1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
31 #define MLOG_MASK_PREFIX ML_FILE_IO
32 #include <cluster/masklog.h>
39 #include "extent_map.h"
47 #include "buffer_head_io.h"
49 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
50 struct buffer_head *bh_result, int create)
54 struct ocfs2_dinode *fe = NULL;
55 struct buffer_head *bh = NULL;
56 struct buffer_head *buffer_cache_bh = NULL;
57 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
61 (unsigned long long)iblock, bh_result, create);
63 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
65 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
66 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
67 (unsigned long long)iblock);
71 status = ocfs2_read_block(inode, OCFS2_I(inode)->ip_blkno, &bh);
76 fe = (struct ocfs2_dinode *) bh->b_data;
78 if (!OCFS2_IS_VALID_DINODE(fe)) {
79 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
80 (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
85 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
86 le32_to_cpu(fe->i_clusters))) {
87 mlog(ML_ERROR, "block offset is outside the allocated size: "
88 "%llu\n", (unsigned long long)iblock);
92 /* We don't use the page cache to create symlink data, so if
93 * need be, copy it over from the buffer cache. */
94 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
95 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97 buffer_cache_bh = sb_getblk(osb->sb, blkno);
98 if (!buffer_cache_bh) {
99 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 /* we haven't locked out transactions, so a commit
104 * could've happened. Since we've got a reference on
105 * the bh, even if it commits while we're doing the
106 * copy, the data is still good. */
107 if (buffer_jbd(buffer_cache_bh)
108 && ocfs2_inode_is_new(inode)) {
109 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
111 mlog(ML_ERROR, "couldn't kmap!\n");
114 memcpy(kaddr + (bh_result->b_size * iblock),
115 buffer_cache_bh->b_data,
117 kunmap_atomic(kaddr, KM_USER0);
118 set_buffer_uptodate(bh_result);
120 brelse(buffer_cache_bh);
123 map_bh(bh_result, inode->i_sb,
124 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
135 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
136 struct buffer_head *bh_result, int create)
139 unsigned int ext_flags;
140 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
141 u64 p_blkno, count, past_eof;
142 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
144 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
145 (unsigned long long)iblock, bh_result, create);
147 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
148 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
149 inode, inode->i_ino);
151 if (S_ISLNK(inode->i_mode)) {
152 /* this always does I/O for some reason. */
153 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
157 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
161 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
162 (unsigned long long)p_blkno);
166 if (max_blocks < count)
170 * ocfs2 never allocates in this function - the only time we
171 * need to use BH_New is when we're extending i_size on a file
172 * system which doesn't support holes, in which case BH_New
173 * allows block_prepare_write() to zero.
175 * If we see this on a sparse file system, then a truncate has
176 * raced us and removed the cluster. In this case, we clear
177 * the buffers dirty and uptodate bits and let the buffer code
178 * ignore it as a hole.
180 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
181 clear_buffer_dirty(bh_result);
182 clear_buffer_uptodate(bh_result);
186 /* Treat the unwritten extent as a hole for zeroing purposes. */
187 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
188 map_bh(bh_result, inode->i_sb, p_blkno);
190 bh_result->b_size = count << inode->i_blkbits;
192 if (!ocfs2_sparse_alloc(osb)) {
196 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
197 (unsigned long long)iblock,
198 (unsigned long long)p_blkno,
199 (unsigned long long)OCFS2_I(inode)->ip_blkno);
200 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
204 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
205 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
206 (unsigned long long)past_eof);
208 if (create && (iblock >= past_eof))
209 set_buffer_new(bh_result);
220 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
221 struct buffer_head *di_bh)
225 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
227 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
228 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
229 (unsigned long long)OCFS2_I(inode)->ip_blkno);
233 size = i_size_read(inode);
235 if (size > PAGE_CACHE_SIZE ||
236 size > ocfs2_max_inline_data(inode->i_sb)) {
237 ocfs2_error(inode->i_sb,
238 "Inode %llu has with inline data has bad size: %Lu",
239 (unsigned long long)OCFS2_I(inode)->ip_blkno,
240 (unsigned long long)size);
244 kaddr = kmap_atomic(page, KM_USER0);
246 memcpy(kaddr, di->id2.i_data.id_data, size);
247 /* Clear the remaining part of the page */
248 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
249 flush_dcache_page(page);
250 kunmap_atomic(kaddr, KM_USER0);
252 SetPageUptodate(page);
257 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 struct buffer_head *di_bh = NULL;
262 BUG_ON(!PageLocked(page));
263 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
265 ret = ocfs2_read_block(inode, OCFS2_I(inode)->ip_blkno, &di_bh);
271 ret = ocfs2_read_inline_data(inode, page, di_bh);
279 static int ocfs2_readpage(struct file *file, struct page *page)
281 struct inode *inode = page->mapping->host;
282 struct ocfs2_inode_info *oi = OCFS2_I(inode);
283 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
288 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
290 if (ret == AOP_TRUNCATED_PAGE)
296 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
297 ret = AOP_TRUNCATED_PAGE;
298 goto out_inode_unlock;
302 * i_size might have just been updated as we grabed the meta lock. We
303 * might now be discovering a truncate that hit on another node.
304 * block_read_full_page->get_block freaks out if it is asked to read
305 * beyond the end of a file, so we check here. Callers
306 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
307 * and notice that the page they just read isn't needed.
309 * XXX sys_readahead() seems to get that wrong?
311 if (start >= i_size_read(inode)) {
312 zero_user(page, 0, PAGE_SIZE);
313 SetPageUptodate(page);
318 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
319 ret = ocfs2_readpage_inline(inode, page);
321 ret = block_read_full_page(page, ocfs2_get_block);
325 up_read(&OCFS2_I(inode)->ip_alloc_sem);
327 ocfs2_inode_unlock(inode, 0);
336 * This is used only for read-ahead. Failures or difficult to handle
337 * situations are safe to ignore.
339 * Right now, we don't bother with BH_Boundary - in-inode extent lists
340 * are quite large (243 extents on 4k blocks), so most inodes don't
341 * grow out to a tree. If need be, detecting boundary extents could
342 * trivially be added in a future version of ocfs2_get_block().
344 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
345 struct list_head *pages, unsigned nr_pages)
348 struct inode *inode = mapping->host;
349 struct ocfs2_inode_info *oi = OCFS2_I(inode);
354 * Use the nonblocking flag for the dlm code to avoid page
355 * lock inversion, but don't bother with retrying.
357 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
362 ocfs2_inode_unlock(inode, 0);
367 * Don't bother with inline-data. There isn't anything
368 * to read-ahead in that case anyway...
370 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
374 * Check whether a remote node truncated this file - we just
375 * drop out in that case as it's not worth handling here.
377 last = list_entry(pages->prev, struct page, lru);
378 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
379 if (start >= i_size_read(inode))
382 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
385 up_read(&oi->ip_alloc_sem);
386 ocfs2_inode_unlock(inode, 0);
391 /* Note: Because we don't support holes, our allocation has
392 * already happened (allocation writes zeros to the file data)
393 * so we don't have to worry about ordered writes in
396 * ->writepage is called during the process of invalidating the page cache
397 * during blocked lock processing. It can't block on any cluster locks
398 * to during block mapping. It's relying on the fact that the block
399 * mapping can't have disappeared under the dirty pages that it is
400 * being asked to write back.
402 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
406 mlog_entry("(0x%p)\n", page);
408 ret = block_write_full_page(page, ocfs2_get_block, wbc);
416 * This is called from ocfs2_write_zero_page() which has handled it's
417 * own cluster locking and has ensured allocation exists for those
418 * blocks to be written.
420 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
421 unsigned from, unsigned to)
425 ret = block_prepare_write(page, from, to, ocfs2_get_block);
430 /* Taken from ext3. We don't necessarily need the full blown
431 * functionality yet, but IMHO it's better to cut and paste the whole
432 * thing so we can avoid introducing our own bugs (and easily pick up
433 * their fixes when they happen) --Mark */
434 int walk_page_buffers( handle_t *handle,
435 struct buffer_head *head,
439 int (*fn)( handle_t *handle,
440 struct buffer_head *bh))
442 struct buffer_head *bh;
443 unsigned block_start, block_end;
444 unsigned blocksize = head->b_size;
446 struct buffer_head *next;
448 for ( bh = head, block_start = 0;
449 ret == 0 && (bh != head || !block_start);
450 block_start = block_end, bh = next)
452 next = bh->b_this_page;
453 block_end = block_start + blocksize;
454 if (block_end <= from || block_start >= to) {
455 if (partial && !buffer_uptodate(bh))
459 err = (*fn)(handle, bh);
466 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
471 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
475 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
476 if (IS_ERR(handle)) {
482 if (ocfs2_should_order_data(inode)) {
483 ret = ocfs2_jbd2_file_inode(handle, inode);
484 #ifdef CONFIG_OCFS2_COMPAT_JBD
485 ret = walk_page_buffers(handle,
488 ocfs2_journal_dirty_data);
496 ocfs2_commit_trans(osb, handle);
497 handle = ERR_PTR(ret);
502 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
507 struct inode *inode = mapping->host;
509 mlog_entry("(block = %llu)\n", (unsigned long long)block);
511 /* We don't need to lock journal system files, since they aren't
512 * accessed concurrently from multiple nodes.
514 if (!INODE_JOURNAL(inode)) {
515 err = ocfs2_inode_lock(inode, NULL, 0);
521 down_read(&OCFS2_I(inode)->ip_alloc_sem);
524 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
525 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
528 if (!INODE_JOURNAL(inode)) {
529 up_read(&OCFS2_I(inode)->ip_alloc_sem);
530 ocfs2_inode_unlock(inode, 0);
534 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
535 (unsigned long long)block);
541 status = err ? 0 : p_blkno;
543 mlog_exit((int)status);
549 * TODO: Make this into a generic get_blocks function.
551 * From do_direct_io in direct-io.c:
552 * "So what we do is to permit the ->get_blocks function to populate
553 * bh.b_size with the size of IO which is permitted at this offset and
556 * This function is called directly from get_more_blocks in direct-io.c.
558 * called like this: dio->get_blocks(dio->inode, fs_startblk,
559 * fs_count, map_bh, dio->rw == WRITE);
561 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
562 struct buffer_head *bh_result, int create)
565 u64 p_blkno, inode_blocks, contig_blocks;
566 unsigned int ext_flags;
567 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
568 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
570 /* This function won't even be called if the request isn't all
571 * nicely aligned and of the right size, so there's no need
572 * for us to check any of that. */
574 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
577 * Any write past EOF is not allowed because we'd be extending.
579 if (create && (iblock + max_blocks) > inode_blocks) {
584 /* This figures out the size of the next contiguous block, and
585 * our logical offset */
586 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
587 &contig_blocks, &ext_flags);
589 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
590 (unsigned long long)iblock);
595 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
596 ocfs2_error(inode->i_sb,
597 "Inode %llu has a hole at block %llu\n",
598 (unsigned long long)OCFS2_I(inode)->ip_blkno,
599 (unsigned long long)iblock);
605 * get_more_blocks() expects us to describe a hole by clearing
606 * the mapped bit on bh_result().
608 * Consider an unwritten extent as a hole.
610 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
611 map_bh(bh_result, inode->i_sb, p_blkno);
614 * ocfs2_prepare_inode_for_write() should have caught
615 * the case where we'd be filling a hole and triggered
616 * a buffered write instead.
624 clear_buffer_mapped(bh_result);
627 /* make sure we don't map more than max_blocks blocks here as
628 that's all the kernel will handle at this point. */
629 if (max_blocks < contig_blocks)
630 contig_blocks = max_blocks;
631 bh_result->b_size = contig_blocks << blocksize_bits;
637 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
638 * particularly interested in the aio/dio case. Like the core uses
639 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
640 * truncation on another.
642 static void ocfs2_dio_end_io(struct kiocb *iocb,
647 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
650 /* this io's submitter should not have unlocked this before we could */
651 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
653 ocfs2_iocb_clear_rw_locked(iocb);
655 level = ocfs2_iocb_rw_locked_level(iocb);
657 up_read(&inode->i_alloc_sem);
658 ocfs2_rw_unlock(inode, level);
662 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
663 * from ext3. PageChecked() bits have been removed as OCFS2 does not
664 * do journalled data.
666 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
668 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
670 jbd2_journal_invalidatepage(journal, page, offset);
673 static int ocfs2_releasepage(struct page *page, gfp_t wait)
675 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
677 if (!page_has_buffers(page))
679 return jbd2_journal_try_to_free_buffers(journal, page, wait);
682 static ssize_t ocfs2_direct_IO(int rw,
684 const struct iovec *iov,
686 unsigned long nr_segs)
688 struct file *file = iocb->ki_filp;
689 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
695 * Fallback to buffered I/O if we see an inode without
698 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
701 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
702 inode->i_sb->s_bdev, iov, offset,
704 ocfs2_direct_IO_get_blocks,
711 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
716 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
718 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
721 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
723 cluster_start = cpos % cpp;
724 cluster_start = cluster_start << osb->s_clustersize_bits;
726 cluster_end = cluster_start + osb->s_clustersize;
729 BUG_ON(cluster_start > PAGE_SIZE);
730 BUG_ON(cluster_end > PAGE_SIZE);
733 *start = cluster_start;
739 * 'from' and 'to' are the region in the page to avoid zeroing.
741 * If pagesize > clustersize, this function will avoid zeroing outside
742 * of the cluster boundary.
744 * from == to == 0 is code for "zero the entire cluster region"
746 static void ocfs2_clear_page_regions(struct page *page,
747 struct ocfs2_super *osb, u32 cpos,
748 unsigned from, unsigned to)
751 unsigned int cluster_start, cluster_end;
753 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
755 kaddr = kmap_atomic(page, KM_USER0);
758 if (from > cluster_start)
759 memset(kaddr + cluster_start, 0, from - cluster_start);
760 if (to < cluster_end)
761 memset(kaddr + to, 0, cluster_end - to);
763 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
766 kunmap_atomic(kaddr, KM_USER0);
770 * Nonsparse file systems fully allocate before we get to the write
771 * code. This prevents ocfs2_write() from tagging the write as an
772 * allocating one, which means ocfs2_map_page_blocks() might try to
773 * read-in the blocks at the tail of our file. Avoid reading them by
774 * testing i_size against each block offset.
776 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
777 unsigned int block_start)
779 u64 offset = page_offset(page) + block_start;
781 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
784 if (i_size_read(inode) > offset)
791 * Some of this taken from block_prepare_write(). We already have our
792 * mapping by now though, and the entire write will be allocating or
793 * it won't, so not much need to use BH_New.
795 * This will also skip zeroing, which is handled externally.
797 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
798 struct inode *inode, unsigned int from,
799 unsigned int to, int new)
802 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
803 unsigned int block_end, block_start;
804 unsigned int bsize = 1 << inode->i_blkbits;
806 if (!page_has_buffers(page))
807 create_empty_buffers(page, bsize, 0);
809 head = page_buffers(page);
810 for (bh = head, block_start = 0; bh != head || !block_start;
811 bh = bh->b_this_page, block_start += bsize) {
812 block_end = block_start + bsize;
814 clear_buffer_new(bh);
817 * Ignore blocks outside of our i/o range -
818 * they may belong to unallocated clusters.
820 if (block_start >= to || block_end <= from) {
821 if (PageUptodate(page))
822 set_buffer_uptodate(bh);
827 * For an allocating write with cluster size >= page
828 * size, we always write the entire page.
833 if (!buffer_mapped(bh)) {
834 map_bh(bh, inode->i_sb, *p_blkno);
835 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
838 if (PageUptodate(page)) {
839 if (!buffer_uptodate(bh))
840 set_buffer_uptodate(bh);
841 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
843 ocfs2_should_read_blk(inode, page, block_start) &&
844 (block_start < from || block_end > to)) {
845 ll_rw_block(READ, 1, &bh);
849 *p_blkno = *p_blkno + 1;
853 * If we issued read requests - let them complete.
855 while(wait_bh > wait) {
856 wait_on_buffer(*--wait_bh);
857 if (!buffer_uptodate(*wait_bh))
861 if (ret == 0 || !new)
865 * If we get -EIO above, zero out any newly allocated blocks
866 * to avoid exposing stale data.
871 block_end = block_start + bsize;
872 if (block_end <= from)
874 if (block_start >= to)
877 zero_user(page, block_start, bh->b_size);
878 set_buffer_uptodate(bh);
879 mark_buffer_dirty(bh);
882 block_start = block_end;
883 bh = bh->b_this_page;
884 } while (bh != head);
889 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
890 #define OCFS2_MAX_CTXT_PAGES 1
892 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
895 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
898 * Describe the state of a single cluster to be written to.
900 struct ocfs2_write_cluster_desc {
904 * Give this a unique field because c_phys eventually gets
908 unsigned c_unwritten;
911 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
913 return d->c_new || d->c_unwritten;
916 struct ocfs2_write_ctxt {
917 /* Logical cluster position / len of write */
921 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
924 * This is true if page_size > cluster_size.
926 * It triggers a set of special cases during write which might
927 * have to deal with allocating writes to partial pages.
929 unsigned int w_large_pages;
932 * Pages involved in this write.
934 * w_target_page is the page being written to by the user.
936 * w_pages is an array of pages which always contains
937 * w_target_page, and in the case of an allocating write with
938 * page_size < cluster size, it will contain zero'd and mapped
939 * pages adjacent to w_target_page which need to be written
940 * out in so that future reads from that region will get
943 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
944 unsigned int w_num_pages;
945 struct page *w_target_page;
948 * ocfs2_write_end() uses this to know what the real range to
949 * write in the target should be.
951 unsigned int w_target_from;
952 unsigned int w_target_to;
955 * We could use journal_current_handle() but this is cleaner,
960 struct buffer_head *w_di_bh;
962 struct ocfs2_cached_dealloc_ctxt w_dealloc;
965 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
969 for(i = 0; i < num_pages; i++) {
971 unlock_page(pages[i]);
972 mark_page_accessed(pages[i]);
973 page_cache_release(pages[i]);
978 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
980 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
986 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
987 struct ocfs2_super *osb, loff_t pos,
988 unsigned len, struct buffer_head *di_bh)
991 struct ocfs2_write_ctxt *wc;
993 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
997 wc->w_cpos = pos >> osb->s_clustersize_bits;
998 cend = (pos + len - 1) >> osb->s_clustersize_bits;
999 wc->w_clen = cend - wc->w_cpos + 1;
1001 wc->w_di_bh = di_bh;
1003 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1004 wc->w_large_pages = 1;
1006 wc->w_large_pages = 0;
1008 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1016 * If a page has any new buffers, zero them out here, and mark them uptodate
1017 * and dirty so they'll be written out (in order to prevent uninitialised
1018 * block data from leaking). And clear the new bit.
1020 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1022 unsigned int block_start, block_end;
1023 struct buffer_head *head, *bh;
1025 BUG_ON(!PageLocked(page));
1026 if (!page_has_buffers(page))
1029 bh = head = page_buffers(page);
1032 block_end = block_start + bh->b_size;
1034 if (buffer_new(bh)) {
1035 if (block_end > from && block_start < to) {
1036 if (!PageUptodate(page)) {
1037 unsigned start, end;
1039 start = max(from, block_start);
1040 end = min(to, block_end);
1042 zero_user_segment(page, start, end);
1043 set_buffer_uptodate(bh);
1046 clear_buffer_new(bh);
1047 mark_buffer_dirty(bh);
1051 block_start = block_end;
1052 bh = bh->b_this_page;
1053 } while (bh != head);
1057 * Only called when we have a failure during allocating write to write
1058 * zero's to the newly allocated region.
1060 static void ocfs2_write_failure(struct inode *inode,
1061 struct ocfs2_write_ctxt *wc,
1062 loff_t user_pos, unsigned user_len)
1065 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1066 to = user_pos + user_len;
1067 struct page *tmppage;
1069 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1071 for(i = 0; i < wc->w_num_pages; i++) {
1072 tmppage = wc->w_pages[i];
1074 if (page_has_buffers(tmppage)) {
1075 if (ocfs2_should_order_data(inode)) {
1076 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1077 #ifdef CONFIG_OCFS2_COMPAT_JBD
1078 walk_page_buffers(wc->w_handle,
1079 page_buffers(tmppage),
1081 ocfs2_journal_dirty_data);
1085 block_commit_write(tmppage, from, to);
1090 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1091 struct ocfs2_write_ctxt *wc,
1092 struct page *page, u32 cpos,
1093 loff_t user_pos, unsigned user_len,
1097 unsigned int map_from = 0, map_to = 0;
1098 unsigned int cluster_start, cluster_end;
1099 unsigned int user_data_from = 0, user_data_to = 0;
1101 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1102 &cluster_start, &cluster_end);
1104 if (page == wc->w_target_page) {
1105 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1106 map_to = map_from + user_len;
1109 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1110 cluster_start, cluster_end,
1113 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1114 map_from, map_to, new);
1120 user_data_from = map_from;
1121 user_data_to = map_to;
1123 map_from = cluster_start;
1124 map_to = cluster_end;
1128 * If we haven't allocated the new page yet, we
1129 * shouldn't be writing it out without copying user
1130 * data. This is likely a math error from the caller.
1134 map_from = cluster_start;
1135 map_to = cluster_end;
1137 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1138 cluster_start, cluster_end, new);
1146 * Parts of newly allocated pages need to be zero'd.
1148 * Above, we have also rewritten 'to' and 'from' - as far as
1149 * the rest of the function is concerned, the entire cluster
1150 * range inside of a page needs to be written.
1152 * We can skip this if the page is up to date - it's already
1153 * been zero'd from being read in as a hole.
1155 if (new && !PageUptodate(page))
1156 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1157 cpos, user_data_from, user_data_to);
1159 flush_dcache_page(page);
1166 * This function will only grab one clusters worth of pages.
1168 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1169 struct ocfs2_write_ctxt *wc,
1170 u32 cpos, loff_t user_pos, int new,
1171 struct page *mmap_page)
1174 unsigned long start, target_index, index;
1175 struct inode *inode = mapping->host;
1177 target_index = user_pos >> PAGE_CACHE_SHIFT;
1180 * Figure out how many pages we'll be manipulating here. For
1181 * non allocating write, we just change the one
1182 * page. Otherwise, we'll need a whole clusters worth.
1185 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1186 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1188 wc->w_num_pages = 1;
1189 start = target_index;
1192 for(i = 0; i < wc->w_num_pages; i++) {
1195 if (index == target_index && mmap_page) {
1197 * ocfs2_pagemkwrite() is a little different
1198 * and wants us to directly use the page
1201 lock_page(mmap_page);
1203 if (mmap_page->mapping != mapping) {
1204 unlock_page(mmap_page);
1206 * Sanity check - the locking in
1207 * ocfs2_pagemkwrite() should ensure
1208 * that this code doesn't trigger.
1215 page_cache_get(mmap_page);
1216 wc->w_pages[i] = mmap_page;
1218 wc->w_pages[i] = find_or_create_page(mapping, index,
1220 if (!wc->w_pages[i]) {
1227 if (index == target_index)
1228 wc->w_target_page = wc->w_pages[i];
1235 * Prepare a single cluster for write one cluster into the file.
1237 static int ocfs2_write_cluster(struct address_space *mapping,
1238 u32 phys, unsigned int unwritten,
1239 struct ocfs2_alloc_context *data_ac,
1240 struct ocfs2_alloc_context *meta_ac,
1241 struct ocfs2_write_ctxt *wc, u32 cpos,
1242 loff_t user_pos, unsigned user_len)
1244 int ret, i, new, should_zero = 0;
1245 u64 v_blkno, p_blkno;
1246 struct inode *inode = mapping->host;
1247 struct ocfs2_extent_tree et;
1249 new = phys == 0 ? 1 : 0;
1250 if (new || unwritten)
1257 * This is safe to call with the page locks - it won't take
1258 * any additional semaphores or cluster locks.
1261 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1262 &tmp_pos, 1, 0, wc->w_di_bh,
1263 wc->w_handle, data_ac,
1266 * This shouldn't happen because we must have already
1267 * calculated the correct meta data allocation required. The
1268 * internal tree allocation code should know how to increase
1269 * transaction credits itself.
1271 * If need be, we could handle -EAGAIN for a
1272 * RESTART_TRANS here.
1274 mlog_bug_on_msg(ret == -EAGAIN,
1275 "Inode %llu: EAGAIN return during allocation.\n",
1276 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1281 } else if (unwritten) {
1282 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1283 ret = ocfs2_mark_extent_written(inode, &et,
1284 wc->w_handle, cpos, 1, phys,
1285 meta_ac, &wc->w_dealloc);
1293 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1295 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1298 * The only reason this should fail is due to an inability to
1299 * find the extent added.
1301 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1304 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1305 "at logical block %llu",
1306 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1307 (unsigned long long)v_blkno);
1311 BUG_ON(p_blkno == 0);
1313 for(i = 0; i < wc->w_num_pages; i++) {
1316 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1317 wc->w_pages[i], cpos,
1328 * We only have cleanup to do in case of allocating write.
1331 ocfs2_write_failure(inode, wc, user_pos, user_len);
1338 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1339 struct ocfs2_alloc_context *data_ac,
1340 struct ocfs2_alloc_context *meta_ac,
1341 struct ocfs2_write_ctxt *wc,
1342 loff_t pos, unsigned len)
1346 unsigned int local_len = len;
1347 struct ocfs2_write_cluster_desc *desc;
1348 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1350 for (i = 0; i < wc->w_clen; i++) {
1351 desc = &wc->w_desc[i];
1354 * We have to make sure that the total write passed in
1355 * doesn't extend past a single cluster.
1358 cluster_off = pos & (osb->s_clustersize - 1);
1359 if ((cluster_off + local_len) > osb->s_clustersize)
1360 local_len = osb->s_clustersize - cluster_off;
1362 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1363 desc->c_unwritten, data_ac, meta_ac,
1364 wc, desc->c_cpos, pos, local_len);
1380 * ocfs2_write_end() wants to know which parts of the target page it
1381 * should complete the write on. It's easiest to compute them ahead of
1382 * time when a more complete view of the write is available.
1384 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1385 struct ocfs2_write_ctxt *wc,
1386 loff_t pos, unsigned len, int alloc)
1388 struct ocfs2_write_cluster_desc *desc;
1390 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1391 wc->w_target_to = wc->w_target_from + len;
1397 * Allocating write - we may have different boundaries based
1398 * on page size and cluster size.
1400 * NOTE: We can no longer compute one value from the other as
1401 * the actual write length and user provided length may be
1405 if (wc->w_large_pages) {
1407 * We only care about the 1st and last cluster within
1408 * our range and whether they should be zero'd or not. Either
1409 * value may be extended out to the start/end of a
1410 * newly allocated cluster.
1412 desc = &wc->w_desc[0];
1413 if (ocfs2_should_zero_cluster(desc))
1414 ocfs2_figure_cluster_boundaries(osb,
1419 desc = &wc->w_desc[wc->w_clen - 1];
1420 if (ocfs2_should_zero_cluster(desc))
1421 ocfs2_figure_cluster_boundaries(osb,
1426 wc->w_target_from = 0;
1427 wc->w_target_to = PAGE_CACHE_SIZE;
1432 * Populate each single-cluster write descriptor in the write context
1433 * with information about the i/o to be done.
1435 * Returns the number of clusters that will have to be allocated, as
1436 * well as a worst case estimate of the number of extent records that
1437 * would have to be created during a write to an unwritten region.
1439 static int ocfs2_populate_write_desc(struct inode *inode,
1440 struct ocfs2_write_ctxt *wc,
1441 unsigned int *clusters_to_alloc,
1442 unsigned int *extents_to_split)
1445 struct ocfs2_write_cluster_desc *desc;
1446 unsigned int num_clusters = 0;
1447 unsigned int ext_flags = 0;
1451 *clusters_to_alloc = 0;
1452 *extents_to_split = 0;
1454 for (i = 0; i < wc->w_clen; i++) {
1455 desc = &wc->w_desc[i];
1456 desc->c_cpos = wc->w_cpos + i;
1458 if (num_clusters == 0) {
1460 * Need to look up the next extent record.
1462 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1463 &num_clusters, &ext_flags);
1470 * Assume worst case - that we're writing in
1471 * the middle of the extent.
1473 * We can assume that the write proceeds from
1474 * left to right, in which case the extent
1475 * insert code is smart enough to coalesce the
1476 * next splits into the previous records created.
1478 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1479 *extents_to_split = *extents_to_split + 2;
1482 * Only increment phys if it doesn't describe
1488 desc->c_phys = phys;
1491 *clusters_to_alloc = *clusters_to_alloc + 1;
1493 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1494 desc->c_unwritten = 1;
1504 static int ocfs2_write_begin_inline(struct address_space *mapping,
1505 struct inode *inode,
1506 struct ocfs2_write_ctxt *wc)
1509 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1512 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1514 page = find_or_create_page(mapping, 0, GFP_NOFS);
1521 * If we don't set w_num_pages then this page won't get unlocked
1522 * and freed on cleanup of the write context.
1524 wc->w_pages[0] = wc->w_target_page = page;
1525 wc->w_num_pages = 1;
1527 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1528 if (IS_ERR(handle)) {
1529 ret = PTR_ERR(handle);
1534 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1535 OCFS2_JOURNAL_ACCESS_WRITE);
1537 ocfs2_commit_trans(osb, handle);
1543 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1544 ocfs2_set_inode_data_inline(inode, di);
1546 if (!PageUptodate(page)) {
1547 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1549 ocfs2_commit_trans(osb, handle);
1555 wc->w_handle = handle;
1560 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1562 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1564 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1569 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1570 struct inode *inode, loff_t pos,
1571 unsigned len, struct page *mmap_page,
1572 struct ocfs2_write_ctxt *wc)
1574 int ret, written = 0;
1575 loff_t end = pos + len;
1576 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1578 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1579 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1580 oi->ip_dyn_features);
1583 * Handle inodes which already have inline data 1st.
1585 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1586 if (mmap_page == NULL &&
1587 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1588 goto do_inline_write;
1591 * The write won't fit - we have to give this inode an
1592 * inline extent list now.
1594 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1601 * Check whether the inode can accept inline data.
1603 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1607 * Check whether the write can fit.
1609 if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1613 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1620 * This signals to the caller that the data can be written
1625 return written ? written : ret;
1629 * This function only does anything for file systems which can't
1630 * handle sparse files.
1632 * What we want to do here is fill in any hole between the current end
1633 * of allocation and the end of our write. That way the rest of the
1634 * write path can treat it as an non-allocating write, which has no
1635 * special case code for sparse/nonsparse files.
1637 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1639 struct ocfs2_write_ctxt *wc)
1642 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1643 loff_t newsize = pos + len;
1645 if (ocfs2_sparse_alloc(osb))
1648 if (newsize <= i_size_read(inode))
1651 ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1658 int ocfs2_write_begin_nolock(struct address_space *mapping,
1659 loff_t pos, unsigned len, unsigned flags,
1660 struct page **pagep, void **fsdata,
1661 struct buffer_head *di_bh, struct page *mmap_page)
1663 int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1664 unsigned int clusters_to_alloc, extents_to_split;
1665 struct ocfs2_write_ctxt *wc;
1666 struct inode *inode = mapping->host;
1667 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1668 struct ocfs2_dinode *di;
1669 struct ocfs2_alloc_context *data_ac = NULL;
1670 struct ocfs2_alloc_context *meta_ac = NULL;
1672 struct ocfs2_extent_tree et;
1674 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1680 if (ocfs2_supports_inline_data(osb)) {
1681 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1693 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1699 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1706 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1709 * We set w_target_from, w_target_to here so that
1710 * ocfs2_write_end() knows which range in the target page to
1711 * write out. An allocation requires that we write the entire
1714 if (clusters_to_alloc || extents_to_split) {
1716 * XXX: We are stretching the limits of
1717 * ocfs2_lock_allocators(). It greatly over-estimates
1718 * the work to be done.
1720 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1721 " clusters_to_add = %u, extents_to_split = %u\n",
1722 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1723 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1724 clusters_to_alloc, extents_to_split);
1726 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1727 ret = ocfs2_lock_allocators(inode, &et,
1728 clusters_to_alloc, extents_to_split,
1729 &data_ac, &meta_ac);
1735 credits = ocfs2_calc_extend_credits(inode->i_sb,
1741 ocfs2_set_target_boundaries(osb, wc, pos, len,
1742 clusters_to_alloc + extents_to_split);
1744 handle = ocfs2_start_trans(osb, credits);
1745 if (IS_ERR(handle)) {
1746 ret = PTR_ERR(handle);
1751 wc->w_handle = handle;
1754 * We don't want this to fail in ocfs2_write_end(), so do it
1757 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1758 OCFS2_JOURNAL_ACCESS_WRITE);
1765 * Fill our page array first. That way we've grabbed enough so
1766 * that we can zero and flush if we error after adding the
1769 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1770 clusters_to_alloc + extents_to_split,
1777 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1785 ocfs2_free_alloc_context(data_ac);
1787 ocfs2_free_alloc_context(meta_ac);
1790 *pagep = wc->w_target_page;
1794 ocfs2_commit_trans(osb, handle);
1797 ocfs2_free_write_ctxt(wc);
1800 ocfs2_free_alloc_context(data_ac);
1802 ocfs2_free_alloc_context(meta_ac);
1806 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1807 loff_t pos, unsigned len, unsigned flags,
1808 struct page **pagep, void **fsdata)
1811 struct buffer_head *di_bh = NULL;
1812 struct inode *inode = mapping->host;
1814 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1821 * Take alloc sem here to prevent concurrent lookups. That way
1822 * the mapping, zeroing and tree manipulation within
1823 * ocfs2_write() will be safe against ->readpage(). This
1824 * should also serve to lock out allocation from a shared
1827 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1829 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1830 fsdata, di_bh, NULL);
1841 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1844 ocfs2_inode_unlock(inode, 1);
1849 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1850 unsigned len, unsigned *copied,
1851 struct ocfs2_dinode *di,
1852 struct ocfs2_write_ctxt *wc)
1856 if (unlikely(*copied < len)) {
1857 if (!PageUptodate(wc->w_target_page)) {
1863 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1864 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1865 kunmap_atomic(kaddr, KM_USER0);
1867 mlog(0, "Data written to inode at offset %llu. "
1868 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1869 (unsigned long long)pos, *copied,
1870 le16_to_cpu(di->id2.i_data.id_count),
1871 le16_to_cpu(di->i_dyn_features));
1874 int ocfs2_write_end_nolock(struct address_space *mapping,
1875 loff_t pos, unsigned len, unsigned copied,
1876 struct page *page, void *fsdata)
1879 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1880 struct inode *inode = mapping->host;
1881 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1882 struct ocfs2_write_ctxt *wc = fsdata;
1883 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1884 handle_t *handle = wc->w_handle;
1885 struct page *tmppage;
1887 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1888 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1889 goto out_write_size;
1892 if (unlikely(copied < len)) {
1893 if (!PageUptodate(wc->w_target_page))
1896 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1899 flush_dcache_page(wc->w_target_page);
1901 for(i = 0; i < wc->w_num_pages; i++) {
1902 tmppage = wc->w_pages[i];
1904 if (tmppage == wc->w_target_page) {
1905 from = wc->w_target_from;
1906 to = wc->w_target_to;
1908 BUG_ON(from > PAGE_CACHE_SIZE ||
1909 to > PAGE_CACHE_SIZE ||
1913 * Pages adjacent to the target (if any) imply
1914 * a hole-filling write in which case we want
1915 * to flush their entire range.
1918 to = PAGE_CACHE_SIZE;
1921 if (page_has_buffers(tmppage)) {
1922 if (ocfs2_should_order_data(inode)) {
1923 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1924 #ifdef CONFIG_OCFS2_COMPAT_JBD
1925 walk_page_buffers(wc->w_handle,
1926 page_buffers(tmppage),
1928 ocfs2_journal_dirty_data);
1931 block_commit_write(tmppage, from, to);
1937 if (pos > inode->i_size) {
1938 i_size_write(inode, pos);
1939 mark_inode_dirty(inode);
1941 inode->i_blocks = ocfs2_inode_sector_count(inode);
1942 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1943 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1944 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1945 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1946 ocfs2_journal_dirty(handle, wc->w_di_bh);
1948 ocfs2_commit_trans(osb, handle);
1950 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1952 ocfs2_free_write_ctxt(wc);
1957 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1958 loff_t pos, unsigned len, unsigned copied,
1959 struct page *page, void *fsdata)
1962 struct inode *inode = mapping->host;
1964 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1966 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1967 ocfs2_inode_unlock(inode, 1);
1972 const struct address_space_operations ocfs2_aops = {
1973 .readpage = ocfs2_readpage,
1974 .readpages = ocfs2_readpages,
1975 .writepage = ocfs2_writepage,
1976 .write_begin = ocfs2_write_begin,
1977 .write_end = ocfs2_write_end,
1979 .sync_page = block_sync_page,
1980 .direct_IO = ocfs2_direct_IO,
1981 .invalidatepage = ocfs2_invalidatepage,
1982 .releasepage = ocfs2_releasepage,
1983 .migratepage = buffer_migrate_page,