2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
38 struct scsi_host_sg_pool {
41 struct kmem_cache *slab;
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
64 SP(SCSI_MAX_SG_SEGMENTS)
68 static struct kmem_cache *scsi_sdb_cache;
70 static void scsi_run_queue(struct request_queue *q);
73 * Function: scsi_unprep_request()
75 * Purpose: Remove all preparation done for a request, including its
76 * associated scsi_cmnd, so that it can be requeued.
78 * Arguments: req - request to unprepare
80 * Lock status: Assumed that no locks are held upon entry.
84 static void scsi_unprep_request(struct request *req)
86 struct scsi_cmnd *cmd = req->special;
88 req->cmd_flags &= ~REQ_DONTPREP;
91 scsi_put_command(cmd);
95 * Function: scsi_queue_insert()
97 * Purpose: Insert a command in the midlevel queue.
99 * Arguments: cmd - command that we are adding to queue.
100 * reason - why we are inserting command to queue.
102 * Lock status: Assumed that lock is not held upon entry.
106 * Notes: We do this for one of two cases. Either the host is busy
107 * and it cannot accept any more commands for the time being,
108 * or the device returned QUEUE_FULL and can accept no more
110 * Notes: This could be called either from an interrupt context or a
111 * normal process context.
113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
115 struct Scsi_Host *host = cmd->device->host;
116 struct scsi_device *device = cmd->device;
117 struct request_queue *q = device->request_queue;
121 printk("Inserting command %p into mlqueue\n", cmd));
124 * Set the appropriate busy bit for the device/host.
126 * If the host/device isn't busy, assume that something actually
127 * completed, and that we should be able to queue a command now.
129 * Note that the prior mid-layer assumption that any host could
130 * always queue at least one command is now broken. The mid-layer
131 * will implement a user specifiable stall (see
132 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133 * if a command is requeued with no other commands outstanding
134 * either for the device or for the host.
136 if (reason == SCSI_MLQUEUE_HOST_BUSY)
137 host->host_blocked = host->max_host_blocked;
138 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
139 device->device_blocked = device->max_device_blocked;
142 * Decrement the counters, since these commands are no longer
143 * active on the host/device.
145 scsi_device_unbusy(device);
148 * Requeue this command. It will go before all other commands
149 * that are already in the queue.
151 * NOTE: there is magic here about the way the queue is plugged if
152 * we have no outstanding commands.
154 * Although we *don't* plug the queue, we call the request
155 * function. The SCSI request function detects the blocked condition
156 * and plugs the queue appropriately.
158 spin_lock_irqsave(q->queue_lock, flags);
159 blk_requeue_request(q, cmd->request);
160 spin_unlock_irqrestore(q->queue_lock, flags);
168 * scsi_execute - insert request and wait for the result
171 * @data_direction: data direction
172 * @buffer: data buffer
173 * @bufflen: len of buffer
174 * @sense: optional sense buffer
175 * @timeout: request timeout in seconds
176 * @retries: number of times to retry request
177 * @flags: or into request flags;
179 * returns the req->errors value which is the scsi_cmnd result
182 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
183 int data_direction, void *buffer, unsigned bufflen,
184 unsigned char *sense, int timeout, int retries, int flags)
187 int write = (data_direction == DMA_TO_DEVICE);
188 int ret = DRIVER_ERROR << 24;
190 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
192 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
193 buffer, bufflen, __GFP_WAIT))
196 req->cmd_len = COMMAND_SIZE(cmd[0]);
197 memcpy(req->cmd, cmd, req->cmd_len);
200 req->retries = retries;
201 req->timeout = timeout;
202 req->cmd_type = REQ_TYPE_BLOCK_PC;
203 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
206 * head injection *required* here otherwise quiesce won't work
208 blk_execute_rq(req->q, NULL, req, 1);
211 * Some devices (USB mass-storage in particular) may transfer
212 * garbage data together with a residue indicating that the data
213 * is invalid. Prevent the garbage from being misinterpreted
214 * and prevent security leaks by zeroing out the excess data.
216 if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
217 memset(buffer + (bufflen - req->data_len), 0, req->data_len);
221 blk_put_request(req);
225 EXPORT_SYMBOL(scsi_execute);
228 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
229 int data_direction, void *buffer, unsigned bufflen,
230 struct scsi_sense_hdr *sshdr, int timeout, int retries)
236 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
238 return DRIVER_ERROR << 24;
240 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
241 sense, timeout, retries, 0);
243 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
248 EXPORT_SYMBOL(scsi_execute_req);
250 struct scsi_io_context {
252 void (*done)(void *data, char *sense, int result, int resid);
253 char sense[SCSI_SENSE_BUFFERSIZE];
256 static struct kmem_cache *scsi_io_context_cache;
258 static void scsi_end_async(struct request *req, int uptodate)
260 struct scsi_io_context *sioc = req->end_io_data;
263 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
265 kmem_cache_free(scsi_io_context_cache, sioc);
266 __blk_put_request(req->q, req);
269 static int scsi_merge_bio(struct request *rq, struct bio *bio)
271 struct request_queue *q = rq->q;
273 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
274 if (rq_data_dir(rq) == WRITE)
275 bio->bi_rw |= (1 << BIO_RW);
276 blk_queue_bounce(q, &bio);
278 return blk_rq_append_bio(q, rq, bio);
281 static void scsi_bi_endio(struct bio *bio, int error)
287 * scsi_req_map_sg - map a scatterlist into a request
288 * @rq: request to fill
290 * @nsegs: number of elements
291 * @bufflen: len of buffer
292 * @gfp: memory allocation flags
294 * scsi_req_map_sg maps a scatterlist into a request so that the
295 * request can be sent to the block layer. We do not trust the scatterlist
296 * sent to use, as some ULDs use that struct to only organize the pages.
298 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
299 int nsegs, unsigned bufflen, gfp_t gfp)
301 struct request_queue *q = rq->q;
302 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
303 unsigned int data_len = bufflen, len, bytes, off;
304 struct scatterlist *sg;
306 struct bio *bio = NULL;
307 int i, err, nr_vecs = 0;
309 for_each_sg(sgl, sg, nsegs, i) {
314 while (len > 0 && data_len > 0) {
316 * sg sends a scatterlist that is larger than
317 * the data_len it wants transferred for certain
320 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
321 bytes = min(bytes, data_len);
324 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
327 bio = bio_alloc(gfp, nr_vecs);
332 bio->bi_end_io = scsi_bi_endio;
335 if (bio_add_pc_page(q, bio, page, bytes, off) !=
342 if (bio->bi_vcnt >= nr_vecs) {
343 err = scsi_merge_bio(rq, bio);
358 rq->buffer = rq->data = NULL;
359 rq->data_len = bufflen;
363 while ((bio = rq->bio) != NULL) {
364 rq->bio = bio->bi_next;
366 * call endio instead of bio_put incase it was bounced
375 * scsi_execute_async - insert request
378 * @cmd_len: length of scsi cdb
379 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
380 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
381 * @bufflen: len of buffer
382 * @use_sg: if buffer is a scatterlist this is the number of elements
383 * @timeout: request timeout in seconds
384 * @retries: number of times to retry request
385 * @privdata: data passed to done()
386 * @done: callback function when done
387 * @gfp: memory allocation flags
389 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
390 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
391 int use_sg, int timeout, int retries, void *privdata,
392 void (*done)(void *, char *, int, int), gfp_t gfp)
395 struct scsi_io_context *sioc;
397 int write = (data_direction == DMA_TO_DEVICE);
399 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
401 return DRIVER_ERROR << 24;
403 req = blk_get_request(sdev->request_queue, write, gfp);
406 req->cmd_type = REQ_TYPE_BLOCK_PC;
407 req->cmd_flags |= REQ_QUIET;
410 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
412 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
417 req->cmd_len = cmd_len;
418 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
419 memcpy(req->cmd, cmd, req->cmd_len);
420 req->sense = sioc->sense;
422 req->timeout = timeout;
423 req->retries = retries;
424 req->end_io_data = sioc;
426 sioc->data = privdata;
429 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
433 blk_put_request(req);
435 kmem_cache_free(scsi_io_context_cache, sioc);
436 return DRIVER_ERROR << 24;
438 EXPORT_SYMBOL_GPL(scsi_execute_async);
441 * Function: scsi_init_cmd_errh()
443 * Purpose: Initialize cmd fields related to error handling.
445 * Arguments: cmd - command that is ready to be queued.
447 * Notes: This function has the job of initializing a number of
448 * fields related to error handling. Typically this will
449 * be called once for each command, as required.
451 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
453 cmd->serial_number = 0;
454 scsi_set_resid(cmd, 0);
455 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
456 if (cmd->cmd_len == 0)
457 cmd->cmd_len = scsi_command_size(cmd->cmnd);
460 void scsi_device_unbusy(struct scsi_device *sdev)
462 struct Scsi_Host *shost = sdev->host;
465 spin_lock_irqsave(shost->host_lock, flags);
467 if (unlikely(scsi_host_in_recovery(shost) &&
468 (shost->host_failed || shost->host_eh_scheduled)))
469 scsi_eh_wakeup(shost);
470 spin_unlock(shost->host_lock);
471 spin_lock(sdev->request_queue->queue_lock);
473 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
477 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
478 * and call blk_run_queue for all the scsi_devices on the target -
479 * including current_sdev first.
481 * Called with *no* scsi locks held.
483 static void scsi_single_lun_run(struct scsi_device *current_sdev)
485 struct Scsi_Host *shost = current_sdev->host;
486 struct scsi_device *sdev, *tmp;
487 struct scsi_target *starget = scsi_target(current_sdev);
490 spin_lock_irqsave(shost->host_lock, flags);
491 starget->starget_sdev_user = NULL;
492 spin_unlock_irqrestore(shost->host_lock, flags);
495 * Call blk_run_queue for all LUNs on the target, starting with
496 * current_sdev. We race with others (to set starget_sdev_user),
497 * but in most cases, we will be first. Ideally, each LU on the
498 * target would get some limited time or requests on the target.
500 blk_run_queue(current_sdev->request_queue);
502 spin_lock_irqsave(shost->host_lock, flags);
503 if (starget->starget_sdev_user)
505 list_for_each_entry_safe(sdev, tmp, &starget->devices,
506 same_target_siblings) {
507 if (sdev == current_sdev)
509 if (scsi_device_get(sdev))
512 spin_unlock_irqrestore(shost->host_lock, flags);
513 blk_run_queue(sdev->request_queue);
514 spin_lock_irqsave(shost->host_lock, flags);
516 scsi_device_put(sdev);
519 spin_unlock_irqrestore(shost->host_lock, flags);
523 * Function: scsi_run_queue()
525 * Purpose: Select a proper request queue to serve next
527 * Arguments: q - last request's queue
531 * Notes: The previous command was completely finished, start
532 * a new one if possible.
534 static void scsi_run_queue(struct request_queue *q)
536 struct scsi_device *sdev = q->queuedata;
537 struct Scsi_Host *shost = sdev->host;
540 if (scsi_target(sdev)->single_lun)
541 scsi_single_lun_run(sdev);
543 spin_lock_irqsave(shost->host_lock, flags);
544 while (!list_empty(&shost->starved_list) &&
545 !shost->host_blocked && !shost->host_self_blocked &&
546 !((shost->can_queue > 0) &&
547 (shost->host_busy >= shost->can_queue))) {
552 * As long as shost is accepting commands and we have
553 * starved queues, call blk_run_queue. scsi_request_fn
554 * drops the queue_lock and can add us back to the
557 * host_lock protects the starved_list and starved_entry.
558 * scsi_request_fn must get the host_lock before checking
559 * or modifying starved_list or starved_entry.
561 sdev = list_entry(shost->starved_list.next,
562 struct scsi_device, starved_entry);
563 list_del_init(&sdev->starved_entry);
564 spin_unlock(shost->host_lock);
566 spin_lock(sdev->request_queue->queue_lock);
567 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
568 !test_bit(QUEUE_FLAG_REENTER,
569 &sdev->request_queue->queue_flags);
571 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
572 __blk_run_queue(sdev->request_queue);
574 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
575 spin_unlock(sdev->request_queue->queue_lock);
577 spin_lock(shost->host_lock);
578 if (unlikely(!list_empty(&sdev->starved_entry)))
580 * sdev lost a race, and was put back on the
581 * starved list. This is unlikely but without this
582 * in theory we could loop forever.
586 spin_unlock_irqrestore(shost->host_lock, flags);
592 * Function: scsi_requeue_command()
594 * Purpose: Handle post-processing of completed commands.
596 * Arguments: q - queue to operate on
597 * cmd - command that may need to be requeued.
601 * Notes: After command completion, there may be blocks left
602 * over which weren't finished by the previous command
603 * this can be for a number of reasons - the main one is
604 * I/O errors in the middle of the request, in which case
605 * we need to request the blocks that come after the bad
607 * Notes: Upon return, cmd is a stale pointer.
609 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
611 struct request *req = cmd->request;
614 scsi_unprep_request(req);
615 spin_lock_irqsave(q->queue_lock, flags);
616 blk_requeue_request(q, req);
617 spin_unlock_irqrestore(q->queue_lock, flags);
622 void scsi_next_command(struct scsi_cmnd *cmd)
624 struct scsi_device *sdev = cmd->device;
625 struct request_queue *q = sdev->request_queue;
627 /* need to hold a reference on the device before we let go of the cmd */
628 get_device(&sdev->sdev_gendev);
630 scsi_put_command(cmd);
633 /* ok to remove device now */
634 put_device(&sdev->sdev_gendev);
637 void scsi_run_host_queues(struct Scsi_Host *shost)
639 struct scsi_device *sdev;
641 shost_for_each_device(sdev, shost)
642 scsi_run_queue(sdev->request_queue);
646 * Function: scsi_end_request()
648 * Purpose: Post-processing of completed commands (usually invoked at end
649 * of upper level post-processing and scsi_io_completion).
651 * Arguments: cmd - command that is complete.
652 * error - 0 if I/O indicates success, < 0 for I/O error.
653 * bytes - number of bytes of completed I/O
654 * requeue - indicates whether we should requeue leftovers.
656 * Lock status: Assumed that lock is not held upon entry.
658 * Returns: cmd if requeue required, NULL otherwise.
660 * Notes: This is called for block device requests in order to
661 * mark some number of sectors as complete.
663 * We are guaranteeing that the request queue will be goosed
664 * at some point during this call.
665 * Notes: If cmd was requeued, upon return it will be a stale pointer.
667 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
668 int bytes, int requeue)
670 struct request_queue *q = cmd->device->request_queue;
671 struct request *req = cmd->request;
674 * If there are blocks left over at the end, set up the command
675 * to queue the remainder of them.
677 if (blk_end_request(req, error, bytes)) {
678 int leftover = (req->hard_nr_sectors << 9);
680 if (blk_pc_request(req))
681 leftover = req->data_len;
683 /* kill remainder if no retrys */
684 if (error && blk_noretry_request(req))
685 blk_end_request(req, error, leftover);
689 * Bleah. Leftovers again. Stick the
690 * leftovers in the front of the
691 * queue, and goose the queue again.
693 scsi_requeue_command(q, cmd);
701 * This will goose the queue request function at the end, so we don't
702 * need to worry about launching another command.
704 scsi_next_command(cmd);
708 static inline unsigned int scsi_sgtable_index(unsigned short nents)
712 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
717 index = get_count_order(nents) - 3;
722 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
724 struct scsi_host_sg_pool *sgp;
726 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
727 mempool_free(sgl, sgp->pool);
730 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
732 struct scsi_host_sg_pool *sgp;
734 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
735 return mempool_alloc(sgp->pool, gfp_mask);
738 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
745 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
746 gfp_mask, scsi_sg_alloc);
748 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
754 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
756 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
760 * Function: scsi_release_buffers()
762 * Purpose: Completion processing for block device I/O requests.
764 * Arguments: cmd - command that we are bailing.
766 * Lock status: Assumed that no lock is held upon entry.
770 * Notes: In the event that an upper level driver rejects a
771 * command, we must release resources allocated during
772 * the __init_io() function. Primarily this would involve
773 * the scatter-gather table, and potentially any bounce
776 void scsi_release_buffers(struct scsi_cmnd *cmd)
778 if (cmd->sdb.table.nents)
779 scsi_free_sgtable(&cmd->sdb);
781 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
783 if (scsi_bidi_cmnd(cmd)) {
784 struct scsi_data_buffer *bidi_sdb =
785 cmd->request->next_rq->special;
786 scsi_free_sgtable(bidi_sdb);
787 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
788 cmd->request->next_rq->special = NULL;
791 EXPORT_SYMBOL(scsi_release_buffers);
794 * Bidi commands Must be complete as a whole, both sides at once.
795 * If part of the bytes were written and lld returned
796 * scsi_in()->resid and/or scsi_out()->resid this information will be left
797 * in req->data_len and req->next_rq->data_len. The upper-layer driver can
798 * decide what to do with this information.
800 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
802 struct request *req = cmd->request;
803 unsigned int dlen = req->data_len;
804 unsigned int next_dlen = req->next_rq->data_len;
806 req->data_len = scsi_out(cmd)->resid;
807 req->next_rq->data_len = scsi_in(cmd)->resid;
809 /* The req and req->next_rq have not been completed */
810 BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
812 scsi_release_buffers(cmd);
815 * This will goose the queue request function at the end, so we don't
816 * need to worry about launching another command.
818 scsi_next_command(cmd);
822 * Function: scsi_io_completion()
824 * Purpose: Completion processing for block device I/O requests.
826 * Arguments: cmd - command that is finished.
828 * Lock status: Assumed that no lock is held upon entry.
832 * Notes: This function is matched in terms of capabilities to
833 * the function that created the scatter-gather list.
834 * In other words, if there are no bounce buffers
835 * (the normal case for most drivers), we don't need
836 * the logic to deal with cleaning up afterwards.
838 * We must do one of several things here:
840 * a) Call scsi_end_request. This will finish off the
841 * specified number of sectors. If we are done, the
842 * command block will be released, and the queue
843 * function will be goosed. If we are not done, then
844 * scsi_end_request will directly goose the queue.
846 * b) We can just use scsi_requeue_command() here. This would
847 * be used if we just wanted to retry, for example.
849 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
851 int result = cmd->result;
852 int this_count = scsi_bufflen(cmd);
853 struct request_queue *q = cmd->device->request_queue;
854 struct request *req = cmd->request;
856 struct scsi_sense_hdr sshdr;
858 int sense_deferred = 0;
861 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
863 sense_deferred = scsi_sense_is_deferred(&sshdr);
866 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
867 req->errors = result;
869 if (sense_valid && req->sense) {
871 * SG_IO wants current and deferred errors
873 int len = 8 + cmd->sense_buffer[7];
875 if (len > SCSI_SENSE_BUFFERSIZE)
876 len = SCSI_SENSE_BUFFERSIZE;
877 memcpy(req->sense, cmd->sense_buffer, len);
878 req->sense_len = len;
883 if (scsi_bidi_cmnd(cmd)) {
884 /* will also release_buffers */
885 scsi_end_bidi_request(cmd);
888 req->data_len = scsi_get_resid(cmd);
891 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
892 scsi_release_buffers(cmd);
895 * Next deal with any sectors which we were able to correctly
898 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
900 req->nr_sectors, good_bytes));
902 /* A number of bytes were successfully read. If there
903 * are leftovers and there is some kind of error
904 * (result != 0), retry the rest.
906 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
909 /* good_bytes = 0, or (inclusive) there were leftovers and
910 * result = 0, so scsi_end_request couldn't retry.
912 if (sense_valid && !sense_deferred) {
913 switch (sshdr.sense_key) {
915 if (cmd->device->removable) {
916 /* Detected disc change. Set a bit
917 * and quietly refuse further access.
919 cmd->device->changed = 1;
920 scsi_end_request(cmd, -EIO, this_count, 1);
923 /* Must have been a power glitch, or a
924 * bus reset. Could not have been a
925 * media change, so we just retry the
926 * request and see what happens.
928 scsi_requeue_command(q, cmd);
932 case ILLEGAL_REQUEST:
933 /* If we had an ILLEGAL REQUEST returned, then
934 * we may have performed an unsupported
935 * command. The only thing this should be
936 * would be a ten byte read where only a six
937 * byte read was supported. Also, on a system
938 * where READ CAPACITY failed, we may have
939 * read past the end of the disk.
941 if ((cmd->device->use_10_for_rw &&
942 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
943 (cmd->cmnd[0] == READ_10 ||
944 cmd->cmnd[0] == WRITE_10)) {
945 cmd->device->use_10_for_rw = 0;
946 /* This will cause a retry with a
949 scsi_requeue_command(q, cmd);
952 scsi_end_request(cmd, -EIO, this_count, 1);
957 /* If the device is in the process of becoming
958 * ready, or has a temporary blockage, retry.
960 if (sshdr.asc == 0x04) {
961 switch (sshdr.ascq) {
962 case 0x01: /* becoming ready */
963 case 0x04: /* format in progress */
964 case 0x05: /* rebuild in progress */
965 case 0x06: /* recalculation in progress */
966 case 0x07: /* operation in progress */
967 case 0x08: /* Long write in progress */
968 case 0x09: /* self test in progress */
969 scsi_requeue_command(q, cmd);
975 if (!(req->cmd_flags & REQ_QUIET))
976 scsi_cmd_print_sense_hdr(cmd,
980 scsi_end_request(cmd, -EIO, this_count, 1);
982 case VOLUME_OVERFLOW:
983 if (!(req->cmd_flags & REQ_QUIET)) {
984 scmd_printk(KERN_INFO, cmd,
985 "Volume overflow, CDB: ");
986 __scsi_print_command(cmd->cmnd);
987 scsi_print_sense("", cmd);
989 /* See SSC3rXX or current. */
990 scsi_end_request(cmd, -EIO, this_count, 1);
996 if (host_byte(result) == DID_RESET) {
997 /* Third party bus reset or reset for error recovery
998 * reasons. Just retry the request and see what
1001 scsi_requeue_command(q, cmd);
1005 if (!(req->cmd_flags & REQ_QUIET)) {
1006 scsi_print_result(cmd);
1007 if (driver_byte(result) & DRIVER_SENSE)
1008 scsi_print_sense("", cmd);
1011 scsi_end_request(cmd, -EIO, this_count, !result);
1014 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1020 * If sg table allocation fails, requeue request later.
1022 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1024 return BLKPREP_DEFER;
1030 * Next, walk the list, and fill in the addresses and sizes of
1033 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1034 BUG_ON(count > sdb->table.nents);
1035 sdb->table.nents = count;
1036 if (blk_pc_request(req))
1037 sdb->length = req->data_len;
1039 sdb->length = req->nr_sectors << 9;
1044 * Function: scsi_init_io()
1046 * Purpose: SCSI I/O initialize function.
1048 * Arguments: cmd - Command descriptor we wish to initialize
1050 * Returns: 0 on success
1051 * BLKPREP_DEFER if the failure is retryable
1052 * BLKPREP_KILL if the failure is fatal
1054 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1056 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1060 if (blk_bidi_rq(cmd->request)) {
1061 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1062 scsi_sdb_cache, GFP_ATOMIC);
1064 error = BLKPREP_DEFER;
1068 cmd->request->next_rq->special = bidi_sdb;
1069 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1078 scsi_release_buffers(cmd);
1079 if (error == BLKPREP_KILL)
1080 scsi_put_command(cmd);
1081 else /* BLKPREP_DEFER */
1082 scsi_unprep_request(cmd->request);
1086 EXPORT_SYMBOL(scsi_init_io);
1088 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1089 struct request *req)
1091 struct scsi_cmnd *cmd;
1093 if (!req->special) {
1094 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1102 /* pull a tag out of the request if we have one */
1103 cmd->tag = req->tag;
1106 cmd->cmnd = req->cmd;
1111 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1113 struct scsi_cmnd *cmd;
1114 int ret = scsi_prep_state_check(sdev, req);
1116 if (ret != BLKPREP_OK)
1119 cmd = scsi_get_cmd_from_req(sdev, req);
1121 return BLKPREP_DEFER;
1124 * BLOCK_PC requests may transfer data, in which case they must
1125 * a bio attached to them. Or they might contain a SCSI command
1126 * that does not transfer data, in which case they may optionally
1127 * submit a request without an attached bio.
1132 BUG_ON(!req->nr_phys_segments);
1134 ret = scsi_init_io(cmd, GFP_ATOMIC);
1138 BUG_ON(req->data_len);
1141 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1145 cmd->cmd_len = req->cmd_len;
1147 cmd->sc_data_direction = DMA_NONE;
1148 else if (rq_data_dir(req) == WRITE)
1149 cmd->sc_data_direction = DMA_TO_DEVICE;
1151 cmd->sc_data_direction = DMA_FROM_DEVICE;
1153 cmd->transfersize = req->data_len;
1154 cmd->allowed = req->retries;
1155 cmd->timeout_per_command = req->timeout;
1158 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1161 * Setup a REQ_TYPE_FS command. These are simple read/write request
1162 * from filesystems that still need to be translated to SCSI CDBs from
1165 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1167 struct scsi_cmnd *cmd;
1168 int ret = scsi_prep_state_check(sdev, req);
1170 if (ret != BLKPREP_OK)
1173 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1174 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1175 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1176 if (ret != BLKPREP_OK)
1181 * Filesystem requests must transfer data.
1183 BUG_ON(!req->nr_phys_segments);
1185 cmd = scsi_get_cmd_from_req(sdev, req);
1187 return BLKPREP_DEFER;
1189 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1190 return scsi_init_io(cmd, GFP_ATOMIC);
1192 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1194 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1196 int ret = BLKPREP_OK;
1199 * If the device is not in running state we will reject some
1202 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1203 switch (sdev->sdev_state) {
1206 * If the device is offline we refuse to process any
1207 * commands. The device must be brought online
1208 * before trying any recovery commands.
1210 sdev_printk(KERN_ERR, sdev,
1211 "rejecting I/O to offline device\n");
1216 * If the device is fully deleted, we refuse to
1217 * process any commands as well.
1219 sdev_printk(KERN_ERR, sdev,
1220 "rejecting I/O to dead device\n");
1226 * If the devices is blocked we defer normal commands.
1228 if (!(req->cmd_flags & REQ_PREEMPT))
1229 ret = BLKPREP_DEFER;
1233 * For any other not fully online state we only allow
1234 * special commands. In particular any user initiated
1235 * command is not allowed.
1237 if (!(req->cmd_flags & REQ_PREEMPT))
1244 EXPORT_SYMBOL(scsi_prep_state_check);
1246 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1248 struct scsi_device *sdev = q->queuedata;
1252 req->errors = DID_NO_CONNECT << 16;
1253 /* release the command and kill it */
1255 struct scsi_cmnd *cmd = req->special;
1256 scsi_release_buffers(cmd);
1257 scsi_put_command(cmd);
1258 req->special = NULL;
1263 * If we defer, the elv_next_request() returns NULL, but the
1264 * queue must be restarted, so we plug here if no returning
1265 * command will automatically do that.
1267 if (sdev->device_busy == 0)
1271 req->cmd_flags |= REQ_DONTPREP;
1276 EXPORT_SYMBOL(scsi_prep_return);
1278 int scsi_prep_fn(struct request_queue *q, struct request *req)
1280 struct scsi_device *sdev = q->queuedata;
1281 int ret = BLKPREP_KILL;
1283 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1284 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1285 return scsi_prep_return(q, req, ret);
1289 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1292 * Called with the queue_lock held.
1294 static inline int scsi_dev_queue_ready(struct request_queue *q,
1295 struct scsi_device *sdev)
1297 if (sdev->device_busy >= sdev->queue_depth)
1299 if (sdev->device_busy == 0 && sdev->device_blocked) {
1301 * unblock after device_blocked iterates to zero
1303 if (--sdev->device_blocked == 0) {
1305 sdev_printk(KERN_INFO, sdev,
1306 "unblocking device at zero depth\n"));
1312 if (sdev->device_blocked)
1319 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1320 * return 0. We must end up running the queue again whenever 0 is
1321 * returned, else IO can hang.
1323 * Called with host_lock held.
1325 static inline int scsi_host_queue_ready(struct request_queue *q,
1326 struct Scsi_Host *shost,
1327 struct scsi_device *sdev)
1329 if (scsi_host_in_recovery(shost))
1331 if (shost->host_busy == 0 && shost->host_blocked) {
1333 * unblock after host_blocked iterates to zero
1335 if (--shost->host_blocked == 0) {
1337 printk("scsi%d unblocking host at zero depth\n",
1343 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1344 shost->host_blocked || shost->host_self_blocked) {
1345 if (list_empty(&sdev->starved_entry))
1346 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1350 /* We're OK to process the command, so we can't be starved */
1351 if (!list_empty(&sdev->starved_entry))
1352 list_del_init(&sdev->starved_entry);
1358 * Kill a request for a dead device
1360 static void scsi_kill_request(struct request *req, struct request_queue *q)
1362 struct scsi_cmnd *cmd = req->special;
1363 struct scsi_device *sdev = cmd->device;
1364 struct Scsi_Host *shost = sdev->host;
1366 blkdev_dequeue_request(req);
1368 if (unlikely(cmd == NULL)) {
1369 printk(KERN_CRIT "impossible request in %s.\n",
1374 scsi_init_cmd_errh(cmd);
1375 cmd->result = DID_NO_CONNECT << 16;
1376 atomic_inc(&cmd->device->iorequest_cnt);
1379 * SCSI request completion path will do scsi_device_unbusy(),
1380 * bump busy counts. To bump the counters, we need to dance
1381 * with the locks as normal issue path does.
1383 sdev->device_busy++;
1384 spin_unlock(sdev->request_queue->queue_lock);
1385 spin_lock(shost->host_lock);
1387 spin_unlock(shost->host_lock);
1388 spin_lock(sdev->request_queue->queue_lock);
1393 static void scsi_softirq_done(struct request *rq)
1395 struct scsi_cmnd *cmd = rq->completion_data;
1396 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1399 INIT_LIST_HEAD(&cmd->eh_entry);
1401 disposition = scsi_decide_disposition(cmd);
1402 if (disposition != SUCCESS &&
1403 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1404 sdev_printk(KERN_ERR, cmd->device,
1405 "timing out command, waited %lus\n",
1407 disposition = SUCCESS;
1410 scsi_log_completion(cmd, disposition);
1412 switch (disposition) {
1414 scsi_finish_command(cmd);
1417 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1419 case ADD_TO_MLQUEUE:
1420 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1423 if (!scsi_eh_scmd_add(cmd, 0))
1424 scsi_finish_command(cmd);
1429 * Function: scsi_request_fn()
1431 * Purpose: Main strategy routine for SCSI.
1433 * Arguments: q - Pointer to actual queue.
1437 * Lock status: IO request lock assumed to be held when called.
1439 static void scsi_request_fn(struct request_queue *q)
1441 struct scsi_device *sdev = q->queuedata;
1442 struct Scsi_Host *shost;
1443 struct scsi_cmnd *cmd;
1444 struct request *req;
1447 printk("scsi: killing requests for dead queue\n");
1448 while ((req = elv_next_request(q)) != NULL)
1449 scsi_kill_request(req, q);
1453 if(!get_device(&sdev->sdev_gendev))
1454 /* We must be tearing the block queue down already */
1458 * To start with, we keep looping until the queue is empty, or until
1459 * the host is no longer able to accept any more requests.
1462 while (!blk_queue_plugged(q)) {
1465 * get next queueable request. We do this early to make sure
1466 * that the request is fully prepared even if we cannot
1469 req = elv_next_request(q);
1470 if (!req || !scsi_dev_queue_ready(q, sdev))
1473 if (unlikely(!scsi_device_online(sdev))) {
1474 sdev_printk(KERN_ERR, sdev,
1475 "rejecting I/O to offline device\n");
1476 scsi_kill_request(req, q);
1482 * Remove the request from the request list.
1484 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1485 blkdev_dequeue_request(req);
1486 sdev->device_busy++;
1488 spin_unlock(q->queue_lock);
1490 if (unlikely(cmd == NULL)) {
1491 printk(KERN_CRIT "impossible request in %s.\n"
1492 "please mail a stack trace to "
1493 "linux-scsi@vger.kernel.org\n",
1495 blk_dump_rq_flags(req, "foo");
1498 spin_lock(shost->host_lock);
1500 if (!scsi_host_queue_ready(q, shost, sdev))
1502 if (scsi_target(sdev)->single_lun) {
1503 if (scsi_target(sdev)->starget_sdev_user &&
1504 scsi_target(sdev)->starget_sdev_user != sdev)
1506 scsi_target(sdev)->starget_sdev_user = sdev;
1511 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1512 * take the lock again.
1514 spin_unlock_irq(shost->host_lock);
1517 * Finally, initialize any error handling parameters, and set up
1518 * the timers for timeouts.
1520 scsi_init_cmd_errh(cmd);
1523 * Dispatch the command to the low-level driver.
1525 rtn = scsi_dispatch_cmd(cmd);
1526 spin_lock_irq(q->queue_lock);
1528 /* we're refusing the command; because of
1529 * the way locks get dropped, we need to
1530 * check here if plugging is required */
1531 if(sdev->device_busy == 0)
1541 spin_unlock_irq(shost->host_lock);
1544 * lock q, handle tag, requeue req, and decrement device_busy. We
1545 * must return with queue_lock held.
1547 * Decrementing device_busy without checking it is OK, as all such
1548 * cases (host limits or settings) should run the queue at some
1551 spin_lock_irq(q->queue_lock);
1552 blk_requeue_request(q, req);
1553 sdev->device_busy--;
1554 if(sdev->device_busy == 0)
1557 /* must be careful here...if we trigger the ->remove() function
1558 * we cannot be holding the q lock */
1559 spin_unlock_irq(q->queue_lock);
1560 put_device(&sdev->sdev_gendev);
1561 spin_lock_irq(q->queue_lock);
1564 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1566 struct device *host_dev;
1567 u64 bounce_limit = 0xffffffff;
1569 if (shost->unchecked_isa_dma)
1570 return BLK_BOUNCE_ISA;
1572 * Platforms with virtual-DMA translation
1573 * hardware have no practical limit.
1575 if (!PCI_DMA_BUS_IS_PHYS)
1576 return BLK_BOUNCE_ANY;
1578 host_dev = scsi_get_device(shost);
1579 if (host_dev && host_dev->dma_mask)
1580 bounce_limit = *host_dev->dma_mask;
1582 return bounce_limit;
1584 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1586 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1587 request_fn_proc *request_fn)
1589 struct request_queue *q;
1590 struct device *dev = shost->shost_gendev.parent;
1592 q = blk_init_queue(request_fn, NULL);
1597 * this limit is imposed by hardware restrictions
1599 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1600 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1602 blk_queue_max_sectors(q, shost->max_sectors);
1603 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1604 blk_queue_segment_boundary(q, shost->dma_boundary);
1605 dma_set_seg_boundary(dev, shost->dma_boundary);
1607 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1609 /* New queue, no concurrency on queue_flags */
1610 if (!shost->use_clustering)
1611 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1614 * set a reasonable default alignment on word boundaries: the
1615 * host and device may alter it using
1616 * blk_queue_update_dma_alignment() later.
1618 blk_queue_dma_alignment(q, 0x03);
1622 EXPORT_SYMBOL(__scsi_alloc_queue);
1624 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1626 struct request_queue *q;
1628 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1632 blk_queue_prep_rq(q, scsi_prep_fn);
1633 blk_queue_softirq_done(q, scsi_softirq_done);
1637 void scsi_free_queue(struct request_queue *q)
1639 blk_cleanup_queue(q);
1643 * Function: scsi_block_requests()
1645 * Purpose: Utility function used by low-level drivers to prevent further
1646 * commands from being queued to the device.
1648 * Arguments: shost - Host in question
1652 * Lock status: No locks are assumed held.
1654 * Notes: There is no timer nor any other means by which the requests
1655 * get unblocked other than the low-level driver calling
1656 * scsi_unblock_requests().
1658 void scsi_block_requests(struct Scsi_Host *shost)
1660 shost->host_self_blocked = 1;
1662 EXPORT_SYMBOL(scsi_block_requests);
1665 * Function: scsi_unblock_requests()
1667 * Purpose: Utility function used by low-level drivers to allow further
1668 * commands from being queued to the device.
1670 * Arguments: shost - Host in question
1674 * Lock status: No locks are assumed held.
1676 * Notes: There is no timer nor any other means by which the requests
1677 * get unblocked other than the low-level driver calling
1678 * scsi_unblock_requests().
1680 * This is done as an API function so that changes to the
1681 * internals of the scsi mid-layer won't require wholesale
1682 * changes to drivers that use this feature.
1684 void scsi_unblock_requests(struct Scsi_Host *shost)
1686 shost->host_self_blocked = 0;
1687 scsi_run_host_queues(shost);
1689 EXPORT_SYMBOL(scsi_unblock_requests);
1691 int __init scsi_init_queue(void)
1695 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1696 sizeof(struct scsi_io_context),
1698 if (!scsi_io_context_cache) {
1699 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1703 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1704 sizeof(struct scsi_data_buffer),
1706 if (!scsi_sdb_cache) {
1707 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1708 goto cleanup_io_context;
1711 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1712 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1713 int size = sgp->size * sizeof(struct scatterlist);
1715 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1716 SLAB_HWCACHE_ALIGN, NULL);
1718 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1723 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1726 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1735 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1736 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1738 mempool_destroy(sgp->pool);
1740 kmem_cache_destroy(sgp->slab);
1742 kmem_cache_destroy(scsi_sdb_cache);
1744 kmem_cache_destroy(scsi_io_context_cache);
1749 void scsi_exit_queue(void)
1753 kmem_cache_destroy(scsi_io_context_cache);
1754 kmem_cache_destroy(scsi_sdb_cache);
1756 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1757 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1758 mempool_destroy(sgp->pool);
1759 kmem_cache_destroy(sgp->slab);
1764 * scsi_mode_select - issue a mode select
1765 * @sdev: SCSI device to be queried
1766 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1767 * @sp: Save page bit (0 == don't save, 1 == save)
1768 * @modepage: mode page being requested
1769 * @buffer: request buffer (may not be smaller than eight bytes)
1770 * @len: length of request buffer.
1771 * @timeout: command timeout
1772 * @retries: number of retries before failing
1773 * @data: returns a structure abstracting the mode header data
1774 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1775 * must be SCSI_SENSE_BUFFERSIZE big.
1777 * Returns zero if successful; negative error number or scsi
1782 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1783 unsigned char *buffer, int len, int timeout, int retries,
1784 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1786 unsigned char cmd[10];
1787 unsigned char *real_buffer;
1790 memset(cmd, 0, sizeof(cmd));
1791 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1793 if (sdev->use_10_for_ms) {
1796 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1799 memcpy(real_buffer + 8, buffer, len);
1803 real_buffer[2] = data->medium_type;
1804 real_buffer[3] = data->device_specific;
1805 real_buffer[4] = data->longlba ? 0x01 : 0;
1807 real_buffer[6] = data->block_descriptor_length >> 8;
1808 real_buffer[7] = data->block_descriptor_length;
1810 cmd[0] = MODE_SELECT_10;
1814 if (len > 255 || data->block_descriptor_length > 255 ||
1818 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1821 memcpy(real_buffer + 4, buffer, len);
1824 real_buffer[1] = data->medium_type;
1825 real_buffer[2] = data->device_specific;
1826 real_buffer[3] = data->block_descriptor_length;
1829 cmd[0] = MODE_SELECT;
1833 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1834 sshdr, timeout, retries);
1838 EXPORT_SYMBOL_GPL(scsi_mode_select);
1841 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1842 * @sdev: SCSI device to be queried
1843 * @dbd: set if mode sense will allow block descriptors to be returned
1844 * @modepage: mode page being requested
1845 * @buffer: request buffer (may not be smaller than eight bytes)
1846 * @len: length of request buffer.
1847 * @timeout: command timeout
1848 * @retries: number of retries before failing
1849 * @data: returns a structure abstracting the mode header data
1850 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1851 * must be SCSI_SENSE_BUFFERSIZE big.
1853 * Returns zero if unsuccessful, or the header offset (either 4
1854 * or 8 depending on whether a six or ten byte command was
1855 * issued) if successful.
1858 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1859 unsigned char *buffer, int len, int timeout, int retries,
1860 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1862 unsigned char cmd[12];
1866 struct scsi_sense_hdr my_sshdr;
1868 memset(data, 0, sizeof(*data));
1869 memset(&cmd[0], 0, 12);
1870 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1873 /* caller might not be interested in sense, but we need it */
1878 use_10_for_ms = sdev->use_10_for_ms;
1880 if (use_10_for_ms) {
1884 cmd[0] = MODE_SENSE_10;
1891 cmd[0] = MODE_SENSE;
1896 memset(buffer, 0, len);
1898 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1899 sshdr, timeout, retries);
1901 /* This code looks awful: what it's doing is making sure an
1902 * ILLEGAL REQUEST sense return identifies the actual command
1903 * byte as the problem. MODE_SENSE commands can return
1904 * ILLEGAL REQUEST if the code page isn't supported */
1906 if (use_10_for_ms && !scsi_status_is_good(result) &&
1907 (driver_byte(result) & DRIVER_SENSE)) {
1908 if (scsi_sense_valid(sshdr)) {
1909 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1910 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1912 * Invalid command operation code
1914 sdev->use_10_for_ms = 0;
1920 if(scsi_status_is_good(result)) {
1921 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1922 (modepage == 6 || modepage == 8))) {
1923 /* Initio breakage? */
1926 data->medium_type = 0;
1927 data->device_specific = 0;
1929 data->block_descriptor_length = 0;
1930 } else if(use_10_for_ms) {
1931 data->length = buffer[0]*256 + buffer[1] + 2;
1932 data->medium_type = buffer[2];
1933 data->device_specific = buffer[3];
1934 data->longlba = buffer[4] & 0x01;
1935 data->block_descriptor_length = buffer[6]*256
1938 data->length = buffer[0] + 1;
1939 data->medium_type = buffer[1];
1940 data->device_specific = buffer[2];
1941 data->block_descriptor_length = buffer[3];
1943 data->header_length = header_length;
1948 EXPORT_SYMBOL(scsi_mode_sense);
1951 * scsi_test_unit_ready - test if unit is ready
1952 * @sdev: scsi device to change the state of.
1953 * @timeout: command timeout
1954 * @retries: number of retries before failing
1955 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1956 * returning sense. Make sure that this is cleared before passing
1959 * Returns zero if unsuccessful or an error if TUR failed. For
1960 * removable media, a return of NOT_READY or UNIT_ATTENTION is
1961 * translated to success, with the ->changed flag updated.
1964 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1965 struct scsi_sense_hdr *sshdr_external)
1968 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1970 struct scsi_sense_hdr *sshdr;
1973 if (!sshdr_external)
1974 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1976 sshdr = sshdr_external;
1978 /* try to eat the UNIT_ATTENTION if there are enough retries */
1980 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
1982 } while ((driver_byte(result) & DRIVER_SENSE) &&
1983 sshdr && sshdr->sense_key == UNIT_ATTENTION &&
1987 /* could not allocate sense buffer, so can't process it */
1990 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1992 if ((scsi_sense_valid(sshdr)) &&
1993 ((sshdr->sense_key == UNIT_ATTENTION) ||
1994 (sshdr->sense_key == NOT_READY))) {
1999 if (!sshdr_external)
2003 EXPORT_SYMBOL(scsi_test_unit_ready);
2006 * scsi_device_set_state - Take the given device through the device state model.
2007 * @sdev: scsi device to change the state of.
2008 * @state: state to change to.
2010 * Returns zero if unsuccessful or an error if the requested
2011 * transition is illegal.
2014 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2016 enum scsi_device_state oldstate = sdev->sdev_state;
2018 if (state == oldstate)
2023 /* There are no legal states that come back to
2024 * created. This is the manually initialised start
2098 sdev->sdev_state = state;
2102 SCSI_LOG_ERROR_RECOVERY(1,
2103 sdev_printk(KERN_ERR, sdev,
2104 "Illegal state transition %s->%s\n",
2105 scsi_device_state_name(oldstate),
2106 scsi_device_state_name(state))
2110 EXPORT_SYMBOL(scsi_device_set_state);
2113 * sdev_evt_emit - emit a single SCSI device uevent
2114 * @sdev: associated SCSI device
2115 * @evt: event to emit
2117 * Send a single uevent (scsi_event) to the associated scsi_device.
2119 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2124 switch (evt->evt_type) {
2125 case SDEV_EVT_MEDIA_CHANGE:
2126 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2136 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2140 * sdev_evt_thread - send a uevent for each scsi event
2141 * @work: work struct for scsi_device
2143 * Dispatch queued events to their associated scsi_device kobjects
2146 void scsi_evt_thread(struct work_struct *work)
2148 struct scsi_device *sdev;
2149 LIST_HEAD(event_list);
2151 sdev = container_of(work, struct scsi_device, event_work);
2154 struct scsi_event *evt;
2155 struct list_head *this, *tmp;
2156 unsigned long flags;
2158 spin_lock_irqsave(&sdev->list_lock, flags);
2159 list_splice_init(&sdev->event_list, &event_list);
2160 spin_unlock_irqrestore(&sdev->list_lock, flags);
2162 if (list_empty(&event_list))
2165 list_for_each_safe(this, tmp, &event_list) {
2166 evt = list_entry(this, struct scsi_event, node);
2167 list_del(&evt->node);
2168 scsi_evt_emit(sdev, evt);
2175 * sdev_evt_send - send asserted event to uevent thread
2176 * @sdev: scsi_device event occurred on
2177 * @evt: event to send
2179 * Assert scsi device event asynchronously.
2181 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2183 unsigned long flags;
2186 /* FIXME: currently this check eliminates all media change events
2187 * for polled devices. Need to update to discriminate between AN
2188 * and polled events */
2189 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2195 spin_lock_irqsave(&sdev->list_lock, flags);
2196 list_add_tail(&evt->node, &sdev->event_list);
2197 schedule_work(&sdev->event_work);
2198 spin_unlock_irqrestore(&sdev->list_lock, flags);
2200 EXPORT_SYMBOL_GPL(sdev_evt_send);
2203 * sdev_evt_alloc - allocate a new scsi event
2204 * @evt_type: type of event to allocate
2205 * @gfpflags: GFP flags for allocation
2207 * Allocates and returns a new scsi_event.
2209 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2212 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2216 evt->evt_type = evt_type;
2217 INIT_LIST_HEAD(&evt->node);
2219 /* evt_type-specific initialization, if any */
2221 case SDEV_EVT_MEDIA_CHANGE:
2229 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2232 * sdev_evt_send_simple - send asserted event to uevent thread
2233 * @sdev: scsi_device event occurred on
2234 * @evt_type: type of event to send
2235 * @gfpflags: GFP flags for allocation
2237 * Assert scsi device event asynchronously, given an event type.
2239 void sdev_evt_send_simple(struct scsi_device *sdev,
2240 enum scsi_device_event evt_type, gfp_t gfpflags)
2242 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2244 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2249 sdev_evt_send(sdev, evt);
2251 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2254 * scsi_device_quiesce - Block user issued commands.
2255 * @sdev: scsi device to quiesce.
2257 * This works by trying to transition to the SDEV_QUIESCE state
2258 * (which must be a legal transition). When the device is in this
2259 * state, only special requests will be accepted, all others will
2260 * be deferred. Since special requests may also be requeued requests,
2261 * a successful return doesn't guarantee the device will be
2262 * totally quiescent.
2264 * Must be called with user context, may sleep.
2266 * Returns zero if unsuccessful or an error if not.
2269 scsi_device_quiesce(struct scsi_device *sdev)
2271 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2275 scsi_run_queue(sdev->request_queue);
2276 while (sdev->device_busy) {
2277 msleep_interruptible(200);
2278 scsi_run_queue(sdev->request_queue);
2282 EXPORT_SYMBOL(scsi_device_quiesce);
2285 * scsi_device_resume - Restart user issued commands to a quiesced device.
2286 * @sdev: scsi device to resume.
2288 * Moves the device from quiesced back to running and restarts the
2291 * Must be called with user context, may sleep.
2294 scsi_device_resume(struct scsi_device *sdev)
2296 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2298 scsi_run_queue(sdev->request_queue);
2300 EXPORT_SYMBOL(scsi_device_resume);
2303 device_quiesce_fn(struct scsi_device *sdev, void *data)
2305 scsi_device_quiesce(sdev);
2309 scsi_target_quiesce(struct scsi_target *starget)
2311 starget_for_each_device(starget, NULL, device_quiesce_fn);
2313 EXPORT_SYMBOL(scsi_target_quiesce);
2316 device_resume_fn(struct scsi_device *sdev, void *data)
2318 scsi_device_resume(sdev);
2322 scsi_target_resume(struct scsi_target *starget)
2324 starget_for_each_device(starget, NULL, device_resume_fn);
2326 EXPORT_SYMBOL(scsi_target_resume);
2329 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2330 * @sdev: device to block
2332 * Block request made by scsi lld's to temporarily stop all
2333 * scsi commands on the specified device. Called from interrupt
2334 * or normal process context.
2336 * Returns zero if successful or error if not
2339 * This routine transitions the device to the SDEV_BLOCK state
2340 * (which must be a legal transition). When the device is in this
2341 * state, all commands are deferred until the scsi lld reenables
2342 * the device with scsi_device_unblock or device_block_tmo fires.
2343 * This routine assumes the host_lock is held on entry.
2346 scsi_internal_device_block(struct scsi_device *sdev)
2348 struct request_queue *q = sdev->request_queue;
2349 unsigned long flags;
2352 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2357 * The device has transitioned to SDEV_BLOCK. Stop the
2358 * block layer from calling the midlayer with this device's
2361 spin_lock_irqsave(q->queue_lock, flags);
2363 spin_unlock_irqrestore(q->queue_lock, flags);
2367 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2370 * scsi_internal_device_unblock - resume a device after a block request
2371 * @sdev: device to resume
2373 * Called by scsi lld's or the midlayer to restart the device queue
2374 * for the previously suspended scsi device. Called from interrupt or
2375 * normal process context.
2377 * Returns zero if successful or error if not.
2380 * This routine transitions the device to the SDEV_RUNNING state
2381 * (which must be a legal transition) allowing the midlayer to
2382 * goose the queue for this device. This routine assumes the
2383 * host_lock is held upon entry.
2386 scsi_internal_device_unblock(struct scsi_device *sdev)
2388 struct request_queue *q = sdev->request_queue;
2390 unsigned long flags;
2393 * Try to transition the scsi device to SDEV_RUNNING
2394 * and goose the device queue if successful.
2396 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2400 spin_lock_irqsave(q->queue_lock, flags);
2402 spin_unlock_irqrestore(q->queue_lock, flags);
2406 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2409 device_block(struct scsi_device *sdev, void *data)
2411 scsi_internal_device_block(sdev);
2415 target_block(struct device *dev, void *data)
2417 if (scsi_is_target_device(dev))
2418 starget_for_each_device(to_scsi_target(dev), NULL,
2424 scsi_target_block(struct device *dev)
2426 if (scsi_is_target_device(dev))
2427 starget_for_each_device(to_scsi_target(dev), NULL,
2430 device_for_each_child(dev, NULL, target_block);
2432 EXPORT_SYMBOL_GPL(scsi_target_block);
2435 device_unblock(struct scsi_device *sdev, void *data)
2437 scsi_internal_device_unblock(sdev);
2441 target_unblock(struct device *dev, void *data)
2443 if (scsi_is_target_device(dev))
2444 starget_for_each_device(to_scsi_target(dev), NULL,
2450 scsi_target_unblock(struct device *dev)
2452 if (scsi_is_target_device(dev))
2453 starget_for_each_device(to_scsi_target(dev), NULL,
2456 device_for_each_child(dev, NULL, target_unblock);
2458 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2461 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2462 * @sgl: scatter-gather list
2463 * @sg_count: number of segments in sg
2464 * @offset: offset in bytes into sg, on return offset into the mapped area
2465 * @len: bytes to map, on return number of bytes mapped
2467 * Returns virtual address of the start of the mapped page
2469 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2470 size_t *offset, size_t *len)
2473 size_t sg_len = 0, len_complete = 0;
2474 struct scatterlist *sg;
2477 WARN_ON(!irqs_disabled());
2479 for_each_sg(sgl, sg, sg_count, i) {
2480 len_complete = sg_len; /* Complete sg-entries */
2481 sg_len += sg->length;
2482 if (sg_len > *offset)
2486 if (unlikely(i == sg_count)) {
2487 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2489 __FUNCTION__, sg_len, *offset, sg_count);
2494 /* Offset starting from the beginning of first page in this sg-entry */
2495 *offset = *offset - len_complete + sg->offset;
2497 /* Assumption: contiguous pages can be accessed as "page + i" */
2498 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2499 *offset &= ~PAGE_MASK;
2501 /* Bytes in this sg-entry from *offset to the end of the page */
2502 sg_len = PAGE_SIZE - *offset;
2506 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2508 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2511 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2512 * @virt: virtual address to be unmapped
2514 void scsi_kunmap_atomic_sg(void *virt)
2516 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2518 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);