remove_one - PCI layer callback for device removal
4995 * @pdev: PCI device that was removed
4997 * PCI layer indicates to libata via this hook that
4998 * hot-unplug or module unload event has occurred.
4999 * Handle this by unregistering all objects associated
5000 * with this PCI device. Free those objects. Then finally
5001 * release PCI resources and disable device.
5004 * Inherited from PCI layer (may sleep).
5007 void ata_pci_remove_one (struct pci_dev *pdev)
5009 struct device *dev = pci_dev_to_dev(pdev);
5010 struct ata_host_set *host_set = dev_get_drvdata(dev);
5012 ata_host_set_remove(host_set);
5013 pci_release_regions(pdev);
5014 pci_disable_device(pdev);
5015 dev_set_drvdata(dev, NULL);
5018 /* move to PCI subsystem */
5019 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5021 unsigned long tmp = 0;
5023 switch (bits->width) {
5026 pci_read_config_byte(pdev, bits->reg, &tmp8);
5032 pci_read_config_word(pdev, bits->reg, &tmp16);
5038 pci_read_config_dword(pdev, bits->reg, &tmp32);
5049 return (tmp == bits->val) ? 1 : 0;
5052 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5054 pci_save_state(pdev);
5055 pci_disable_device(pdev);
5056 pci_set_power_state(pdev, PCI_D3hot);
5060 int ata_pci_device_resume(struct pci_dev *pdev)
5062 pci_set_power_state(pdev, PCI_D0);
5063 pci_restore_state(pdev);
5064 pci_enable_device(pdev);
5065 pci_set_master(pdev);
5068 #endif /* CONFIG_PCI */
5071 static int __init ata_init(void)
5073 ata_wq = create_workqueue("ata");
5077 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5081 static void __exit ata_exit(void)
5083 destroy_workqueue(ata_wq);
5086 module_init(ata_init);
5087 module_exit(ata_exit);
5089 static unsigned long ratelimit_time;
5090 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5092 int ata_ratelimit(void)
5095 unsigned long flags;
5097 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5099 if (time_after(jiffies, ratelimit_time)) {
5101 ratelimit_time = jiffies + (HZ/5);
5105 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5111 * libata is essentially a library of internal helper functions for
5112 * low-level ATA host controller drivers. As such, the API/ABI is
5113 * likely to change as new drivers are added and updated.
5114 * Do not depend on ABI/API stability.
5117 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5118 EXPORT_SYMBOL_GPL(ata_std_ports);
5119 EXPORT_SYMBOL_GPL(ata_device_add);
5120 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5121 EXPORT_SYMBOL_GPL(ata_sg_init);
5122 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5123 EXPORT_SYMBOL_GPL(ata_qc_complete);
5124 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5125 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5126 EXPORT_SYMBOL_GPL(ata_tf_load);
5127 EXPORT_SYMBOL_GPL(ata_tf_read);
5128 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5129 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5130 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5131 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5132 EXPORT_SYMBOL_GPL(ata_check_status);
5133 EXPORT_SYMBOL_GPL(ata_altstatus);
5134 EXPORT_SYMBOL_GPL(ata_exec_command);
5135 EXPORT_SYMBOL_GPL(ata_port_start);
5136 EXPORT_SYMBOL_GPL(ata_port_stop);
5137 EXPORT_SYMBOL_GPL(ata_host_stop);
5138 EXPORT_SYMBOL_GPL(ata_interrupt);
5139 EXPORT_SYMBOL_GPL(ata_qc_prep);
5140 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5141 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5142 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5143 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5144 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5145 EXPORT_SYMBOL_GPL(ata_port_probe);
5146 EXPORT_SYMBOL_GPL(sata_phy_reset);
5147 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5148 EXPORT_SYMBOL_GPL(ata_bus_reset);
5149 EXPORT_SYMBOL_GPL(ata_port_disable);
5150 EXPORT_SYMBOL_GPL(ata_ratelimit);
5151 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5152 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5153 EXPORT_SYMBOL_GPL(ata_scsi_error);
5154 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5155 EXPORT_SYMBOL_GPL(ata_scsi_release);
5156 EXPORT_SYMBOL_GPL(ata_host_intr);
5157 EXPORT_SYMBOL_GPL(ata_dev_classify);
5158 EXPORT_SYMBOL_GPL(ata_dev_id_string);
5159 EXPORT_SYMBOL_GPL(ata_dev_config);
5160 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5162 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5163 EXPORT_SYMBOL_GPL(ata_timing_compute);
5164 EXPORT_SYMBOL_GPL(ata_timing_merge);
5167 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5168 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5169 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5170 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5171 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5172 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5173 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5174 #endif /* CONFIG_PCI */
5176 EXPORT_SYMBOL_GPL(ata_device_suspend);
5177 EXPORT_SYMBOL_GPL(ata_device_resume);
5178 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5179 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);