2 * Copyright (c) 2006 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
38 #include <linux/inetdevice.h>
40 #include <net/neighbour.h>
41 #include <net/netevent.h>
42 #include <net/route.h>
45 #include "cxgb3_offload.h"
47 #include "iwch_provider.h"
50 static char *states[] = {
67 module_param(peer2peer, int, 0644);
68 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=0)");
70 static int ep_timeout_secs = 60;
71 module_param(ep_timeout_secs, int, 0644);
72 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
73 "in seconds (default=60)");
75 static int mpa_rev = 1;
76 module_param(mpa_rev, int, 0644);
77 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
78 "1 is spec compliant. (default=1)");
80 static int markers_enabled = 0;
81 module_param(markers_enabled, int, 0644);
82 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
84 static int crc_enabled = 1;
85 module_param(crc_enabled, int, 0644);
86 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
88 static int rcv_win = 256 * 1024;
89 module_param(rcv_win, int, 0644);
90 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256)");
92 static int snd_win = 32 * 1024;
93 module_param(snd_win, int, 0644);
94 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=32KB)");
96 static unsigned int nocong = 0;
97 module_param(nocong, uint, 0644);
98 MODULE_PARM_DESC(nocong, "Turn off congestion control (default=0)");
100 static unsigned int cong_flavor = 1;
101 module_param(cong_flavor, uint, 0644);
102 MODULE_PARM_DESC(cong_flavor, "TCP Congestion control flavor (default=1)");
104 static void process_work(struct work_struct *work);
105 static struct workqueue_struct *workq;
106 static DECLARE_WORK(skb_work, process_work);
108 static struct sk_buff_head rxq;
109 static cxgb3_cpl_handler_func work_handlers[NUM_CPL_CMDS];
111 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
112 static void ep_timeout(unsigned long arg);
113 static void connect_reply_upcall(struct iwch_ep *ep, int status);
115 static void start_ep_timer(struct iwch_ep *ep)
117 PDBG("%s ep %p\n", __func__, ep);
118 if (timer_pending(&ep->timer)) {
119 PDBG("%s stopped / restarted timer ep %p\n", __func__, ep);
120 del_timer_sync(&ep->timer);
123 ep->timer.expires = jiffies + ep_timeout_secs * HZ;
124 ep->timer.data = (unsigned long)ep;
125 ep->timer.function = ep_timeout;
126 add_timer(&ep->timer);
129 static void stop_ep_timer(struct iwch_ep *ep)
131 PDBG("%s ep %p\n", __func__, ep);
132 if (!timer_pending(&ep->timer)) {
133 printk(KERN_ERR "%s timer stopped when its not running! ep %p state %u\n",
134 __func__, ep, ep->com.state);
138 del_timer_sync(&ep->timer);
142 int iwch_l2t_send(struct t3cdev *tdev, struct sk_buff *skb, struct l2t_entry *l2e)
145 struct cxio_rdev *rdev;
147 rdev = (struct cxio_rdev *)tdev->ulp;
148 if (cxio_fatal_error(rdev)) {
152 error = l2t_send(tdev, skb, l2e);
158 int iwch_cxgb3_ofld_send(struct t3cdev *tdev, struct sk_buff *skb)
161 struct cxio_rdev *rdev;
163 rdev = (struct cxio_rdev *)tdev->ulp;
164 if (cxio_fatal_error(rdev)) {
168 error = cxgb3_ofld_send(tdev, skb);
174 static void release_tid(struct t3cdev *tdev, u32 hwtid, struct sk_buff *skb)
176 struct cpl_tid_release *req;
178 skb = get_skb(skb, sizeof *req, GFP_KERNEL);
181 req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
182 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
183 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
184 skb->priority = CPL_PRIORITY_SETUP;
185 iwch_cxgb3_ofld_send(tdev, skb);
189 int iwch_quiesce_tid(struct iwch_ep *ep)
191 struct cpl_set_tcb_field *req;
192 struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
196 req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
197 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
198 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
199 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
202 req->word = htons(W_TCB_RX_QUIESCE);
203 req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
204 req->val = cpu_to_be64(1 << S_TCB_RX_QUIESCE);
206 skb->priority = CPL_PRIORITY_DATA;
207 return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
210 int iwch_resume_tid(struct iwch_ep *ep)
212 struct cpl_set_tcb_field *req;
213 struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
217 req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
218 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
219 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
220 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
223 req->word = htons(W_TCB_RX_QUIESCE);
224 req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
227 skb->priority = CPL_PRIORITY_DATA;
228 return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
231 static void set_emss(struct iwch_ep *ep, u16 opt)
233 PDBG("%s ep %p opt %u\n", __func__, ep, opt);
234 ep->emss = T3C_DATA(ep->com.tdev)->mtus[G_TCPOPT_MSS(opt)] - 40;
235 if (G_TCPOPT_TSTAMP(opt))
239 PDBG("emss=%d\n", ep->emss);
242 static enum iwch_ep_state state_read(struct iwch_ep_common *epc)
245 enum iwch_ep_state state;
247 spin_lock_irqsave(&epc->lock, flags);
249 spin_unlock_irqrestore(&epc->lock, flags);
253 static void __state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
258 static void state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
262 spin_lock_irqsave(&epc->lock, flags);
263 PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]);
264 __state_set(epc, new);
265 spin_unlock_irqrestore(&epc->lock, flags);
269 static void *alloc_ep(int size, gfp_t gfp)
271 struct iwch_ep_common *epc;
273 epc = kzalloc(size, gfp);
275 kref_init(&epc->kref);
276 spin_lock_init(&epc->lock);
277 init_waitqueue_head(&epc->waitq);
279 PDBG("%s alloc ep %p\n", __func__, epc);
283 void __free_ep(struct kref *kref)
286 ep = container_of(container_of(kref, struct iwch_ep_common, kref),
287 struct iwch_ep, com);
288 PDBG("%s ep %p state %s\n", __func__, ep, states[state_read(&ep->com)]);
289 if (ep->com.flags & RELEASE_RESOURCES) {
290 cxgb3_remove_tid(ep->com.tdev, (void *)ep, ep->hwtid);
291 dst_release(ep->dst);
292 l2t_release(L2DATA(ep->com.tdev), ep->l2t);
297 static void release_ep_resources(struct iwch_ep *ep)
299 PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
300 ep->com.flags |= RELEASE_RESOURCES;
304 static void process_work(struct work_struct *work)
306 struct sk_buff *skb = NULL;
311 while ((skb = skb_dequeue(&rxq))) {
312 ep = *((void **) (skb->cb));
313 tdev = *((struct t3cdev **) (skb->cb + sizeof(void *)));
314 ret = work_handlers[G_OPCODE(ntohl((__force __be32)skb->csum))](tdev, skb, ep);
315 if (ret & CPL_RET_BUF_DONE)
319 * ep was referenced in sched(), and is freed here.
321 put_ep((struct iwch_ep_common *)ep);
325 static int status2errno(int status)
330 case CPL_ERR_CONN_RESET:
332 case CPL_ERR_ARP_MISS:
333 return -EHOSTUNREACH;
334 case CPL_ERR_CONN_TIMEDOUT:
336 case CPL_ERR_TCAM_FULL:
338 case CPL_ERR_CONN_EXIST:
346 * Try and reuse skbs already allocated...
348 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
350 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
354 skb = alloc_skb(len, gfp);
359 static struct rtable *find_route(struct t3cdev *dev, __be32 local_ip,
360 __be32 peer_ip, __be16 local_port,
361 __be16 peer_port, u8 tos)
372 .proto = IPPROTO_TCP,
380 if (ip_route_output_flow(&init_net, &rt, &fl, NULL, 0))
385 static unsigned int find_best_mtu(const struct t3c_data *d, unsigned short mtu)
389 while (i < d->nmtus - 1 && d->mtus[i + 1] <= mtu)
394 static void arp_failure_discard(struct t3cdev *dev, struct sk_buff *skb)
396 PDBG("%s t3cdev %p\n", __func__, dev);
401 * Handle an ARP failure for an active open.
403 static void act_open_req_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
405 printk(KERN_ERR MOD "ARP failure duing connect\n");
410 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
413 static void abort_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
415 struct cpl_abort_req *req = cplhdr(skb);
417 PDBG("%s t3cdev %p\n", __func__, dev);
418 req->cmd = CPL_ABORT_NO_RST;
419 iwch_cxgb3_ofld_send(dev, skb);
422 static int send_halfclose(struct iwch_ep *ep, gfp_t gfp)
424 struct cpl_close_con_req *req;
427 PDBG("%s ep %p\n", __func__, ep);
428 skb = get_skb(NULL, sizeof(*req), gfp);
430 printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
433 skb->priority = CPL_PRIORITY_DATA;
434 set_arp_failure_handler(skb, arp_failure_discard);
435 req = (struct cpl_close_con_req *) skb_put(skb, sizeof(*req));
436 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_CLOSE_CON));
437 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
438 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, ep->hwtid));
439 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
442 static int send_abort(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
444 struct cpl_abort_req *req;
446 PDBG("%s ep %p\n", __func__, ep);
447 skb = get_skb(skb, sizeof(*req), gfp);
449 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
453 skb->priority = CPL_PRIORITY_DATA;
454 set_arp_failure_handler(skb, abort_arp_failure);
455 req = (struct cpl_abort_req *) skb_put(skb, sizeof(*req));
456 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_REQ));
457 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
458 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
459 req->cmd = CPL_ABORT_SEND_RST;
460 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
463 static int send_connect(struct iwch_ep *ep)
465 struct cpl_act_open_req *req;
467 u32 opt0h, opt0l, opt2;
468 unsigned int mtu_idx;
471 PDBG("%s ep %p\n", __func__, ep);
473 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
475 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
479 mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
480 wscale = compute_wscale(rcv_win);
485 V_WND_SCALE(wscale) |
487 V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
488 opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
489 opt2 = V_FLAVORS_VALID(1) | V_CONG_CONTROL_FLAVOR(cong_flavor);
490 skb->priority = CPL_PRIORITY_SETUP;
491 set_arp_failure_handler(skb, act_open_req_arp_failure);
493 req = (struct cpl_act_open_req *) skb_put(skb, sizeof(*req));
494 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
495 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, ep->atid));
496 req->local_port = ep->com.local_addr.sin_port;
497 req->peer_port = ep->com.remote_addr.sin_port;
498 req->local_ip = ep->com.local_addr.sin_addr.s_addr;
499 req->peer_ip = ep->com.remote_addr.sin_addr.s_addr;
500 req->opt0h = htonl(opt0h);
501 req->opt0l = htonl(opt0l);
503 req->opt2 = htonl(opt2);
504 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
507 static void send_mpa_req(struct iwch_ep *ep, struct sk_buff *skb)
510 struct tx_data_wr *req;
511 struct mpa_message *mpa;
514 PDBG("%s ep %p pd_len %d\n", __func__, ep, ep->plen);
516 BUG_ON(skb_cloned(skb));
518 mpalen = sizeof(*mpa) + ep->plen;
519 if (skb->data + mpalen + sizeof(*req) > skb_end_pointer(skb)) {
521 skb=alloc_skb(mpalen + sizeof(*req), GFP_KERNEL);
523 connect_reply_upcall(ep, -ENOMEM);
528 skb_reserve(skb, sizeof(*req));
529 skb_put(skb, mpalen);
530 skb->priority = CPL_PRIORITY_DATA;
531 mpa = (struct mpa_message *) skb->data;
532 memset(mpa, 0, sizeof(*mpa));
533 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
534 mpa->flags = (crc_enabled ? MPA_CRC : 0) |
535 (markers_enabled ? MPA_MARKERS : 0);
536 mpa->private_data_size = htons(ep->plen);
537 mpa->revision = mpa_rev;
540 memcpy(mpa->private_data, ep->mpa_pkt + sizeof(*mpa), ep->plen);
543 * Reference the mpa skb. This ensures the data area
544 * will remain in memory until the hw acks the tx.
545 * Function tx_ack() will deref it.
548 set_arp_failure_handler(skb, arp_failure_discard);
549 skb_reset_transport_header(skb);
551 req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
552 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
553 req->wr_lo = htonl(V_WR_TID(ep->hwtid));
554 req->len = htonl(len);
555 req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
556 V_TX_SNDBUF(snd_win>>15));
557 req->flags = htonl(F_TX_INIT);
558 req->sndseq = htonl(ep->snd_seq);
561 iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
563 state_set(&ep->com, MPA_REQ_SENT);
567 static int send_mpa_reject(struct iwch_ep *ep, const void *pdata, u8 plen)
570 struct tx_data_wr *req;
571 struct mpa_message *mpa;
574 PDBG("%s ep %p plen %d\n", __func__, ep, plen);
576 mpalen = sizeof(*mpa) + plen;
578 skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
580 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
583 skb_reserve(skb, sizeof(*req));
584 mpa = (struct mpa_message *) skb_put(skb, mpalen);
585 memset(mpa, 0, sizeof(*mpa));
586 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
587 mpa->flags = MPA_REJECT;
588 mpa->revision = mpa_rev;
589 mpa->private_data_size = htons(plen);
591 memcpy(mpa->private_data, pdata, plen);
594 * Reference the mpa skb again. This ensures the data area
595 * will remain in memory until the hw acks the tx.
596 * Function tx_ack() will deref it.
599 skb->priority = CPL_PRIORITY_DATA;
600 set_arp_failure_handler(skb, arp_failure_discard);
601 skb_reset_transport_header(skb);
602 req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
603 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
604 req->wr_lo = htonl(V_WR_TID(ep->hwtid));
605 req->len = htonl(mpalen);
606 req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
607 V_TX_SNDBUF(snd_win>>15));
608 req->flags = htonl(F_TX_INIT);
609 req->sndseq = htonl(ep->snd_seq);
612 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
615 static int send_mpa_reply(struct iwch_ep *ep, const void *pdata, u8 plen)
618 struct tx_data_wr *req;
619 struct mpa_message *mpa;
623 PDBG("%s ep %p plen %d\n", __func__, ep, plen);
625 mpalen = sizeof(*mpa) + plen;
627 skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
629 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
632 skb->priority = CPL_PRIORITY_DATA;
633 skb_reserve(skb, sizeof(*req));
634 mpa = (struct mpa_message *) skb_put(skb, mpalen);
635 memset(mpa, 0, sizeof(*mpa));
636 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
637 mpa->flags = (ep->mpa_attr.crc_enabled ? MPA_CRC : 0) |
638 (markers_enabled ? MPA_MARKERS : 0);
639 mpa->revision = mpa_rev;
640 mpa->private_data_size = htons(plen);
642 memcpy(mpa->private_data, pdata, plen);
645 * Reference the mpa skb. This ensures the data area
646 * will remain in memory until the hw acks the tx.
647 * Function tx_ack() will deref it.
650 set_arp_failure_handler(skb, arp_failure_discard);
651 skb_reset_transport_header(skb);
653 req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
654 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
655 req->wr_lo = htonl(V_WR_TID(ep->hwtid));
656 req->len = htonl(len);
657 req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
658 V_TX_SNDBUF(snd_win>>15));
659 req->flags = htonl(F_TX_INIT);
660 req->sndseq = htonl(ep->snd_seq);
662 state_set(&ep->com, MPA_REP_SENT);
663 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
666 static int act_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
668 struct iwch_ep *ep = ctx;
669 struct cpl_act_establish *req = cplhdr(skb);
670 unsigned int tid = GET_TID(req);
672 PDBG("%s ep %p tid %d\n", __func__, ep, tid);
674 dst_confirm(ep->dst);
676 /* setup the hwtid for this connection */
678 cxgb3_insert_tid(ep->com.tdev, &t3c_client, ep, tid);
680 ep->snd_seq = ntohl(req->snd_isn);
681 ep->rcv_seq = ntohl(req->rcv_isn);
683 set_emss(ep, ntohs(req->tcp_opt));
685 /* dealloc the atid */
686 cxgb3_free_atid(ep->com.tdev, ep->atid);
688 /* start MPA negotiation */
689 send_mpa_req(ep, skb);
694 static void abort_connection(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
696 PDBG("%s ep %p\n", __FILE__, ep);
697 state_set(&ep->com, ABORTING);
698 send_abort(ep, skb, gfp);
701 static void close_complete_upcall(struct iwch_ep *ep)
703 struct iw_cm_event event;
705 PDBG("%s ep %p\n", __func__, ep);
706 memset(&event, 0, sizeof(event));
707 event.event = IW_CM_EVENT_CLOSE;
709 PDBG("close complete delivered ep %p cm_id %p tid %d\n",
710 ep, ep->com.cm_id, ep->hwtid);
711 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
712 ep->com.cm_id->rem_ref(ep->com.cm_id);
713 ep->com.cm_id = NULL;
718 static void peer_close_upcall(struct iwch_ep *ep)
720 struct iw_cm_event event;
722 PDBG("%s ep %p\n", __func__, ep);
723 memset(&event, 0, sizeof(event));
724 event.event = IW_CM_EVENT_DISCONNECT;
726 PDBG("peer close delivered ep %p cm_id %p tid %d\n",
727 ep, ep->com.cm_id, ep->hwtid);
728 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
732 static void peer_abort_upcall(struct iwch_ep *ep)
734 struct iw_cm_event event;
736 PDBG("%s ep %p\n", __func__, ep);
737 memset(&event, 0, sizeof(event));
738 event.event = IW_CM_EVENT_CLOSE;
739 event.status = -ECONNRESET;
741 PDBG("abort delivered ep %p cm_id %p tid %d\n", ep,
742 ep->com.cm_id, ep->hwtid);
743 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
744 ep->com.cm_id->rem_ref(ep->com.cm_id);
745 ep->com.cm_id = NULL;
750 static void connect_reply_upcall(struct iwch_ep *ep, int status)
752 struct iw_cm_event event;
754 PDBG("%s ep %p status %d\n", __func__, ep, status);
755 memset(&event, 0, sizeof(event));
756 event.event = IW_CM_EVENT_CONNECT_REPLY;
757 event.status = status;
758 event.local_addr = ep->com.local_addr;
759 event.remote_addr = ep->com.remote_addr;
761 if ((status == 0) || (status == -ECONNREFUSED)) {
762 event.private_data_len = ep->plen;
763 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
766 PDBG("%s ep %p tid %d status %d\n", __func__, ep,
768 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
771 ep->com.cm_id->rem_ref(ep->com.cm_id);
772 ep->com.cm_id = NULL;
777 static void connect_request_upcall(struct iwch_ep *ep)
779 struct iw_cm_event event;
781 PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
782 memset(&event, 0, sizeof(event));
783 event.event = IW_CM_EVENT_CONNECT_REQUEST;
784 event.local_addr = ep->com.local_addr;
785 event.remote_addr = ep->com.remote_addr;
786 event.private_data_len = ep->plen;
787 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
788 event.provider_data = ep;
789 if (state_read(&ep->parent_ep->com) != DEAD)
790 ep->parent_ep->com.cm_id->event_handler(
791 ep->parent_ep->com.cm_id,
793 put_ep(&ep->parent_ep->com);
794 ep->parent_ep = NULL;
797 static void established_upcall(struct iwch_ep *ep)
799 struct iw_cm_event event;
801 PDBG("%s ep %p\n", __func__, ep);
802 memset(&event, 0, sizeof(event));
803 event.event = IW_CM_EVENT_ESTABLISHED;
805 PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
806 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
810 static int update_rx_credits(struct iwch_ep *ep, u32 credits)
812 struct cpl_rx_data_ack *req;
815 PDBG("%s ep %p credits %u\n", __func__, ep, credits);
816 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
818 printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
822 req = (struct cpl_rx_data_ack *) skb_put(skb, sizeof(*req));
823 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
824 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RX_DATA_ACK, ep->hwtid));
825 req->credit_dack = htonl(V_RX_CREDITS(credits) | V_RX_FORCE_ACK(1));
826 skb->priority = CPL_PRIORITY_ACK;
827 iwch_cxgb3_ofld_send(ep->com.tdev, skb);
831 static void process_mpa_reply(struct iwch_ep *ep, struct sk_buff *skb)
833 struct mpa_message *mpa;
835 struct iwch_qp_attributes attrs;
836 enum iwch_qp_attr_mask mask;
839 PDBG("%s ep %p\n", __func__, ep);
842 * Stop mpa timer. If it expired, then the state has
843 * changed and we bail since ep_timeout already aborted
847 if (state_read(&ep->com) != MPA_REQ_SENT)
851 * If we get more than the supported amount of private data
852 * then we must fail this connection.
854 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
860 * copy the new data into our accumulation buffer.
862 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
864 ep->mpa_pkt_len += skb->len;
867 * if we don't even have the mpa message, then bail.
869 if (ep->mpa_pkt_len < sizeof(*mpa))
871 mpa = (struct mpa_message *) ep->mpa_pkt;
873 /* Validate MPA header. */
874 if (mpa->revision != mpa_rev) {
878 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
883 plen = ntohs(mpa->private_data_size);
886 * Fail if there's too much private data.
888 if (plen > MPA_MAX_PRIVATE_DATA) {
894 * If plen does not account for pkt size
896 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
901 ep->plen = (u8) plen;
904 * If we don't have all the pdata yet, then bail.
905 * We'll continue process when more data arrives.
907 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
910 if (mpa->flags & MPA_REJECT) {
916 * If we get here we have accumulated the entire mpa
917 * start reply message including private data. And
918 * the MPA header is valid.
920 state_set(&ep->com, FPDU_MODE);
921 ep->mpa_attr.initiator = 1;
922 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
923 ep->mpa_attr.recv_marker_enabled = markers_enabled;
924 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
925 ep->mpa_attr.version = mpa_rev;
926 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
927 "xmit_marker_enabled=%d, version=%d\n", __func__,
928 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
929 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
931 attrs.mpa_attr = ep->mpa_attr;
932 attrs.max_ird = ep->ird;
933 attrs.max_ord = ep->ord;
934 attrs.llp_stream_handle = ep;
935 attrs.next_state = IWCH_QP_STATE_RTS;
937 mask = IWCH_QP_ATTR_NEXT_STATE |
938 IWCH_QP_ATTR_LLP_STREAM_HANDLE | IWCH_QP_ATTR_MPA_ATTR |
939 IWCH_QP_ATTR_MAX_IRD | IWCH_QP_ATTR_MAX_ORD;
941 /* bind QP and TID with INIT_WR */
942 err = iwch_modify_qp(ep->com.qp->rhp,
943 ep->com.qp, mask, &attrs, 1);
947 if (peer2peer && iwch_rqes_posted(ep->com.qp) == 0) {
948 iwch_post_zb_read(ep->com.qp);
953 abort_connection(ep, skb, GFP_KERNEL);
955 connect_reply_upcall(ep, err);
959 static void process_mpa_request(struct iwch_ep *ep, struct sk_buff *skb)
961 struct mpa_message *mpa;
964 PDBG("%s ep %p\n", __func__, ep);
967 * Stop mpa timer. If it expired, then the state has
968 * changed and we bail since ep_timeout already aborted
972 if (state_read(&ep->com) != MPA_REQ_WAIT)
976 * If we get more than the supported amount of private data
977 * then we must fail this connection.
979 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
980 abort_connection(ep, skb, GFP_KERNEL);
984 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
987 * Copy the new data into our accumulation buffer.
989 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
991 ep->mpa_pkt_len += skb->len;
994 * If we don't even have the mpa message, then bail.
995 * We'll continue process when more data arrives.
997 if (ep->mpa_pkt_len < sizeof(*mpa))
999 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
1000 mpa = (struct mpa_message *) ep->mpa_pkt;
1003 * Validate MPA Header.
1005 if (mpa->revision != mpa_rev) {
1006 abort_connection(ep, skb, GFP_KERNEL);
1010 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) {
1011 abort_connection(ep, skb, GFP_KERNEL);
1015 plen = ntohs(mpa->private_data_size);
1018 * Fail if there's too much private data.
1020 if (plen > MPA_MAX_PRIVATE_DATA) {
1021 abort_connection(ep, skb, GFP_KERNEL);
1026 * If plen does not account for pkt size
1028 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1029 abort_connection(ep, skb, GFP_KERNEL);
1032 ep->plen = (u8) plen;
1035 * If we don't have all the pdata yet, then bail.
1037 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1041 * If we get here we have accumulated the entire mpa
1042 * start reply message including private data.
1044 ep->mpa_attr.initiator = 0;
1045 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1046 ep->mpa_attr.recv_marker_enabled = markers_enabled;
1047 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1048 ep->mpa_attr.version = mpa_rev;
1049 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1050 "xmit_marker_enabled=%d, version=%d\n", __func__,
1051 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1052 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
1054 state_set(&ep->com, MPA_REQ_RCVD);
1057 connect_request_upcall(ep);
1061 static int rx_data(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1063 struct iwch_ep *ep = ctx;
1064 struct cpl_rx_data *hdr = cplhdr(skb);
1065 unsigned int dlen = ntohs(hdr->len);
1067 PDBG("%s ep %p dlen %u\n", __func__, ep, dlen);
1069 skb_pull(skb, sizeof(*hdr));
1070 skb_trim(skb, dlen);
1072 ep->rcv_seq += dlen;
1073 BUG_ON(ep->rcv_seq != (ntohl(hdr->seq) + dlen));
1075 switch (state_read(&ep->com)) {
1077 process_mpa_reply(ep, skb);
1080 process_mpa_request(ep, skb);
1085 printk(KERN_ERR MOD "%s Unexpected streaming data."
1086 " ep %p state %d tid %d\n",
1087 __func__, ep, state_read(&ep->com), ep->hwtid);
1090 * The ep will timeout and inform the ULP of the failure.
1096 /* update RX credits */
1097 update_rx_credits(ep, dlen);
1099 return CPL_RET_BUF_DONE;
1103 * Upcall from the adapter indicating data has been transmitted.
1104 * For us its just the single MPA request or reply. We can now free
1105 * the skb holding the mpa message.
1107 static int tx_ack(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1109 struct iwch_ep *ep = ctx;
1110 struct cpl_wr_ack *hdr = cplhdr(skb);
1111 unsigned int credits = ntohs(hdr->credits);
1113 PDBG("%s ep %p credits %u\n", __func__, ep, credits);
1116 PDBG(KERN_ERR "%s 0 credit ack ep %p state %u\n",
1117 __func__, ep, state_read(&ep->com));
1118 return CPL_RET_BUF_DONE;
1121 BUG_ON(credits != 1);
1122 dst_confirm(ep->dst);
1124 PDBG("%s rdma_init wr_ack ep %p state %u\n",
1125 __func__, ep, state_read(&ep->com));
1126 if (ep->mpa_attr.initiator) {
1127 PDBG("%s initiator ep %p state %u\n",
1128 __func__, ep, state_read(&ep->com));
1130 iwch_post_zb_read(ep->com.qp);
1132 PDBG("%s responder ep %p state %u\n",
1133 __func__, ep, state_read(&ep->com));
1134 ep->com.rpl_done = 1;
1135 wake_up(&ep->com.waitq);
1138 PDBG("%s lsm ack ep %p state %u freeing skb\n",
1139 __func__, ep, state_read(&ep->com));
1140 kfree_skb(ep->mpa_skb);
1143 return CPL_RET_BUF_DONE;
1146 static int abort_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1148 struct iwch_ep *ep = ctx;
1149 unsigned long flags;
1152 PDBG("%s ep %p\n", __func__, ep);
1156 * We get 2 abort replies from the HW. The first one must
1157 * be ignored except for scribbling that we need one more.
1159 if (!(ep->com.flags & ABORT_REQ_IN_PROGRESS)) {
1160 ep->com.flags |= ABORT_REQ_IN_PROGRESS;
1161 return CPL_RET_BUF_DONE;
1164 spin_lock_irqsave(&ep->com.lock, flags);
1165 switch (ep->com.state) {
1167 close_complete_upcall(ep);
1168 __state_set(&ep->com, DEAD);
1172 printk(KERN_ERR "%s ep %p state %d\n",
1173 __func__, ep, ep->com.state);
1176 spin_unlock_irqrestore(&ep->com.lock, flags);
1179 release_ep_resources(ep);
1180 return CPL_RET_BUF_DONE;
1184 * Return whether a failed active open has allocated a TID
1186 static inline int act_open_has_tid(int status)
1188 return status != CPL_ERR_TCAM_FULL && status != CPL_ERR_CONN_EXIST &&
1189 status != CPL_ERR_ARP_MISS;
1192 static int act_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1194 struct iwch_ep *ep = ctx;
1195 struct cpl_act_open_rpl *rpl = cplhdr(skb);
1197 PDBG("%s ep %p status %u errno %d\n", __func__, ep, rpl->status,
1198 status2errno(rpl->status));
1199 connect_reply_upcall(ep, status2errno(rpl->status));
1200 state_set(&ep->com, DEAD);
1201 if (ep->com.tdev->type != T3A && act_open_has_tid(rpl->status))
1202 release_tid(ep->com.tdev, GET_TID(rpl), NULL);
1203 cxgb3_free_atid(ep->com.tdev, ep->atid);
1204 dst_release(ep->dst);
1205 l2t_release(L2DATA(ep->com.tdev), ep->l2t);
1207 return CPL_RET_BUF_DONE;
1210 static int listen_start(struct iwch_listen_ep *ep)
1212 struct sk_buff *skb;
1213 struct cpl_pass_open_req *req;
1215 PDBG("%s ep %p\n", __func__, ep);
1216 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1218 printk(KERN_ERR MOD "t3c_listen_start failed to alloc skb!\n");
1222 req = (struct cpl_pass_open_req *) skb_put(skb, sizeof(*req));
1223 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1224 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, ep->stid));
1225 req->local_port = ep->com.local_addr.sin_port;
1226 req->local_ip = ep->com.local_addr.sin_addr.s_addr;
1229 req->peer_netmask = 0;
1230 req->opt0h = htonl(F_DELACK | F_TCAM_BYPASS);
1231 req->opt0l = htonl(V_RCV_BUFSIZ(rcv_win>>10));
1232 req->opt1 = htonl(V_CONN_POLICY(CPL_CONN_POLICY_ASK));
1235 return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
1238 static int pass_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1240 struct iwch_listen_ep *ep = ctx;
1241 struct cpl_pass_open_rpl *rpl = cplhdr(skb);
1243 PDBG("%s ep %p status %d error %d\n", __func__, ep,
1244 rpl->status, status2errno(rpl->status));
1245 ep->com.rpl_err = status2errno(rpl->status);
1246 ep->com.rpl_done = 1;
1247 wake_up(&ep->com.waitq);
1249 return CPL_RET_BUF_DONE;
1252 static int listen_stop(struct iwch_listen_ep *ep)
1254 struct sk_buff *skb;
1255 struct cpl_close_listserv_req *req;
1257 PDBG("%s ep %p\n", __func__, ep);
1258 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1260 printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
1263 req = (struct cpl_close_listserv_req *) skb_put(skb, sizeof(*req));
1264 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1266 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, ep->stid));
1268 return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
1271 static int close_listsrv_rpl(struct t3cdev *tdev, struct sk_buff *skb,
1274 struct iwch_listen_ep *ep = ctx;
1275 struct cpl_close_listserv_rpl *rpl = cplhdr(skb);
1277 PDBG("%s ep %p\n", __func__, ep);
1278 ep->com.rpl_err = status2errno(rpl->status);
1279 ep->com.rpl_done = 1;
1280 wake_up(&ep->com.waitq);
1281 return CPL_RET_BUF_DONE;
1284 static void accept_cr(struct iwch_ep *ep, __be32 peer_ip, struct sk_buff *skb)
1286 struct cpl_pass_accept_rpl *rpl;
1287 unsigned int mtu_idx;
1288 u32 opt0h, opt0l, opt2;
1291 PDBG("%s ep %p\n", __func__, ep);
1292 BUG_ON(skb_cloned(skb));
1293 skb_trim(skb, sizeof(*rpl));
1295 mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
1296 wscale = compute_wscale(rcv_win);
1297 opt0h = V_NAGLE(0) |
1301 V_WND_SCALE(wscale) |
1302 V_MSS_IDX(mtu_idx) |
1303 V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
1304 opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
1305 opt2 = V_FLAVORS_VALID(1) | V_CONG_CONTROL_FLAVOR(cong_flavor);
1308 rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1309 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, ep->hwtid));
1310 rpl->peer_ip = peer_ip;
1311 rpl->opt0h = htonl(opt0h);
1312 rpl->opt0l_status = htonl(opt0l | CPL_PASS_OPEN_ACCEPT);
1313 rpl->opt2 = htonl(opt2);
1314 rpl->rsvd = rpl->opt2; /* workaround for HW bug */
1315 skb->priority = CPL_PRIORITY_SETUP;
1316 iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
1321 static void reject_cr(struct t3cdev *tdev, u32 hwtid, __be32 peer_ip,
1322 struct sk_buff *skb)
1324 PDBG("%s t3cdev %p tid %u peer_ip %x\n", __func__, tdev, hwtid,
1326 BUG_ON(skb_cloned(skb));
1327 skb_trim(skb, sizeof(struct cpl_tid_release));
1330 if (tdev->type != T3A)
1331 release_tid(tdev, hwtid, skb);
1333 struct cpl_pass_accept_rpl *rpl;
1336 skb->priority = CPL_PRIORITY_SETUP;
1337 rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1338 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
1340 rpl->peer_ip = peer_ip;
1341 rpl->opt0h = htonl(F_TCAM_BYPASS);
1342 rpl->opt0l_status = htonl(CPL_PASS_OPEN_REJECT);
1344 rpl->rsvd = rpl->opt2;
1345 iwch_cxgb3_ofld_send(tdev, skb);
1349 static int pass_accept_req(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1351 struct iwch_ep *child_ep, *parent_ep = ctx;
1352 struct cpl_pass_accept_req *req = cplhdr(skb);
1353 unsigned int hwtid = GET_TID(req);
1354 struct dst_entry *dst;
1355 struct l2t_entry *l2t;
1359 PDBG("%s parent ep %p tid %u\n", __func__, parent_ep, hwtid);
1361 if (state_read(&parent_ep->com) != LISTEN) {
1362 printk(KERN_ERR "%s - listening ep not in LISTEN\n",
1368 * Find the netdev for this connection request.
1370 tim.mac_addr = req->dst_mac;
1371 tim.vlan_tag = ntohs(req->vlan_tag);
1372 if (tdev->ctl(tdev, GET_IFF_FROM_MAC, &tim) < 0 || !tim.dev) {
1374 "%s bad dst mac %02x %02x %02x %02x %02x %02x\n",
1385 /* Find output route */
1386 rt = find_route(tdev,
1390 req->peer_port, G_PASS_OPEN_TOS(ntohl(req->tos_tid)));
1392 printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
1397 l2t = t3_l2t_get(tdev, dst->neighbour, dst->neighbour->dev);
1399 printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
1404 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
1406 printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
1408 l2t_release(L2DATA(tdev), l2t);
1412 state_set(&child_ep->com, CONNECTING);
1413 child_ep->com.tdev = tdev;
1414 child_ep->com.cm_id = NULL;
1415 child_ep->com.local_addr.sin_family = PF_INET;
1416 child_ep->com.local_addr.sin_port = req->local_port;
1417 child_ep->com.local_addr.sin_addr.s_addr = req->local_ip;
1418 child_ep->com.remote_addr.sin_family = PF_INET;
1419 child_ep->com.remote_addr.sin_port = req->peer_port;
1420 child_ep->com.remote_addr.sin_addr.s_addr = req->peer_ip;
1421 get_ep(&parent_ep->com);
1422 child_ep->parent_ep = parent_ep;
1423 child_ep->tos = G_PASS_OPEN_TOS(ntohl(req->tos_tid));
1424 child_ep->l2t = l2t;
1425 child_ep->dst = dst;
1426 child_ep->hwtid = hwtid;
1427 init_timer(&child_ep->timer);
1428 cxgb3_insert_tid(tdev, &t3c_client, child_ep, hwtid);
1429 accept_cr(child_ep, req->peer_ip, skb);
1432 reject_cr(tdev, hwtid, req->peer_ip, skb);
1434 return CPL_RET_BUF_DONE;
1437 static int pass_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1439 struct iwch_ep *ep = ctx;
1440 struct cpl_pass_establish *req = cplhdr(skb);
1442 PDBG("%s ep %p\n", __func__, ep);
1443 ep->snd_seq = ntohl(req->snd_isn);
1444 ep->rcv_seq = ntohl(req->rcv_isn);
1446 set_emss(ep, ntohs(req->tcp_opt));
1448 dst_confirm(ep->dst);
1449 state_set(&ep->com, MPA_REQ_WAIT);
1452 return CPL_RET_BUF_DONE;
1455 static int peer_close(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1457 struct iwch_ep *ep = ctx;
1458 struct iwch_qp_attributes attrs;
1459 unsigned long flags;
1463 PDBG("%s ep %p\n", __func__, ep);
1464 dst_confirm(ep->dst);
1466 spin_lock_irqsave(&ep->com.lock, flags);
1467 switch (ep->com.state) {
1469 __state_set(&ep->com, CLOSING);
1472 __state_set(&ep->com, CLOSING);
1473 connect_reply_upcall(ep, -ECONNRESET);
1478 * We're gonna mark this puppy DEAD, but keep
1479 * the reference on it until the ULP accepts or
1482 __state_set(&ep->com, CLOSING);
1486 __state_set(&ep->com, CLOSING);
1487 ep->com.rpl_done = 1;
1488 ep->com.rpl_err = -ECONNRESET;
1489 PDBG("waking up ep %p\n", ep);
1490 wake_up(&ep->com.waitq);
1494 __state_set(&ep->com, CLOSING);
1495 attrs.next_state = IWCH_QP_STATE_CLOSING;
1496 iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
1497 IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
1498 peer_close_upcall(ep);
1504 __state_set(&ep->com, MORIBUND);
1509 if (ep->com.cm_id && ep->com.qp) {
1510 attrs.next_state = IWCH_QP_STATE_IDLE;
1511 iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
1512 IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
1514 close_complete_upcall(ep);
1515 __state_set(&ep->com, DEAD);
1525 spin_unlock_irqrestore(&ep->com.lock, flags);
1527 iwch_ep_disconnect(ep, 0, GFP_KERNEL);
1529 release_ep_resources(ep);
1530 return CPL_RET_BUF_DONE;
1534 * Returns whether an ABORT_REQ_RSS message is a negative advice.
1536 static int is_neg_adv_abort(unsigned int status)
1538 return status == CPL_ERR_RTX_NEG_ADVICE ||
1539 status == CPL_ERR_PERSIST_NEG_ADVICE;
1542 static int peer_abort(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1544 struct cpl_abort_req_rss *req = cplhdr(skb);
1545 struct iwch_ep *ep = ctx;
1546 struct cpl_abort_rpl *rpl;
1547 struct sk_buff *rpl_skb;
1548 struct iwch_qp_attributes attrs;
1551 unsigned long flags;
1553 if (is_neg_adv_abort(req->status)) {
1554 PDBG("%s neg_adv_abort ep %p tid %d\n", __func__, ep,
1556 t3_l2t_send_event(ep->com.tdev, ep->l2t);
1557 return CPL_RET_BUF_DONE;
1561 * We get 2 peer aborts from the HW. The first one must
1562 * be ignored except for scribbling that we need one more.
1564 if (!(ep->com.flags & PEER_ABORT_IN_PROGRESS)) {
1565 ep->com.flags |= PEER_ABORT_IN_PROGRESS;
1566 return CPL_RET_BUF_DONE;
1569 spin_lock_irqsave(&ep->com.lock, flags);
1570 PDBG("%s ep %p state %u\n", __func__, ep, ep->com.state);
1571 switch (ep->com.state) {
1579 connect_reply_upcall(ep, -ECONNRESET);
1582 ep->com.rpl_done = 1;
1583 ep->com.rpl_err = -ECONNRESET;
1584 PDBG("waking up ep %p\n", ep);
1585 wake_up(&ep->com.waitq);
1590 * We're gonna mark this puppy DEAD, but keep
1591 * the reference on it until the ULP accepts or
1601 if (ep->com.cm_id && ep->com.qp) {
1602 attrs.next_state = IWCH_QP_STATE_ERROR;
1603 ret = iwch_modify_qp(ep->com.qp->rhp,
1604 ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1608 "%s - qp <- error failed!\n",
1611 peer_abort_upcall(ep);
1616 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
1617 spin_unlock_irqrestore(&ep->com.lock, flags);
1618 return CPL_RET_BUF_DONE;
1623 dst_confirm(ep->dst);
1624 if (ep->com.state != ABORTING) {
1625 __state_set(&ep->com, DEAD);
1628 spin_unlock_irqrestore(&ep->com.lock, flags);
1630 rpl_skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL);
1632 printk(KERN_ERR MOD "%s - cannot allocate skb!\n",
1637 rpl_skb->priority = CPL_PRIORITY_DATA;
1638 rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
1639 rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
1640 rpl->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
1641 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
1642 rpl->cmd = CPL_ABORT_NO_RST;
1643 iwch_cxgb3_ofld_send(ep->com.tdev, rpl_skb);
1646 release_ep_resources(ep);
1647 return CPL_RET_BUF_DONE;
1650 static int close_con_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1652 struct iwch_ep *ep = ctx;
1653 struct iwch_qp_attributes attrs;
1654 unsigned long flags;
1657 PDBG("%s ep %p\n", __func__, ep);
1660 /* The cm_id may be null if we failed to connect */
1661 spin_lock_irqsave(&ep->com.lock, flags);
1662 switch (ep->com.state) {
1664 __state_set(&ep->com, MORIBUND);
1668 if ((ep->com.cm_id) && (ep->com.qp)) {
1669 attrs.next_state = IWCH_QP_STATE_IDLE;
1670 iwch_modify_qp(ep->com.qp->rhp,
1672 IWCH_QP_ATTR_NEXT_STATE,
1675 close_complete_upcall(ep);
1676 __state_set(&ep->com, DEAD);
1686 spin_unlock_irqrestore(&ep->com.lock, flags);
1688 release_ep_resources(ep);
1689 return CPL_RET_BUF_DONE;
1693 * T3A does 3 things when a TERM is received:
1694 * 1) send up a CPL_RDMA_TERMINATE message with the TERM packet
1695 * 2) generate an async event on the QP with the TERMINATE opcode
1696 * 3) post a TERMINATE opcde cqe into the associated CQ.
1698 * For (1), we save the message in the qp for later consumer consumption.
1699 * For (2), we move the QP into TERMINATE, post a QP event and disconnect.
1700 * For (3), we toss the CQE in cxio_poll_cq().
1702 * terminate() handles case (1)...
1704 static int terminate(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1706 struct iwch_ep *ep = ctx;
1708 if (state_read(&ep->com) != FPDU_MODE)
1709 return CPL_RET_BUF_DONE;
1711 PDBG("%s ep %p\n", __func__, ep);
1712 skb_pull(skb, sizeof(struct cpl_rdma_terminate));
1713 PDBG("%s saving %d bytes of term msg\n", __func__, skb->len);
1714 skb_copy_from_linear_data(skb, ep->com.qp->attr.terminate_buffer,
1716 ep->com.qp->attr.terminate_msg_len = skb->len;
1717 ep->com.qp->attr.is_terminate_local = 0;
1718 return CPL_RET_BUF_DONE;
1721 static int ec_status(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1723 struct cpl_rdma_ec_status *rep = cplhdr(skb);
1724 struct iwch_ep *ep = ctx;
1726 PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid,
1729 struct iwch_qp_attributes attrs;
1731 printk(KERN_ERR MOD "%s BAD CLOSE - Aborting tid %u\n",
1732 __func__, ep->hwtid);
1734 attrs.next_state = IWCH_QP_STATE_ERROR;
1735 iwch_modify_qp(ep->com.qp->rhp,
1736 ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1738 abort_connection(ep, NULL, GFP_KERNEL);
1740 return CPL_RET_BUF_DONE;
1743 static void ep_timeout(unsigned long arg)
1745 struct iwch_ep *ep = (struct iwch_ep *)arg;
1746 struct iwch_qp_attributes attrs;
1747 unsigned long flags;
1750 spin_lock_irqsave(&ep->com.lock, flags);
1751 PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid,
1753 switch (ep->com.state) {
1755 __state_set(&ep->com, ABORTING);
1756 connect_reply_upcall(ep, -ETIMEDOUT);
1759 __state_set(&ep->com, ABORTING);
1763 if (ep->com.cm_id && ep->com.qp) {
1764 attrs.next_state = IWCH_QP_STATE_ERROR;
1765 iwch_modify_qp(ep->com.qp->rhp,
1766 ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1769 __state_set(&ep->com, ABORTING);
1772 printk(KERN_ERR "%s unexpected state ep %p state %u\n",
1773 __func__, ep, ep->com.state);
1777 spin_unlock_irqrestore(&ep->com.lock, flags);
1779 abort_connection(ep, NULL, GFP_ATOMIC);
1783 int iwch_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
1786 struct iwch_ep *ep = to_ep(cm_id);
1787 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1789 if (state_read(&ep->com) == DEAD) {
1793 BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
1795 abort_connection(ep, NULL, GFP_KERNEL);
1797 err = send_mpa_reject(ep, pdata, pdata_len);
1798 err = iwch_ep_disconnect(ep, 0, GFP_KERNEL);
1803 int iwch_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
1806 struct iwch_qp_attributes attrs;
1807 enum iwch_qp_attr_mask mask;
1808 struct iwch_ep *ep = to_ep(cm_id);
1809 struct iwch_dev *h = to_iwch_dev(cm_id->device);
1810 struct iwch_qp *qp = get_qhp(h, conn_param->qpn);
1812 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1813 if (state_read(&ep->com) == DEAD)
1816 BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
1819 if ((conn_param->ord > qp->rhp->attr.max_rdma_read_qp_depth) ||
1820 (conn_param->ird > qp->rhp->attr.max_rdma_reads_per_qp)) {
1821 abort_connection(ep, NULL, GFP_KERNEL);
1825 cm_id->add_ref(cm_id);
1826 ep->com.cm_id = cm_id;
1829 ep->com.rpl_done = 0;
1830 ep->com.rpl_err = 0;
1831 ep->ird = conn_param->ird;
1832 ep->ord = conn_param->ord;
1834 if (peer2peer && ep->ird == 0)
1837 PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord);
1841 /* bind QP to EP and move to RTS */
1842 attrs.mpa_attr = ep->mpa_attr;
1843 attrs.max_ird = ep->ird;
1844 attrs.max_ord = ep->ord;
1845 attrs.llp_stream_handle = ep;
1846 attrs.next_state = IWCH_QP_STATE_RTS;
1848 /* bind QP and TID with INIT_WR */
1849 mask = IWCH_QP_ATTR_NEXT_STATE |
1850 IWCH_QP_ATTR_LLP_STREAM_HANDLE |
1851 IWCH_QP_ATTR_MPA_ATTR |
1852 IWCH_QP_ATTR_MAX_IRD |
1853 IWCH_QP_ATTR_MAX_ORD;
1855 err = iwch_modify_qp(ep->com.qp->rhp,
1856 ep->com.qp, mask, &attrs, 1);
1860 /* if needed, wait for wr_ack */
1861 if (iwch_rqes_posted(qp)) {
1862 wait_event(ep->com.waitq, ep->com.rpl_done);
1863 err = ep->com.rpl_err;
1868 err = send_mpa_reply(ep, conn_param->private_data,
1869 conn_param->private_data_len);
1874 state_set(&ep->com, FPDU_MODE);
1875 established_upcall(ep);
1879 ep->com.cm_id = NULL;
1881 cm_id->rem_ref(cm_id);
1886 static int is_loopback_dst(struct iw_cm_id *cm_id)
1888 struct net_device *dev;
1890 dev = ip_dev_find(&init_net, cm_id->remote_addr.sin_addr.s_addr);
1897 int iwch_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
1900 struct iwch_dev *h = to_iwch_dev(cm_id->device);
1904 if (is_loopback_dst(cm_id)) {
1909 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
1911 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
1915 init_timer(&ep->timer);
1916 ep->plen = conn_param->private_data_len;
1918 memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
1919 conn_param->private_data, ep->plen);
1920 ep->ird = conn_param->ird;
1921 ep->ord = conn_param->ord;
1923 if (peer2peer && ep->ord == 0)
1926 ep->com.tdev = h->rdev.t3cdev_p;
1928 cm_id->add_ref(cm_id);
1929 ep->com.cm_id = cm_id;
1930 ep->com.qp = get_qhp(h, conn_param->qpn);
1931 BUG_ON(!ep->com.qp);
1932 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn,
1936 * Allocate an active TID to initiate a TCP connection.
1938 ep->atid = cxgb3_alloc_atid(h->rdev.t3cdev_p, &t3c_client, ep);
1939 if (ep->atid == -1) {
1940 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
1946 rt = find_route(h->rdev.t3cdev_p,
1947 cm_id->local_addr.sin_addr.s_addr,
1948 cm_id->remote_addr.sin_addr.s_addr,
1949 cm_id->local_addr.sin_port,
1950 cm_id->remote_addr.sin_port, IPTOS_LOWDELAY);
1952 printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
1953 err = -EHOSTUNREACH;
1956 ep->dst = &rt->u.dst;
1958 /* get a l2t entry */
1959 ep->l2t = t3_l2t_get(ep->com.tdev, ep->dst->neighbour,
1960 ep->dst->neighbour->dev);
1962 printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
1967 state_set(&ep->com, CONNECTING);
1968 ep->tos = IPTOS_LOWDELAY;
1969 ep->com.local_addr = cm_id->local_addr;
1970 ep->com.remote_addr = cm_id->remote_addr;
1972 /* send connect request to rnic */
1973 err = send_connect(ep);
1977 l2t_release(L2DATA(h->rdev.t3cdev_p), ep->l2t);
1979 dst_release(ep->dst);
1981 cxgb3_free_atid(ep->com.tdev, ep->atid);
1983 cm_id->rem_ref(cm_id);
1989 int iwch_create_listen(struct iw_cm_id *cm_id, int backlog)
1992 struct iwch_dev *h = to_iwch_dev(cm_id->device);
1993 struct iwch_listen_ep *ep;
1998 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
2000 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
2004 PDBG("%s ep %p\n", __func__, ep);
2005 ep->com.tdev = h->rdev.t3cdev_p;
2006 cm_id->add_ref(cm_id);
2007 ep->com.cm_id = cm_id;
2008 ep->backlog = backlog;
2009 ep->com.local_addr = cm_id->local_addr;
2012 * Allocate a server TID.
2014 ep->stid = cxgb3_alloc_stid(h->rdev.t3cdev_p, &t3c_client, ep);
2015 if (ep->stid == -1) {
2016 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
2021 state_set(&ep->com, LISTEN);
2022 err = listen_start(ep);
2026 /* wait for pass_open_rpl */
2027 wait_event(ep->com.waitq, ep->com.rpl_done);
2028 err = ep->com.rpl_err;
2030 cm_id->provider_data = ep;
2034 cxgb3_free_stid(ep->com.tdev, ep->stid);
2036 cm_id->rem_ref(cm_id);
2043 int iwch_destroy_listen(struct iw_cm_id *cm_id)
2046 struct iwch_listen_ep *ep = to_listen_ep(cm_id);
2048 PDBG("%s ep %p\n", __func__, ep);
2051 state_set(&ep->com, DEAD);
2052 ep->com.rpl_done = 0;
2053 ep->com.rpl_err = 0;
2054 err = listen_stop(ep);
2057 wait_event(ep->com.waitq, ep->com.rpl_done);
2058 cxgb3_free_stid(ep->com.tdev, ep->stid);
2060 err = ep->com.rpl_err;
2061 cm_id->rem_ref(cm_id);
2066 int iwch_ep_disconnect(struct iwch_ep *ep, int abrupt, gfp_t gfp)
2069 unsigned long flags;
2072 struct t3cdev *tdev;
2073 struct cxio_rdev *rdev;
2075 spin_lock_irqsave(&ep->com.lock, flags);
2077 PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep,
2078 states[ep->com.state], abrupt);
2080 tdev = (struct t3cdev *)ep->com.tdev;
2081 rdev = (struct cxio_rdev *)tdev->ulp;
2082 if (cxio_fatal_error(rdev)) {
2084 close_complete_upcall(ep);
2085 ep->com.state = DEAD;
2087 switch (ep->com.state) {
2095 ep->com.state = ABORTING;
2097 ep->com.state = CLOSING;
2105 ep->com.state = ABORTING;
2107 ep->com.state = MORIBUND;
2112 PDBG("%s ignoring disconnect ep %p state %u\n",
2113 __func__, ep, ep->com.state);
2120 spin_unlock_irqrestore(&ep->com.lock, flags);
2123 ret = send_abort(ep, NULL, gfp);
2125 ret = send_halfclose(ep, gfp);
2130 release_ep_resources(ep);
2134 int iwch_ep_redirect(void *ctx, struct dst_entry *old, struct dst_entry *new,
2135 struct l2t_entry *l2t)
2137 struct iwch_ep *ep = ctx;
2142 PDBG("%s ep %p redirect to dst %p l2t %p\n", __func__, ep, new,
2145 l2t_release(L2DATA(ep->com.tdev), ep->l2t);
2153 * All the CM events are handled on a work queue to have a safe context.
2155 static int sched(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
2157 struct iwch_ep_common *epc = ctx;
2162 * Save ctx and tdev in the skb->cb area.
2164 *((void **) skb->cb) = ctx;
2165 *((struct t3cdev **) (skb->cb + sizeof(void *))) = tdev;
2168 * Queue the skb and schedule the worker thread.
2170 skb_queue_tail(&rxq, skb);
2171 queue_work(workq, &skb_work);
2175 static int set_tcb_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
2177 struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
2179 if (rpl->status != CPL_ERR_NONE) {
2180 printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
2181 "for tid %u\n", rpl->status, GET_TID(rpl));
2183 return CPL_RET_BUF_DONE;
2186 int __init iwch_cm_init(void)
2188 skb_queue_head_init(&rxq);
2190 workq = create_singlethread_workqueue("iw_cxgb3");
2195 * All upcalls from the T3 Core go to sched() to
2196 * schedule the processing on a work queue.
2198 t3c_handlers[CPL_ACT_ESTABLISH] = sched;
2199 t3c_handlers[CPL_ACT_OPEN_RPL] = sched;
2200 t3c_handlers[CPL_RX_DATA] = sched;
2201 t3c_handlers[CPL_TX_DMA_ACK] = sched;
2202 t3c_handlers[CPL_ABORT_RPL_RSS] = sched;
2203 t3c_handlers[CPL_ABORT_RPL] = sched;
2204 t3c_handlers[CPL_PASS_OPEN_RPL] = sched;
2205 t3c_handlers[CPL_CLOSE_LISTSRV_RPL] = sched;
2206 t3c_handlers[CPL_PASS_ACCEPT_REQ] = sched;
2207 t3c_handlers[CPL_PASS_ESTABLISH] = sched;
2208 t3c_handlers[CPL_PEER_CLOSE] = sched;
2209 t3c_handlers[CPL_CLOSE_CON_RPL] = sched;
2210 t3c_handlers[CPL_ABORT_REQ_RSS] = sched;
2211 t3c_handlers[CPL_RDMA_TERMINATE] = sched;
2212 t3c_handlers[CPL_RDMA_EC_STATUS] = sched;
2213 t3c_handlers[CPL_SET_TCB_RPL] = set_tcb_rpl;
2216 * These are the real handlers that are called from a
2219 work_handlers[CPL_ACT_ESTABLISH] = act_establish;
2220 work_handlers[CPL_ACT_OPEN_RPL] = act_open_rpl;
2221 work_handlers[CPL_RX_DATA] = rx_data;
2222 work_handlers[CPL_TX_DMA_ACK] = tx_ack;
2223 work_handlers[CPL_ABORT_RPL_RSS] = abort_rpl;
2224 work_handlers[CPL_ABORT_RPL] = abort_rpl;
2225 work_handlers[CPL_PASS_OPEN_RPL] = pass_open_rpl;
2226 work_handlers[CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl;
2227 work_handlers[CPL_PASS_ACCEPT_REQ] = pass_accept_req;
2228 work_handlers[CPL_PASS_ESTABLISH] = pass_establish;
2229 work_handlers[CPL_PEER_CLOSE] = peer_close;
2230 work_handlers[CPL_ABORT_REQ_RSS] = peer_abort;
2231 work_handlers[CPL_CLOSE_CON_RPL] = close_con_rpl;
2232 work_handlers[CPL_RDMA_TERMINATE] = terminate;
2233 work_handlers[CPL_RDMA_EC_STATUS] = ec_status;
2237 void __exit iwch_cm_term(void)
2239 flush_workqueue(workq);
2240 destroy_workqueue(workq);