4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/compiler.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
34 * FIXME: remove all knowledge of the buffer layer from the core VM
36 #include <linux/buffer_head.h> /* for generic_osync_inode */
38 #include <asm/uaccess.h>
42 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
43 loff_t offset, unsigned long nr_segs);
46 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * Shared mappings now work. 15.8.1995 Bruno.
51 * finished 'unifying' the page and buffer cache and SMP-threaded the
52 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 * ->i_mmap_lock (vmtruncate)
61 * ->private_lock (__free_pte->__set_page_dirty_buffers)
62 * ->swap_lock (exclusive_swap_page, others)
63 * ->mapping->tree_lock
66 * ->i_mmap_lock (truncate->unmap_mapping_range)
70 * ->page_table_lock or pte_lock (various, mainly in memory.c)
71 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 * ->lock_page (access_process_vm)
80 * ->i_alloc_sem (various)
83 * ->sb_lock (fs/fs-writeback.c)
84 * ->mapping->tree_lock (__sync_single_inode)
87 * ->anon_vma.lock (vma_adjust)
90 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
92 * ->page_table_lock or pte_lock
93 * ->swap_lock (try_to_unmap_one)
94 * ->private_lock (try_to_unmap_one)
95 * ->tree_lock (try_to_unmap_one)
96 * ->zone.lru_lock (follow_page->mark_page_accessed)
97 * ->private_lock (page_remove_rmap->set_page_dirty)
98 * ->tree_lock (page_remove_rmap->set_page_dirty)
99 * ->inode_lock (page_remove_rmap->set_page_dirty)
100 * ->inode_lock (zap_pte_range->set_page_dirty)
101 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
104 * ->dcache_lock (proc_pid_lookup)
108 * Remove a page from the page cache and free it. Caller has to make
109 * sure the page is locked and that nobody else uses it - or that usage
110 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
112 void __remove_from_page_cache(struct page *page)
114 struct address_space *mapping = page->mapping;
116 radix_tree_delete(&mapping->page_tree, page->index);
117 page->mapping = NULL;
122 void remove_from_page_cache(struct page *page)
124 struct address_space *mapping = page->mapping;
126 BUG_ON(!PageLocked(page));
128 write_lock_irq(&mapping->tree_lock);
129 __remove_from_page_cache(page);
130 write_unlock_irq(&mapping->tree_lock);
133 static int sync_page(void *word)
135 struct address_space *mapping;
138 page = container_of((unsigned long *)word, struct page, flags);
141 * page_mapping() is being called without PG_locked held.
142 * Some knowledge of the state and use of the page is used to
143 * reduce the requirements down to a memory barrier.
144 * The danger here is of a stale page_mapping() return value
145 * indicating a struct address_space different from the one it's
146 * associated with when it is associated with one.
147 * After smp_mb(), it's either the correct page_mapping() for
148 * the page, or an old page_mapping() and the page's own
149 * page_mapping() has gone NULL.
150 * The ->sync_page() address_space operation must tolerate
151 * page_mapping() going NULL. By an amazing coincidence,
152 * this comes about because none of the users of the page
153 * in the ->sync_page() methods make essential use of the
154 * page_mapping(), merely passing the page down to the backing
155 * device's unplug functions when it's non-NULL, which in turn
156 * ignore it for all cases but swap, where only page_private(page) is
157 * of interest. When page_mapping() does go NULL, the entire
158 * call stack gracefully ignores the page and returns.
162 mapping = page_mapping(page);
163 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
164 mapping->a_ops->sync_page(page);
170 * filemap_fdatawrite_range - start writeback against all of a mapping's
171 * dirty pages that lie within the byte offsets <start, end>
172 * @mapping: address space structure to write
173 * @start: offset in bytes where the range starts
174 * @end: offset in bytes where the range ends
175 * @sync_mode: enable synchronous operation
177 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
178 * opposed to a regular memory * cleansing writeback. The difference between
179 * these two operations is that if a dirty page/buffer is encountered, it must
180 * be waited upon, and not just skipped over.
182 static int __filemap_fdatawrite_range(struct address_space *mapping,
183 loff_t start, loff_t end, int sync_mode)
186 struct writeback_control wbc = {
187 .sync_mode = sync_mode,
188 .nr_to_write = mapping->nrpages * 2,
193 if (!mapping_cap_writeback_dirty(mapping))
196 ret = do_writepages(mapping, &wbc);
200 static inline int __filemap_fdatawrite(struct address_space *mapping,
203 return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
206 int filemap_fdatawrite(struct address_space *mapping)
208 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
210 EXPORT_SYMBOL(filemap_fdatawrite);
212 static int filemap_fdatawrite_range(struct address_space *mapping,
213 loff_t start, loff_t end)
215 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
219 * This is a mostly non-blocking flush. Not suitable for data-integrity
220 * purposes - I/O may not be started against all dirty pages.
222 int filemap_flush(struct address_space *mapping)
224 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
226 EXPORT_SYMBOL(filemap_flush);
229 * Wait for writeback to complete against pages indexed by start->end
232 static int wait_on_page_writeback_range(struct address_space *mapping,
233 pgoff_t start, pgoff_t end)
243 pagevec_init(&pvec, 0);
245 while ((index <= end) &&
246 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
247 PAGECACHE_TAG_WRITEBACK,
248 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
251 for (i = 0; i < nr_pages; i++) {
252 struct page *page = pvec.pages[i];
254 /* until radix tree lookup accepts end_index */
255 if (page->index > end)
258 wait_on_page_writeback(page);
262 pagevec_release(&pvec);
266 /* Check for outstanding write errors */
267 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
269 if (test_and_clear_bit(AS_EIO, &mapping->flags))
276 * Write and wait upon all the pages in the passed range. This is a "data
277 * integrity" operation. It waits upon in-flight writeout before starting and
278 * waiting upon new writeout. If there was an IO error, return it.
280 * We need to re-take i_mutex during the generic_osync_inode list walk because
281 * it is otherwise livelockable.
283 int sync_page_range(struct inode *inode, struct address_space *mapping,
284 loff_t pos, loff_t count)
286 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
287 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
290 if (!mapping_cap_writeback_dirty(mapping) || !count)
292 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
294 mutex_lock(&inode->i_mutex);
295 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
296 mutex_unlock(&inode->i_mutex);
299 ret = wait_on_page_writeback_range(mapping, start, end);
302 EXPORT_SYMBOL(sync_page_range);
305 * Note: Holding i_mutex across sync_page_range_nolock is not a good idea
306 * as it forces O_SYNC writers to different parts of the same file
307 * to be serialised right until io completion.
309 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
310 loff_t pos, loff_t count)
312 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
313 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
316 if (!mapping_cap_writeback_dirty(mapping) || !count)
318 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
320 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
322 ret = wait_on_page_writeback_range(mapping, start, end);
325 EXPORT_SYMBOL(sync_page_range_nolock);
328 * filemap_fdatawait - walk the list of under-writeback pages of the given
329 * address space and wait for all of them.
331 * @mapping: address space structure to wait for
333 int filemap_fdatawait(struct address_space *mapping)
335 loff_t i_size = i_size_read(mapping->host);
340 return wait_on_page_writeback_range(mapping, 0,
341 (i_size - 1) >> PAGE_CACHE_SHIFT);
343 EXPORT_SYMBOL(filemap_fdatawait);
345 int filemap_write_and_wait(struct address_space *mapping)
349 if (mapping->nrpages) {
350 err = filemap_fdatawrite(mapping);
352 * Even if the above returned error, the pages may be
353 * written partially (e.g. -ENOSPC), so we wait for it.
354 * But the -EIO is special case, it may indicate the worst
355 * thing (e.g. bug) happened, so we avoid waiting for it.
358 int err2 = filemap_fdatawait(mapping);
365 EXPORT_SYMBOL(filemap_write_and_wait);
367 int filemap_write_and_wait_range(struct address_space *mapping,
368 loff_t lstart, loff_t lend)
372 if (mapping->nrpages) {
373 err = __filemap_fdatawrite_range(mapping, lstart, lend,
375 /* See comment of filemap_write_and_wait() */
377 int err2 = wait_on_page_writeback_range(mapping,
378 lstart >> PAGE_CACHE_SHIFT,
379 lend >> PAGE_CACHE_SHIFT);
388 * This function is used to add newly allocated pagecache pages:
389 * the page is new, so we can just run SetPageLocked() against it.
390 * The other page state flags were set by rmqueue().
392 * This function does not add the page to the LRU. The caller must do that.
394 int add_to_page_cache(struct page *page, struct address_space *mapping,
395 pgoff_t offset, gfp_t gfp_mask)
397 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
400 write_lock_irq(&mapping->tree_lock);
401 error = radix_tree_insert(&mapping->page_tree, offset, page);
403 page_cache_get(page);
405 page->mapping = mapping;
406 page->index = offset;
410 write_unlock_irq(&mapping->tree_lock);
411 radix_tree_preload_end();
416 EXPORT_SYMBOL(add_to_page_cache);
418 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
419 pgoff_t offset, gfp_t gfp_mask)
421 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
428 * In order to wait for pages to become available there must be
429 * waitqueues associated with pages. By using a hash table of
430 * waitqueues where the bucket discipline is to maintain all
431 * waiters on the same queue and wake all when any of the pages
432 * become available, and for the woken contexts to check to be
433 * sure the appropriate page became available, this saves space
434 * at a cost of "thundering herd" phenomena during rare hash
437 static wait_queue_head_t *page_waitqueue(struct page *page)
439 const struct zone *zone = page_zone(page);
441 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
444 static inline void wake_up_page(struct page *page, int bit)
446 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
449 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
451 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
453 if (test_bit(bit_nr, &page->flags))
454 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
455 TASK_UNINTERRUPTIBLE);
457 EXPORT_SYMBOL(wait_on_page_bit);
460 * unlock_page() - unlock a locked page
464 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
465 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
466 * mechananism between PageLocked pages and PageWriteback pages is shared.
467 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
469 * The first mb is necessary to safely close the critical section opened by the
470 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
471 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
472 * parallel wait_on_page_locked()).
474 void fastcall unlock_page(struct page *page)
476 smp_mb__before_clear_bit();
477 if (!TestClearPageLocked(page))
479 smp_mb__after_clear_bit();
480 wake_up_page(page, PG_locked);
482 EXPORT_SYMBOL(unlock_page);
485 * End writeback against a page.
487 void end_page_writeback(struct page *page)
489 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
490 if (!test_clear_page_writeback(page))
493 smp_mb__after_clear_bit();
494 wake_up_page(page, PG_writeback);
496 EXPORT_SYMBOL(end_page_writeback);
499 * Get a lock on the page, assuming we need to sleep to get it.
501 * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
502 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
503 * chances are that on the second loop, the block layer's plug list is empty,
504 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
506 void fastcall __lock_page(struct page *page)
508 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
510 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
511 TASK_UNINTERRUPTIBLE);
513 EXPORT_SYMBOL(__lock_page);
516 * a rather lightweight function, finding and getting a reference to a
517 * hashed page atomically.
519 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
523 read_lock_irq(&mapping->tree_lock);
524 page = radix_tree_lookup(&mapping->page_tree, offset);
526 page_cache_get(page);
527 read_unlock_irq(&mapping->tree_lock);
531 EXPORT_SYMBOL(find_get_page);
534 * Same as above, but trylock it instead of incrementing the count.
536 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
540 read_lock_irq(&mapping->tree_lock);
541 page = radix_tree_lookup(&mapping->page_tree, offset);
542 if (page && TestSetPageLocked(page))
544 read_unlock_irq(&mapping->tree_lock);
548 EXPORT_SYMBOL(find_trylock_page);
551 * find_lock_page - locate, pin and lock a pagecache page
553 * @mapping: the address_space to search
554 * @offset: the page index
556 * Locates the desired pagecache page, locks it, increments its reference
557 * count and returns its address.
559 * Returns zero if the page was not present. find_lock_page() may sleep.
561 struct page *find_lock_page(struct address_space *mapping,
562 unsigned long offset)
566 read_lock_irq(&mapping->tree_lock);
568 page = radix_tree_lookup(&mapping->page_tree, offset);
570 page_cache_get(page);
571 if (TestSetPageLocked(page)) {
572 read_unlock_irq(&mapping->tree_lock);
574 read_lock_irq(&mapping->tree_lock);
576 /* Has the page been truncated while we slept? */
577 if (unlikely(page->mapping != mapping ||
578 page->index != offset)) {
580 page_cache_release(page);
585 read_unlock_irq(&mapping->tree_lock);
589 EXPORT_SYMBOL(find_lock_page);
592 * find_or_create_page - locate or add a pagecache page
594 * @mapping: the page's address_space
595 * @index: the page's index into the mapping
596 * @gfp_mask: page allocation mode
598 * Locates a page in the pagecache. If the page is not present, a new page
599 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
600 * LRU list. The returned page is locked and has its reference count
603 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
606 * find_or_create_page() returns the desired page's address, or zero on
609 struct page *find_or_create_page(struct address_space *mapping,
610 unsigned long index, gfp_t gfp_mask)
612 struct page *page, *cached_page = NULL;
615 page = find_lock_page(mapping, index);
618 cached_page = alloc_page(gfp_mask);
622 err = add_to_page_cache_lru(cached_page, mapping,
627 } else if (err == -EEXIST)
631 page_cache_release(cached_page);
635 EXPORT_SYMBOL(find_or_create_page);
638 * find_get_pages - gang pagecache lookup
639 * @mapping: The address_space to search
640 * @start: The starting page index
641 * @nr_pages: The maximum number of pages
642 * @pages: Where the resulting pages are placed
644 * find_get_pages() will search for and return a group of up to
645 * @nr_pages pages in the mapping. The pages are placed at @pages.
646 * find_get_pages() takes a reference against the returned pages.
648 * The search returns a group of mapping-contiguous pages with ascending
649 * indexes. There may be holes in the indices due to not-present pages.
651 * find_get_pages() returns the number of pages which were found.
653 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
654 unsigned int nr_pages, struct page **pages)
659 read_lock_irq(&mapping->tree_lock);
660 ret = radix_tree_gang_lookup(&mapping->page_tree,
661 (void **)pages, start, nr_pages);
662 for (i = 0; i < ret; i++)
663 page_cache_get(pages[i]);
664 read_unlock_irq(&mapping->tree_lock);
669 * Like find_get_pages, except we only return pages which are tagged with
670 * `tag'. We update *index to index the next page for the traversal.
672 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
673 int tag, unsigned int nr_pages, struct page **pages)
678 read_lock_irq(&mapping->tree_lock);
679 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
680 (void **)pages, *index, nr_pages, tag);
681 for (i = 0; i < ret; i++)
682 page_cache_get(pages[i]);
684 *index = pages[ret - 1]->index + 1;
685 read_unlock_irq(&mapping->tree_lock);
690 * Same as grab_cache_page, but do not wait if the page is unavailable.
691 * This is intended for speculative data generators, where the data can
692 * be regenerated if the page couldn't be grabbed. This routine should
693 * be safe to call while holding the lock for another page.
695 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
696 * and deadlock against the caller's locked page.
699 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
701 struct page *page = find_get_page(mapping, index);
705 if (!TestSetPageLocked(page))
707 page_cache_release(page);
710 gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
711 page = alloc_pages(gfp_mask, 0);
712 if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
713 page_cache_release(page);
719 EXPORT_SYMBOL(grab_cache_page_nowait);
722 * This is a generic file read routine, and uses the
723 * mapping->a_ops->readpage() function for the actual low-level
726 * This is really ugly. But the goto's actually try to clarify some
727 * of the logic when it comes to error handling etc.
729 * Note the struct file* is only passed for the use of readpage. It may be
732 void do_generic_mapping_read(struct address_space *mapping,
733 struct file_ra_state *_ra,
736 read_descriptor_t *desc,
739 struct inode *inode = mapping->host;
741 unsigned long end_index;
742 unsigned long offset;
743 unsigned long last_index;
744 unsigned long next_index;
745 unsigned long prev_index;
747 struct page *cached_page;
749 struct file_ra_state ra = *_ra;
752 index = *ppos >> PAGE_CACHE_SHIFT;
754 prev_index = ra.prev_page;
755 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
756 offset = *ppos & ~PAGE_CACHE_MASK;
758 isize = i_size_read(inode);
762 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
765 unsigned long nr, ret;
767 /* nr is the maximum number of bytes to copy from this page */
768 nr = PAGE_CACHE_SIZE;
769 if (index >= end_index) {
770 if (index > end_index)
772 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
780 if (index == next_index)
781 next_index = page_cache_readahead(mapping, &ra, filp,
782 index, last_index - index);
785 page = find_get_page(mapping, index);
786 if (unlikely(page == NULL)) {
787 handle_ra_miss(mapping, &ra, index);
790 if (!PageUptodate(page))
791 goto page_not_up_to_date;
794 /* If users can be writing to this page using arbitrary
795 * virtual addresses, take care about potential aliasing
796 * before reading the page on the kernel side.
798 if (mapping_writably_mapped(mapping))
799 flush_dcache_page(page);
802 * When (part of) the same page is read multiple times
803 * in succession, only mark it as accessed the first time.
805 if (prev_index != index)
806 mark_page_accessed(page);
810 * Ok, we have the page, and it's up-to-date, so
811 * now we can copy it to user space...
813 * The actor routine returns how many bytes were actually used..
814 * NOTE! This may not be the same as how much of a user buffer
815 * we filled up (we may be padding etc), so we can only update
816 * "pos" here (the actor routine has to update the user buffer
817 * pointers and the remaining count).
819 ret = actor(desc, page, offset, nr);
821 index += offset >> PAGE_CACHE_SHIFT;
822 offset &= ~PAGE_CACHE_MASK;
824 page_cache_release(page);
825 if (ret == nr && desc->count)
830 /* Get exclusive access to the page ... */
833 /* Did it get unhashed before we got the lock? */
834 if (!page->mapping) {
836 page_cache_release(page);
840 /* Did somebody else fill it already? */
841 if (PageUptodate(page)) {
847 /* Start the actual read. The read will unlock the page. */
848 error = mapping->a_ops->readpage(filp, page);
850 if (unlikely(error)) {
851 if (error == AOP_TRUNCATED_PAGE) {
852 page_cache_release(page);
858 if (!PageUptodate(page)) {
860 if (!PageUptodate(page)) {
861 if (page->mapping == NULL) {
863 * invalidate_inode_pages got it
866 page_cache_release(page);
877 * i_size must be checked after we have done ->readpage.
879 * Checking i_size after the readpage allows us to calculate
880 * the correct value for "nr", which means the zero-filled
881 * part of the page is not copied back to userspace (unless
882 * another truncate extends the file - this is desired though).
884 isize = i_size_read(inode);
885 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
886 if (unlikely(!isize || index > end_index)) {
887 page_cache_release(page);
891 /* nr is the maximum number of bytes to copy from this page */
892 nr = PAGE_CACHE_SIZE;
893 if (index == end_index) {
894 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
896 page_cache_release(page);
904 /* UHHUH! A synchronous read error occurred. Report it */
906 page_cache_release(page);
911 * Ok, it wasn't cached, so we need to create a new
915 cached_page = page_cache_alloc_cold(mapping);
917 desc->error = -ENOMEM;
921 error = add_to_page_cache_lru(cached_page, mapping,
924 if (error == -EEXIST)
937 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
939 page_cache_release(cached_page);
944 EXPORT_SYMBOL(do_generic_mapping_read);
946 int file_read_actor(read_descriptor_t *desc, struct page *page,
947 unsigned long offset, unsigned long size)
950 unsigned long left, count = desc->count;
956 * Faults on the destination of a read are common, so do it before
959 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
960 kaddr = kmap_atomic(page, KM_USER0);
961 left = __copy_to_user_inatomic(desc->arg.buf,
962 kaddr + offset, size);
963 kunmap_atomic(kaddr, KM_USER0);
968 /* Do it the slow way */
970 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
975 desc->error = -EFAULT;
978 desc->count = count - size;
979 desc->written += size;
980 desc->arg.buf += size;
985 * This is the "read()" routine for all filesystems
986 * that can use the page cache directly.
989 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
990 unsigned long nr_segs, loff_t *ppos)
992 struct file *filp = iocb->ki_filp;
998 for (seg = 0; seg < nr_segs; seg++) {
999 const struct iovec *iv = &iov[seg];
1002 * If any segment has a negative length, or the cumulative
1003 * length ever wraps negative then return -EINVAL.
1005 count += iv->iov_len;
1006 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1008 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1013 count -= iv->iov_len; /* This segment is no good */
1017 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1018 if (filp->f_flags & O_DIRECT) {
1019 loff_t pos = *ppos, size;
1020 struct address_space *mapping;
1021 struct inode *inode;
1023 mapping = filp->f_mapping;
1024 inode = mapping->host;
1027 goto out; /* skip atime */
1028 size = i_size_read(inode);
1030 retval = generic_file_direct_IO(READ, iocb,
1032 if (retval > 0 && !is_sync_kiocb(iocb))
1033 retval = -EIOCBQUEUED;
1035 *ppos = pos + retval;
1037 file_accessed(filp);
1043 for (seg = 0; seg < nr_segs; seg++) {
1044 read_descriptor_t desc;
1047 desc.arg.buf = iov[seg].iov_base;
1048 desc.count = iov[seg].iov_len;
1049 if (desc.count == 0)
1052 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1053 retval += desc.written;
1055 retval = retval ?: desc.error;
1064 EXPORT_SYMBOL(__generic_file_aio_read);
1067 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1069 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1071 BUG_ON(iocb->ki_pos != pos);
1072 return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1075 EXPORT_SYMBOL(generic_file_aio_read);
1078 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1080 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1084 init_sync_kiocb(&kiocb, filp);
1085 ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1086 if (-EIOCBQUEUED == ret)
1087 ret = wait_on_sync_kiocb(&kiocb);
1091 EXPORT_SYMBOL(generic_file_read);
1093 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1096 unsigned long count = desc->count;
1097 struct file *file = desc->arg.data;
1102 written = file->f_op->sendpage(file, page, offset,
1103 size, &file->f_pos, size<count);
1105 desc->error = written;
1108 desc->count = count - written;
1109 desc->written += written;
1113 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1114 size_t count, read_actor_t actor, void *target)
1116 read_descriptor_t desc;
1123 desc.arg.data = target;
1126 do_generic_file_read(in_file, ppos, &desc, actor);
1128 return desc.written;
1132 EXPORT_SYMBOL(generic_file_sendfile);
1135 do_readahead(struct address_space *mapping, struct file *filp,
1136 unsigned long index, unsigned long nr)
1138 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1141 force_page_cache_readahead(mapping, filp, index,
1142 max_sane_readahead(nr));
1146 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1154 if (file->f_mode & FMODE_READ) {
1155 struct address_space *mapping = file->f_mapping;
1156 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1157 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1158 unsigned long len = end - start + 1;
1159 ret = do_readahead(mapping, file, start, len);
1168 * This adds the requested page to the page cache if it isn't already there,
1169 * and schedules an I/O to read in its contents from disk.
1171 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1172 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1174 struct address_space *mapping = file->f_mapping;
1179 page = page_cache_alloc_cold(mapping);
1183 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1185 ret = mapping->a_ops->readpage(file, page);
1186 else if (ret == -EEXIST)
1187 ret = 0; /* losing race to add is OK */
1189 page_cache_release(page);
1191 } while (ret == AOP_TRUNCATED_PAGE);
1196 #define MMAP_LOTSAMISS (100)
1199 * filemap_nopage() is invoked via the vma operations vector for a
1200 * mapped memory region to read in file data during a page fault.
1202 * The goto's are kind of ugly, but this streamlines the normal case of having
1203 * it in the page cache, and handles the special cases reasonably without
1204 * having a lot of duplicated code.
1206 struct page *filemap_nopage(struct vm_area_struct *area,
1207 unsigned long address, int *type)
1210 struct file *file = area->vm_file;
1211 struct address_space *mapping = file->f_mapping;
1212 struct file_ra_state *ra = &file->f_ra;
1213 struct inode *inode = mapping->host;
1215 unsigned long size, pgoff;
1216 int did_readaround = 0, majmin = VM_FAULT_MINOR;
1218 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1221 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1223 goto outside_data_content;
1225 /* If we don't want any read-ahead, don't bother */
1226 if (VM_RandomReadHint(area))
1227 goto no_cached_page;
1230 * The readahead code wants to be told about each and every page
1231 * so it can build and shrink its windows appropriately
1233 * For sequential accesses, we use the generic readahead logic.
1235 if (VM_SequentialReadHint(area))
1236 page_cache_readahead(mapping, ra, file, pgoff, 1);
1239 * Do we have something in the page cache already?
1242 page = find_get_page(mapping, pgoff);
1244 unsigned long ra_pages;
1246 if (VM_SequentialReadHint(area)) {
1247 handle_ra_miss(mapping, ra, pgoff);
1248 goto no_cached_page;
1253 * Do we miss much more than hit in this file? If so,
1254 * stop bothering with read-ahead. It will only hurt.
1256 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1257 goto no_cached_page;
1260 * To keep the pgmajfault counter straight, we need to
1261 * check did_readaround, as this is an inner loop.
1263 if (!did_readaround) {
1264 majmin = VM_FAULT_MAJOR;
1265 inc_page_state(pgmajfault);
1268 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1272 if (pgoff > ra_pages / 2)
1273 start = pgoff - ra_pages / 2;
1274 do_page_cache_readahead(mapping, file, start, ra_pages);
1276 page = find_get_page(mapping, pgoff);
1278 goto no_cached_page;
1281 if (!did_readaround)
1285 * Ok, found a page in the page cache, now we need to check
1286 * that it's up-to-date.
1288 if (!PageUptodate(page))
1289 goto page_not_uptodate;
1293 * Found the page and have a reference on it.
1295 mark_page_accessed(page);
1300 outside_data_content:
1302 * An external ptracer can access pages that normally aren't
1305 if (area->vm_mm == current->mm)
1307 /* Fall through to the non-read-ahead case */
1310 * We're only likely to ever get here if MADV_RANDOM is in
1313 error = page_cache_read(file, pgoff);
1317 * The page we want has now been added to the page cache.
1318 * In the unlikely event that someone removed it in the
1319 * meantime, we'll just come back here and read it again.
1325 * An error return from page_cache_read can result if the
1326 * system is low on memory, or a problem occurs while trying
1329 if (error == -ENOMEM)
1334 if (!did_readaround) {
1335 majmin = VM_FAULT_MAJOR;
1336 inc_page_state(pgmajfault);
1340 /* Did it get unhashed while we waited for it? */
1341 if (!page->mapping) {
1343 page_cache_release(page);
1347 /* Did somebody else get it up-to-date? */
1348 if (PageUptodate(page)) {
1353 error = mapping->a_ops->readpage(file, page);
1355 wait_on_page_locked(page);
1356 if (PageUptodate(page))
1358 } else if (error == AOP_TRUNCATED_PAGE) {
1359 page_cache_release(page);
1364 * Umm, take care of errors if the page isn't up-to-date.
1365 * Try to re-read it _once_. We do this synchronously,
1366 * because there really aren't any performance issues here
1367 * and we need to check for errors.
1371 /* Somebody truncated the page on us? */
1372 if (!page->mapping) {
1374 page_cache_release(page);
1378 /* Somebody else successfully read it in? */
1379 if (PageUptodate(page)) {
1383 ClearPageError(page);
1384 error = mapping->a_ops->readpage(file, page);
1386 wait_on_page_locked(page);
1387 if (PageUptodate(page))
1389 } else if (error == AOP_TRUNCATED_PAGE) {
1390 page_cache_release(page);
1395 * Things didn't work out. Return zero to tell the
1396 * mm layer so, possibly freeing the page cache page first.
1398 page_cache_release(page);
1402 EXPORT_SYMBOL(filemap_nopage);
1404 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1407 struct address_space *mapping = file->f_mapping;
1412 * Do we have something in the page cache already?
1415 page = find_get_page(mapping, pgoff);
1419 goto no_cached_page;
1423 * Ok, found a page in the page cache, now we need to check
1424 * that it's up-to-date.
1426 if (!PageUptodate(page)) {
1428 page_cache_release(page);
1431 goto page_not_uptodate;
1436 * Found the page and have a reference on it.
1438 mark_page_accessed(page);
1442 error = page_cache_read(file, pgoff);
1445 * The page we want has now been added to the page cache.
1446 * In the unlikely event that someone removed it in the
1447 * meantime, we'll just come back here and read it again.
1453 * An error return from page_cache_read can result if the
1454 * system is low on memory, or a problem occurs while trying
1462 /* Did it get unhashed while we waited for it? */
1463 if (!page->mapping) {
1468 /* Did somebody else get it up-to-date? */
1469 if (PageUptodate(page)) {
1474 error = mapping->a_ops->readpage(file, page);
1476 wait_on_page_locked(page);
1477 if (PageUptodate(page))
1479 } else if (error == AOP_TRUNCATED_PAGE) {
1480 page_cache_release(page);
1485 * Umm, take care of errors if the page isn't up-to-date.
1486 * Try to re-read it _once_. We do this synchronously,
1487 * because there really aren't any performance issues here
1488 * and we need to check for errors.
1492 /* Somebody truncated the page on us? */
1493 if (!page->mapping) {
1497 /* Somebody else successfully read it in? */
1498 if (PageUptodate(page)) {
1503 ClearPageError(page);
1504 error = mapping->a_ops->readpage(file, page);
1506 wait_on_page_locked(page);
1507 if (PageUptodate(page))
1509 } else if (error == AOP_TRUNCATED_PAGE) {
1510 page_cache_release(page);
1515 * Things didn't work out. Return zero to tell the
1516 * mm layer so, possibly freeing the page cache page first.
1519 page_cache_release(page);
1524 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1525 unsigned long len, pgprot_t prot, unsigned long pgoff,
1528 struct file *file = vma->vm_file;
1529 struct address_space *mapping = file->f_mapping;
1530 struct inode *inode = mapping->host;
1532 struct mm_struct *mm = vma->vm_mm;
1537 force_page_cache_readahead(mapping, vma->vm_file,
1538 pgoff, len >> PAGE_CACHE_SHIFT);
1541 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1542 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1545 page = filemap_getpage(file, pgoff, nonblock);
1547 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1548 * done in shmem_populate calling shmem_getpage */
1549 if (!page && !nonblock)
1553 err = install_page(mm, vma, addr, page, prot);
1555 page_cache_release(page);
1558 } else if (vma->vm_flags & VM_NONLINEAR) {
1559 /* No page was found just because we can't read it in now (being
1560 * here implies nonblock != 0), but the page may exist, so set
1561 * the PTE to fault it in later. */
1562 err = install_file_pte(mm, vma, addr, pgoff, prot);
1575 EXPORT_SYMBOL(filemap_populate);
1577 struct vm_operations_struct generic_file_vm_ops = {
1578 .nopage = filemap_nopage,
1579 .populate = filemap_populate,
1582 /* This is used for a general mmap of a disk file */
1584 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1586 struct address_space *mapping = file->f_mapping;
1588 if (!mapping->a_ops->readpage)
1590 file_accessed(file);
1591 vma->vm_ops = &generic_file_vm_ops;
1596 * This is for filesystems which do not implement ->writepage.
1598 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1600 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1602 return generic_file_mmap(file, vma);
1605 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1609 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1613 #endif /* CONFIG_MMU */
1615 EXPORT_SYMBOL(generic_file_mmap);
1616 EXPORT_SYMBOL(generic_file_readonly_mmap);
1618 static inline struct page *__read_cache_page(struct address_space *mapping,
1619 unsigned long index,
1620 int (*filler)(void *,struct page*),
1623 struct page *page, *cached_page = NULL;
1626 page = find_get_page(mapping, index);
1629 cached_page = page_cache_alloc_cold(mapping);
1631 return ERR_PTR(-ENOMEM);
1633 err = add_to_page_cache_lru(cached_page, mapping,
1638 /* Presumably ENOMEM for radix tree node */
1639 page_cache_release(cached_page);
1640 return ERR_PTR(err);
1644 err = filler(data, page);
1646 page_cache_release(page);
1647 page = ERR_PTR(err);
1651 page_cache_release(cached_page);
1656 * Read into the page cache. If a page already exists,
1657 * and PageUptodate() is not set, try to fill the page.
1659 struct page *read_cache_page(struct address_space *mapping,
1660 unsigned long index,
1661 int (*filler)(void *,struct page*),
1668 page = __read_cache_page(mapping, index, filler, data);
1671 mark_page_accessed(page);
1672 if (PageUptodate(page))
1676 if (!page->mapping) {
1678 page_cache_release(page);
1681 if (PageUptodate(page)) {
1685 err = filler(data, page);
1687 page_cache_release(page);
1688 page = ERR_PTR(err);
1694 EXPORT_SYMBOL(read_cache_page);
1697 * If the page was newly created, increment its refcount and add it to the
1698 * caller's lru-buffering pagevec. This function is specifically for
1699 * generic_file_write().
1701 static inline struct page *
1702 __grab_cache_page(struct address_space *mapping, unsigned long index,
1703 struct page **cached_page, struct pagevec *lru_pvec)
1708 page = find_lock_page(mapping, index);
1710 if (!*cached_page) {
1711 *cached_page = page_cache_alloc(mapping);
1715 err = add_to_page_cache(*cached_page, mapping,
1720 page = *cached_page;
1721 page_cache_get(page);
1722 if (!pagevec_add(lru_pvec, page))
1723 __pagevec_lru_add(lru_pvec);
1724 *cached_page = NULL;
1731 * The logic we want is
1733 * if suid or (sgid and xgrp)
1736 int remove_suid(struct dentry *dentry)
1738 mode_t mode = dentry->d_inode->i_mode;
1742 /* suid always must be killed */
1743 if (unlikely(mode & S_ISUID))
1744 kill = ATTR_KILL_SUID;
1747 * sgid without any exec bits is just a mandatory locking mark; leave
1748 * it alone. If some exec bits are set, it's a real sgid; kill it.
1750 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1751 kill |= ATTR_KILL_SGID;
1753 if (unlikely(kill && !capable(CAP_FSETID))) {
1754 struct iattr newattrs;
1756 newattrs.ia_valid = ATTR_FORCE | kill;
1757 result = notify_change(dentry, &newattrs);
1761 EXPORT_SYMBOL(remove_suid);
1764 __filemap_copy_from_user_iovec(char *vaddr,
1765 const struct iovec *iov, size_t base, size_t bytes)
1767 size_t copied = 0, left = 0;
1770 char __user *buf = iov->iov_base + base;
1771 int copy = min(bytes, iov->iov_len - base);
1774 left = __copy_from_user_inatomic(vaddr, buf, copy);
1780 if (unlikely(left)) {
1781 /* zero the rest of the target like __copy_from_user */
1783 memset(vaddr, 0, bytes);
1787 return copied - left;
1791 * Performs necessary checks before doing a write
1793 * Can adjust writing position aor amount of bytes to write.
1794 * Returns appropriate error code that caller should return or
1795 * zero in case that write should be allowed.
1797 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1799 struct inode *inode = file->f_mapping->host;
1800 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1802 if (unlikely(*pos < 0))
1806 /* FIXME: this is for backwards compatibility with 2.4 */
1807 if (file->f_flags & O_APPEND)
1808 *pos = i_size_read(inode);
1810 if (limit != RLIM_INFINITY) {
1811 if (*pos >= limit) {
1812 send_sig(SIGXFSZ, current, 0);
1815 if (*count > limit - (typeof(limit))*pos) {
1816 *count = limit - (typeof(limit))*pos;
1824 if (unlikely(*pos + *count > MAX_NON_LFS &&
1825 !(file->f_flags & O_LARGEFILE))) {
1826 if (*pos >= MAX_NON_LFS) {
1827 send_sig(SIGXFSZ, current, 0);
1830 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1831 *count = MAX_NON_LFS - (unsigned long)*pos;
1836 * Are we about to exceed the fs block limit ?
1838 * If we have written data it becomes a short write. If we have
1839 * exceeded without writing data we send a signal and return EFBIG.
1840 * Linus frestrict idea will clean these up nicely..
1842 if (likely(!isblk)) {
1843 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1844 if (*count || *pos > inode->i_sb->s_maxbytes) {
1845 send_sig(SIGXFSZ, current, 0);
1848 /* zero-length writes at ->s_maxbytes are OK */
1851 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1852 *count = inode->i_sb->s_maxbytes - *pos;
1855 if (bdev_read_only(I_BDEV(inode)))
1857 isize = i_size_read(inode);
1858 if (*pos >= isize) {
1859 if (*count || *pos > isize)
1863 if (*pos + *count > isize)
1864 *count = isize - *pos;
1868 EXPORT_SYMBOL(generic_write_checks);
1871 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1872 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1873 size_t count, size_t ocount)
1875 struct file *file = iocb->ki_filp;
1876 struct address_space *mapping = file->f_mapping;
1877 struct inode *inode = mapping->host;
1880 if (count != ocount)
1881 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1883 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1885 loff_t end = pos + written;
1886 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1887 i_size_write(inode, end);
1888 mark_inode_dirty(inode);
1894 * Sync the fs metadata but not the minor inode changes and
1895 * of course not the data as we did direct DMA for the IO.
1896 * i_mutex is held, which protects generic_osync_inode() from
1899 if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1900 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1904 if (written == count && !is_sync_kiocb(iocb))
1905 written = -EIOCBQUEUED;
1908 EXPORT_SYMBOL(generic_file_direct_write);
1911 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1912 unsigned long nr_segs, loff_t pos, loff_t *ppos,
1913 size_t count, ssize_t written)
1915 struct file *file = iocb->ki_filp;
1916 struct address_space * mapping = file->f_mapping;
1917 struct address_space_operations *a_ops = mapping->a_ops;
1918 struct inode *inode = mapping->host;
1921 struct page *cached_page = NULL;
1923 struct pagevec lru_pvec;
1924 const struct iovec *cur_iov = iov; /* current iovec */
1925 size_t iov_base = 0; /* offset in the current iovec */
1928 pagevec_init(&lru_pvec, 0);
1931 * handle partial DIO write. Adjust cur_iov if needed.
1933 if (likely(nr_segs == 1))
1934 buf = iov->iov_base + written;
1936 filemap_set_next_iovec(&cur_iov, &iov_base, written);
1937 buf = cur_iov->iov_base + iov_base;
1941 unsigned long index;
1942 unsigned long offset;
1943 unsigned long maxlen;
1946 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1947 index = pos >> PAGE_CACHE_SHIFT;
1948 bytes = PAGE_CACHE_SIZE - offset;
1953 * Bring in the user page that we will copy from _first_.
1954 * Otherwise there's a nasty deadlock on copying from the
1955 * same page as we're writing to, without it being marked
1958 maxlen = cur_iov->iov_len - iov_base;
1961 fault_in_pages_readable(buf, maxlen);
1963 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1969 status = a_ops->prepare_write(file, page, offset, offset+bytes);
1970 if (unlikely(status)) {
1971 loff_t isize = i_size_read(inode);
1973 if (status != AOP_TRUNCATED_PAGE)
1975 page_cache_release(page);
1976 if (status == AOP_TRUNCATED_PAGE)
1979 * prepare_write() may have instantiated a few blocks
1980 * outside i_size. Trim these off again.
1982 if (pos + bytes > isize)
1983 vmtruncate(inode, isize);
1986 if (likely(nr_segs == 1))
1987 copied = filemap_copy_from_user(page, offset,
1990 copied = filemap_copy_from_user_iovec(page, offset,
1991 cur_iov, iov_base, bytes);
1992 flush_dcache_page(page);
1993 status = a_ops->commit_write(file, page, offset, offset+bytes);
1994 if (status == AOP_TRUNCATED_PAGE) {
1995 page_cache_release(page);
1998 if (likely(copied > 0)) {
2007 if (unlikely(nr_segs > 1)) {
2008 filemap_set_next_iovec(&cur_iov,
2011 buf = cur_iov->iov_base +
2018 if (unlikely(copied != bytes))
2022 mark_page_accessed(page);
2023 page_cache_release(page);
2026 balance_dirty_pages_ratelimited(mapping);
2032 page_cache_release(cached_page);
2035 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2037 if (likely(status >= 0)) {
2038 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2039 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2040 status = generic_osync_inode(inode, mapping,
2041 OSYNC_METADATA|OSYNC_DATA);
2046 * If we get here for O_DIRECT writes then we must have fallen through
2047 * to buffered writes (block instantiation inside i_size). So we sync
2048 * the file data here, to try to honour O_DIRECT expectations.
2050 if (unlikely(file->f_flags & O_DIRECT) && written)
2051 status = filemap_write_and_wait(mapping);
2053 pagevec_lru_add(&lru_pvec);
2054 return written ? written : status;
2056 EXPORT_SYMBOL(generic_file_buffered_write);
2059 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2060 unsigned long nr_segs, loff_t *ppos)
2062 struct file *file = iocb->ki_filp;
2063 struct address_space * mapping = file->f_mapping;
2064 size_t ocount; /* original count */
2065 size_t count; /* after file limit checks */
2066 struct inode *inode = mapping->host;
2073 for (seg = 0; seg < nr_segs; seg++) {
2074 const struct iovec *iv = &iov[seg];
2077 * If any segment has a negative length, or the cumulative
2078 * length ever wraps negative then return -EINVAL.
2080 ocount += iv->iov_len;
2081 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2083 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2088 ocount -= iv->iov_len; /* This segment is no good */
2095 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2097 /* We can write back this queue in page reclaim */
2098 current->backing_dev_info = mapping->backing_dev_info;
2101 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2108 err = remove_suid(file->f_dentry);
2112 file_update_time(file);
2114 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2115 if (unlikely(file->f_flags & O_DIRECT)) {
2116 written = generic_file_direct_write(iocb, iov,
2117 &nr_segs, pos, ppos, count, ocount);
2118 if (written < 0 || written == count)
2121 * direct-io write to a hole: fall through to buffered I/O
2122 * for completing the rest of the request.
2128 written = generic_file_buffered_write(iocb, iov, nr_segs,
2129 pos, ppos, count, written);
2131 current->backing_dev_info = NULL;
2132 return written ? written : err;
2134 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2137 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2138 unsigned long nr_segs, loff_t *ppos)
2140 struct file *file = iocb->ki_filp;
2141 struct address_space *mapping = file->f_mapping;
2142 struct inode *inode = mapping->host;
2146 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2148 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2151 err = sync_page_range_nolock(inode, mapping, pos, ret);
2159 __generic_file_write_nolock(struct file *file, const struct iovec *iov,
2160 unsigned long nr_segs, loff_t *ppos)
2165 init_sync_kiocb(&kiocb, file);
2166 ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2167 if (ret == -EIOCBQUEUED)
2168 ret = wait_on_sync_kiocb(&kiocb);
2173 generic_file_write_nolock(struct file *file, const struct iovec *iov,
2174 unsigned long nr_segs, loff_t *ppos)
2179 init_sync_kiocb(&kiocb, file);
2180 ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2181 if (-EIOCBQUEUED == ret)
2182 ret = wait_on_sync_kiocb(&kiocb);
2185 EXPORT_SYMBOL(generic_file_write_nolock);
2187 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2188 size_t count, loff_t pos)
2190 struct file *file = iocb->ki_filp;
2191 struct address_space *mapping = file->f_mapping;
2192 struct inode *inode = mapping->host;
2194 struct iovec local_iov = { .iov_base = (void __user *)buf,
2197 BUG_ON(iocb->ki_pos != pos);
2199 mutex_lock(&inode->i_mutex);
2200 ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2202 mutex_unlock(&inode->i_mutex);
2204 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2207 err = sync_page_range(inode, mapping, pos, ret);
2213 EXPORT_SYMBOL(generic_file_aio_write);
2215 ssize_t generic_file_write(struct file *file, const char __user *buf,
2216 size_t count, loff_t *ppos)
2218 struct address_space *mapping = file->f_mapping;
2219 struct inode *inode = mapping->host;
2221 struct iovec local_iov = { .iov_base = (void __user *)buf,
2224 mutex_lock(&inode->i_mutex);
2225 ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2226 mutex_unlock(&inode->i_mutex);
2228 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2231 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2237 EXPORT_SYMBOL(generic_file_write);
2239 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2240 unsigned long nr_segs, loff_t *ppos)
2245 init_sync_kiocb(&kiocb, filp);
2246 ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2247 if (-EIOCBQUEUED == ret)
2248 ret = wait_on_sync_kiocb(&kiocb);
2251 EXPORT_SYMBOL(generic_file_readv);
2253 ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2254 unsigned long nr_segs, loff_t *ppos)
2256 struct address_space *mapping = file->f_mapping;
2257 struct inode *inode = mapping->host;
2260 mutex_lock(&inode->i_mutex);
2261 ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2262 mutex_unlock(&inode->i_mutex);
2264 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2267 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2273 EXPORT_SYMBOL(generic_file_writev);
2276 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2277 * went wrong during pagecache shootdown.
2280 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2281 loff_t offset, unsigned long nr_segs)
2283 struct file *file = iocb->ki_filp;
2284 struct address_space *mapping = file->f_mapping;
2286 size_t write_len = 0;
2289 * If it's a write, unmap all mmappings of the file up-front. This
2290 * will cause any pte dirty bits to be propagated into the pageframes
2291 * for the subsequent filemap_write_and_wait().
2294 write_len = iov_length(iov, nr_segs);
2295 if (mapping_mapped(mapping))
2296 unmap_mapping_range(mapping, offset, write_len, 0);
2299 retval = filemap_write_and_wait(mapping);
2301 retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2303 if (rw == WRITE && mapping->nrpages) {
2304 pgoff_t end = (offset + write_len - 1)
2305 >> PAGE_CACHE_SHIFT;
2306 int err = invalidate_inode_pages2_range(mapping,
2307 offset >> PAGE_CACHE_SHIFT, end);