1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
19 See the file COPYING in this distribution for more information.
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
28 * Test Tx checksumming thoroughly
29 * Implement dev->tx_timeout
32 * Complete reset on PciErr
33 * Consider Rx interrupt mitigation using TimerIntr
34 * Investigate using skb->priority with h/w VLAN priority
35 * Investigate using High Priority Tx Queue with skb->priority
36 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
37 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
38 * Implement Tx software interrupt mitigation via
40 * The real minimum of CP_MIN_MTU is 4 bytes. However,
41 for this to be supported, one must(?) turn on packet padding.
42 * Support external MII transceivers (patch available)
45 * TX checksumming is considered experimental. It is off by
46 default, use ethtool to turn it on.
50 #define DRV_NAME "8139cp"
51 #define DRV_VERSION "1.3"
52 #define DRV_RELDATE "Mar 22, 2004"
55 #include <linux/module.h>
56 #include <linux/moduleparam.h>
57 #include <linux/kernel.h>
58 #include <linux/compiler.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/init.h>
62 #include <linux/pci.h>
63 #include <linux/dma-mapping.h>
64 #include <linux/delay.h>
65 #include <linux/ethtool.h>
66 #include <linux/mii.h>
67 #include <linux/if_vlan.h>
68 #include <linux/crc32.h>
71 #include <linux/tcp.h>
72 #include <linux/udp.h>
73 #include <linux/cache.h>
76 #include <asm/uaccess.h>
78 /* VLAN tagging feature enable/disable */
79 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
80 #define CP_VLAN_TAG_USED 1
81 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
82 do { (tx_desc)->opts2 = (vlan_tag_value); } while (0)
84 #define CP_VLAN_TAG_USED 0
85 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
86 do { (tx_desc)->opts2 = 0; } while (0)
89 /* These identify the driver base version and may not be removed. */
90 static char version[] =
91 KERN_INFO DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
93 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
94 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
95 MODULE_VERSION(DRV_VERSION);
96 MODULE_LICENSE("GPL");
98 static int debug = -1;
99 module_param(debug, int, 0);
100 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
102 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
103 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
104 static int multicast_filter_limit = 32;
105 module_param(multicast_filter_limit, int, 0);
106 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
108 #define PFX DRV_NAME ": "
112 #define TRUE (!FALSE)
115 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
118 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
119 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
120 #define CP_REGS_SIZE (0xff + 1)
121 #define CP_REGS_VER 1 /* version 1 */
122 #define CP_RX_RING_SIZE 64
123 #define CP_TX_RING_SIZE 64
124 #define CP_RING_BYTES \
125 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
126 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
128 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
129 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
130 #define TX_BUFFS_AVAIL(CP) \
131 (((CP)->tx_tail <= (CP)->tx_head) ? \
132 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
133 (CP)->tx_tail - (CP)->tx_head - 1)
135 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
137 #define CP_INTERNAL_PHY 32
139 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
140 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
141 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
142 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
143 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
145 /* Time in jiffies before concluding the transmitter is hung. */
146 #define TX_TIMEOUT (6*HZ)
148 /* hardware minimum and maximum for a single frame's data payload */
149 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
150 #define CP_MAX_MTU 4096
153 /* NIC register offsets */
154 MAC0 = 0x00, /* Ethernet hardware address. */
155 MAR0 = 0x08, /* Multicast filter. */
156 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
157 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
158 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
159 Cmd = 0x37, /* Command register */
160 IntrMask = 0x3C, /* Interrupt mask */
161 IntrStatus = 0x3E, /* Interrupt status */
162 TxConfig = 0x40, /* Tx configuration */
163 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
164 RxConfig = 0x44, /* Rx configuration */
165 RxMissed = 0x4C, /* 24 bits valid, write clears */
166 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
167 Config1 = 0x52, /* Config1 */
168 Config3 = 0x59, /* Config3 */
169 Config4 = 0x5A, /* Config4 */
170 MultiIntr = 0x5C, /* Multiple interrupt select */
171 BasicModeCtrl = 0x62, /* MII BMCR */
172 BasicModeStatus = 0x64, /* MII BMSR */
173 NWayAdvert = 0x66, /* MII ADVERTISE */
174 NWayLPAR = 0x68, /* MII LPA */
175 NWayExpansion = 0x6A, /* MII Expansion */
176 Config5 = 0xD8, /* Config5 */
177 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
178 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
179 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
180 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
181 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
182 TxThresh = 0xEC, /* Early Tx threshold */
183 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
184 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
186 /* Tx and Rx status descriptors */
187 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
188 RingEnd = (1 << 30), /* End of descriptor ring */
189 FirstFrag = (1 << 29), /* First segment of a packet */
190 LastFrag = (1 << 28), /* Final segment of a packet */
191 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
192 MSSShift = 16, /* MSS value position */
193 MSSMask = 0xfff, /* MSS value: 11 bits */
194 TxError = (1 << 23), /* Tx error summary */
195 RxError = (1 << 20), /* Rx error summary */
196 IPCS = (1 << 18), /* Calculate IP checksum */
197 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
198 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
199 TxVlanTag = (1 << 17), /* Add VLAN tag */
200 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
201 IPFail = (1 << 15), /* IP checksum failed */
202 UDPFail = (1 << 14), /* UDP/IP checksum failed */
203 TCPFail = (1 << 13), /* TCP/IP checksum failed */
204 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
205 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
206 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
210 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
211 TxOWC = (1 << 22), /* Tx Out-of-window collision */
212 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
213 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
214 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
215 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
216 RxErrFrame = (1 << 27), /* Rx frame alignment error */
217 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
218 RxErrCRC = (1 << 18), /* Rx CRC error */
219 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
220 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
221 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
223 /* StatsAddr register */
224 DumpStats = (1 << 3), /* Begin stats dump */
226 /* RxConfig register */
227 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
228 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
229 AcceptErr = 0x20, /* Accept packets with CRC errors */
230 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
231 AcceptBroadcast = 0x08, /* Accept broadcast packets */
232 AcceptMulticast = 0x04, /* Accept multicast packets */
233 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
234 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
236 /* IntrMask / IntrStatus registers */
237 PciErr = (1 << 15), /* System error on the PCI bus */
238 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
239 LenChg = (1 << 13), /* Cable length change */
240 SWInt = (1 << 8), /* Software-requested interrupt */
241 TxEmpty = (1 << 7), /* No Tx descriptors available */
242 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
243 LinkChg = (1 << 5), /* Packet underrun, or link change */
244 RxEmpty = (1 << 4), /* No Rx descriptors available */
245 TxErr = (1 << 3), /* Tx error */
246 TxOK = (1 << 2), /* Tx packet sent */
247 RxErr = (1 << 1), /* Rx error */
248 RxOK = (1 << 0), /* Rx packet received */
249 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
250 but hardware likes to raise it */
252 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
253 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
254 RxErr | RxOK | IntrResvd,
256 /* C mode command register */
257 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
258 RxOn = (1 << 3), /* Rx mode enable */
259 TxOn = (1 << 2), /* Tx mode enable */
261 /* C+ mode command register */
262 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
263 RxChkSum = (1 << 5), /* Rx checksum offload enable */
264 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
265 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
266 CpRxOn = (1 << 1), /* Rx mode enable */
267 CpTxOn = (1 << 0), /* Tx mode enable */
269 /* Cfg9436 EEPROM control register */
270 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
271 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
273 /* TxConfig register */
274 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
275 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
277 /* Early Tx Threshold register */
278 TxThreshMask = 0x3f, /* Mask bits 5-0 */
279 TxThreshMax = 2048, /* Max early Tx threshold */
281 /* Config1 register */
282 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
283 LWACT = (1 << 4), /* LWAKE active mode */
284 PMEnable = (1 << 0), /* Enable various PM features of chip */
286 /* Config3 register */
287 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
288 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
289 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
291 /* Config4 register */
292 LWPTN = (1 << 1), /* LWAKE Pattern */
293 LWPME = (1 << 4), /* LANWAKE vs PMEB */
295 /* Config5 register */
296 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
297 MWF = (1 << 5), /* Accept Multicast wakeup frame */
298 UWF = (1 << 4), /* Accept Unicast wakeup frame */
299 LANWake = (1 << 1), /* Enable LANWake signal */
300 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
302 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
303 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
304 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
307 static const unsigned int cp_rx_config =
308 (RX_FIFO_THRESH << RxCfgFIFOShift) |
309 (RX_DMA_BURST << RxCfgDMAShift);
317 struct cp_dma_stats {
331 } __attribute__((packed));
333 struct cp_extra_stats {
334 unsigned long rx_frags;
339 struct net_device *dev;
343 struct pci_dev *pdev;
347 struct net_device_stats net_stats;
348 struct cp_extra_stats cp_stats;
350 unsigned rx_head ____cacheline_aligned;
352 struct cp_desc *rx_ring;
353 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
355 unsigned tx_head ____cacheline_aligned;
357 struct cp_desc *tx_ring;
358 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
361 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
364 struct vlan_group *vlgrp;
368 struct mii_if_info mii_if;
371 #define cpr8(reg) readb(cp->regs + (reg))
372 #define cpr16(reg) readw(cp->regs + (reg))
373 #define cpr32(reg) readl(cp->regs + (reg))
374 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
375 #define cpw16(reg,val) writew((val), cp->regs + (reg))
376 #define cpw32(reg,val) writel((val), cp->regs + (reg))
377 #define cpw8_f(reg,val) do { \
378 writeb((val), cp->regs + (reg)); \
379 readb(cp->regs + (reg)); \
381 #define cpw16_f(reg,val) do { \
382 writew((val), cp->regs + (reg)); \
383 readw(cp->regs + (reg)); \
385 #define cpw32_f(reg,val) do { \
386 writel((val), cp->regs + (reg)); \
387 readl(cp->regs + (reg)); \
391 static void __cp_set_rx_mode (struct net_device *dev);
392 static void cp_tx (struct cp_private *cp);
393 static void cp_clean_rings (struct cp_private *cp);
394 #ifdef CONFIG_NET_POLL_CONTROLLER
395 static void cp_poll_controller(struct net_device *dev);
397 static int cp_get_eeprom_len(struct net_device *dev);
398 static int cp_get_eeprom(struct net_device *dev,
399 struct ethtool_eeprom *eeprom, u8 *data);
400 static int cp_set_eeprom(struct net_device *dev,
401 struct ethtool_eeprom *eeprom, u8 *data);
403 static struct pci_device_id cp_pci_tbl[] = {
404 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
405 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
408 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
411 const char str[ETH_GSTRING_LEN];
412 } ethtool_stats_keys[] = {
431 static void cp_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
433 struct cp_private *cp = netdev_priv(dev);
436 spin_lock_irqsave(&cp->lock, flags);
439 cp->cpcmd |= RxVlanOn;
441 cp->cpcmd &= ~RxVlanOn;
443 cpw16(CpCmd, cp->cpcmd);
444 spin_unlock_irqrestore(&cp->lock, flags);
446 #endif /* CP_VLAN_TAG_USED */
448 static inline void cp_set_rxbufsize (struct cp_private *cp)
450 unsigned int mtu = cp->dev->mtu;
452 if (mtu > ETH_DATA_LEN)
453 /* MTU + ethernet header + FCS + optional VLAN tag */
454 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
456 cp->rx_buf_sz = PKT_BUF_SZ;
459 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
460 struct cp_desc *desc)
462 skb->protocol = eth_type_trans (skb, cp->dev);
464 cp->net_stats.rx_packets++;
465 cp->net_stats.rx_bytes += skb->len;
466 cp->dev->last_rx = jiffies;
469 if (cp->vlgrp && (desc->opts2 & RxVlanTagged)) {
470 vlan_hwaccel_receive_skb(skb, cp->vlgrp,
471 be16_to_cpu(desc->opts2 & 0xffff));
474 netif_receive_skb(skb);
477 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
480 if (netif_msg_rx_err (cp))
482 "%s: rx err, slot %d status 0x%x len %d\n",
483 cp->dev->name, rx_tail, status, len);
484 cp->net_stats.rx_errors++;
485 if (status & RxErrFrame)
486 cp->net_stats.rx_frame_errors++;
487 if (status & RxErrCRC)
488 cp->net_stats.rx_crc_errors++;
489 if ((status & RxErrRunt) || (status & RxErrLong))
490 cp->net_stats.rx_length_errors++;
491 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
492 cp->net_stats.rx_length_errors++;
493 if (status & RxErrFIFO)
494 cp->net_stats.rx_fifo_errors++;
497 static inline unsigned int cp_rx_csum_ok (u32 status)
499 unsigned int protocol = (status >> 16) & 0x3;
501 if (likely((protocol == RxProtoTCP) && (!(status & TCPFail))))
503 else if ((protocol == RxProtoUDP) && (!(status & UDPFail)))
505 else if ((protocol == RxProtoIP) && (!(status & IPFail)))
510 static int cp_rx_poll (struct net_device *dev, int *budget)
512 struct cp_private *cp = netdev_priv(dev);
513 unsigned rx_tail = cp->rx_tail;
514 unsigned rx_work = dev->quota;
519 cpw16(IntrStatus, cp_rx_intr_mask);
524 struct sk_buff *skb, *new_skb;
525 struct cp_desc *desc;
528 skb = cp->rx_skb[rx_tail];
531 desc = &cp->rx_ring[rx_tail];
532 status = le32_to_cpu(desc->opts1);
533 if (status & DescOwn)
536 len = (status & 0x1fff) - 4;
537 mapping = le64_to_cpu(desc->addr);
539 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
540 /* we don't support incoming fragmented frames.
541 * instead, we attempt to ensure that the
542 * pre-allocated RX skbs are properly sized such
543 * that RX fragments are never encountered
545 cp_rx_err_acct(cp, rx_tail, status, len);
546 cp->net_stats.rx_dropped++;
547 cp->cp_stats.rx_frags++;
551 if (status & (RxError | RxErrFIFO)) {
552 cp_rx_err_acct(cp, rx_tail, status, len);
556 if (netif_msg_rx_status(cp))
557 printk(KERN_DEBUG "%s: rx slot %d status 0x%x len %d\n",
558 dev->name, rx_tail, status, len);
560 buflen = cp->rx_buf_sz + RX_OFFSET;
561 new_skb = dev_alloc_skb (buflen);
563 cp->net_stats.rx_dropped++;
567 skb_reserve(new_skb, RX_OFFSET);
569 pci_unmap_single(cp->pdev, mapping,
570 buflen, PCI_DMA_FROMDEVICE);
572 /* Handle checksum offloading for incoming packets. */
573 if (cp_rx_csum_ok(status))
574 skb->ip_summed = CHECKSUM_UNNECESSARY;
576 skb->ip_summed = CHECKSUM_NONE;
580 mapping = pci_map_single(cp->pdev, new_skb->data, buflen,
582 cp->rx_skb[rx_tail] = new_skb;
584 cp_rx_skb(cp, skb, desc);
588 cp->rx_ring[rx_tail].opts2 = 0;
589 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
590 if (rx_tail == (CP_RX_RING_SIZE - 1))
591 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
594 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
595 rx_tail = NEXT_RX(rx_tail);
601 cp->rx_tail = rx_tail;
606 /* if we did not reach work limit, then we're done with
607 * this round of polling
612 if (cpr16(IntrStatus) & cp_rx_intr_mask)
615 local_irq_save(flags);
616 cpw16_f(IntrMask, cp_intr_mask);
617 __netif_rx_complete(dev);
618 local_irq_restore(flags);
623 return 1; /* not done */
626 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
628 struct net_device *dev = dev_instance;
629 struct cp_private *cp;
632 if (unlikely(dev == NULL))
634 cp = netdev_priv(dev);
636 status = cpr16(IntrStatus);
637 if (!status || (status == 0xFFFF))
640 if (netif_msg_intr(cp))
641 printk(KERN_DEBUG "%s: intr, status %04x cmd %02x cpcmd %04x\n",
642 dev->name, status, cpr8(Cmd), cpr16(CpCmd));
644 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
646 spin_lock(&cp->lock);
648 /* close possible race's with dev_close */
649 if (unlikely(!netif_running(dev))) {
651 spin_unlock(&cp->lock);
655 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
656 if (netif_rx_schedule_prep(dev)) {
657 cpw16_f(IntrMask, cp_norx_intr_mask);
658 __netif_rx_schedule(dev);
661 if (status & (TxOK | TxErr | TxEmpty | SWInt))
663 if (status & LinkChg)
664 mii_check_media(&cp->mii_if, netif_msg_link(cp), FALSE);
666 spin_unlock(&cp->lock);
668 if (status & PciErr) {
671 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
672 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
673 printk(KERN_ERR "%s: PCI bus error, status=%04x, PCI status=%04x\n",
674 dev->name, status, pci_status);
676 /* TODO: reset hardware */
682 #ifdef CONFIG_NET_POLL_CONTROLLER
684 * Polling receive - used by netconsole and other diagnostic tools
685 * to allow network i/o with interrupts disabled.
687 static void cp_poll_controller(struct net_device *dev)
689 disable_irq(dev->irq);
690 cp_interrupt(dev->irq, dev);
691 enable_irq(dev->irq);
695 static void cp_tx (struct cp_private *cp)
697 unsigned tx_head = cp->tx_head;
698 unsigned tx_tail = cp->tx_tail;
700 while (tx_tail != tx_head) {
701 struct cp_desc *txd = cp->tx_ring + tx_tail;
706 status = le32_to_cpu(txd->opts1);
707 if (status & DescOwn)
710 skb = cp->tx_skb[tx_tail];
713 pci_unmap_single(cp->pdev, le64_to_cpu(txd->addr),
714 le32_to_cpu(txd->opts1) & 0xffff,
717 if (status & LastFrag) {
718 if (status & (TxError | TxFIFOUnder)) {
719 if (netif_msg_tx_err(cp))
720 printk(KERN_DEBUG "%s: tx err, status 0x%x\n",
721 cp->dev->name, status);
722 cp->net_stats.tx_errors++;
724 cp->net_stats.tx_window_errors++;
725 if (status & TxMaxCol)
726 cp->net_stats.tx_aborted_errors++;
727 if (status & TxLinkFail)
728 cp->net_stats.tx_carrier_errors++;
729 if (status & TxFIFOUnder)
730 cp->net_stats.tx_fifo_errors++;
732 cp->net_stats.collisions +=
733 ((status >> TxColCntShift) & TxColCntMask);
734 cp->net_stats.tx_packets++;
735 cp->net_stats.tx_bytes += skb->len;
736 if (netif_msg_tx_done(cp))
737 printk(KERN_DEBUG "%s: tx done, slot %d\n", cp->dev->name, tx_tail);
739 dev_kfree_skb_irq(skb);
742 cp->tx_skb[tx_tail] = NULL;
744 tx_tail = NEXT_TX(tx_tail);
747 cp->tx_tail = tx_tail;
749 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
750 netif_wake_queue(cp->dev);
753 static int cp_start_xmit (struct sk_buff *skb, struct net_device *dev)
755 struct cp_private *cp = netdev_priv(dev);
758 unsigned long intr_flags;
764 spin_lock_irqsave(&cp->lock, intr_flags);
766 /* This is a hard error, log it. */
767 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
768 netif_stop_queue(dev);
769 spin_unlock_irqrestore(&cp->lock, intr_flags);
770 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
776 if (cp->vlgrp && vlan_tx_tag_present(skb))
777 vlan_tag = TxVlanTag | cpu_to_be16(vlan_tx_tag_get(skb));
781 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
782 if (dev->features & NETIF_F_TSO)
783 mss = skb_shinfo(skb)->gso_size;
785 if (skb_shinfo(skb)->nr_frags == 0) {
786 struct cp_desc *txd = &cp->tx_ring[entry];
791 mapping = pci_map_single(cp->pdev, skb->data, len, PCI_DMA_TODEVICE);
792 CP_VLAN_TX_TAG(txd, vlan_tag);
793 txd->addr = cpu_to_le64(mapping);
796 flags = eor | len | DescOwn | FirstFrag | LastFrag;
799 flags |= LargeSend | ((mss & MSSMask) << MSSShift);
800 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
801 const struct iphdr *ip = ip_hdr(skb);
802 if (ip->protocol == IPPROTO_TCP)
803 flags |= IPCS | TCPCS;
804 else if (ip->protocol == IPPROTO_UDP)
805 flags |= IPCS | UDPCS;
807 WARN_ON(1); /* we need a WARN() */
810 txd->opts1 = cpu_to_le32(flags);
813 cp->tx_skb[entry] = skb;
814 entry = NEXT_TX(entry);
817 u32 first_len, first_eor;
818 dma_addr_t first_mapping;
819 int frag, first_entry = entry;
820 const struct iphdr *ip = ip_hdr(skb);
822 /* We must give this initial chunk to the device last.
823 * Otherwise we could race with the device.
826 first_len = skb_headlen(skb);
827 first_mapping = pci_map_single(cp->pdev, skb->data,
828 first_len, PCI_DMA_TODEVICE);
829 cp->tx_skb[entry] = skb;
830 entry = NEXT_TX(entry);
832 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
833 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
838 len = this_frag->size;
839 mapping = pci_map_single(cp->pdev,
840 ((void *) page_address(this_frag->page) +
841 this_frag->page_offset),
842 len, PCI_DMA_TODEVICE);
843 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
845 ctrl = eor | len | DescOwn;
849 ((mss & MSSMask) << MSSShift);
850 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
851 if (ip->protocol == IPPROTO_TCP)
852 ctrl |= IPCS | TCPCS;
853 else if (ip->protocol == IPPROTO_UDP)
854 ctrl |= IPCS | UDPCS;
859 if (frag == skb_shinfo(skb)->nr_frags - 1)
862 txd = &cp->tx_ring[entry];
863 CP_VLAN_TX_TAG(txd, vlan_tag);
864 txd->addr = cpu_to_le64(mapping);
867 txd->opts1 = cpu_to_le32(ctrl);
870 cp->tx_skb[entry] = skb;
871 entry = NEXT_TX(entry);
874 txd = &cp->tx_ring[first_entry];
875 CP_VLAN_TX_TAG(txd, vlan_tag);
876 txd->addr = cpu_to_le64(first_mapping);
879 if (skb->ip_summed == CHECKSUM_PARTIAL) {
880 if (ip->protocol == IPPROTO_TCP)
881 txd->opts1 = cpu_to_le32(first_eor | first_len |
882 FirstFrag | DescOwn |
884 else if (ip->protocol == IPPROTO_UDP)
885 txd->opts1 = cpu_to_le32(first_eor | first_len |
886 FirstFrag | DescOwn |
891 txd->opts1 = cpu_to_le32(first_eor | first_len |
892 FirstFrag | DescOwn);
896 if (netif_msg_tx_queued(cp))
897 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
898 dev->name, entry, skb->len);
899 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
900 netif_stop_queue(dev);
902 spin_unlock_irqrestore(&cp->lock, intr_flags);
904 cpw8(TxPoll, NormalTxPoll);
905 dev->trans_start = jiffies;
910 /* Set or clear the multicast filter for this adaptor.
911 This routine is not state sensitive and need not be SMP locked. */
913 static void __cp_set_rx_mode (struct net_device *dev)
915 struct cp_private *cp = netdev_priv(dev);
916 u32 mc_filter[2]; /* Multicast hash filter */
920 /* Note: do not reorder, GCC is clever about common statements. */
921 if (dev->flags & IFF_PROMISC) {
922 /* Unconditionally log net taps. */
924 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
926 mc_filter[1] = mc_filter[0] = 0xffffffff;
927 } else if ((dev->mc_count > multicast_filter_limit)
928 || (dev->flags & IFF_ALLMULTI)) {
929 /* Too many to filter perfectly -- accept all multicasts. */
930 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
931 mc_filter[1] = mc_filter[0] = 0xffffffff;
933 struct dev_mc_list *mclist;
934 rx_mode = AcceptBroadcast | AcceptMyPhys;
935 mc_filter[1] = mc_filter[0] = 0;
936 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
937 i++, mclist = mclist->next) {
938 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
940 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
941 rx_mode |= AcceptMulticast;
945 /* We can safely update without stopping the chip. */
946 tmp = cp_rx_config | rx_mode;
947 if (cp->rx_config != tmp) {
948 cpw32_f (RxConfig, tmp);
951 cpw32_f (MAR0 + 0, mc_filter[0]);
952 cpw32_f (MAR0 + 4, mc_filter[1]);
955 static void cp_set_rx_mode (struct net_device *dev)
958 struct cp_private *cp = netdev_priv(dev);
960 spin_lock_irqsave (&cp->lock, flags);
961 __cp_set_rx_mode(dev);
962 spin_unlock_irqrestore (&cp->lock, flags);
965 static void __cp_get_stats(struct cp_private *cp)
967 /* only lower 24 bits valid; write any value to clear */
968 cp->net_stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
972 static struct net_device_stats *cp_get_stats(struct net_device *dev)
974 struct cp_private *cp = netdev_priv(dev);
977 /* The chip only need report frame silently dropped. */
978 spin_lock_irqsave(&cp->lock, flags);
979 if (netif_running(dev) && netif_device_present(dev))
981 spin_unlock_irqrestore(&cp->lock, flags);
983 return &cp->net_stats;
986 static void cp_stop_hw (struct cp_private *cp)
988 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
989 cpw16_f(IntrMask, 0);
992 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
995 cp->tx_head = cp->tx_tail = 0;
998 static void cp_reset_hw (struct cp_private *cp)
1000 unsigned work = 1000;
1002 cpw8(Cmd, CmdReset);
1005 if (!(cpr8(Cmd) & CmdReset))
1008 schedule_timeout_uninterruptible(10);
1011 printk(KERN_ERR "%s: hardware reset timeout\n", cp->dev->name);
1014 static inline void cp_start_hw (struct cp_private *cp)
1016 cpw16(CpCmd, cp->cpcmd);
1017 cpw8(Cmd, RxOn | TxOn);
1020 static void cp_init_hw (struct cp_private *cp)
1022 struct net_device *dev = cp->dev;
1023 dma_addr_t ring_dma;
1027 cpw8_f (Cfg9346, Cfg9346_Unlock);
1029 /* Restore our idea of the MAC address. */
1030 cpw32_f (MAC0 + 0, cpu_to_le32 (*(u32 *) (dev->dev_addr + 0)));
1031 cpw32_f (MAC0 + 4, cpu_to_le32 (*(u32 *) (dev->dev_addr + 4)));
1034 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1036 __cp_set_rx_mode(dev);
1037 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1039 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1040 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1041 cpw8(Config3, PARMEnable);
1042 cp->wol_enabled = 0;
1044 cpw8(Config5, cpr8(Config5) & PMEStatus);
1046 cpw32_f(HiTxRingAddr, 0);
1047 cpw32_f(HiTxRingAddr + 4, 0);
1049 ring_dma = cp->ring_dma;
1050 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1051 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1053 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1054 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1055 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1057 cpw16(MultiIntr, 0);
1059 cpw16_f(IntrMask, cp_intr_mask);
1061 cpw8_f(Cfg9346, Cfg9346_Lock);
1064 static int cp_refill_rx (struct cp_private *cp)
1068 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1069 struct sk_buff *skb;
1072 skb = dev_alloc_skb(cp->rx_buf_sz + RX_OFFSET);
1076 skb_reserve(skb, RX_OFFSET);
1078 mapping = pci_map_single(cp->pdev, skb->data, cp->rx_buf_sz,
1079 PCI_DMA_FROMDEVICE);
1080 cp->rx_skb[i] = skb;
1082 cp->rx_ring[i].opts2 = 0;
1083 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1084 if (i == (CP_RX_RING_SIZE - 1))
1085 cp->rx_ring[i].opts1 =
1086 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1088 cp->rx_ring[i].opts1 =
1089 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1099 static void cp_init_rings_index (struct cp_private *cp)
1102 cp->tx_head = cp->tx_tail = 0;
1105 static int cp_init_rings (struct cp_private *cp)
1107 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1108 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1110 cp_init_rings_index(cp);
1112 return cp_refill_rx (cp);
1115 static int cp_alloc_rings (struct cp_private *cp)
1119 mem = pci_alloc_consistent(cp->pdev, CP_RING_BYTES, &cp->ring_dma);
1124 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1126 return cp_init_rings(cp);
1129 static void cp_clean_rings (struct cp_private *cp)
1131 struct cp_desc *desc;
1134 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1135 if (cp->rx_skb[i]) {
1136 desc = cp->rx_ring + i;
1137 pci_unmap_single(cp->pdev, le64_to_cpu(desc->addr),
1138 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1139 dev_kfree_skb(cp->rx_skb[i]);
1143 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1144 if (cp->tx_skb[i]) {
1145 struct sk_buff *skb = cp->tx_skb[i];
1147 desc = cp->tx_ring + i;
1148 pci_unmap_single(cp->pdev, le64_to_cpu(desc->addr),
1149 le32_to_cpu(desc->opts1) & 0xffff,
1151 if (le32_to_cpu(desc->opts1) & LastFrag)
1153 cp->net_stats.tx_dropped++;
1157 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1158 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1160 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1161 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1164 static void cp_free_rings (struct cp_private *cp)
1167 pci_free_consistent(cp->pdev, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1172 static int cp_open (struct net_device *dev)
1174 struct cp_private *cp = netdev_priv(dev);
1177 if (netif_msg_ifup(cp))
1178 printk(KERN_DEBUG "%s: enabling interface\n", dev->name);
1180 rc = cp_alloc_rings(cp);
1186 rc = request_irq(dev->irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1190 netif_carrier_off(dev);
1191 mii_check_media(&cp->mii_if, netif_msg_link(cp), TRUE);
1192 netif_start_queue(dev);
1202 static int cp_close (struct net_device *dev)
1204 struct cp_private *cp = netdev_priv(dev);
1205 unsigned long flags;
1207 if (netif_msg_ifdown(cp))
1208 printk(KERN_DEBUG "%s: disabling interface\n", dev->name);
1210 spin_lock_irqsave(&cp->lock, flags);
1212 netif_stop_queue(dev);
1213 netif_carrier_off(dev);
1217 spin_unlock_irqrestore(&cp->lock, flags);
1219 synchronize_irq(dev->irq);
1220 free_irq(dev->irq, dev);
1227 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1229 struct cp_private *cp = netdev_priv(dev);
1231 unsigned long flags;
1233 /* check for invalid MTU, according to hardware limits */
1234 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1237 /* if network interface not up, no need for complexity */
1238 if (!netif_running(dev)) {
1240 cp_set_rxbufsize(cp); /* set new rx buf size */
1244 spin_lock_irqsave(&cp->lock, flags);
1246 cp_stop_hw(cp); /* stop h/w and free rings */
1250 cp_set_rxbufsize(cp); /* set new rx buf size */
1252 rc = cp_init_rings(cp); /* realloc and restart h/w */
1255 spin_unlock_irqrestore(&cp->lock, flags);
1261 static const char mii_2_8139_map[8] = {
1272 static int mdio_read(struct net_device *dev, int phy_id, int location)
1274 struct cp_private *cp = netdev_priv(dev);
1276 return location < 8 && mii_2_8139_map[location] ?
1277 readw(cp->regs + mii_2_8139_map[location]) : 0;
1281 static void mdio_write(struct net_device *dev, int phy_id, int location,
1284 struct cp_private *cp = netdev_priv(dev);
1286 if (location == 0) {
1287 cpw8(Cfg9346, Cfg9346_Unlock);
1288 cpw16(BasicModeCtrl, value);
1289 cpw8(Cfg9346, Cfg9346_Lock);
1290 } else if (location < 8 && mii_2_8139_map[location])
1291 cpw16(mii_2_8139_map[location], value);
1294 /* Set the ethtool Wake-on-LAN settings */
1295 static int netdev_set_wol (struct cp_private *cp,
1296 const struct ethtool_wolinfo *wol)
1300 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1301 /* If WOL is being disabled, no need for complexity */
1303 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1304 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1307 cpw8 (Cfg9346, Cfg9346_Unlock);
1308 cpw8 (Config3, options);
1309 cpw8 (Cfg9346, Cfg9346_Lock);
1311 options = 0; /* Paranoia setting */
1312 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1313 /* If WOL is being disabled, no need for complexity */
1315 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1316 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1317 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1320 cpw8 (Config5, options);
1322 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1327 /* Get the ethtool Wake-on-LAN settings */
1328 static void netdev_get_wol (struct cp_private *cp,
1329 struct ethtool_wolinfo *wol)
1333 wol->wolopts = 0; /* Start from scratch */
1334 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1335 WAKE_MCAST | WAKE_UCAST;
1336 /* We don't need to go on if WOL is disabled */
1337 if (!cp->wol_enabled) return;
1339 options = cpr8 (Config3);
1340 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1341 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1343 options = 0; /* Paranoia setting */
1344 options = cpr8 (Config5);
1345 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1346 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1347 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1350 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1352 struct cp_private *cp = netdev_priv(dev);
1354 strcpy (info->driver, DRV_NAME);
1355 strcpy (info->version, DRV_VERSION);
1356 strcpy (info->bus_info, pci_name(cp->pdev));
1359 static int cp_get_regs_len(struct net_device *dev)
1361 return CP_REGS_SIZE;
1364 static int cp_get_stats_count (struct net_device *dev)
1366 return CP_NUM_STATS;
1369 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1371 struct cp_private *cp = netdev_priv(dev);
1373 unsigned long flags;
1375 spin_lock_irqsave(&cp->lock, flags);
1376 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1377 spin_unlock_irqrestore(&cp->lock, flags);
1382 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1384 struct cp_private *cp = netdev_priv(dev);
1386 unsigned long flags;
1388 spin_lock_irqsave(&cp->lock, flags);
1389 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1390 spin_unlock_irqrestore(&cp->lock, flags);
1395 static int cp_nway_reset(struct net_device *dev)
1397 struct cp_private *cp = netdev_priv(dev);
1398 return mii_nway_restart(&cp->mii_if);
1401 static u32 cp_get_msglevel(struct net_device *dev)
1403 struct cp_private *cp = netdev_priv(dev);
1404 return cp->msg_enable;
1407 static void cp_set_msglevel(struct net_device *dev, u32 value)
1409 struct cp_private *cp = netdev_priv(dev);
1410 cp->msg_enable = value;
1413 static u32 cp_get_rx_csum(struct net_device *dev)
1415 struct cp_private *cp = netdev_priv(dev);
1416 return (cpr16(CpCmd) & RxChkSum) ? 1 : 0;
1419 static int cp_set_rx_csum(struct net_device *dev, u32 data)
1421 struct cp_private *cp = netdev_priv(dev);
1422 u16 cmd = cp->cpcmd, newcmd;
1429 newcmd &= ~RxChkSum;
1431 if (newcmd != cmd) {
1432 unsigned long flags;
1434 spin_lock_irqsave(&cp->lock, flags);
1436 cpw16_f(CpCmd, newcmd);
1437 spin_unlock_irqrestore(&cp->lock, flags);
1443 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1446 struct cp_private *cp = netdev_priv(dev);
1447 unsigned long flags;
1449 if (regs->len < CP_REGS_SIZE)
1450 return /* -EINVAL */;
1452 regs->version = CP_REGS_VER;
1454 spin_lock_irqsave(&cp->lock, flags);
1455 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1456 spin_unlock_irqrestore(&cp->lock, flags);
1459 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1461 struct cp_private *cp = netdev_priv(dev);
1462 unsigned long flags;
1464 spin_lock_irqsave (&cp->lock, flags);
1465 netdev_get_wol (cp, wol);
1466 spin_unlock_irqrestore (&cp->lock, flags);
1469 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1471 struct cp_private *cp = netdev_priv(dev);
1472 unsigned long flags;
1475 spin_lock_irqsave (&cp->lock, flags);
1476 rc = netdev_set_wol (cp, wol);
1477 spin_unlock_irqrestore (&cp->lock, flags);
1482 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1484 switch (stringset) {
1486 memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys));
1494 static void cp_get_ethtool_stats (struct net_device *dev,
1495 struct ethtool_stats *estats, u64 *tmp_stats)
1497 struct cp_private *cp = netdev_priv(dev);
1498 struct cp_dma_stats *nic_stats;
1502 nic_stats = pci_alloc_consistent(cp->pdev, sizeof(*nic_stats), &dma);
1506 /* begin NIC statistics dump */
1507 cpw32(StatsAddr + 4, (u64)dma >> 32);
1508 cpw32(StatsAddr, ((u64)dma & DMA_32BIT_MASK) | DumpStats);
1511 for (i = 0; i < 1000; i++) {
1512 if ((cpr32(StatsAddr) & DumpStats) == 0)
1516 cpw32(StatsAddr, 0);
1517 cpw32(StatsAddr + 4, 0);
1521 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1522 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1523 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1524 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1525 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1526 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1527 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1528 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1529 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1530 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1531 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1532 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1533 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1534 tmp_stats[i++] = cp->cp_stats.rx_frags;
1535 BUG_ON(i != CP_NUM_STATS);
1537 pci_free_consistent(cp->pdev, sizeof(*nic_stats), nic_stats, dma);
1540 static const struct ethtool_ops cp_ethtool_ops = {
1541 .get_drvinfo = cp_get_drvinfo,
1542 .get_regs_len = cp_get_regs_len,
1543 .get_stats_count = cp_get_stats_count,
1544 .get_settings = cp_get_settings,
1545 .set_settings = cp_set_settings,
1546 .nway_reset = cp_nway_reset,
1547 .get_link = ethtool_op_get_link,
1548 .get_msglevel = cp_get_msglevel,
1549 .set_msglevel = cp_set_msglevel,
1550 .get_rx_csum = cp_get_rx_csum,
1551 .set_rx_csum = cp_set_rx_csum,
1552 .get_tx_csum = ethtool_op_get_tx_csum,
1553 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
1554 .get_sg = ethtool_op_get_sg,
1555 .set_sg = ethtool_op_set_sg,
1556 .get_tso = ethtool_op_get_tso,
1557 .set_tso = ethtool_op_set_tso,
1558 .get_regs = cp_get_regs,
1559 .get_wol = cp_get_wol,
1560 .set_wol = cp_set_wol,
1561 .get_strings = cp_get_strings,
1562 .get_ethtool_stats = cp_get_ethtool_stats,
1563 .get_perm_addr = ethtool_op_get_perm_addr,
1564 .get_eeprom_len = cp_get_eeprom_len,
1565 .get_eeprom = cp_get_eeprom,
1566 .set_eeprom = cp_set_eeprom,
1569 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1571 struct cp_private *cp = netdev_priv(dev);
1573 unsigned long flags;
1575 if (!netif_running(dev))
1578 spin_lock_irqsave(&cp->lock, flags);
1579 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1580 spin_unlock_irqrestore(&cp->lock, flags);
1584 /* Serial EEPROM section. */
1586 /* EEPROM_Ctrl bits. */
1587 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1588 #define EE_CS 0x08 /* EEPROM chip select. */
1589 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1590 #define EE_WRITE_0 0x00
1591 #define EE_WRITE_1 0x02
1592 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1593 #define EE_ENB (0x80 | EE_CS)
1595 /* Delay between EEPROM clock transitions.
1596 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1599 #define eeprom_delay() readl(ee_addr)
1601 /* The EEPROM commands include the alway-set leading bit. */
1602 #define EE_EXTEND_CMD (4)
1603 #define EE_WRITE_CMD (5)
1604 #define EE_READ_CMD (6)
1605 #define EE_ERASE_CMD (7)
1607 #define EE_EWDS_ADDR (0)
1608 #define EE_WRAL_ADDR (1)
1609 #define EE_ERAL_ADDR (2)
1610 #define EE_EWEN_ADDR (3)
1612 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1614 static void eeprom_cmd_start(void __iomem *ee_addr)
1616 writeb (EE_ENB & ~EE_CS, ee_addr);
1617 writeb (EE_ENB, ee_addr);
1621 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1625 /* Shift the command bits out. */
1626 for (i = cmd_len - 1; i >= 0; i--) {
1627 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1628 writeb (EE_ENB | dataval, ee_addr);
1630 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1633 writeb (EE_ENB, ee_addr);
1637 static void eeprom_cmd_end(void __iomem *ee_addr)
1639 writeb (~EE_CS, ee_addr);
1643 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1646 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1648 eeprom_cmd_start(ee_addr);
1649 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1650 eeprom_cmd_end(ee_addr);
1653 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1657 void __iomem *ee_addr = ioaddr + Cfg9346;
1658 int read_cmd = location | (EE_READ_CMD << addr_len);
1660 eeprom_cmd_start(ee_addr);
1661 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1663 for (i = 16; i > 0; i--) {
1664 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1667 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1669 writeb (EE_ENB, ee_addr);
1673 eeprom_cmd_end(ee_addr);
1678 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1682 void __iomem *ee_addr = ioaddr + Cfg9346;
1683 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1685 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1687 eeprom_cmd_start(ee_addr);
1688 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1689 eeprom_cmd(ee_addr, val, 16);
1690 eeprom_cmd_end(ee_addr);
1692 eeprom_cmd_start(ee_addr);
1693 for (i = 0; i < 20000; i++)
1694 if (readb(ee_addr) & EE_DATA_READ)
1696 eeprom_cmd_end(ee_addr);
1698 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1701 static int cp_get_eeprom_len(struct net_device *dev)
1703 struct cp_private *cp = netdev_priv(dev);
1706 spin_lock_irq(&cp->lock);
1707 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1708 spin_unlock_irq(&cp->lock);
1713 static int cp_get_eeprom(struct net_device *dev,
1714 struct ethtool_eeprom *eeprom, u8 *data)
1716 struct cp_private *cp = netdev_priv(dev);
1717 unsigned int addr_len;
1719 u32 offset = eeprom->offset >> 1;
1720 u32 len = eeprom->len;
1723 eeprom->magic = CP_EEPROM_MAGIC;
1725 spin_lock_irq(&cp->lock);
1727 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1729 if (eeprom->offset & 1) {
1730 val = read_eeprom(cp->regs, offset, addr_len);
1731 data[i++] = (u8)(val >> 8);
1735 while (i < len - 1) {
1736 val = read_eeprom(cp->regs, offset, addr_len);
1737 data[i++] = (u8)val;
1738 data[i++] = (u8)(val >> 8);
1743 val = read_eeprom(cp->regs, offset, addr_len);
1747 spin_unlock_irq(&cp->lock);
1751 static int cp_set_eeprom(struct net_device *dev,
1752 struct ethtool_eeprom *eeprom, u8 *data)
1754 struct cp_private *cp = netdev_priv(dev);
1755 unsigned int addr_len;
1757 u32 offset = eeprom->offset >> 1;
1758 u32 len = eeprom->len;
1761 if (eeprom->magic != CP_EEPROM_MAGIC)
1764 spin_lock_irq(&cp->lock);
1766 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1768 if (eeprom->offset & 1) {
1769 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1770 val |= (u16)data[i++] << 8;
1771 write_eeprom(cp->regs, offset, val, addr_len);
1775 while (i < len - 1) {
1776 val = (u16)data[i++];
1777 val |= (u16)data[i++] << 8;
1778 write_eeprom(cp->regs, offset, val, addr_len);
1783 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1784 val |= (u16)data[i];
1785 write_eeprom(cp->regs, offset, val, addr_len);
1788 spin_unlock_irq(&cp->lock);
1792 /* Put the board into D3cold state and wait for WakeUp signal */
1793 static void cp_set_d3_state (struct cp_private *cp)
1795 pci_enable_wake (cp->pdev, 0, 1); /* Enable PME# generation */
1796 pci_set_power_state (cp->pdev, PCI_D3hot);
1799 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1801 struct net_device *dev;
1802 struct cp_private *cp;
1805 resource_size_t pciaddr;
1806 unsigned int addr_len, i, pci_using_dac;
1810 static int version_printed;
1811 if (version_printed++ == 0)
1812 printk("%s", version);
1815 pci_read_config_byte(pdev, PCI_REVISION_ID, &pci_rev);
1817 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1818 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pci_rev < 0x20) {
1820 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip\n",
1821 pdev->vendor, pdev->device, pci_rev);
1822 dev_err(&pdev->dev, "Try the \"8139too\" driver instead.\n");
1826 dev = alloc_etherdev(sizeof(struct cp_private));
1829 SET_MODULE_OWNER(dev);
1830 SET_NETDEV_DEV(dev, &pdev->dev);
1832 cp = netdev_priv(dev);
1835 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1836 spin_lock_init (&cp->lock);
1837 cp->mii_if.dev = dev;
1838 cp->mii_if.mdio_read = mdio_read;
1839 cp->mii_if.mdio_write = mdio_write;
1840 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1841 cp->mii_if.phy_id_mask = 0x1f;
1842 cp->mii_if.reg_num_mask = 0x1f;
1843 cp_set_rxbufsize(cp);
1845 rc = pci_enable_device(pdev);
1849 rc = pci_set_mwi(pdev);
1851 goto err_out_disable;
1853 rc = pci_request_regions(pdev, DRV_NAME);
1857 pciaddr = pci_resource_start(pdev, 1);
1860 dev_err(&pdev->dev, "no MMIO resource\n");
1863 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1865 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1866 (unsigned long long)pci_resource_len(pdev, 1));
1870 /* Configure DMA attributes. */
1871 if ((sizeof(dma_addr_t) > 4) &&
1872 !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK) &&
1873 !pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1878 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1881 "No usable DMA configuration, aborting.\n");
1884 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1887 "No usable consistent DMA configuration, "
1893 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1894 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1896 regs = ioremap(pciaddr, CP_REGS_SIZE);
1899 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1900 (unsigned long long)pci_resource_len(pdev, 1),
1901 (unsigned long long)pciaddr);
1904 dev->base_addr = (unsigned long) regs;
1909 /* read MAC address from EEPROM */
1910 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1911 for (i = 0; i < 3; i++)
1912 ((u16 *) (dev->dev_addr))[i] =
1913 le16_to_cpu (read_eeprom (regs, i + 7, addr_len));
1914 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1916 dev->open = cp_open;
1917 dev->stop = cp_close;
1918 dev->set_multicast_list = cp_set_rx_mode;
1919 dev->hard_start_xmit = cp_start_xmit;
1920 dev->get_stats = cp_get_stats;
1921 dev->do_ioctl = cp_ioctl;
1922 dev->poll = cp_rx_poll;
1923 #ifdef CONFIG_NET_POLL_CONTROLLER
1924 dev->poll_controller = cp_poll_controller;
1926 dev->weight = 16; /* arbitrary? from NAPI_HOWTO.txt. */
1928 dev->change_mtu = cp_change_mtu;
1930 dev->ethtool_ops = &cp_ethtool_ops;
1932 dev->tx_timeout = cp_tx_timeout;
1933 dev->watchdog_timeo = TX_TIMEOUT;
1936 #if CP_VLAN_TAG_USED
1937 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1938 dev->vlan_rx_register = cp_vlan_rx_register;
1942 dev->features |= NETIF_F_HIGHDMA;
1944 #if 0 /* disabled by default until verified */
1945 dev->features |= NETIF_F_TSO;
1948 dev->irq = pdev->irq;
1950 rc = register_netdev(dev);
1954 printk (KERN_INFO "%s: RTL-8139C+ at 0x%lx, "
1955 "%02x:%02x:%02x:%02x:%02x:%02x, "
1959 dev->dev_addr[0], dev->dev_addr[1],
1960 dev->dev_addr[2], dev->dev_addr[3],
1961 dev->dev_addr[4], dev->dev_addr[5],
1964 pci_set_drvdata(pdev, dev);
1966 /* enable busmastering and memory-write-invalidate */
1967 pci_set_master(pdev);
1969 if (cp->wol_enabled)
1970 cp_set_d3_state (cp);
1977 pci_release_regions(pdev);
1979 pci_clear_mwi(pdev);
1981 pci_disable_device(pdev);
1987 static void cp_remove_one (struct pci_dev *pdev)
1989 struct net_device *dev = pci_get_drvdata(pdev);
1990 struct cp_private *cp = netdev_priv(dev);
1992 unregister_netdev(dev);
1994 if (cp->wol_enabled)
1995 pci_set_power_state (pdev, PCI_D0);
1996 pci_release_regions(pdev);
1997 pci_clear_mwi(pdev);
1998 pci_disable_device(pdev);
1999 pci_set_drvdata(pdev, NULL);
2004 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2006 struct net_device *dev = pci_get_drvdata(pdev);
2007 struct cp_private *cp = netdev_priv(dev);
2008 unsigned long flags;
2010 if (!netif_running(dev))
2013 netif_device_detach (dev);
2014 netif_stop_queue (dev);
2016 spin_lock_irqsave (&cp->lock, flags);
2018 /* Disable Rx and Tx */
2019 cpw16 (IntrMask, 0);
2020 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2022 spin_unlock_irqrestore (&cp->lock, flags);
2024 pci_save_state(pdev);
2025 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2026 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2031 static int cp_resume (struct pci_dev *pdev)
2033 struct net_device *dev = pci_get_drvdata (pdev);
2034 struct cp_private *cp = netdev_priv(dev);
2035 unsigned long flags;
2037 if (!netif_running(dev))
2040 netif_device_attach (dev);
2042 pci_set_power_state(pdev, PCI_D0);
2043 pci_restore_state(pdev);
2044 pci_enable_wake(pdev, PCI_D0, 0);
2046 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2047 cp_init_rings_index (cp);
2049 netif_start_queue (dev);
2051 spin_lock_irqsave (&cp->lock, flags);
2053 mii_check_media(&cp->mii_if, netif_msg_link(cp), FALSE);
2055 spin_unlock_irqrestore (&cp->lock, flags);
2059 #endif /* CONFIG_PM */
2061 static struct pci_driver cp_driver = {
2063 .id_table = cp_pci_tbl,
2064 .probe = cp_init_one,
2065 .remove = cp_remove_one,
2067 .resume = cp_resume,
2068 .suspend = cp_suspend,
2072 static int __init cp_init (void)
2075 printk("%s", version);
2077 return pci_register_driver(&cp_driver);
2080 static void __exit cp_exit (void)
2082 pci_unregister_driver (&cp_driver);
2085 module_init(cp_init);
2086 module_exit(cp_exit);