2 * linux/drivers/ide/ppc/pmac.c
4 * Support for IDE interfaces on PowerMacs.
5 * These IDE interfaces are memory-mapped and have a DBDMA channel
8 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
9 * Copyright (C) 2007 Bartlomiej Zolnierkiewicz
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
16 * Some code taken from drivers/ide/ide-dma.c:
18 * Copyright (c) 1995-1998 Mark Lord
20 * TODO: - Use pre-calculated (kauai) timing tables all the time and
21 * get rid of the "rounded" tables used previously, so we have the
22 * same table format for all controllers and can then just have one
26 #include <linux/types.h>
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/delay.h>
30 #include <linux/ide.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <linux/pci.h>
34 #include <linux/adb.h>
35 #include <linux/pmu.h>
36 #include <linux/scatterlist.h>
40 #include <asm/dbdma.h>
42 #include <asm/pci-bridge.h>
43 #include <asm/machdep.h>
44 #include <asm/pmac_feature.h>
45 #include <asm/sections.h>
49 #include <asm/mediabay.h>
52 #include "../ide-timing.h"
56 #define DMA_WAIT_TIMEOUT 50
58 typedef struct pmac_ide_hwif {
59 unsigned long regbase;
63 unsigned cable_80 : 1;
64 unsigned mediabay : 1;
65 unsigned broken_dma : 1;
66 unsigned broken_dma_warn : 1;
67 struct device_node* node;
68 struct macio_dev *mdev;
70 volatile u32 __iomem * *kauai_fcr;
71 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
72 /* Those fields are duplicating what is in hwif. We currently
73 * can't use the hwif ones because of some assumptions that are
74 * beeing done by the generic code about the kind of dma controller
75 * and format of the dma table. This will have to be fixed though.
77 volatile struct dbdma_regs __iomem * dma_regs;
78 struct dbdma_cmd* dma_table_cpu;
83 static pmac_ide_hwif_t pmac_ide[MAX_HWIFS];
84 static int pmac_ide_count;
87 controller_ohare, /* OHare based */
88 controller_heathrow, /* Heathrow/Paddington */
89 controller_kl_ata3, /* KeyLargo ATA-3 */
90 controller_kl_ata4, /* KeyLargo ATA-4 */
91 controller_un_ata6, /* UniNorth2 ATA-6 */
92 controller_k2_ata6, /* K2 ATA-6 */
93 controller_sh_ata6, /* Shasta ATA-6 */
96 static const char* model_name[] = {
97 "OHare ATA", /* OHare based */
98 "Heathrow ATA", /* Heathrow/Paddington */
99 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
100 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
101 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
102 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
103 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
107 * Extra registers, both 32-bit little-endian
109 #define IDE_TIMING_CONFIG 0x200
110 #define IDE_INTERRUPT 0x300
112 /* Kauai (U2) ATA has different register setup */
113 #define IDE_KAUAI_PIO_CONFIG 0x200
114 #define IDE_KAUAI_ULTRA_CONFIG 0x210
115 #define IDE_KAUAI_POLL_CONFIG 0x220
118 * Timing configuration register definitions
121 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
122 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
123 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
124 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
125 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
127 /* 133Mhz cell, found in shasta.
128 * See comments about 100 Mhz Uninorth 2...
129 * Note that PIO_MASK and MDMA_MASK seem to overlap
131 #define TR_133_PIOREG_PIO_MASK 0xff000fff
132 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
133 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
134 #define TR_133_UDMAREG_UDMA_EN 0x00000001
136 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
137 * this one yet, it appears as a pci device (106b/0033) on uninorth
138 * internal PCI bus and it's clock is controlled like gem or fw. It
139 * appears to be an evolution of keylargo ATA4 with a timing register
140 * extended to 2 32bits registers and a similar DBDMA channel. Other
141 * registers seem to exist but I can't tell much about them.
143 * So far, I'm using pre-calculated tables for this extracted from
144 * the values used by the MacOS X driver.
146 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
147 * register controls the UDMA timings. At least, it seems bit 0
148 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
149 * cycle time in units of 10ns. Bits 8..15 are used by I don't
150 * know their meaning yet
152 #define TR_100_PIOREG_PIO_MASK 0xff000fff
153 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
154 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
155 #define TR_100_UDMAREG_UDMA_EN 0x00000001
158 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
159 * 40 connector cable and to 4 on 80 connector one.
160 * Clock unit is 15ns (66Mhz)
162 * 3 Values can be programmed:
163 * - Write data setup, which appears to match the cycle time. They
164 * also call it DIOW setup.
165 * - Ready to pause time (from spec)
166 * - Address setup. That one is weird. I don't see where exactly
167 * it fits in UDMA cycles, I got it's name from an obscure piece
168 * of commented out code in Darwin. They leave it to 0, we do as
169 * well, despite a comment that would lead to think it has a
171 * Apple also add 60ns to the write data setup (or cycle time ?) on
174 #define TR_66_UDMA_MASK 0xfff00000
175 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
176 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
177 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
178 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
179 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
180 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
181 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
182 #define TR_66_MDMA_MASK 0x000ffc00
183 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
184 #define TR_66_MDMA_RECOVERY_SHIFT 15
185 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
186 #define TR_66_MDMA_ACCESS_SHIFT 10
187 #define TR_66_PIO_MASK 0x000003ff
188 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
189 #define TR_66_PIO_RECOVERY_SHIFT 5
190 #define TR_66_PIO_ACCESS_MASK 0x0000001f
191 #define TR_66_PIO_ACCESS_SHIFT 0
193 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
194 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
196 * The access time and recovery time can be programmed. Some older
197 * Darwin code base limit OHare to 150ns cycle time. I decided to do
198 * the same here fore safety against broken old hardware ;)
199 * The HalfTick bit, when set, adds half a clock (15ns) to the access
200 * time and removes one from recovery. It's not supported on KeyLargo
201 * implementation afaik. The E bit appears to be set for PIO mode 0 and
202 * is used to reach long timings used in this mode.
204 #define TR_33_MDMA_MASK 0x003ff800
205 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
206 #define TR_33_MDMA_RECOVERY_SHIFT 16
207 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
208 #define TR_33_MDMA_ACCESS_SHIFT 11
209 #define TR_33_MDMA_HALFTICK 0x00200000
210 #define TR_33_PIO_MASK 0x000007ff
211 #define TR_33_PIO_E 0x00000400
212 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
213 #define TR_33_PIO_RECOVERY_SHIFT 5
214 #define TR_33_PIO_ACCESS_MASK 0x0000001f
215 #define TR_33_PIO_ACCESS_SHIFT 0
218 * Interrupt register definitions
220 #define IDE_INTR_DMA 0x80000000
221 #define IDE_INTR_DEVICE 0x40000000
224 * FCR Register on Kauai. Not sure what bit 0x4 is ...
226 #define KAUAI_FCR_UATA_MAGIC 0x00000004
227 #define KAUAI_FCR_UATA_RESET_N 0x00000002
228 #define KAUAI_FCR_UATA_ENABLE 0x00000001
230 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
232 /* Rounded Multiword DMA timings
234 * I gave up finding a generic formula for all controller
235 * types and instead, built tables based on timing values
236 * used by Apple in Darwin's implementation.
238 struct mdma_timings_t {
244 struct mdma_timings_t mdma_timings_33[] =
257 struct mdma_timings_t mdma_timings_33k[] =
270 struct mdma_timings_t mdma_timings_66[] =
283 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
285 int addrSetup; /* ??? */
288 } kl66_udma_timings[] =
290 { 0, 180, 120 }, /* Mode 0 */
291 { 0, 150, 90 }, /* 1 */
292 { 0, 120, 60 }, /* 2 */
293 { 0, 90, 45 }, /* 3 */
294 { 0, 90, 30 } /* 4 */
297 /* UniNorth 2 ATA/100 timings */
298 struct kauai_timing {
303 static struct kauai_timing kauai_pio_timings[] =
305 { 930 , 0x08000fff },
306 { 600 , 0x08000a92 },
307 { 383 , 0x0800060f },
308 { 360 , 0x08000492 },
309 { 330 , 0x0800048f },
310 { 300 , 0x080003cf },
311 { 270 , 0x080003cc },
312 { 240 , 0x0800038b },
313 { 239 , 0x0800030c },
314 { 180 , 0x05000249 },
315 { 120 , 0x04000148 },
319 static struct kauai_timing kauai_mdma_timings[] =
321 { 1260 , 0x00fff000 },
322 { 480 , 0x00618000 },
323 { 360 , 0x00492000 },
324 { 270 , 0x0038e000 },
325 { 240 , 0x0030c000 },
326 { 210 , 0x002cb000 },
327 { 180 , 0x00249000 },
328 { 150 , 0x00209000 },
329 { 120 , 0x00148000 },
333 static struct kauai_timing kauai_udma_timings[] =
335 { 120 , 0x000070c0 },
344 static struct kauai_timing shasta_pio_timings[] =
346 { 930 , 0x08000fff },
347 { 600 , 0x0A000c97 },
348 { 383 , 0x07000712 },
349 { 360 , 0x040003cd },
350 { 330 , 0x040003cd },
351 { 300 , 0x040003cd },
352 { 270 , 0x040003cd },
353 { 240 , 0x040003cd },
354 { 239 , 0x040003cd },
355 { 180 , 0x0400028b },
356 { 120 , 0x0400010a },
360 static struct kauai_timing shasta_mdma_timings[] =
362 { 1260 , 0x00fff000 },
363 { 480 , 0x00820800 },
364 { 360 , 0x00820800 },
365 { 270 , 0x00820800 },
366 { 240 , 0x00820800 },
367 { 210 , 0x00820800 },
368 { 180 , 0x00820800 },
369 { 150 , 0x0028b000 },
370 { 120 , 0x001ca000 },
374 static struct kauai_timing shasta_udma133_timings[] =
376 { 120 , 0x00035901, },
377 { 90 , 0x000348b1, },
378 { 60 , 0x00033881, },
379 { 45 , 0x00033861, },
380 { 30 , 0x00033841, },
381 { 20 , 0x00033031, },
382 { 15 , 0x00033021, },
388 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
392 for (i=0; table[i].cycle_time; i++)
393 if (cycle_time > table[i+1].cycle_time)
394 return table[i].timing_reg;
399 /* allow up to 256 DBDMA commands per xfer */
400 #define MAX_DCMDS 256
403 * Wait 1s for disk to answer on IDE bus after a hard reset
404 * of the device (via GPIO/FCR).
406 * Some devices seem to "pollute" the bus even after dropping
407 * the BSY bit (typically some combo drives slave on the UDMA
408 * bus) after a hard reset. Since we hard reset all drives on
409 * KeyLargo ATA66, we have to keep that delay around. I may end
410 * up not hard resetting anymore on these and keep the delay only
411 * for older interfaces instead (we have to reset when coming
412 * from MacOS...) --BenH.
414 #define IDE_WAKEUP_DELAY (1*HZ)
416 static void pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif);
417 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
418 static void pmac_ide_selectproc(ide_drive_t *drive);
419 static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
421 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
424 * N.B. this can't be an initfunc, because the media-bay task can
425 * call ide_[un]register at any time.
428 pmac_ide_init_hwif_ports(hw_regs_t *hw,
429 unsigned long data_port, unsigned long ctrl_port,
437 for (ix = 0; ix < MAX_HWIFS; ++ix)
438 if (data_port == pmac_ide[ix].regbase)
441 if (ix >= MAX_HWIFS) {
442 /* Probably a PCI interface... */
443 for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; ++i)
444 hw->io_ports[i] = data_port + i - IDE_DATA_OFFSET;
445 hw->io_ports[IDE_CONTROL_OFFSET] = ctrl_port;
449 for (i = 0; i < 8; ++i)
450 hw->io_ports[i] = data_port + i * 0x10;
451 hw->io_ports[8] = data_port + 0x160;
454 *irq = pmac_ide[ix].irq;
456 hw->dev = &pmac_ide[ix].mdev->ofdev.dev;
459 #define PMAC_IDE_REG(x) ((void __iomem *)(IDE_DATA_REG+(x)))
462 * Apply the timings of the proper unit (master/slave) to the shared
463 * timing register when selecting that unit. This version is for
464 * ASICs with a single timing register
467 pmac_ide_selectproc(ide_drive_t *drive)
469 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
474 if (drive->select.b.unit & 0x01)
475 writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
477 writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
478 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
482 * Apply the timings of the proper unit (master/slave) to the shared
483 * timing register when selecting that unit. This version is for
484 * ASICs with a dual timing register (Kauai)
487 pmac_ide_kauai_selectproc(ide_drive_t *drive)
489 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
494 if (drive->select.b.unit & 0x01) {
495 writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
496 writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
498 writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
499 writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
501 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
505 * Force an update of controller timing values for a given drive
508 pmac_ide_do_update_timings(ide_drive_t *drive)
510 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
515 if (pmif->kind == controller_sh_ata6 ||
516 pmif->kind == controller_un_ata6 ||
517 pmif->kind == controller_k2_ata6)
518 pmac_ide_kauai_selectproc(drive);
520 pmac_ide_selectproc(drive);
524 pmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port)
528 writeb(value, (void __iomem *) port);
529 tmp = readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
533 * Send the SET_FEATURE IDE command to the drive and update drive->id with
534 * the new state. We currently don't use the generic routine as it used to
535 * cause various trouble, especially with older mediabays.
536 * This code is sometimes triggering a spurrious interrupt though, I need
537 * to sort that out sooner or later and see if I can finally get the
538 * common version to work properly in all cases
541 pmac_ide_do_setfeature(ide_drive_t *drive, u8 command)
543 ide_hwif_t *hwif = HWIF(drive);
546 disable_irq_nosync(hwif->irq);
549 SELECT_MASK(drive, 0);
551 /* Get rid of pending error state */
552 (void) hwif->INB(IDE_STATUS_REG);
553 /* Timeout bumped for some powerbooks */
554 if (wait_for_ready(drive, 2000)) {
555 /* Timeout bumped for some powerbooks */
556 printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready "
557 "before SET_FEATURE!\n", drive->name);
561 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
562 hwif->OUTB(command, IDE_NSECTOR_REG);
563 hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
564 hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
566 /* Timeout bumped for some powerbooks */
567 result = wait_for_ready(drive, 2000);
568 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
570 printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready "
571 "after SET_FEATURE !\n", drive->name);
573 SELECT_MASK(drive, 0);
575 drive->id->dma_ultra &= ~0xFF00;
576 drive->id->dma_mword &= ~0x0F00;
577 drive->id->dma_1word &= ~0x0F00;
580 drive->id->dma_ultra |= 0x8080; break;
582 drive->id->dma_ultra |= 0x4040; break;
584 drive->id->dma_ultra |= 0x2020; break;
586 drive->id->dma_ultra |= 0x1010; break;
588 drive->id->dma_ultra |= 0x0808; break;
590 drive->id->dma_ultra |= 0x0404; break;
592 drive->id->dma_ultra |= 0x0202; break;
594 drive->id->dma_ultra |= 0x0101; break;
596 drive->id->dma_mword |= 0x0404; break;
598 drive->id->dma_mword |= 0x0202; break;
600 drive->id->dma_mword |= 0x0101; break;
602 drive->id->dma_1word |= 0x0404; break;
604 drive->id->dma_1word |= 0x0202; break;
606 drive->id->dma_1word |= 0x0101; break;
609 if (!drive->init_speed)
610 drive->init_speed = command;
611 drive->current_speed = command;
613 enable_irq(hwif->irq);
618 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
621 pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
624 unsigned accessTicks, recTicks;
625 unsigned accessTime, recTime;
626 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
627 unsigned int cycle_time;
632 /* which drive is it ? */
633 timings = &pmif->timings[drive->select.b.unit & 0x01];
635 cycle_time = ide_pio_cycle_time(drive, pio);
637 switch (pmif->kind) {
638 case controller_sh_ata6: {
640 u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
641 *timings = ((*timings) & ~TR_133_PIOREG_PIO_MASK) | tr;
644 case controller_un_ata6:
645 case controller_k2_ata6: {
647 u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
648 *timings = ((*timings) & ~TR_100_PIOREG_PIO_MASK) | tr;
651 case controller_kl_ata4:
653 recTime = cycle_time - ide_pio_timings[pio].active_time
654 - ide_pio_timings[pio].setup_time;
655 recTime = max(recTime, 150U);
656 accessTime = ide_pio_timings[pio].active_time;
657 accessTime = max(accessTime, 150U);
658 accessTicks = SYSCLK_TICKS_66(accessTime);
659 accessTicks = min(accessTicks, 0x1fU);
660 recTicks = SYSCLK_TICKS_66(recTime);
661 recTicks = min(recTicks, 0x1fU);
662 *timings = ((*timings) & ~TR_66_PIO_MASK) |
663 (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
664 (recTicks << TR_66_PIO_RECOVERY_SHIFT);
669 recTime = cycle_time - ide_pio_timings[pio].active_time
670 - ide_pio_timings[pio].setup_time;
671 recTime = max(recTime, 150U);
672 accessTime = ide_pio_timings[pio].active_time;
673 accessTime = max(accessTime, 150U);
674 accessTicks = SYSCLK_TICKS(accessTime);
675 accessTicks = min(accessTicks, 0x1fU);
676 accessTicks = max(accessTicks, 4U);
677 recTicks = SYSCLK_TICKS(recTime);
678 recTicks = min(recTicks, 0x1fU);
679 recTicks = max(recTicks, 5U) - 4;
681 recTicks--; /* guess, but it's only for PIO0, so... */
684 *timings = ((*timings) & ~TR_33_PIO_MASK) |
685 (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
686 (recTicks << TR_33_PIO_RECOVERY_SHIFT);
688 *timings |= TR_33_PIO_E;
693 #ifdef IDE_PMAC_DEBUG
694 printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
695 drive->name, pio, *timings);
698 if (pmac_ide_do_setfeature(drive, XFER_PIO_0 + pio))
701 pmac_ide_do_update_timings(drive);
704 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
707 * Calculate KeyLargo ATA/66 UDMA timings
710 set_timings_udma_ata4(u32 *timings, u8 speed)
712 unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
714 if (speed > XFER_UDMA_4)
717 rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
718 wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
719 addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
721 *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
722 (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
723 (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
724 (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
726 #ifdef IDE_PMAC_DEBUG
727 printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
728 speed & 0xf, *timings);
735 * Calculate Kauai ATA/100 UDMA timings
738 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
740 struct ide_timing *t = ide_timing_find_mode(speed);
743 if (speed > XFER_UDMA_5 || t == NULL)
745 tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
746 *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
747 *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
753 * Calculate Shasta ATA/133 UDMA timings
756 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
758 struct ide_timing *t = ide_timing_find_mode(speed);
761 if (speed > XFER_UDMA_6 || t == NULL)
763 tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
764 *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
765 *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
771 * Calculate MDMA timings for all cells
774 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
775 u8 speed, int drive_cycle_time)
777 int cycleTime, accessTime = 0, recTime = 0;
778 unsigned accessTicks, recTicks;
779 struct mdma_timings_t* tm = NULL;
782 /* Get default cycle time for mode */
783 switch(speed & 0xf) {
784 case 0: cycleTime = 480; break;
785 case 1: cycleTime = 150; break;
786 case 2: cycleTime = 120; break;
790 /* Adjust for drive */
791 if (drive_cycle_time && drive_cycle_time > cycleTime)
792 cycleTime = drive_cycle_time;
793 /* OHare limits according to some old Apple sources */
794 if ((intf_type == controller_ohare) && (cycleTime < 150))
796 /* Get the proper timing array for this controller */
798 case controller_sh_ata6:
799 case controller_un_ata6:
800 case controller_k2_ata6:
802 case controller_kl_ata4:
803 tm = mdma_timings_66;
805 case controller_kl_ata3:
806 tm = mdma_timings_33k;
809 tm = mdma_timings_33;
813 /* Lookup matching access & recovery times */
816 if (tm[i+1].cycleTime < cycleTime)
822 cycleTime = tm[i].cycleTime;
823 accessTime = tm[i].accessTime;
824 recTime = tm[i].recoveryTime;
826 #ifdef IDE_PMAC_DEBUG
827 printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
828 drive->name, cycleTime, accessTime, recTime);
832 case controller_sh_ata6: {
834 u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
835 *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
836 *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
838 case controller_un_ata6:
839 case controller_k2_ata6: {
841 u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
842 *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
843 *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
846 case controller_kl_ata4:
848 accessTicks = SYSCLK_TICKS_66(accessTime);
849 accessTicks = min(accessTicks, 0x1fU);
850 accessTicks = max(accessTicks, 0x1U);
851 recTicks = SYSCLK_TICKS_66(recTime);
852 recTicks = min(recTicks, 0x1fU);
853 recTicks = max(recTicks, 0x3U);
854 /* Clear out mdma bits and disable udma */
855 *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
856 (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
857 (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
859 case controller_kl_ata3:
860 /* 33Mhz cell on KeyLargo */
861 accessTicks = SYSCLK_TICKS(accessTime);
862 accessTicks = max(accessTicks, 1U);
863 accessTicks = min(accessTicks, 0x1fU);
864 accessTime = accessTicks * IDE_SYSCLK_NS;
865 recTicks = SYSCLK_TICKS(recTime);
866 recTicks = max(recTicks, 1U);
867 recTicks = min(recTicks, 0x1fU);
868 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
869 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
870 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
873 /* 33Mhz cell on others */
875 int origAccessTime = accessTime;
876 int origRecTime = recTime;
878 accessTicks = SYSCLK_TICKS(accessTime);
879 accessTicks = max(accessTicks, 1U);
880 accessTicks = min(accessTicks, 0x1fU);
881 accessTime = accessTicks * IDE_SYSCLK_NS;
882 recTicks = SYSCLK_TICKS(recTime);
883 recTicks = max(recTicks, 2U) - 1;
884 recTicks = min(recTicks, 0x1fU);
885 recTime = (recTicks + 1) * IDE_SYSCLK_NS;
886 if ((accessTicks > 1) &&
887 ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
888 ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
892 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
893 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
894 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
896 *timings |= TR_33_MDMA_HALFTICK;
899 #ifdef IDE_PMAC_DEBUG
900 printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
901 drive->name, speed & 0xf, *timings);
905 #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
908 * Speedproc. This function is called by the core to set any of the standard
909 * DMA timing (MDMA or UDMA) to both the drive and the controller.
910 * You may notice we don't use this function on normal "dma check" operation,
911 * our dedicated function is more precise as it uses the drive provided
912 * cycle time value. We should probably fix this one to deal with that too...
914 static int pmac_ide_tune_chipset(ide_drive_t *drive, const u8 speed)
916 int unit = (drive->select.b.unit & 0x01);
918 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
919 u32 *timings, *timings2, tl[2];
921 timings = &pmif->timings[unit];
922 timings2 = &pmif->timings[unit+2];
924 /* Copy timings to local image */
929 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
937 if (pmif->kind == controller_kl_ata4)
938 ret = set_timings_udma_ata4(&tl[0], speed);
939 else if (pmif->kind == controller_un_ata6
940 || pmif->kind == controller_k2_ata6)
941 ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
942 else if (pmif->kind == controller_sh_ata6)
943 ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
950 ret = set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed, 0);
956 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
963 ret = pmac_ide_do_setfeature(drive, speed);
967 /* Apply timings to controller */
971 pmac_ide_do_update_timings(drive);
977 * Blast some well known "safe" values to the timing registers at init or
978 * wakeup from sleep time, before we do real calculation
981 sanitize_timings(pmac_ide_hwif_t *pmif)
983 unsigned int value, value2 = 0;
986 case controller_sh_ata6:
990 case controller_un_ata6:
991 case controller_k2_ata6:
995 case controller_kl_ata4:
998 case controller_kl_ata3:
1001 case controller_heathrow:
1002 case controller_ohare:
1007 pmif->timings[0] = pmif->timings[1] = value;
1008 pmif->timings[2] = pmif->timings[3] = value2;
1012 pmac_ide_get_base(int index)
1014 return pmac_ide[index].regbase;
1018 pmac_ide_check_base(unsigned long base)
1022 for (ix = 0; ix < MAX_HWIFS; ++ix)
1023 if (base == pmac_ide[ix].regbase)
1029 pmac_ide_get_irq(unsigned long base)
1033 for (ix = 0; ix < MAX_HWIFS; ++ix)
1034 if (base == pmac_ide[ix].regbase)
1035 return pmac_ide[ix].irq;
1039 static int ide_majors[] = { 3, 22, 33, 34, 56, 57 };
1042 pmac_find_ide_boot(char *bootdevice, int n)
1047 * Look through the list of IDE interfaces for this one.
1049 for (i = 0; i < pmac_ide_count; ++i) {
1051 if (!pmac_ide[i].node || !pmac_ide[i].node->full_name)
1053 name = pmac_ide[i].node->full_name;
1054 if (memcmp(name, bootdevice, n) == 0 && name[n] == 0) {
1055 /* XXX should cope with the 2nd drive as well... */
1056 return MKDEV(ide_majors[i], 0);
1063 /* Suspend call back, should be called after the child devices
1064 * have actually been suspended
1067 pmac_ide_do_suspend(ide_hwif_t *hwif)
1069 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1071 /* We clear the timings */
1072 pmif->timings[0] = 0;
1073 pmif->timings[1] = 0;
1075 disable_irq(pmif->irq);
1077 /* The media bay will handle itself just fine */
1081 /* Kauai has bus control FCRs directly here */
1082 if (pmif->kauai_fcr) {
1083 u32 fcr = readl(pmif->kauai_fcr);
1084 fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
1085 writel(fcr, pmif->kauai_fcr);
1088 /* Disable the bus on older machines and the cell on kauai */
1089 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
1095 /* Resume call back, should be called before the child devices
1099 pmac_ide_do_resume(ide_hwif_t *hwif)
1101 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1103 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
1104 if (!pmif->mediabay) {
1105 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
1106 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
1108 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
1110 /* Kauai has it different */
1111 if (pmif->kauai_fcr) {
1112 u32 fcr = readl(pmif->kauai_fcr);
1113 fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
1114 writel(fcr, pmif->kauai_fcr);
1117 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1120 /* Sanitize drive timings */
1121 sanitize_timings(pmif);
1123 enable_irq(pmif->irq);
1129 * Setup, register & probe an IDE channel driven by this driver, this is
1130 * called by one of the 2 probe functions (macio or PCI). Note that a channel
1131 * that ends up beeing free of any device is not kept around by this driver
1132 * (it is kept in 2.4). This introduce an interface numbering change on some
1133 * rare machines unfortunately, but it's better this way.
1136 pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
1138 struct device_node *np = pmif->node;
1142 pmif->broken_dma = pmif->broken_dma_warn = 0;
1143 if (of_device_is_compatible(np, "shasta-ata"))
1144 pmif->kind = controller_sh_ata6;
1145 else if (of_device_is_compatible(np, "kauai-ata"))
1146 pmif->kind = controller_un_ata6;
1147 else if (of_device_is_compatible(np, "K2-UATA"))
1148 pmif->kind = controller_k2_ata6;
1149 else if (of_device_is_compatible(np, "keylargo-ata")) {
1150 if (strcmp(np->name, "ata-4") == 0)
1151 pmif->kind = controller_kl_ata4;
1153 pmif->kind = controller_kl_ata3;
1154 } else if (of_device_is_compatible(np, "heathrow-ata"))
1155 pmif->kind = controller_heathrow;
1157 pmif->kind = controller_ohare;
1158 pmif->broken_dma = 1;
1161 bidp = of_get_property(np, "AAPL,bus-id", NULL);
1162 pmif->aapl_bus_id = bidp ? *bidp : 0;
1164 /* Get cable type from device-tree */
1165 if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6
1166 || pmif->kind == controller_k2_ata6
1167 || pmif->kind == controller_sh_ata6) {
1168 const char* cable = of_get_property(np, "cable-type", NULL);
1169 if (cable && !strncmp(cable, "80-", 3))
1172 /* G5's seem to have incorrect cable type in device-tree. Let's assume
1173 * they have a 80 conductor cable, this seem to be always the case unless
1174 * the user mucked around
1176 if (of_device_is_compatible(np, "K2-UATA") ||
1177 of_device_is_compatible(np, "shasta-ata"))
1180 /* On Kauai-type controllers, we make sure the FCR is correct */
1181 if (pmif->kauai_fcr)
1182 writel(KAUAI_FCR_UATA_MAGIC |
1183 KAUAI_FCR_UATA_RESET_N |
1184 KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1188 /* Make sure we have sane timings */
1189 sanitize_timings(pmif);
1191 #ifndef CONFIG_PPC64
1192 /* XXX FIXME: Media bay stuff need re-organizing */
1193 if (np->parent && np->parent->name
1194 && strcasecmp(np->parent->name, "media-bay") == 0) {
1195 #ifdef CONFIG_PMAC_MEDIABAY
1196 media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq, hwif->index);
1197 #endif /* CONFIG_PMAC_MEDIABAY */
1200 pmif->aapl_bus_id = 1;
1201 } else if (pmif->kind == controller_ohare) {
1202 /* The code below is having trouble on some ohare machines
1203 * (timing related ?). Until I can put my hand on one of these
1204 * units, I keep the old way
1206 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1210 /* This is necessary to enable IDE when net-booting */
1211 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1212 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1214 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1215 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1218 /* Setup MMIO ops */
1219 default_hwif_mmiops(hwif);
1220 hwif->OUTBSYNC = pmac_outbsync;
1222 /* Tell common code _not_ to mess with resources */
1224 hwif->hwif_data = pmif;
1225 pmac_ide_init_hwif_ports(&hwif->hw, pmif->regbase, 0, &hwif->irq);
1226 memcpy(hwif->io_ports, hwif->hw.io_ports, sizeof(hwif->io_ports));
1227 hwif->chipset = ide_pmac;
1228 hwif->noprobe = !hwif->io_ports[IDE_DATA_OFFSET] || pmif->mediabay;
1229 hwif->hold = pmif->mediabay;
1230 hwif->cbl = pmif->cable_80 ? ATA_CBL_PATA80 : ATA_CBL_PATA40;
1231 hwif->drives[0].unmask = 1;
1232 hwif->drives[1].unmask = 1;
1233 hwif->pio_mask = ATA_PIO4;
1234 hwif->set_pio_mode = pmac_ide_set_pio_mode;
1235 if (pmif->kind == controller_un_ata6
1236 || pmif->kind == controller_k2_ata6
1237 || pmif->kind == controller_sh_ata6)
1238 hwif->selectproc = pmac_ide_kauai_selectproc;
1240 hwif->selectproc = pmac_ide_selectproc;
1241 hwif->speedproc = pmac_ide_tune_chipset;
1243 printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
1244 hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
1245 pmif->mediabay ? " (mediabay)" : "", hwif->irq);
1247 #ifdef CONFIG_PMAC_MEDIABAY
1248 if (pmif->mediabay && check_media_bay_by_base(pmif->regbase, MB_CD) == 0)
1250 #endif /* CONFIG_PMAC_MEDIABAY */
1252 hwif->sg_max_nents = MAX_DCMDS;
1254 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1255 /* has a DBDMA controller channel */
1257 pmac_ide_setup_dma(pmif, hwif);
1258 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1260 /* We probe the hwif now */
1261 probe_hwif_init(hwif);
1263 ide_proc_register_port(hwif);
1269 * Attach to a macio probed interface
1271 static int __devinit
1272 pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1275 unsigned long regbase;
1278 pmac_ide_hwif_t *pmif;
1282 while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
1283 || pmac_ide[i].node != NULL))
1285 if (i >= MAX_HWIFS) {
1286 printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
1287 printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name);
1291 pmif = &pmac_ide[i];
1292 hwif = &ide_hwifs[i];
1294 if (macio_resource_count(mdev) == 0) {
1295 printk(KERN_WARNING "ide%d: no address for %s\n",
1296 i, mdev->ofdev.node->full_name);
1300 /* Request memory resource for IO ports */
1301 if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1302 printk(KERN_ERR "ide%d: can't request mmio resource !\n", i);
1306 /* XXX This is bogus. Should be fixed in the registry by checking
1307 * the kind of host interrupt controller, a bit like gatwick
1308 * fixes in irq.c. That works well enough for the single case
1309 * where that happens though...
1311 if (macio_irq_count(mdev) == 0) {
1312 printk(KERN_WARNING "ide%d: no intrs for device %s, using 13\n",
1313 i, mdev->ofdev.node->full_name);
1314 irq = irq_create_mapping(NULL, 13);
1316 irq = macio_irq(mdev, 0);
1318 base = ioremap(macio_resource_start(mdev, 0), 0x400);
1319 regbase = (unsigned long) base;
1321 hwif->pci_dev = mdev->bus->pdev;
1322 hwif->gendev.parent = &mdev->ofdev.dev;
1325 pmif->node = mdev->ofdev.node;
1326 pmif->regbase = regbase;
1328 pmif->kauai_fcr = NULL;
1329 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1330 if (macio_resource_count(mdev) >= 2) {
1331 if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1332 printk(KERN_WARNING "ide%d: can't request DMA resource !\n", i);
1334 pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1336 pmif->dma_regs = NULL;
1337 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1338 dev_set_drvdata(&mdev->ofdev.dev, hwif);
1340 rc = pmac_ide_setup_device(pmif, hwif);
1342 /* The inteface is released to the common IDE layer */
1343 dev_set_drvdata(&mdev->ofdev.dev, NULL);
1346 iounmap(pmif->dma_regs);
1347 memset(pmif, 0, sizeof(*pmif));
1348 macio_release_resource(mdev, 0);
1350 macio_release_resource(mdev, 1);
1357 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1359 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1362 if (mesg.event != mdev->ofdev.dev.power.power_state.event
1363 && mesg.event == PM_EVENT_SUSPEND) {
1364 rc = pmac_ide_do_suspend(hwif);
1366 mdev->ofdev.dev.power.power_state = mesg;
1373 pmac_ide_macio_resume(struct macio_dev *mdev)
1375 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1378 if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1379 rc = pmac_ide_do_resume(hwif);
1381 mdev->ofdev.dev.power.power_state = PMSG_ON;
1388 * Attach to a PCI probed interface
1390 static int __devinit
1391 pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1394 struct device_node *np;
1395 pmac_ide_hwif_t *pmif;
1397 unsigned long rbase, rlen;
1400 np = pci_device_to_OF_node(pdev);
1402 printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1406 while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
1407 || pmac_ide[i].node != NULL))
1409 if (i >= MAX_HWIFS) {
1410 printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
1411 printk(KERN_ERR " %s\n", np->full_name);
1415 pmif = &pmac_ide[i];
1416 hwif = &ide_hwifs[i];
1418 if (pci_enable_device(pdev)) {
1419 printk(KERN_WARNING "ide%i: Can't enable PCI device for %s\n",
1423 pci_set_master(pdev);
1425 if (pci_request_regions(pdev, "Kauai ATA")) {
1426 printk(KERN_ERR "ide%d: Cannot obtain PCI resources for %s\n",
1431 hwif->pci_dev = pdev;
1432 hwif->gendev.parent = &pdev->dev;
1436 rbase = pci_resource_start(pdev, 0);
1437 rlen = pci_resource_len(pdev, 0);
1439 base = ioremap(rbase, rlen);
1440 pmif->regbase = (unsigned long) base + 0x2000;
1441 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1442 pmif->dma_regs = base + 0x1000;
1443 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1444 pmif->kauai_fcr = base;
1445 pmif->irq = pdev->irq;
1447 pci_set_drvdata(pdev, hwif);
1449 rc = pmac_ide_setup_device(pmif, hwif);
1451 /* The inteface is released to the common IDE layer */
1452 pci_set_drvdata(pdev, NULL);
1454 memset(pmif, 0, sizeof(*pmif));
1455 pci_release_regions(pdev);
1462 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1464 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1467 if (mesg.event != pdev->dev.power.power_state.event
1468 && mesg.event == PM_EVENT_SUSPEND) {
1469 rc = pmac_ide_do_suspend(hwif);
1471 pdev->dev.power.power_state = mesg;
1478 pmac_ide_pci_resume(struct pci_dev *pdev)
1480 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1483 if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1484 rc = pmac_ide_do_resume(hwif);
1486 pdev->dev.power.power_state = PMSG_ON;
1492 static struct of_device_id pmac_ide_macio_match[] =
1509 static struct macio_driver pmac_ide_macio_driver =
1512 .match_table = pmac_ide_macio_match,
1513 .probe = pmac_ide_macio_attach,
1514 .suspend = pmac_ide_macio_suspend,
1515 .resume = pmac_ide_macio_resume,
1518 static struct pci_device_id pmac_ide_pci_match[] = {
1519 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA,
1520 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1521 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100,
1522 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1523 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100,
1524 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1525 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_ATA,
1526 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1527 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA,
1528 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1532 static struct pci_driver pmac_ide_pci_driver = {
1534 .id_table = pmac_ide_pci_match,
1535 .probe = pmac_ide_pci_attach,
1536 .suspend = pmac_ide_pci_suspend,
1537 .resume = pmac_ide_pci_resume,
1539 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1541 int __init pmac_ide_probe(void)
1545 if (!machine_is(powermac))
1548 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1549 error = pci_register_driver(&pmac_ide_pci_driver);
1552 error = macio_register_driver(&pmac_ide_macio_driver);
1554 pci_unregister_driver(&pmac_ide_pci_driver);
1558 error = macio_register_driver(&pmac_ide_macio_driver);
1561 error = pci_register_driver(&pmac_ide_pci_driver);
1563 macio_unregister_driver(&pmac_ide_macio_driver);
1571 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1574 * pmac_ide_build_dmatable builds the DBDMA command list
1575 * for a transfer and sets the DBDMA channel to point to it.
1578 pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
1580 struct dbdma_cmd *table;
1582 ide_hwif_t *hwif = HWIF(drive);
1583 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1584 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1585 struct scatterlist *sg;
1586 int wr = (rq_data_dir(rq) == WRITE);
1588 /* DMA table is already aligned */
1589 table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1591 /* Make sure DMA controller is stopped (necessary ?) */
1592 writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1593 while (readl(&dma->status) & RUN)
1596 hwif->sg_nents = i = ide_build_sglist(drive, rq);
1601 /* Build DBDMA commands list */
1602 sg = hwif->sg_table;
1603 while (i && sg_dma_len(sg)) {
1607 cur_addr = sg_dma_address(sg);
1608 cur_len = sg_dma_len(sg);
1610 if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1611 if (pmif->broken_dma_warn == 0) {
1612 printk(KERN_WARNING "%s: DMA on non aligned address,"
1613 "switching to PIO on Ohare chipset\n", drive->name);
1614 pmif->broken_dma_warn = 1;
1616 goto use_pio_instead;
1619 unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1621 if (count++ >= MAX_DCMDS) {
1622 printk(KERN_WARNING "%s: DMA table too small\n",
1624 goto use_pio_instead;
1626 st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1627 st_le16(&table->req_count, tc);
1628 st_le32(&table->phy_addr, cur_addr);
1630 table->xfer_status = 0;
1631 table->res_count = 0;
1640 /* convert the last command to an input/output last command */
1642 st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1643 /* add the stop command to the end of the list */
1644 memset(table, 0, sizeof(struct dbdma_cmd));
1645 st_le16(&table->command, DBDMA_STOP);
1647 writel(hwif->dmatable_dma, &dma->cmdptr);
1651 printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1653 pci_unmap_sg(hwif->pci_dev,
1656 hwif->sg_dma_direction);
1657 return 0; /* revert to PIO for this request */
1660 /* Teardown mappings after DMA has completed. */
1662 pmac_ide_destroy_dmatable (ide_drive_t *drive)
1664 ide_hwif_t *hwif = drive->hwif;
1665 struct pci_dev *dev = HWIF(drive)->pci_dev;
1666 struct scatterlist *sg = hwif->sg_table;
1667 int nents = hwif->sg_nents;
1670 pci_unmap_sg(dev, sg, nents, hwif->sg_dma_direction);
1676 * Pick up best MDMA timing for the drive and apply it
1679 pmac_ide_mdma_enable(ide_drive_t *drive, u16 mode)
1681 ide_hwif_t *hwif = HWIF(drive);
1682 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1683 int drive_cycle_time;
1684 struct hd_driveid *id = drive->id;
1685 u32 *timings, *timings2;
1686 u32 timing_local[2];
1689 /* which drive is it ? */
1690 timings = &pmif->timings[drive->select.b.unit & 0x01];
1691 timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2];
1693 /* Check if drive provide explicit cycle time */
1694 if ((id->field_valid & 2) && (id->eide_dma_time))
1695 drive_cycle_time = id->eide_dma_time;
1697 drive_cycle_time = 0;
1699 /* Copy timings to local image */
1700 timing_local[0] = *timings;
1701 timing_local[1] = *timings2;
1703 /* Calculate controller timings */
1704 ret = set_timings_mdma( drive, pmif->kind,
1712 /* Set feature on drive */
1713 printk(KERN_INFO "%s: Enabling MultiWord DMA %d\n", drive->name, mode & 0xf);
1714 ret = pmac_ide_do_setfeature(drive, mode);
1716 printk(KERN_WARNING "%s: Failed !\n", drive->name);
1720 /* Apply timings to controller */
1721 *timings = timing_local[0];
1722 *timings2 = timing_local[1];
1728 * Pick up best UDMA timing for the drive and apply it
1731 pmac_ide_udma_enable(ide_drive_t *drive, u16 mode)
1733 ide_hwif_t *hwif = HWIF(drive);
1734 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1735 u32 *timings, *timings2;
1736 u32 timing_local[2];
1739 /* which drive is it ? */
1740 timings = &pmif->timings[drive->select.b.unit & 0x01];
1741 timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2];
1743 /* Copy timings to local image */
1744 timing_local[0] = *timings;
1745 timing_local[1] = *timings2;
1747 /* Calculate timings for interface */
1748 if (pmif->kind == controller_un_ata6
1749 || pmif->kind == controller_k2_ata6)
1750 ret = set_timings_udma_ata6( &timing_local[0],
1753 else if (pmif->kind == controller_sh_ata6)
1754 ret = set_timings_udma_shasta( &timing_local[0],
1758 ret = set_timings_udma_ata4(&timing_local[0], mode);
1762 /* Set feature on drive */
1763 printk(KERN_INFO "%s: Enabling Ultra DMA %d\n", drive->name, mode & 0x0f);
1764 ret = pmac_ide_do_setfeature(drive, mode);
1766 printk(KERN_WARNING "%s: Failed !\n", drive->name);
1770 /* Apply timings to controller */
1771 *timings = timing_local[0];
1772 *timings2 = timing_local[1];
1778 * Check what is the best DMA timing setting for the drive and
1779 * call appropriate functions to apply it.
1782 pmac_ide_dma_check(ide_drive_t *drive)
1784 struct hd_driveid *id = drive->id;
1785 ide_hwif_t *hwif = HWIF(drive);
1787 drive->using_dma = 0;
1789 if (drive->media == ide_floppy)
1791 if (((id->capability & 1) == 0) && !__ide_dma_good_drive(drive))
1793 if (__ide_dma_bad_drive(drive))
1797 u8 mode = ide_max_dma_mode(drive);
1799 if (mode >= XFER_UDMA_0)
1800 drive->using_dma = pmac_ide_udma_enable(drive, mode);
1801 else if (mode >= XFER_MW_DMA_0)
1802 drive->using_dma = pmac_ide_mdma_enable(drive, mode);
1803 hwif->OUTB(0, IDE_CONTROL_REG);
1804 /* Apply settings to controller */
1805 pmac_ide_do_update_timings(drive);
1811 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1812 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1815 pmac_ide_dma_setup(ide_drive_t *drive)
1817 ide_hwif_t *hwif = HWIF(drive);
1818 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1819 struct request *rq = HWGROUP(drive)->rq;
1820 u8 unit = (drive->select.b.unit & 0x01);
1825 ata4 = (pmif->kind == controller_kl_ata4);
1827 if (!pmac_ide_build_dmatable(drive, rq)) {
1828 ide_map_sg(drive, rq);
1832 /* Apple adds 60ns to wrDataSetup on reads */
1833 if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1834 writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
1835 PMAC_IDE_REG(IDE_TIMING_CONFIG));
1836 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1839 drive->waiting_for_dma = 1;
1845 pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
1847 /* issue cmd to drive */
1848 ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
1852 * Kick the DMA controller into life after the DMA command has been issued
1856 pmac_ide_dma_start(ide_drive_t *drive)
1858 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1859 volatile struct dbdma_regs __iomem *dma;
1861 dma = pmif->dma_regs;
1863 writel((RUN << 16) | RUN, &dma->control);
1864 /* Make sure it gets to the controller right now */
1865 (void)readl(&dma->control);
1869 * After a DMA transfer, make sure the controller is stopped
1872 pmac_ide_dma_end (ide_drive_t *drive)
1874 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1875 volatile struct dbdma_regs __iomem *dma;
1880 dma = pmif->dma_regs;
1882 drive->waiting_for_dma = 0;
1883 dstat = readl(&dma->status);
1884 writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1885 pmac_ide_destroy_dmatable(drive);
1886 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1887 * in theory, but with ATAPI decices doing buffer underruns, that would
1888 * cause us to disable DMA, which isn't what we want
1890 return (dstat & (RUN|DEAD)) != RUN;
1894 * Check out that the interrupt we got was for us. We can't always know this
1895 * for sure with those Apple interfaces (well, we could on the recent ones but
1896 * that's not implemented yet), on the other hand, we don't have shared interrupts
1897 * so it's not really a problem
1900 pmac_ide_dma_test_irq (ide_drive_t *drive)
1902 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1903 volatile struct dbdma_regs __iomem *dma;
1904 unsigned long status, timeout;
1908 dma = pmif->dma_regs;
1910 /* We have to things to deal with here:
1912 * - The dbdma won't stop if the command was started
1913 * but completed with an error without transferring all
1914 * datas. This happens when bad blocks are met during
1915 * a multi-block transfer.
1917 * - The dbdma fifo hasn't yet finished flushing to
1918 * to system memory when the disk interrupt occurs.
1922 /* If ACTIVE is cleared, the STOP command have passed and
1923 * transfer is complete.
1925 status = readl(&dma->status);
1926 if (!(status & ACTIVE))
1928 if (!drive->waiting_for_dma)
1929 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1930 called while not waiting\n", HWIF(drive)->index);
1932 /* If dbdma didn't execute the STOP command yet, the
1933 * active bit is still set. We consider that we aren't
1934 * sharing interrupts (which is hopefully the case with
1935 * those controllers) and so we just try to flush the
1936 * channel for pending data in the fifo
1939 writel((FLUSH << 16) | FLUSH, &dma->control);
1943 status = readl(&dma->status);
1944 if ((status & FLUSH) == 0)
1946 if (++timeout > 100) {
1947 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1948 timeout flushing channel\n", HWIF(drive)->index);
1955 static void pmac_ide_dma_host_off(ide_drive_t *drive)
1959 static void pmac_ide_dma_host_on(ide_drive_t *drive)
1964 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1966 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1967 volatile struct dbdma_regs __iomem *dma;
1968 unsigned long status;
1972 dma = pmif->dma_regs;
1974 status = readl(&dma->status);
1975 printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1979 * Allocate the data structures needed for using DMA with an interface
1980 * and fill the proper list of functions pointers
1983 pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
1985 /* We won't need pci_dev if we switch to generic consistent
1988 if (hwif->pci_dev == NULL)
1991 * Allocate space for the DBDMA commands.
1992 * The +2 is +1 for the stop command and +1 to allow for
1993 * aligning the start address to a multiple of 16 bytes.
1995 pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
1997 (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1998 &hwif->dmatable_dma);
1999 if (pmif->dma_table_cpu == NULL) {
2000 printk(KERN_ERR "%s: unable to allocate DMA command list\n",
2005 hwif->dma_off_quietly = &ide_dma_off_quietly;
2006 hwif->ide_dma_on = &__ide_dma_on;
2007 hwif->ide_dma_check = &pmac_ide_dma_check;
2008 hwif->dma_setup = &pmac_ide_dma_setup;
2009 hwif->dma_exec_cmd = &pmac_ide_dma_exec_cmd;
2010 hwif->dma_start = &pmac_ide_dma_start;
2011 hwif->ide_dma_end = &pmac_ide_dma_end;
2012 hwif->ide_dma_test_irq = &pmac_ide_dma_test_irq;
2013 hwif->dma_host_off = &pmac_ide_dma_host_off;
2014 hwif->dma_host_on = &pmac_ide_dma_host_on;
2015 hwif->dma_timeout = &ide_dma_timeout;
2016 hwif->dma_lost_irq = &pmac_ide_dma_lost_irq;
2018 hwif->atapi_dma = 1;
2019 switch(pmif->kind) {
2020 case controller_sh_ata6:
2021 hwif->ultra_mask = pmif->cable_80 ? 0x7f : 0x07;
2022 hwif->mwdma_mask = 0x07;
2023 hwif->swdma_mask = 0x00;
2025 case controller_un_ata6:
2026 case controller_k2_ata6:
2027 hwif->ultra_mask = pmif->cable_80 ? 0x3f : 0x07;
2028 hwif->mwdma_mask = 0x07;
2029 hwif->swdma_mask = 0x00;
2031 case controller_kl_ata4:
2032 hwif->ultra_mask = pmif->cable_80 ? 0x1f : 0x07;
2033 hwif->mwdma_mask = 0x07;
2034 hwif->swdma_mask = 0x00;
2037 hwif->ultra_mask = 0x00;
2038 hwif->mwdma_mask = 0x07;
2039 hwif->swdma_mask = 0x00;
2044 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */