2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
18 static const int cfq_quantum = 4; /* max queue in one round of service */
19 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
20 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
21 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
23 static const int cfq_slice_sync = HZ / 10;
24 static int cfq_slice_async = HZ / 25;
25 static const int cfq_slice_async_rq = 2;
26 static int cfq_slice_idle = HZ / 125;
29 * offset from end of service tree
31 #define CFQ_IDLE_DELAY (HZ / 5)
34 * below this threshold, we consider thinktime immediate
36 #define CFQ_MIN_TT (2)
38 #define CFQ_SLICE_SCALE (5)
40 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
41 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
43 static struct kmem_cache *cfq_pool;
44 static struct kmem_cache *cfq_ioc_pool;
46 static DEFINE_PER_CPU(unsigned long, ioc_count);
47 static struct completion *ioc_gone;
49 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
50 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
51 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
56 #define sample_valid(samples) ((samples) > 80)
59 * Most of our rbtree usage is for sorting with min extraction, so
60 * if we cache the leftmost node we don't have to walk down the tree
61 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
62 * move this into the elevator for the rq sorting as well.
68 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
71 * Per block device queue structure
74 struct request_queue *queue;
77 * rr list of queues with requests and the count of them
79 struct cfq_rb_root service_tree;
80 unsigned int busy_queues;
87 * idle window management
89 struct timer_list idle_slice_timer;
90 struct work_struct unplug_work;
92 struct cfq_queue *active_queue;
93 struct cfq_io_context *active_cic;
96 * async queue for each priority case
98 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
99 struct cfq_queue *async_idle_cfqq;
101 sector_t last_position;
102 unsigned long last_end_request;
105 * tunables, see top of file
107 unsigned int cfq_quantum;
108 unsigned int cfq_fifo_expire[2];
109 unsigned int cfq_back_penalty;
110 unsigned int cfq_back_max;
111 unsigned int cfq_slice[2];
112 unsigned int cfq_slice_async_rq;
113 unsigned int cfq_slice_idle;
115 struct list_head cic_list;
119 * Per process-grouping structure
122 /* reference count */
124 /* parent cfq_data */
125 struct cfq_data *cfqd;
126 /* service_tree member */
127 struct rb_node rb_node;
128 /* service_tree key */
129 unsigned long rb_key;
130 /* sorted list of pending requests */
131 struct rb_root sort_list;
132 /* if fifo isn't expired, next request to serve */
133 struct request *next_rq;
134 /* requests queued in sort_list */
136 /* currently allocated requests */
138 /* pending metadata requests */
140 /* fifo list of requests in sort_list */
141 struct list_head fifo;
143 unsigned long slice_end;
146 /* number of requests that are on the dispatch list or inside driver */
149 /* io prio of this group */
150 unsigned short ioprio, org_ioprio;
151 unsigned short ioprio_class, org_ioprio_class;
153 /* various state flags, see below */
157 enum cfqq_state_flags {
158 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
159 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
160 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
161 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
162 CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
163 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
164 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
165 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
166 CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
167 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
168 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
171 #define CFQ_CFQQ_FNS(name) \
172 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
174 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
176 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
178 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
180 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
182 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
186 CFQ_CFQQ_FNS(wait_request);
187 CFQ_CFQQ_FNS(must_alloc);
188 CFQ_CFQQ_FNS(must_alloc_slice);
189 CFQ_CFQQ_FNS(must_dispatch);
190 CFQ_CFQQ_FNS(fifo_expire);
191 CFQ_CFQQ_FNS(idle_window);
192 CFQ_CFQQ_FNS(prio_changed);
193 CFQ_CFQQ_FNS(queue_new);
194 CFQ_CFQQ_FNS(slice_new);
198 static void cfq_dispatch_insert(struct request_queue *, struct request *);
199 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
200 struct io_context *, gfp_t);
201 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
202 struct io_context *);
204 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
207 return cic->cfqq[!!is_sync];
210 static inline void cic_set_cfqq(struct cfq_io_context *cic,
211 struct cfq_queue *cfqq, int is_sync)
213 cic->cfqq[!!is_sync] = cfqq;
217 * We regard a request as SYNC, if it's either a read or has the SYNC bit
218 * set (in which case it could also be direct WRITE).
220 static inline int cfq_bio_sync(struct bio *bio)
222 if (bio_data_dir(bio) == READ || bio_sync(bio))
229 * scheduler run of queue, if there are requests pending and no one in the
230 * driver that will restart queueing
232 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
234 if (cfqd->busy_queues)
235 kblockd_schedule_work(&cfqd->unplug_work);
238 static int cfq_queue_empty(struct request_queue *q)
240 struct cfq_data *cfqd = q->elevator->elevator_data;
242 return !cfqd->busy_queues;
246 * Scale schedule slice based on io priority. Use the sync time slice only
247 * if a queue is marked sync and has sync io queued. A sync queue with async
248 * io only, should not get full sync slice length.
250 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
253 const int base_slice = cfqd->cfq_slice[sync];
255 WARN_ON(prio >= IOPRIO_BE_NR);
257 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
261 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
263 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
267 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
269 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
273 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
274 * isn't valid until the first request from the dispatch is activated
275 * and the slice time set.
277 static inline int cfq_slice_used(struct cfq_queue *cfqq)
279 if (cfq_cfqq_slice_new(cfqq))
281 if (time_before(jiffies, cfqq->slice_end))
288 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
289 * We choose the request that is closest to the head right now. Distance
290 * behind the head is penalized and only allowed to a certain extent.
292 static struct request *
293 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
295 sector_t last, s1, s2, d1 = 0, d2 = 0;
296 unsigned long back_max;
297 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
298 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
299 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
301 if (rq1 == NULL || rq1 == rq2)
306 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
308 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
310 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
312 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
318 last = cfqd->last_position;
321 * by definition, 1KiB is 2 sectors
323 back_max = cfqd->cfq_back_max * 2;
326 * Strict one way elevator _except_ in the case where we allow
327 * short backward seeks which are biased as twice the cost of a
328 * similar forward seek.
332 else if (s1 + back_max >= last)
333 d1 = (last - s1) * cfqd->cfq_back_penalty;
335 wrap |= CFQ_RQ1_WRAP;
339 else if (s2 + back_max >= last)
340 d2 = (last - s2) * cfqd->cfq_back_penalty;
342 wrap |= CFQ_RQ2_WRAP;
344 /* Found required data */
347 * By doing switch() on the bit mask "wrap" we avoid having to
348 * check two variables for all permutations: --> faster!
351 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
367 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
370 * Since both rqs are wrapped,
371 * start with the one that's further behind head
372 * (--> only *one* back seek required),
373 * since back seek takes more time than forward.
383 * The below is leftmost cache rbtree addon
385 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
388 root->left = rb_first(&root->rb);
391 return rb_entry(root->left, struct cfq_queue, rb_node);
396 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
401 rb_erase(n, &root->rb);
406 * would be nice to take fifo expire time into account as well
408 static struct request *
409 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
410 struct request *last)
412 struct rb_node *rbnext = rb_next(&last->rb_node);
413 struct rb_node *rbprev = rb_prev(&last->rb_node);
414 struct request *next = NULL, *prev = NULL;
416 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
419 prev = rb_entry_rq(rbprev);
422 next = rb_entry_rq(rbnext);
424 rbnext = rb_first(&cfqq->sort_list);
425 if (rbnext && rbnext != &last->rb_node)
426 next = rb_entry_rq(rbnext);
429 return cfq_choose_req(cfqd, next, prev);
432 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
433 struct cfq_queue *cfqq)
436 * just an approximation, should be ok.
438 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
439 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
443 * The cfqd->service_tree holds all pending cfq_queue's that have
444 * requests waiting to be processed. It is sorted in the order that
445 * we will service the queues.
447 static void cfq_service_tree_add(struct cfq_data *cfqd,
448 struct cfq_queue *cfqq, int add_front)
450 struct rb_node **p, *parent;
451 struct cfq_queue *__cfqq;
452 unsigned long rb_key;
455 if (cfq_class_idle(cfqq)) {
456 rb_key = CFQ_IDLE_DELAY;
457 parent = rb_last(&cfqd->service_tree.rb);
458 if (parent && parent != &cfqq->rb_node) {
459 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
460 rb_key += __cfqq->rb_key;
463 } else if (!add_front) {
464 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
465 rb_key += cfqq->slice_resid;
466 cfqq->slice_resid = 0;
470 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
472 * same position, nothing more to do
474 if (rb_key == cfqq->rb_key)
477 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
482 p = &cfqd->service_tree.rb.rb_node;
487 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
490 * sort RT queues first, we always want to give
491 * preference to them. IDLE queues goes to the back.
492 * after that, sort on the next service time.
494 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
496 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
498 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
500 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
502 else if (rb_key < __cfqq->rb_key)
507 if (n == &(*p)->rb_right)
514 cfqd->service_tree.left = &cfqq->rb_node;
516 cfqq->rb_key = rb_key;
517 rb_link_node(&cfqq->rb_node, parent, p);
518 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
522 * Update cfqq's position in the service tree.
524 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
527 * Resorting requires the cfqq to be on the RR list already.
529 if (cfq_cfqq_on_rr(cfqq))
530 cfq_service_tree_add(cfqd, cfqq, 0);
534 * add to busy list of queues for service, trying to be fair in ordering
535 * the pending list according to last request service
538 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
540 BUG_ON(cfq_cfqq_on_rr(cfqq));
541 cfq_mark_cfqq_on_rr(cfqq);
544 cfq_resort_rr_list(cfqd, cfqq);
548 * Called when the cfqq no longer has requests pending, remove it from
552 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
554 BUG_ON(!cfq_cfqq_on_rr(cfqq));
555 cfq_clear_cfqq_on_rr(cfqq);
557 if (!RB_EMPTY_NODE(&cfqq->rb_node))
558 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
560 BUG_ON(!cfqd->busy_queues);
565 * rb tree support functions
567 static inline void cfq_del_rq_rb(struct request *rq)
569 struct cfq_queue *cfqq = RQ_CFQQ(rq);
570 struct cfq_data *cfqd = cfqq->cfqd;
571 const int sync = rq_is_sync(rq);
573 BUG_ON(!cfqq->queued[sync]);
574 cfqq->queued[sync]--;
576 elv_rb_del(&cfqq->sort_list, rq);
578 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
579 cfq_del_cfqq_rr(cfqd, cfqq);
582 static void cfq_add_rq_rb(struct request *rq)
584 struct cfq_queue *cfqq = RQ_CFQQ(rq);
585 struct cfq_data *cfqd = cfqq->cfqd;
586 struct request *__alias;
588 cfqq->queued[rq_is_sync(rq)]++;
591 * looks a little odd, but the first insert might return an alias.
592 * if that happens, put the alias on the dispatch list
594 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
595 cfq_dispatch_insert(cfqd->queue, __alias);
597 if (!cfq_cfqq_on_rr(cfqq))
598 cfq_add_cfqq_rr(cfqd, cfqq);
601 * check if this request is a better next-serve candidate
603 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
604 BUG_ON(!cfqq->next_rq);
608 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
610 elv_rb_del(&cfqq->sort_list, rq);
611 cfqq->queued[rq_is_sync(rq)]--;
615 static struct request *
616 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
618 struct task_struct *tsk = current;
619 struct cfq_io_context *cic;
620 struct cfq_queue *cfqq;
622 cic = cfq_cic_lookup(cfqd, tsk->io_context);
626 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
628 sector_t sector = bio->bi_sector + bio_sectors(bio);
630 return elv_rb_find(&cfqq->sort_list, sector);
636 static void cfq_activate_request(struct request_queue *q, struct request *rq)
638 struct cfq_data *cfqd = q->elevator->elevator_data;
640 cfqd->rq_in_driver++;
643 * If the depth is larger 1, it really could be queueing. But lets
644 * make the mark a little higher - idling could still be good for
645 * low queueing, and a low queueing number could also just indicate
646 * a SCSI mid layer like behaviour where limit+1 is often seen.
648 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
651 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
654 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
656 struct cfq_data *cfqd = q->elevator->elevator_data;
658 WARN_ON(!cfqd->rq_in_driver);
659 cfqd->rq_in_driver--;
662 static void cfq_remove_request(struct request *rq)
664 struct cfq_queue *cfqq = RQ_CFQQ(rq);
666 if (cfqq->next_rq == rq)
667 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
669 list_del_init(&rq->queuelist);
672 if (rq_is_meta(rq)) {
673 WARN_ON(!cfqq->meta_pending);
674 cfqq->meta_pending--;
678 static int cfq_merge(struct request_queue *q, struct request **req,
681 struct cfq_data *cfqd = q->elevator->elevator_data;
682 struct request *__rq;
684 __rq = cfq_find_rq_fmerge(cfqd, bio);
685 if (__rq && elv_rq_merge_ok(__rq, bio)) {
687 return ELEVATOR_FRONT_MERGE;
690 return ELEVATOR_NO_MERGE;
693 static void cfq_merged_request(struct request_queue *q, struct request *req,
696 if (type == ELEVATOR_FRONT_MERGE) {
697 struct cfq_queue *cfqq = RQ_CFQQ(req);
699 cfq_reposition_rq_rb(cfqq, req);
704 cfq_merged_requests(struct request_queue *q, struct request *rq,
705 struct request *next)
708 * reposition in fifo if next is older than rq
710 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
711 time_before(next->start_time, rq->start_time))
712 list_move(&rq->queuelist, &next->queuelist);
714 cfq_remove_request(next);
717 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
720 struct cfq_data *cfqd = q->elevator->elevator_data;
721 struct cfq_io_context *cic;
722 struct cfq_queue *cfqq;
725 * Disallow merge of a sync bio into an async request.
727 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
731 * Lookup the cfqq that this bio will be queued with. Allow
732 * merge only if rq is queued there.
734 cic = cfq_cic_lookup(cfqd, current->io_context);
738 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
739 if (cfqq == RQ_CFQQ(rq))
746 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
750 cfq_clear_cfqq_must_alloc_slice(cfqq);
751 cfq_clear_cfqq_fifo_expire(cfqq);
752 cfq_mark_cfqq_slice_new(cfqq);
753 cfq_clear_cfqq_queue_new(cfqq);
756 cfqd->active_queue = cfqq;
760 * current cfqq expired its slice (or was too idle), select new one
763 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
766 if (cfq_cfqq_wait_request(cfqq))
767 del_timer(&cfqd->idle_slice_timer);
769 cfq_clear_cfqq_must_dispatch(cfqq);
770 cfq_clear_cfqq_wait_request(cfqq);
773 * store what was left of this slice, if the queue idled/timed out
775 if (timed_out && !cfq_cfqq_slice_new(cfqq))
776 cfqq->slice_resid = cfqq->slice_end - jiffies;
778 cfq_resort_rr_list(cfqd, cfqq);
780 if (cfqq == cfqd->active_queue)
781 cfqd->active_queue = NULL;
783 if (cfqd->active_cic) {
784 put_io_context(cfqd->active_cic->ioc);
785 cfqd->active_cic = NULL;
789 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
791 struct cfq_queue *cfqq = cfqd->active_queue;
794 __cfq_slice_expired(cfqd, cfqq, timed_out);
798 * Get next queue for service. Unless we have a queue preemption,
799 * we'll simply select the first cfqq in the service tree.
801 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
803 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
806 return cfq_rb_first(&cfqd->service_tree);
810 * Get and set a new active queue for service.
812 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
814 struct cfq_queue *cfqq;
816 cfqq = cfq_get_next_queue(cfqd);
817 __cfq_set_active_queue(cfqd, cfqq);
821 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
824 if (rq->sector >= cfqd->last_position)
825 return rq->sector - cfqd->last_position;
827 return cfqd->last_position - rq->sector;
830 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
832 struct cfq_io_context *cic = cfqd->active_cic;
834 if (!sample_valid(cic->seek_samples))
837 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
840 static int cfq_close_cooperator(struct cfq_data *cfq_data,
841 struct cfq_queue *cfqq)
844 * We should notice if some of the queues are cooperating, eg
845 * working closely on the same area of the disk. In that case,
846 * we can group them together and don't waste time idling.
851 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
853 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
855 struct cfq_queue *cfqq = cfqd->active_queue;
856 struct cfq_io_context *cic;
859 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
860 WARN_ON(cfq_cfqq_slice_new(cfqq));
863 * idle is disabled, either manually or by past process history
865 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
869 * task has exited, don't wait
871 cic = cfqd->active_cic;
872 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
876 * See if this prio level has a good candidate
878 if (cfq_close_cooperator(cfqd, cfqq) &&
879 (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
882 cfq_mark_cfqq_must_dispatch(cfqq);
883 cfq_mark_cfqq_wait_request(cfqq);
886 * we don't want to idle for seeks, but we do want to allow
887 * fair distribution of slice time for a process doing back-to-back
888 * seeks. so allow a little bit of time for him to submit a new rq
890 sl = cfqd->cfq_slice_idle;
891 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
892 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
894 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
898 * Move request from internal lists to the request queue dispatch list.
900 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
902 struct cfq_data *cfqd = q->elevator->elevator_data;
903 struct cfq_queue *cfqq = RQ_CFQQ(rq);
905 cfq_remove_request(rq);
907 elv_dispatch_sort(q, rq);
909 if (cfq_cfqq_sync(cfqq))
914 * return expired entry, or NULL to just start from scratch in rbtree
916 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
918 struct cfq_data *cfqd = cfqq->cfqd;
922 if (cfq_cfqq_fifo_expire(cfqq))
925 cfq_mark_cfqq_fifo_expire(cfqq);
927 if (list_empty(&cfqq->fifo))
930 fifo = cfq_cfqq_sync(cfqq);
931 rq = rq_entry_fifo(cfqq->fifo.next);
933 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
940 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
942 const int base_rq = cfqd->cfq_slice_async_rq;
944 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
946 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
950 * Select a queue for service. If we have a current active queue,
951 * check whether to continue servicing it, or retrieve and set a new one.
953 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
955 struct cfq_queue *cfqq;
957 cfqq = cfqd->active_queue;
962 * The active queue has run out of time, expire it and select new.
964 if (cfq_slice_used(cfqq))
968 * The active queue has requests and isn't expired, allow it to
971 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
975 * No requests pending. If the active queue still has requests in
976 * flight or is idling for a new request, allow either of these
977 * conditions to happen (or time out) before selecting a new queue.
979 if (timer_pending(&cfqd->idle_slice_timer) ||
980 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
986 cfq_slice_expired(cfqd, 0);
988 cfqq = cfq_set_active_queue(cfqd);
994 * Dispatch some requests from cfqq, moving them to the request queue
998 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1003 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1009 * follow expired path, else get first next available
1011 if ((rq = cfq_check_fifo(cfqq)) == NULL)
1015 * finally, insert request into driver dispatch list
1017 cfq_dispatch_insert(cfqd->queue, rq);
1021 if (!cfqd->active_cic) {
1022 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1023 cfqd->active_cic = RQ_CIC(rq);
1026 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1029 } while (dispatched < max_dispatch);
1032 * expire an async queue immediately if it has used up its slice. idle
1033 * queue always expire after 1 dispatch round.
1035 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1036 dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1037 cfq_class_idle(cfqq))) {
1038 cfqq->slice_end = jiffies + 1;
1039 cfq_slice_expired(cfqd, 0);
1045 static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1049 while (cfqq->next_rq) {
1050 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1054 BUG_ON(!list_empty(&cfqq->fifo));
1059 * Drain our current requests. Used for barriers and when switching
1060 * io schedulers on-the-fly.
1062 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1064 struct cfq_queue *cfqq;
1067 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1068 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1070 cfq_slice_expired(cfqd, 0);
1072 BUG_ON(cfqd->busy_queues);
1077 static int cfq_dispatch_requests(struct request_queue *q, int force)
1079 struct cfq_data *cfqd = q->elevator->elevator_data;
1080 struct cfq_queue *cfqq;
1083 if (!cfqd->busy_queues)
1086 if (unlikely(force))
1087 return cfq_forced_dispatch(cfqd);
1090 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1093 max_dispatch = cfqd->cfq_quantum;
1094 if (cfq_class_idle(cfqq))
1097 if (cfqq->dispatched >= max_dispatch) {
1098 if (cfqd->busy_queues > 1)
1100 if (cfqq->dispatched >= 4 * max_dispatch)
1104 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1107 cfq_clear_cfqq_must_dispatch(cfqq);
1108 cfq_clear_cfqq_wait_request(cfqq);
1109 del_timer(&cfqd->idle_slice_timer);
1111 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1118 * task holds one reference to the queue, dropped when task exits. each rq
1119 * in-flight on this queue also holds a reference, dropped when rq is freed.
1121 * queue lock must be held here.
1123 static void cfq_put_queue(struct cfq_queue *cfqq)
1125 struct cfq_data *cfqd = cfqq->cfqd;
1127 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1129 if (!atomic_dec_and_test(&cfqq->ref))
1132 BUG_ON(rb_first(&cfqq->sort_list));
1133 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1134 BUG_ON(cfq_cfqq_on_rr(cfqq));
1136 if (unlikely(cfqd->active_queue == cfqq)) {
1137 __cfq_slice_expired(cfqd, cfqq, 0);
1138 cfq_schedule_dispatch(cfqd);
1141 kmem_cache_free(cfq_pool, cfqq);
1145 * Call func for each cic attached to this ioc. Returns number of cic's seen.
1147 #define CIC_GANG_NR 16
1149 call_for_each_cic(struct io_context *ioc,
1150 void (*func)(struct io_context *, struct cfq_io_context *))
1152 struct cfq_io_context *cics[CIC_GANG_NR];
1153 unsigned long index = 0;
1154 unsigned int called = 0;
1163 * Perhaps there's a better way - this just gang lookups from
1164 * 0 to the end, restarting after each CIC_GANG_NR from the
1167 nr = radix_tree_gang_lookup(&ioc->radix_root, (void **) cics,
1168 index, CIC_GANG_NR);
1173 index = 1 + (unsigned long) cics[nr - 1]->key;
1175 for (i = 0; i < nr; i++)
1177 } while (nr == CIC_GANG_NR);
1184 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1186 unsigned long flags;
1188 BUG_ON(!cic->dead_key);
1190 spin_lock_irqsave(&ioc->lock, flags);
1191 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1192 spin_unlock_irqrestore(&ioc->lock, flags);
1194 kmem_cache_free(cfq_ioc_pool, cic);
1197 static void cfq_free_io_context(struct io_context *ioc)
1202 * ioc->refcount is zero here, so no more cic's are allowed to be
1203 * linked into this ioc. So it should be ok to iterate over the known
1204 * list, we will see all cic's since no new ones are added.
1206 freed = call_for_each_cic(ioc, cic_free_func);
1208 elv_ioc_count_mod(ioc_count, -freed);
1210 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1214 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1216 if (unlikely(cfqq == cfqd->active_queue)) {
1217 __cfq_slice_expired(cfqd, cfqq, 0);
1218 cfq_schedule_dispatch(cfqd);
1221 cfq_put_queue(cfqq);
1224 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1225 struct cfq_io_context *cic)
1227 list_del_init(&cic->queue_list);
1230 * Make sure key == NULL is seen for dead queues
1233 cic->dead_key = (unsigned long) cic->key;
1236 if (cic->cfqq[ASYNC]) {
1237 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1238 cic->cfqq[ASYNC] = NULL;
1241 if (cic->cfqq[SYNC]) {
1242 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1243 cic->cfqq[SYNC] = NULL;
1247 static void cfq_exit_single_io_context(struct io_context *ioc,
1248 struct cfq_io_context *cic)
1250 struct cfq_data *cfqd = cic->key;
1253 struct request_queue *q = cfqd->queue;
1254 unsigned long flags;
1256 spin_lock_irqsave(q->queue_lock, flags);
1257 __cfq_exit_single_io_context(cfqd, cic);
1258 spin_unlock_irqrestore(q->queue_lock, flags);
1263 * The process that ioc belongs to has exited, we need to clean up
1264 * and put the internal structures we have that belongs to that process.
1266 static void cfq_exit_io_context(struct io_context *ioc)
1268 rcu_assign_pointer(ioc->ioc_data, NULL);
1269 call_for_each_cic(ioc, cfq_exit_single_io_context);
1272 static struct cfq_io_context *
1273 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1275 struct cfq_io_context *cic;
1277 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1280 cic->last_end_request = jiffies;
1281 INIT_LIST_HEAD(&cic->queue_list);
1282 cic->dtor = cfq_free_io_context;
1283 cic->exit = cfq_exit_io_context;
1284 elv_ioc_count_inc(ioc_count);
1290 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1292 struct task_struct *tsk = current;
1295 if (!cfq_cfqq_prio_changed(cfqq))
1298 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1299 switch (ioprio_class) {
1301 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1302 case IOPRIO_CLASS_NONE:
1304 * no prio set, place us in the middle of the BE classes
1306 cfqq->ioprio = task_nice_ioprio(tsk);
1307 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1309 case IOPRIO_CLASS_RT:
1310 cfqq->ioprio = task_ioprio(ioc);
1311 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1313 case IOPRIO_CLASS_BE:
1314 cfqq->ioprio = task_ioprio(ioc);
1315 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1317 case IOPRIO_CLASS_IDLE:
1318 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1320 cfq_clear_cfqq_idle_window(cfqq);
1325 * keep track of original prio settings in case we have to temporarily
1326 * elevate the priority of this queue
1328 cfqq->org_ioprio = cfqq->ioprio;
1329 cfqq->org_ioprio_class = cfqq->ioprio_class;
1330 cfq_clear_cfqq_prio_changed(cfqq);
1333 static inline void changed_ioprio(struct io_context *ioc,
1334 struct cfq_io_context *cic)
1336 struct cfq_data *cfqd = cic->key;
1337 struct cfq_queue *cfqq;
1338 unsigned long flags;
1340 if (unlikely(!cfqd))
1343 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1345 cfqq = cic->cfqq[ASYNC];
1347 struct cfq_queue *new_cfqq;
1348 new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
1350 cic->cfqq[ASYNC] = new_cfqq;
1351 cfq_put_queue(cfqq);
1355 cfqq = cic->cfqq[SYNC];
1357 cfq_mark_cfqq_prio_changed(cfqq);
1359 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1362 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1364 call_for_each_cic(ioc, changed_ioprio);
1365 ioc->ioprio_changed = 0;
1368 static struct cfq_queue *
1369 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1370 struct io_context *ioc, gfp_t gfp_mask)
1372 struct cfq_queue *cfqq, *new_cfqq = NULL;
1373 struct cfq_io_context *cic;
1376 cic = cfq_cic_lookup(cfqd, ioc);
1377 /* cic always exists here */
1378 cfqq = cic_to_cfqq(cic, is_sync);
1384 } else if (gfp_mask & __GFP_WAIT) {
1386 * Inform the allocator of the fact that we will
1387 * just repeat this allocation if it fails, to allow
1388 * the allocator to do whatever it needs to attempt to
1391 spin_unlock_irq(cfqd->queue->queue_lock);
1392 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1393 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1395 spin_lock_irq(cfqd->queue->queue_lock);
1398 cfqq = kmem_cache_alloc_node(cfq_pool,
1399 gfp_mask | __GFP_ZERO,
1405 RB_CLEAR_NODE(&cfqq->rb_node);
1406 INIT_LIST_HEAD(&cfqq->fifo);
1408 atomic_set(&cfqq->ref, 0);
1411 cfq_mark_cfqq_prio_changed(cfqq);
1412 cfq_mark_cfqq_queue_new(cfqq);
1414 cfq_init_prio_data(cfqq, ioc);
1417 if (!cfq_class_idle(cfqq))
1418 cfq_mark_cfqq_idle_window(cfqq);
1419 cfq_mark_cfqq_sync(cfqq);
1424 kmem_cache_free(cfq_pool, new_cfqq);
1427 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1431 static struct cfq_queue **
1432 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1434 switch(ioprio_class) {
1435 case IOPRIO_CLASS_RT:
1436 return &cfqd->async_cfqq[0][ioprio];
1437 case IOPRIO_CLASS_BE:
1438 return &cfqd->async_cfqq[1][ioprio];
1439 case IOPRIO_CLASS_IDLE:
1440 return &cfqd->async_idle_cfqq;
1446 static struct cfq_queue *
1447 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1450 const int ioprio = task_ioprio(ioc);
1451 const int ioprio_class = task_ioprio_class(ioc);
1452 struct cfq_queue **async_cfqq = NULL;
1453 struct cfq_queue *cfqq = NULL;
1456 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1461 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1467 * pin the queue now that it's allocated, scheduler exit will prune it
1469 if (!is_sync && !(*async_cfqq)) {
1470 atomic_inc(&cfqq->ref);
1474 atomic_inc(&cfqq->ref);
1478 static void cfq_cic_free(struct cfq_io_context *cic)
1480 kmem_cache_free(cfq_ioc_pool, cic);
1481 elv_ioc_count_dec(ioc_count);
1483 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1488 * We drop cfq io contexts lazily, so we may find a dead one.
1491 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1492 struct cfq_io_context *cic)
1494 unsigned long flags;
1496 WARN_ON(!list_empty(&cic->queue_list));
1498 spin_lock_irqsave(&ioc->lock, flags);
1500 if (ioc->ioc_data == cic)
1501 rcu_assign_pointer(ioc->ioc_data, NULL);
1503 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1504 spin_unlock_irqrestore(&ioc->lock, flags);
1509 static struct cfq_io_context *
1510 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1512 struct cfq_io_context *cic;
1519 * we maintain a last-hit cache, to avoid browsing over the tree
1521 cic = rcu_dereference(ioc->ioc_data);
1522 if (cic && cic->key == cfqd)
1527 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1531 /* ->key must be copied to avoid race with cfq_exit_queue() */
1534 cfq_drop_dead_cic(cfqd, ioc, cic);
1538 rcu_assign_pointer(ioc->ioc_data, cic);
1546 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1547 * the process specific cfq io context when entered from the block layer.
1548 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1551 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1552 struct cfq_io_context *cic, gfp_t gfp_mask)
1554 unsigned long flags;
1557 ret = radix_tree_preload(gfp_mask);
1562 spin_lock_irqsave(&ioc->lock, flags);
1563 ret = radix_tree_insert(&ioc->radix_root,
1564 (unsigned long) cfqd, cic);
1565 spin_unlock_irqrestore(&ioc->lock, flags);
1567 radix_tree_preload_end();
1570 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1571 list_add(&cic->queue_list, &cfqd->cic_list);
1572 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1577 printk(KERN_ERR "cfq: cic link failed!\n");
1583 * Setup general io context and cfq io context. There can be several cfq
1584 * io contexts per general io context, if this process is doing io to more
1585 * than one device managed by cfq.
1587 static struct cfq_io_context *
1588 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1590 struct io_context *ioc = NULL;
1591 struct cfq_io_context *cic;
1593 might_sleep_if(gfp_mask & __GFP_WAIT);
1595 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1599 cic = cfq_cic_lookup(cfqd, ioc);
1603 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1607 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1611 smp_read_barrier_depends();
1612 if (unlikely(ioc->ioprio_changed))
1613 cfq_ioc_set_ioprio(ioc);
1619 put_io_context(ioc);
1624 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1626 unsigned long elapsed = jiffies - cic->last_end_request;
1627 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1629 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1630 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1631 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1635 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1641 if (cic->last_request_pos < rq->sector)
1642 sdist = rq->sector - cic->last_request_pos;
1644 sdist = cic->last_request_pos - rq->sector;
1647 * Don't allow the seek distance to get too large from the
1648 * odd fragment, pagein, etc
1650 if (cic->seek_samples <= 60) /* second&third seek */
1651 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1653 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1655 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1656 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1657 total = cic->seek_total + (cic->seek_samples/2);
1658 do_div(total, cic->seek_samples);
1659 cic->seek_mean = (sector_t)total;
1663 * Disable idle window if the process thinks too long or seeks so much that
1667 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1668 struct cfq_io_context *cic)
1673 * Don't idle for async or idle io prio class
1675 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1678 enable_idle = cfq_cfqq_idle_window(cfqq);
1680 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1681 (cfqd->hw_tag && CIC_SEEKY(cic)))
1683 else if (sample_valid(cic->ttime_samples)) {
1684 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1691 cfq_mark_cfqq_idle_window(cfqq);
1693 cfq_clear_cfqq_idle_window(cfqq);
1697 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1698 * no or if we aren't sure, a 1 will cause a preempt.
1701 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1704 struct cfq_queue *cfqq;
1706 cfqq = cfqd->active_queue;
1710 if (cfq_slice_used(cfqq))
1713 if (cfq_class_idle(new_cfqq))
1716 if (cfq_class_idle(cfqq))
1720 * if the new request is sync, but the currently running queue is
1721 * not, let the sync request have priority.
1723 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1727 * So both queues are sync. Let the new request get disk time if
1728 * it's a metadata request and the current queue is doing regular IO.
1730 if (rq_is_meta(rq) && !cfqq->meta_pending)
1733 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1737 * if this request is as-good as one we would expect from the
1738 * current cfqq, let it preempt
1740 if (cfq_rq_close(cfqd, rq))
1747 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1748 * let it have half of its nominal slice.
1750 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1752 cfq_slice_expired(cfqd, 1);
1755 * Put the new queue at the front of the of the current list,
1756 * so we know that it will be selected next.
1758 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1760 cfq_service_tree_add(cfqd, cfqq, 1);
1762 cfqq->slice_end = 0;
1763 cfq_mark_cfqq_slice_new(cfqq);
1767 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1768 * something we should do about it
1771 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1774 struct cfq_io_context *cic = RQ_CIC(rq);
1777 cfqq->meta_pending++;
1779 cfq_update_io_thinktime(cfqd, cic);
1780 cfq_update_io_seektime(cfqd, cic, rq);
1781 cfq_update_idle_window(cfqd, cfqq, cic);
1783 cic->last_request_pos = rq->sector + rq->nr_sectors;
1785 if (cfqq == cfqd->active_queue) {
1787 * if we are waiting for a request for this queue, let it rip
1788 * immediately and flag that we must not expire this queue
1791 if (cfq_cfqq_wait_request(cfqq)) {
1792 cfq_mark_cfqq_must_dispatch(cfqq);
1793 del_timer(&cfqd->idle_slice_timer);
1794 blk_start_queueing(cfqd->queue);
1796 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1798 * not the active queue - expire current slice if it is
1799 * idle and has expired it's mean thinktime or this new queue
1800 * has some old slice time left and is of higher priority
1802 cfq_preempt_queue(cfqd, cfqq);
1803 cfq_mark_cfqq_must_dispatch(cfqq);
1804 blk_start_queueing(cfqd->queue);
1808 static void cfq_insert_request(struct request_queue *q, struct request *rq)
1810 struct cfq_data *cfqd = q->elevator->elevator_data;
1811 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1813 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1817 list_add_tail(&rq->queuelist, &cfqq->fifo);
1819 cfq_rq_enqueued(cfqd, cfqq, rq);
1822 static void cfq_completed_request(struct request_queue *q, struct request *rq)
1824 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1825 struct cfq_data *cfqd = cfqq->cfqd;
1826 const int sync = rq_is_sync(rq);
1831 WARN_ON(!cfqd->rq_in_driver);
1832 WARN_ON(!cfqq->dispatched);
1833 cfqd->rq_in_driver--;
1836 if (cfq_cfqq_sync(cfqq))
1837 cfqd->sync_flight--;
1839 if (!cfq_class_idle(cfqq))
1840 cfqd->last_end_request = now;
1843 RQ_CIC(rq)->last_end_request = now;
1846 * If this is the active queue, check if it needs to be expired,
1847 * or if we want to idle in case it has no pending requests.
1849 if (cfqd->active_queue == cfqq) {
1850 if (cfq_cfqq_slice_new(cfqq)) {
1851 cfq_set_prio_slice(cfqd, cfqq);
1852 cfq_clear_cfqq_slice_new(cfqq);
1854 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
1855 cfq_slice_expired(cfqd, 1);
1856 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1857 cfq_arm_slice_timer(cfqd);
1860 if (!cfqd->rq_in_driver)
1861 cfq_schedule_dispatch(cfqd);
1865 * we temporarily boost lower priority queues if they are holding fs exclusive
1866 * resources. they are boosted to normal prio (CLASS_BE/4)
1868 static void cfq_prio_boost(struct cfq_queue *cfqq)
1870 if (has_fs_excl()) {
1872 * boost idle prio on transactions that would lock out other
1873 * users of the filesystem
1875 if (cfq_class_idle(cfqq))
1876 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1877 if (cfqq->ioprio > IOPRIO_NORM)
1878 cfqq->ioprio = IOPRIO_NORM;
1881 * check if we need to unboost the queue
1883 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1884 cfqq->ioprio_class = cfqq->org_ioprio_class;
1885 if (cfqq->ioprio != cfqq->org_ioprio)
1886 cfqq->ioprio = cfqq->org_ioprio;
1890 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1892 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1893 !cfq_cfqq_must_alloc_slice(cfqq)) {
1894 cfq_mark_cfqq_must_alloc_slice(cfqq);
1895 return ELV_MQUEUE_MUST;
1898 return ELV_MQUEUE_MAY;
1901 static int cfq_may_queue(struct request_queue *q, int rw)
1903 struct cfq_data *cfqd = q->elevator->elevator_data;
1904 struct task_struct *tsk = current;
1905 struct cfq_io_context *cic;
1906 struct cfq_queue *cfqq;
1909 * don't force setup of a queue from here, as a call to may_queue
1910 * does not necessarily imply that a request actually will be queued.
1911 * so just lookup a possibly existing queue, or return 'may queue'
1914 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1916 return ELV_MQUEUE_MAY;
1918 cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
1920 cfq_init_prio_data(cfqq, cic->ioc);
1921 cfq_prio_boost(cfqq);
1923 return __cfq_may_queue(cfqq);
1926 return ELV_MQUEUE_MAY;
1930 * queue lock held here
1932 static void cfq_put_request(struct request *rq)
1934 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1937 const int rw = rq_data_dir(rq);
1939 BUG_ON(!cfqq->allocated[rw]);
1940 cfqq->allocated[rw]--;
1942 put_io_context(RQ_CIC(rq)->ioc);
1944 rq->elevator_private = NULL;
1945 rq->elevator_private2 = NULL;
1947 cfq_put_queue(cfqq);
1952 * Allocate cfq data structures associated with this request.
1955 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1957 struct cfq_data *cfqd = q->elevator->elevator_data;
1958 struct cfq_io_context *cic;
1959 const int rw = rq_data_dir(rq);
1960 const int is_sync = rq_is_sync(rq);
1961 struct cfq_queue *cfqq;
1962 unsigned long flags;
1964 might_sleep_if(gfp_mask & __GFP_WAIT);
1966 cic = cfq_get_io_context(cfqd, gfp_mask);
1968 spin_lock_irqsave(q->queue_lock, flags);
1973 cfqq = cic_to_cfqq(cic, is_sync);
1975 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
1980 cic_set_cfqq(cic, cfqq, is_sync);
1983 cfqq->allocated[rw]++;
1984 cfq_clear_cfqq_must_alloc(cfqq);
1985 atomic_inc(&cfqq->ref);
1987 spin_unlock_irqrestore(q->queue_lock, flags);
1989 rq->elevator_private = cic;
1990 rq->elevator_private2 = cfqq;
1995 put_io_context(cic->ioc);
1997 cfq_schedule_dispatch(cfqd);
1998 spin_unlock_irqrestore(q->queue_lock, flags);
2002 static void cfq_kick_queue(struct work_struct *work)
2004 struct cfq_data *cfqd =
2005 container_of(work, struct cfq_data, unplug_work);
2006 struct request_queue *q = cfqd->queue;
2007 unsigned long flags;
2009 spin_lock_irqsave(q->queue_lock, flags);
2010 blk_start_queueing(q);
2011 spin_unlock_irqrestore(q->queue_lock, flags);
2015 * Timer running if the active_queue is currently idling inside its time slice
2017 static void cfq_idle_slice_timer(unsigned long data)
2019 struct cfq_data *cfqd = (struct cfq_data *) data;
2020 struct cfq_queue *cfqq;
2021 unsigned long flags;
2024 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2026 if ((cfqq = cfqd->active_queue) != NULL) {
2032 if (cfq_slice_used(cfqq))
2036 * only expire and reinvoke request handler, if there are
2037 * other queues with pending requests
2039 if (!cfqd->busy_queues)
2043 * not expired and it has a request pending, let it dispatch
2045 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2046 cfq_mark_cfqq_must_dispatch(cfqq);
2051 cfq_slice_expired(cfqd, timed_out);
2053 cfq_schedule_dispatch(cfqd);
2055 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2058 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2060 del_timer_sync(&cfqd->idle_slice_timer);
2061 kblockd_flush_work(&cfqd->unplug_work);
2064 static void cfq_put_async_queues(struct cfq_data *cfqd)
2068 for (i = 0; i < IOPRIO_BE_NR; i++) {
2069 if (cfqd->async_cfqq[0][i])
2070 cfq_put_queue(cfqd->async_cfqq[0][i]);
2071 if (cfqd->async_cfqq[1][i])
2072 cfq_put_queue(cfqd->async_cfqq[1][i]);
2075 if (cfqd->async_idle_cfqq)
2076 cfq_put_queue(cfqd->async_idle_cfqq);
2079 static void cfq_exit_queue(elevator_t *e)
2081 struct cfq_data *cfqd = e->elevator_data;
2082 struct request_queue *q = cfqd->queue;
2084 cfq_shutdown_timer_wq(cfqd);
2086 spin_lock_irq(q->queue_lock);
2088 if (cfqd->active_queue)
2089 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2091 while (!list_empty(&cfqd->cic_list)) {
2092 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2093 struct cfq_io_context,
2096 __cfq_exit_single_io_context(cfqd, cic);
2099 cfq_put_async_queues(cfqd);
2101 spin_unlock_irq(q->queue_lock);
2103 cfq_shutdown_timer_wq(cfqd);
2108 static void *cfq_init_queue(struct request_queue *q)
2110 struct cfq_data *cfqd;
2112 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2116 cfqd->service_tree = CFQ_RB_ROOT;
2117 INIT_LIST_HEAD(&cfqd->cic_list);
2121 init_timer(&cfqd->idle_slice_timer);
2122 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2123 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2125 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2127 cfqd->last_end_request = jiffies;
2128 cfqd->cfq_quantum = cfq_quantum;
2129 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2130 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2131 cfqd->cfq_back_max = cfq_back_max;
2132 cfqd->cfq_back_penalty = cfq_back_penalty;
2133 cfqd->cfq_slice[0] = cfq_slice_async;
2134 cfqd->cfq_slice[1] = cfq_slice_sync;
2135 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2136 cfqd->cfq_slice_idle = cfq_slice_idle;
2141 static void cfq_slab_kill(void)
2144 kmem_cache_destroy(cfq_pool);
2146 kmem_cache_destroy(cfq_ioc_pool);
2149 static int __init cfq_slab_setup(void)
2151 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2155 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, SLAB_DESTROY_BY_RCU);
2166 * sysfs parts below -->
2169 cfq_var_show(unsigned int var, char *page)
2171 return sprintf(page, "%d\n", var);
2175 cfq_var_store(unsigned int *var, const char *page, size_t count)
2177 char *p = (char *) page;
2179 *var = simple_strtoul(p, &p, 10);
2183 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2184 static ssize_t __FUNC(elevator_t *e, char *page) \
2186 struct cfq_data *cfqd = e->elevator_data; \
2187 unsigned int __data = __VAR; \
2189 __data = jiffies_to_msecs(__data); \
2190 return cfq_var_show(__data, (page)); \
2192 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2193 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2194 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2195 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2196 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2197 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2198 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2199 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2200 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2201 #undef SHOW_FUNCTION
2203 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2204 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2206 struct cfq_data *cfqd = e->elevator_data; \
2207 unsigned int __data; \
2208 int ret = cfq_var_store(&__data, (page), count); \
2209 if (__data < (MIN)) \
2211 else if (__data > (MAX)) \
2214 *(__PTR) = msecs_to_jiffies(__data); \
2216 *(__PTR) = __data; \
2219 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2220 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2221 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2222 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2223 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2224 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2225 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2226 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2227 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2228 #undef STORE_FUNCTION
2230 #define CFQ_ATTR(name) \
2231 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2233 static struct elv_fs_entry cfq_attrs[] = {
2235 CFQ_ATTR(fifo_expire_sync),
2236 CFQ_ATTR(fifo_expire_async),
2237 CFQ_ATTR(back_seek_max),
2238 CFQ_ATTR(back_seek_penalty),
2239 CFQ_ATTR(slice_sync),
2240 CFQ_ATTR(slice_async),
2241 CFQ_ATTR(slice_async_rq),
2242 CFQ_ATTR(slice_idle),
2246 static struct elevator_type iosched_cfq = {
2248 .elevator_merge_fn = cfq_merge,
2249 .elevator_merged_fn = cfq_merged_request,
2250 .elevator_merge_req_fn = cfq_merged_requests,
2251 .elevator_allow_merge_fn = cfq_allow_merge,
2252 .elevator_dispatch_fn = cfq_dispatch_requests,
2253 .elevator_add_req_fn = cfq_insert_request,
2254 .elevator_activate_req_fn = cfq_activate_request,
2255 .elevator_deactivate_req_fn = cfq_deactivate_request,
2256 .elevator_queue_empty_fn = cfq_queue_empty,
2257 .elevator_completed_req_fn = cfq_completed_request,
2258 .elevator_former_req_fn = elv_rb_former_request,
2259 .elevator_latter_req_fn = elv_rb_latter_request,
2260 .elevator_set_req_fn = cfq_set_request,
2261 .elevator_put_req_fn = cfq_put_request,
2262 .elevator_may_queue_fn = cfq_may_queue,
2263 .elevator_init_fn = cfq_init_queue,
2264 .elevator_exit_fn = cfq_exit_queue,
2265 .trim = cfq_free_io_context,
2267 .elevator_attrs = cfq_attrs,
2268 .elevator_name = "cfq",
2269 .elevator_owner = THIS_MODULE,
2272 static int __init cfq_init(void)
2275 * could be 0 on HZ < 1000 setups
2277 if (!cfq_slice_async)
2278 cfq_slice_async = 1;
2279 if (!cfq_slice_idle)
2282 if (cfq_slab_setup())
2285 elv_register(&iosched_cfq);
2290 static void __exit cfq_exit(void)
2292 DECLARE_COMPLETION_ONSTACK(all_gone);
2293 elv_unregister(&iosched_cfq);
2294 ioc_gone = &all_gone;
2295 /* ioc_gone's update must be visible before reading ioc_count */
2297 if (elv_ioc_count_read(ioc_count))
2298 wait_for_completion(ioc_gone);
2303 module_init(cfq_init);
2304 module_exit(cfq_exit);
2306 MODULE_AUTHOR("Jens Axboe");
2307 MODULE_LICENSE("GPL");
2308 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");