2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
49 #include <linux/kmemleak.h>
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
56 * Array of node states.
58 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59 [N_POSSIBLE] = NODE_MASK_ALL,
60 [N_ONLINE] = { { [0] = 1UL } },
62 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
64 [N_HIGH_MEMORY] = { { [0] = 1UL } },
66 [N_CPU] = { { [0] = 1UL } },
69 EXPORT_SYMBOL(node_states);
71 unsigned long totalram_pages __read_mostly;
72 unsigned long totalreserve_pages __read_mostly;
73 unsigned long highest_memmap_pfn __read_mostly;
74 int percpu_pagelist_fraction;
76 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77 int pageblock_order __read_mostly;
80 static void __free_pages_ok(struct page *page, unsigned int order);
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
93 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
94 #ifdef CONFIG_ZONE_DMA
97 #ifdef CONFIG_ZONE_DMA32
100 #ifdef CONFIG_HIGHMEM
106 EXPORT_SYMBOL(totalram_pages);
108 static char * const zone_names[MAX_NR_ZONES] = {
109 #ifdef CONFIG_ZONE_DMA
112 #ifdef CONFIG_ZONE_DMA32
116 #ifdef CONFIG_HIGHMEM
122 int min_free_kbytes = 1024;
124 unsigned long __meminitdata nr_kernel_pages;
125 unsigned long __meminitdata nr_all_pages;
126 static unsigned long __meminitdata dma_reserve;
128 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150 static int __meminitdata nr_nodemap_entries;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
153 static unsigned long __initdata required_kernelcore;
154 static unsigned long __initdata required_movablecore;
155 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
159 EXPORT_SYMBOL(movable_zone);
160 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163 int nr_node_ids __read_mostly = MAX_NUMNODES;
164 int nr_online_nodes __read_mostly = 1;
165 EXPORT_SYMBOL(nr_node_ids);
166 EXPORT_SYMBOL(nr_online_nodes);
169 int page_group_by_mobility_disabled __read_mostly;
171 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 if (unlikely(page_group_by_mobility_disabled))
175 migratetype = MIGRATE_UNMOVABLE;
177 set_pageblock_flags_group(page, (unsigned long)migratetype,
178 PB_migrate, PB_migrate_end);
181 #ifdef CONFIG_DEBUG_VM
182 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
186 unsigned long pfn = page_to_pfn(page);
189 seq = zone_span_seqbegin(zone);
190 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
192 else if (pfn < zone->zone_start_pfn)
194 } while (zone_span_seqretry(zone, seq));
199 static int page_is_consistent(struct zone *zone, struct page *page)
201 if (!pfn_valid_within(page_to_pfn(page)))
203 if (zone != page_zone(page))
209 * Temporary debugging check for pages not lying within a given zone.
211 static int bad_range(struct zone *zone, struct page *page)
213 if (page_outside_zone_boundaries(zone, page))
215 if (!page_is_consistent(zone, page))
221 static inline int bad_range(struct zone *zone, struct page *page)
227 static void bad_page(struct page *page)
229 static unsigned long resume;
230 static unsigned long nr_shown;
231 static unsigned long nr_unshown;
234 * Allow a burst of 60 reports, then keep quiet for that minute;
235 * or allow a steady drip of one report per second.
237 if (nr_shown == 60) {
238 if (time_before(jiffies, resume)) {
244 "BUG: Bad page state: %lu messages suppressed\n",
251 resume = jiffies + 60 * HZ;
253 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
254 current->comm, page_to_pfn(page));
256 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
257 page, (void *)page->flags, page_count(page),
258 page_mapcount(page), page->mapping, page->index);
262 /* Leave bad fields for debug, except PageBuddy could make trouble */
263 __ClearPageBuddy(page);
264 add_taint(TAINT_BAD_PAGE);
268 * Higher-order pages are called "compound pages". They are structured thusly:
270 * The first PAGE_SIZE page is called the "head page".
272 * The remaining PAGE_SIZE pages are called "tail pages".
274 * All pages have PG_compound set. All pages have their ->private pointing at
275 * the head page (even the head page has this).
277 * The first tail page's ->lru.next holds the address of the compound page's
278 * put_page() function. Its ->lru.prev holds the order of allocation.
279 * This usage means that zero-order pages may not be compound.
282 static void free_compound_page(struct page *page)
284 __free_pages_ok(page, compound_order(page));
287 void prep_compound_page(struct page *page, unsigned long order)
290 int nr_pages = 1 << order;
292 set_compound_page_dtor(page, free_compound_page);
293 set_compound_order(page, order);
295 for (i = 1; i < nr_pages; i++) {
296 struct page *p = page + i;
299 p->first_page = page;
303 #ifdef CONFIG_HUGETLBFS
304 void prep_compound_gigantic_page(struct page *page, unsigned long order)
307 int nr_pages = 1 << order;
308 struct page *p = page + 1;
310 set_compound_page_dtor(page, free_compound_page);
311 set_compound_order(page, order);
313 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
315 p->first_page = page;
320 static int destroy_compound_page(struct page *page, unsigned long order)
323 int nr_pages = 1 << order;
326 if (unlikely(compound_order(page) != order) ||
327 unlikely(!PageHead(page))) {
332 __ClearPageHead(page);
334 for (i = 1; i < nr_pages; i++) {
335 struct page *p = page + i;
337 if (unlikely(!PageTail(p) || (p->first_page != page))) {
347 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
352 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
353 * and __GFP_HIGHMEM from hard or soft interrupt context.
355 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
356 for (i = 0; i < (1 << order); i++)
357 clear_highpage(page + i);
360 static inline void set_page_order(struct page *page, int order)
362 set_page_private(page, order);
363 __SetPageBuddy(page);
366 static inline void rmv_page_order(struct page *page)
368 __ClearPageBuddy(page);
369 set_page_private(page, 0);
373 * Locate the struct page for both the matching buddy in our
374 * pair (buddy1) and the combined O(n+1) page they form (page).
376 * 1) Any buddy B1 will have an order O twin B2 which satisfies
377 * the following equation:
379 * For example, if the starting buddy (buddy2) is #8 its order
381 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
383 * 2) Any buddy B will have an order O+1 parent P which
384 * satisfies the following equation:
387 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
389 static inline struct page *
390 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
392 unsigned long buddy_idx = page_idx ^ (1 << order);
394 return page + (buddy_idx - page_idx);
397 static inline unsigned long
398 __find_combined_index(unsigned long page_idx, unsigned int order)
400 return (page_idx & ~(1 << order));
404 * This function checks whether a page is free && is the buddy
405 * we can do coalesce a page and its buddy if
406 * (a) the buddy is not in a hole &&
407 * (b) the buddy is in the buddy system &&
408 * (c) a page and its buddy have the same order &&
409 * (d) a page and its buddy are in the same zone.
411 * For recording whether a page is in the buddy system, we use PG_buddy.
412 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
414 * For recording page's order, we use page_private(page).
416 static inline int page_is_buddy(struct page *page, struct page *buddy,
419 if (!pfn_valid_within(page_to_pfn(buddy)))
422 if (page_zone_id(page) != page_zone_id(buddy))
425 if (PageBuddy(buddy) && page_order(buddy) == order) {
426 VM_BUG_ON(page_count(buddy) != 0);
433 * Freeing function for a buddy system allocator.
435 * The concept of a buddy system is to maintain direct-mapped table
436 * (containing bit values) for memory blocks of various "orders".
437 * The bottom level table contains the map for the smallest allocatable
438 * units of memory (here, pages), and each level above it describes
439 * pairs of units from the levels below, hence, "buddies".
440 * At a high level, all that happens here is marking the table entry
441 * at the bottom level available, and propagating the changes upward
442 * as necessary, plus some accounting needed to play nicely with other
443 * parts of the VM system.
444 * At each level, we keep a list of pages, which are heads of continuous
445 * free pages of length of (1 << order) and marked with PG_buddy. Page's
446 * order is recorded in page_private(page) field.
447 * So when we are allocating or freeing one, we can derive the state of the
448 * other. That is, if we allocate a small block, and both were
449 * free, the remainder of the region must be split into blocks.
450 * If a block is freed, and its buddy is also free, then this
451 * triggers coalescing into a block of larger size.
456 static inline void __free_one_page(struct page *page,
457 struct zone *zone, unsigned int order,
460 unsigned long page_idx;
462 if (unlikely(PageCompound(page)))
463 if (unlikely(destroy_compound_page(page, order)))
466 VM_BUG_ON(migratetype == -1);
468 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
470 VM_BUG_ON(page_idx & ((1 << order) - 1));
471 VM_BUG_ON(bad_range(zone, page));
473 while (order < MAX_ORDER-1) {
474 unsigned long combined_idx;
477 buddy = __page_find_buddy(page, page_idx, order);
478 if (!page_is_buddy(page, buddy, order))
481 /* Our buddy is free, merge with it and move up one order. */
482 list_del(&buddy->lru);
483 zone->free_area[order].nr_free--;
484 rmv_page_order(buddy);
485 combined_idx = __find_combined_index(page_idx, order);
486 page = page + (combined_idx - page_idx);
487 page_idx = combined_idx;
490 set_page_order(page, order);
492 &zone->free_area[order].free_list[migratetype]);
493 zone->free_area[order].nr_free++;
496 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
498 * free_page_mlock() -- clean up attempts to free and mlocked() page.
499 * Page should not be on lru, so no need to fix that up.
500 * free_pages_check() will verify...
502 static inline void free_page_mlock(struct page *page)
504 __ClearPageMlocked(page);
505 __dec_zone_page_state(page, NR_MLOCK);
506 __count_vm_event(UNEVICTABLE_MLOCKFREED);
509 static void free_page_mlock(struct page *page) { }
512 static inline int free_pages_check(struct page *page)
514 if (unlikely(page_mapcount(page) |
515 (page->mapping != NULL) |
516 (atomic_read(&page->_count) != 0) |
517 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
521 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
522 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
527 * Frees a list of pages.
528 * Assumes all pages on list are in same zone, and of same order.
529 * count is the number of pages to free.
531 * If the zone was previously in an "all pages pinned" state then look to
532 * see if this freeing clears that state.
534 * And clear the zone's pages_scanned counter, to hold off the "all pages are
535 * pinned" detection logic.
537 static void free_pages_bulk(struct zone *zone, int count,
538 struct list_head *list, int order)
540 spin_lock(&zone->lock);
541 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
542 zone->pages_scanned = 0;
544 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
548 VM_BUG_ON(list_empty(list));
549 page = list_entry(list->prev, struct page, lru);
550 /* have to delete it as __free_one_page list manipulates */
551 list_del(&page->lru);
552 __free_one_page(page, zone, order, page_private(page));
554 spin_unlock(&zone->lock);
557 static void free_one_page(struct zone *zone, struct page *page, int order,
560 spin_lock(&zone->lock);
561 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
562 zone->pages_scanned = 0;
564 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
565 __free_one_page(page, zone, order, migratetype);
566 spin_unlock(&zone->lock);
569 static void __free_pages_ok(struct page *page, unsigned int order)
574 int clearMlocked = PageMlocked(page);
576 for (i = 0 ; i < (1 << order) ; ++i)
577 bad += free_pages_check(page + i);
581 if (!PageHighMem(page)) {
582 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
583 debug_check_no_obj_freed(page_address(page),
586 arch_free_page(page, order);
587 kernel_map_pages(page, 1 << order, 0);
589 local_irq_save(flags);
590 if (unlikely(clearMlocked))
591 free_page_mlock(page);
592 __count_vm_events(PGFREE, 1 << order);
593 free_one_page(page_zone(page), page, order,
594 get_pageblock_migratetype(page));
595 local_irq_restore(flags);
599 * permit the bootmem allocator to evade page validation on high-order frees
601 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
604 __ClearPageReserved(page);
605 set_page_count(page, 0);
606 set_page_refcounted(page);
612 for (loop = 0; loop < BITS_PER_LONG; loop++) {
613 struct page *p = &page[loop];
615 if (loop + 1 < BITS_PER_LONG)
617 __ClearPageReserved(p);
618 set_page_count(p, 0);
621 set_page_refcounted(page);
622 __free_pages(page, order);
628 * The order of subdivision here is critical for the IO subsystem.
629 * Please do not alter this order without good reasons and regression
630 * testing. Specifically, as large blocks of memory are subdivided,
631 * the order in which smaller blocks are delivered depends on the order
632 * they're subdivided in this function. This is the primary factor
633 * influencing the order in which pages are delivered to the IO
634 * subsystem according to empirical testing, and this is also justified
635 * by considering the behavior of a buddy system containing a single
636 * large block of memory acted on by a series of small allocations.
637 * This behavior is a critical factor in sglist merging's success.
641 static inline void expand(struct zone *zone, struct page *page,
642 int low, int high, struct free_area *area,
645 unsigned long size = 1 << high;
651 VM_BUG_ON(bad_range(zone, &page[size]));
652 list_add(&page[size].lru, &area->free_list[migratetype]);
654 set_page_order(&page[size], high);
659 * This page is about to be returned from the page allocator
661 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
663 if (unlikely(page_mapcount(page) |
664 (page->mapping != NULL) |
665 (atomic_read(&page->_count) != 0) |
666 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
671 set_page_private(page, 0);
672 set_page_refcounted(page);
674 arch_alloc_page(page, order);
675 kernel_map_pages(page, 1 << order, 1);
677 if (gfp_flags & __GFP_ZERO)
678 prep_zero_page(page, order, gfp_flags);
680 if (order && (gfp_flags & __GFP_COMP))
681 prep_compound_page(page, order);
687 * Go through the free lists for the given migratetype and remove
688 * the smallest available page from the freelists
691 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
694 unsigned int current_order;
695 struct free_area * area;
698 /* Find a page of the appropriate size in the preferred list */
699 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
700 area = &(zone->free_area[current_order]);
701 if (list_empty(&area->free_list[migratetype]))
704 page = list_entry(area->free_list[migratetype].next,
706 list_del(&page->lru);
707 rmv_page_order(page);
709 expand(zone, page, order, current_order, area, migratetype);
718 * This array describes the order lists are fallen back to when
719 * the free lists for the desirable migrate type are depleted
721 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
722 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
723 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
724 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
725 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
729 * Move the free pages in a range to the free lists of the requested type.
730 * Note that start_page and end_pages are not aligned on a pageblock
731 * boundary. If alignment is required, use move_freepages_block()
733 static int move_freepages(struct zone *zone,
734 struct page *start_page, struct page *end_page,
741 #ifndef CONFIG_HOLES_IN_ZONE
743 * page_zone is not safe to call in this context when
744 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
745 * anyway as we check zone boundaries in move_freepages_block().
746 * Remove at a later date when no bug reports exist related to
747 * grouping pages by mobility
749 BUG_ON(page_zone(start_page) != page_zone(end_page));
752 for (page = start_page; page <= end_page;) {
753 /* Make sure we are not inadvertently changing nodes */
754 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
756 if (!pfn_valid_within(page_to_pfn(page))) {
761 if (!PageBuddy(page)) {
766 order = page_order(page);
767 list_del(&page->lru);
769 &zone->free_area[order].free_list[migratetype]);
771 pages_moved += 1 << order;
777 static int move_freepages_block(struct zone *zone, struct page *page,
780 unsigned long start_pfn, end_pfn;
781 struct page *start_page, *end_page;
783 start_pfn = page_to_pfn(page);
784 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
785 start_page = pfn_to_page(start_pfn);
786 end_page = start_page + pageblock_nr_pages - 1;
787 end_pfn = start_pfn + pageblock_nr_pages - 1;
789 /* Do not cross zone boundaries */
790 if (start_pfn < zone->zone_start_pfn)
792 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
795 return move_freepages(zone, start_page, end_page, migratetype);
798 /* Remove an element from the buddy allocator from the fallback list */
799 static inline struct page *
800 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
802 struct free_area * area;
807 /* Find the largest possible block of pages in the other list */
808 for (current_order = MAX_ORDER-1; current_order >= order;
810 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
811 migratetype = fallbacks[start_migratetype][i];
813 /* MIGRATE_RESERVE handled later if necessary */
814 if (migratetype == MIGRATE_RESERVE)
817 area = &(zone->free_area[current_order]);
818 if (list_empty(&area->free_list[migratetype]))
821 page = list_entry(area->free_list[migratetype].next,
826 * If breaking a large block of pages, move all free
827 * pages to the preferred allocation list. If falling
828 * back for a reclaimable kernel allocation, be more
829 * agressive about taking ownership of free pages
831 if (unlikely(current_order >= (pageblock_order >> 1)) ||
832 start_migratetype == MIGRATE_RECLAIMABLE) {
834 pages = move_freepages_block(zone, page,
837 /* Claim the whole block if over half of it is free */
838 if (pages >= (1 << (pageblock_order-1)))
839 set_pageblock_migratetype(page,
842 migratetype = start_migratetype;
845 /* Remove the page from the freelists */
846 list_del(&page->lru);
847 rmv_page_order(page);
849 if (current_order == pageblock_order)
850 set_pageblock_migratetype(page,
853 expand(zone, page, order, current_order, area, migratetype);
862 * Do the hard work of removing an element from the buddy allocator.
863 * Call me with the zone->lock already held.
865 static struct page *__rmqueue(struct zone *zone, unsigned int order,
871 page = __rmqueue_smallest(zone, order, migratetype);
873 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
874 page = __rmqueue_fallback(zone, order, migratetype);
877 * Use MIGRATE_RESERVE rather than fail an allocation. goto
878 * is used because __rmqueue_smallest is an inline function
879 * and we want just one call site
882 migratetype = MIGRATE_RESERVE;
891 * Obtain a specified number of elements from the buddy allocator, all under
892 * a single hold of the lock, for efficiency. Add them to the supplied list.
893 * Returns the number of new pages which were placed at *list.
895 static int rmqueue_bulk(struct zone *zone, unsigned int order,
896 unsigned long count, struct list_head *list,
901 spin_lock(&zone->lock);
902 for (i = 0; i < count; ++i) {
903 struct page *page = __rmqueue(zone, order, migratetype);
904 if (unlikely(page == NULL))
908 * Split buddy pages returned by expand() are received here
909 * in physical page order. The page is added to the callers and
910 * list and the list head then moves forward. From the callers
911 * perspective, the linked list is ordered by page number in
912 * some conditions. This is useful for IO devices that can
913 * merge IO requests if the physical pages are ordered
916 list_add(&page->lru, list);
917 set_page_private(page, migratetype);
920 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
921 spin_unlock(&zone->lock);
927 * Called from the vmstat counter updater to drain pagesets of this
928 * currently executing processor on remote nodes after they have
931 * Note that this function must be called with the thread pinned to
932 * a single processor.
934 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
939 local_irq_save(flags);
940 if (pcp->count >= pcp->batch)
941 to_drain = pcp->batch;
943 to_drain = pcp->count;
944 free_pages_bulk(zone, to_drain, &pcp->list, 0);
945 pcp->count -= to_drain;
946 local_irq_restore(flags);
951 * Drain pages of the indicated processor.
953 * The processor must either be the current processor and the
954 * thread pinned to the current processor or a processor that
957 static void drain_pages(unsigned int cpu)
962 for_each_populated_zone(zone) {
963 struct per_cpu_pageset *pset;
964 struct per_cpu_pages *pcp;
966 pset = zone_pcp(zone, cpu);
969 local_irq_save(flags);
970 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
972 local_irq_restore(flags);
977 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
979 void drain_local_pages(void *arg)
981 drain_pages(smp_processor_id());
985 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
987 void drain_all_pages(void)
989 on_each_cpu(drain_local_pages, NULL, 1);
992 #ifdef CONFIG_HIBERNATION
994 void mark_free_pages(struct zone *zone)
996 unsigned long pfn, max_zone_pfn;
999 struct list_head *curr;
1001 if (!zone->spanned_pages)
1004 spin_lock_irqsave(&zone->lock, flags);
1006 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1007 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1008 if (pfn_valid(pfn)) {
1009 struct page *page = pfn_to_page(pfn);
1011 if (!swsusp_page_is_forbidden(page))
1012 swsusp_unset_page_free(page);
1015 for_each_migratetype_order(order, t) {
1016 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1019 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1020 for (i = 0; i < (1UL << order); i++)
1021 swsusp_set_page_free(pfn_to_page(pfn + i));
1024 spin_unlock_irqrestore(&zone->lock, flags);
1026 #endif /* CONFIG_PM */
1029 * Free a 0-order page
1031 static void free_hot_cold_page(struct page *page, int cold)
1033 struct zone *zone = page_zone(page);
1034 struct per_cpu_pages *pcp;
1035 unsigned long flags;
1036 int clearMlocked = PageMlocked(page);
1039 page->mapping = NULL;
1040 if (free_pages_check(page))
1043 if (!PageHighMem(page)) {
1044 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1045 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1047 arch_free_page(page, 0);
1048 kernel_map_pages(page, 1, 0);
1050 pcp = &zone_pcp(zone, get_cpu())->pcp;
1051 set_page_private(page, get_pageblock_migratetype(page));
1052 local_irq_save(flags);
1053 if (unlikely(clearMlocked))
1054 free_page_mlock(page);
1055 __count_vm_event(PGFREE);
1058 list_add_tail(&page->lru, &pcp->list);
1060 list_add(&page->lru, &pcp->list);
1062 if (pcp->count >= pcp->high) {
1063 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1064 pcp->count -= pcp->batch;
1066 local_irq_restore(flags);
1070 void free_hot_page(struct page *page)
1072 free_hot_cold_page(page, 0);
1075 void free_cold_page(struct page *page)
1077 free_hot_cold_page(page, 1);
1081 * split_page takes a non-compound higher-order page, and splits it into
1082 * n (1<<order) sub-pages: page[0..n]
1083 * Each sub-page must be freed individually.
1085 * Note: this is probably too low level an operation for use in drivers.
1086 * Please consult with lkml before using this in your driver.
1088 void split_page(struct page *page, unsigned int order)
1092 VM_BUG_ON(PageCompound(page));
1093 VM_BUG_ON(!page_count(page));
1094 for (i = 1; i < (1 << order); i++)
1095 set_page_refcounted(page + i);
1099 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1100 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1104 struct page *buffered_rmqueue(struct zone *preferred_zone,
1105 struct zone *zone, int order, gfp_t gfp_flags,
1108 unsigned long flags;
1110 int cold = !!(gfp_flags & __GFP_COLD);
1115 if (likely(order == 0)) {
1116 struct per_cpu_pages *pcp;
1118 pcp = &zone_pcp(zone, cpu)->pcp;
1119 local_irq_save(flags);
1121 pcp->count = rmqueue_bulk(zone, 0,
1122 pcp->batch, &pcp->list, migratetype);
1123 if (unlikely(!pcp->count))
1127 /* Find a page of the appropriate migrate type */
1129 list_for_each_entry_reverse(page, &pcp->list, lru)
1130 if (page_private(page) == migratetype)
1133 list_for_each_entry(page, &pcp->list, lru)
1134 if (page_private(page) == migratetype)
1138 /* Allocate more to the pcp list if necessary */
1139 if (unlikely(&page->lru == &pcp->list)) {
1140 pcp->count += rmqueue_bulk(zone, 0,
1141 pcp->batch, &pcp->list, migratetype);
1142 page = list_entry(pcp->list.next, struct page, lru);
1145 list_del(&page->lru);
1148 spin_lock_irqsave(&zone->lock, flags);
1149 page = __rmqueue(zone, order, migratetype);
1150 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1151 spin_unlock(&zone->lock);
1156 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1157 zone_statistics(preferred_zone, zone);
1158 local_irq_restore(flags);
1161 VM_BUG_ON(bad_range(zone, page));
1162 if (prep_new_page(page, order, gfp_flags))
1167 local_irq_restore(flags);
1172 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1173 #define ALLOC_WMARK_MIN WMARK_MIN
1174 #define ALLOC_WMARK_LOW WMARK_LOW
1175 #define ALLOC_WMARK_HIGH WMARK_HIGH
1176 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1178 /* Mask to get the watermark bits */
1179 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1181 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1182 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1183 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1185 #ifdef CONFIG_FAIL_PAGE_ALLOC
1187 static struct fail_page_alloc_attr {
1188 struct fault_attr attr;
1190 u32 ignore_gfp_highmem;
1191 u32 ignore_gfp_wait;
1194 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1196 struct dentry *ignore_gfp_highmem_file;
1197 struct dentry *ignore_gfp_wait_file;
1198 struct dentry *min_order_file;
1200 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1202 } fail_page_alloc = {
1203 .attr = FAULT_ATTR_INITIALIZER,
1204 .ignore_gfp_wait = 1,
1205 .ignore_gfp_highmem = 1,
1209 static int __init setup_fail_page_alloc(char *str)
1211 return setup_fault_attr(&fail_page_alloc.attr, str);
1213 __setup("fail_page_alloc=", setup_fail_page_alloc);
1215 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1217 if (order < fail_page_alloc.min_order)
1219 if (gfp_mask & __GFP_NOFAIL)
1221 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1223 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1226 return should_fail(&fail_page_alloc.attr, 1 << order);
1229 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1231 static int __init fail_page_alloc_debugfs(void)
1233 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1237 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1241 dir = fail_page_alloc.attr.dentries.dir;
1243 fail_page_alloc.ignore_gfp_wait_file =
1244 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1245 &fail_page_alloc.ignore_gfp_wait);
1247 fail_page_alloc.ignore_gfp_highmem_file =
1248 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1249 &fail_page_alloc.ignore_gfp_highmem);
1250 fail_page_alloc.min_order_file =
1251 debugfs_create_u32("min-order", mode, dir,
1252 &fail_page_alloc.min_order);
1254 if (!fail_page_alloc.ignore_gfp_wait_file ||
1255 !fail_page_alloc.ignore_gfp_highmem_file ||
1256 !fail_page_alloc.min_order_file) {
1258 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1259 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1260 debugfs_remove(fail_page_alloc.min_order_file);
1261 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1267 late_initcall(fail_page_alloc_debugfs);
1269 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1271 #else /* CONFIG_FAIL_PAGE_ALLOC */
1273 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1278 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1281 * Return 1 if free pages are above 'mark'. This takes into account the order
1282 * of the allocation.
1284 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1285 int classzone_idx, int alloc_flags)
1287 /* free_pages my go negative - that's OK */
1289 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1292 if (alloc_flags & ALLOC_HIGH)
1294 if (alloc_flags & ALLOC_HARDER)
1297 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1299 for (o = 0; o < order; o++) {
1300 /* At the next order, this order's pages become unavailable */
1301 free_pages -= z->free_area[o].nr_free << o;
1303 /* Require fewer higher order pages to be free */
1306 if (free_pages <= min)
1314 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1315 * skip over zones that are not allowed by the cpuset, or that have
1316 * been recently (in last second) found to be nearly full. See further
1317 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1318 * that have to skip over a lot of full or unallowed zones.
1320 * If the zonelist cache is present in the passed in zonelist, then
1321 * returns a pointer to the allowed node mask (either the current
1322 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1324 * If the zonelist cache is not available for this zonelist, does
1325 * nothing and returns NULL.
1327 * If the fullzones BITMAP in the zonelist cache is stale (more than
1328 * a second since last zap'd) then we zap it out (clear its bits.)
1330 * We hold off even calling zlc_setup, until after we've checked the
1331 * first zone in the zonelist, on the theory that most allocations will
1332 * be satisfied from that first zone, so best to examine that zone as
1333 * quickly as we can.
1335 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1337 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1338 nodemask_t *allowednodes; /* zonelist_cache approximation */
1340 zlc = zonelist->zlcache_ptr;
1344 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1345 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1346 zlc->last_full_zap = jiffies;
1349 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1350 &cpuset_current_mems_allowed :
1351 &node_states[N_HIGH_MEMORY];
1352 return allowednodes;
1356 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1357 * if it is worth looking at further for free memory:
1358 * 1) Check that the zone isn't thought to be full (doesn't have its
1359 * bit set in the zonelist_cache fullzones BITMAP).
1360 * 2) Check that the zones node (obtained from the zonelist_cache
1361 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1362 * Return true (non-zero) if zone is worth looking at further, or
1363 * else return false (zero) if it is not.
1365 * This check -ignores- the distinction between various watermarks,
1366 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1367 * found to be full for any variation of these watermarks, it will
1368 * be considered full for up to one second by all requests, unless
1369 * we are so low on memory on all allowed nodes that we are forced
1370 * into the second scan of the zonelist.
1372 * In the second scan we ignore this zonelist cache and exactly
1373 * apply the watermarks to all zones, even it is slower to do so.
1374 * We are low on memory in the second scan, and should leave no stone
1375 * unturned looking for a free page.
1377 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1378 nodemask_t *allowednodes)
1380 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1381 int i; /* index of *z in zonelist zones */
1382 int n; /* node that zone *z is on */
1384 zlc = zonelist->zlcache_ptr;
1388 i = z - zonelist->_zonerefs;
1391 /* This zone is worth trying if it is allowed but not full */
1392 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1396 * Given 'z' scanning a zonelist, set the corresponding bit in
1397 * zlc->fullzones, so that subsequent attempts to allocate a page
1398 * from that zone don't waste time re-examining it.
1400 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1402 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1403 int i; /* index of *z in zonelist zones */
1405 zlc = zonelist->zlcache_ptr;
1409 i = z - zonelist->_zonerefs;
1411 set_bit(i, zlc->fullzones);
1414 #else /* CONFIG_NUMA */
1416 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1421 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1422 nodemask_t *allowednodes)
1427 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1430 #endif /* CONFIG_NUMA */
1433 * get_page_from_freelist goes through the zonelist trying to allocate
1436 static struct page *
1437 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1438 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1439 struct zone *preferred_zone, int migratetype)
1442 struct page *page = NULL;
1445 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1446 int zlc_active = 0; /* set if using zonelist_cache */
1447 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1449 if (WARN_ON_ONCE(order >= MAX_ORDER))
1452 classzone_idx = zone_idx(preferred_zone);
1455 * Scan zonelist, looking for a zone with enough free.
1456 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1458 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1459 high_zoneidx, nodemask) {
1460 if (NUMA_BUILD && zlc_active &&
1461 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1463 if ((alloc_flags & ALLOC_CPUSET) &&
1464 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1467 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1468 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1470 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1471 if (!zone_watermark_ok(zone, order, mark,
1472 classzone_idx, alloc_flags)) {
1473 if (!zone_reclaim_mode ||
1474 !zone_reclaim(zone, gfp_mask, order))
1475 goto this_zone_full;
1479 page = buffered_rmqueue(preferred_zone, zone, order,
1480 gfp_mask, migratetype);
1485 zlc_mark_zone_full(zonelist, z);
1487 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1489 * we do zlc_setup after the first zone is tried but only
1490 * if there are multiple nodes make it worthwhile
1492 allowednodes = zlc_setup(zonelist, alloc_flags);
1498 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1499 /* Disable zlc cache for second zonelist scan */
1507 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1508 unsigned long pages_reclaimed)
1510 /* Do not loop if specifically requested */
1511 if (gfp_mask & __GFP_NORETRY)
1515 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1516 * means __GFP_NOFAIL, but that may not be true in other
1519 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1523 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1524 * specified, then we retry until we no longer reclaim any pages
1525 * (above), or we've reclaimed an order of pages at least as
1526 * large as the allocation's order. In both cases, if the
1527 * allocation still fails, we stop retrying.
1529 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1533 * Don't let big-order allocations loop unless the caller
1534 * explicitly requests that.
1536 if (gfp_mask & __GFP_NOFAIL)
1542 static inline struct page *
1543 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1544 struct zonelist *zonelist, enum zone_type high_zoneidx,
1545 nodemask_t *nodemask, struct zone *preferred_zone,
1550 /* Acquire the OOM killer lock for the zones in zonelist */
1551 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1552 schedule_timeout_uninterruptible(1);
1557 * Go through the zonelist yet one more time, keep very high watermark
1558 * here, this is only to catch a parallel oom killing, we must fail if
1559 * we're still under heavy pressure.
1561 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1562 order, zonelist, high_zoneidx,
1563 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1564 preferred_zone, migratetype);
1568 /* The OOM killer will not help higher order allocs */
1569 if (order > PAGE_ALLOC_COSTLY_ORDER)
1572 /* Exhausted what can be done so it's blamo time */
1573 out_of_memory(zonelist, gfp_mask, order);
1576 clear_zonelist_oom(zonelist, gfp_mask);
1580 /* The really slow allocator path where we enter direct reclaim */
1581 static inline struct page *
1582 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1583 struct zonelist *zonelist, enum zone_type high_zoneidx,
1584 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1585 int migratetype, unsigned long *did_some_progress)
1587 struct page *page = NULL;
1588 struct reclaim_state reclaim_state;
1589 struct task_struct *p = current;
1593 /* We now go into synchronous reclaim */
1594 cpuset_memory_pressure_bump();
1597 * The task's cpuset might have expanded its set of allowable nodes
1599 p->flags |= PF_MEMALLOC;
1600 lockdep_set_current_reclaim_state(gfp_mask);
1601 reclaim_state.reclaimed_slab = 0;
1602 p->reclaim_state = &reclaim_state;
1604 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1606 p->reclaim_state = NULL;
1607 lockdep_clear_current_reclaim_state();
1608 p->flags &= ~PF_MEMALLOC;
1615 if (likely(*did_some_progress))
1616 page = get_page_from_freelist(gfp_mask, nodemask, order,
1617 zonelist, high_zoneidx,
1618 alloc_flags, preferred_zone,
1624 * This is called in the allocator slow-path if the allocation request is of
1625 * sufficient urgency to ignore watermarks and take other desperate measures
1627 static inline struct page *
1628 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1629 struct zonelist *zonelist, enum zone_type high_zoneidx,
1630 nodemask_t *nodemask, struct zone *preferred_zone,
1636 page = get_page_from_freelist(gfp_mask, nodemask, order,
1637 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1638 preferred_zone, migratetype);
1640 if (!page && gfp_mask & __GFP_NOFAIL)
1641 congestion_wait(WRITE, HZ/50);
1642 } while (!page && (gfp_mask & __GFP_NOFAIL));
1648 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1649 enum zone_type high_zoneidx)
1654 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1655 wakeup_kswapd(zone, order);
1659 gfp_to_alloc_flags(gfp_t gfp_mask)
1661 struct task_struct *p = current;
1662 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1663 const gfp_t wait = gfp_mask & __GFP_WAIT;
1665 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1666 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1669 * The caller may dip into page reserves a bit more if the caller
1670 * cannot run direct reclaim, or if the caller has realtime scheduling
1671 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1672 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1674 alloc_flags |= (gfp_mask & __GFP_HIGH);
1677 alloc_flags |= ALLOC_HARDER;
1679 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1680 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1682 alloc_flags &= ~ALLOC_CPUSET;
1683 } else if (unlikely(rt_task(p)))
1684 alloc_flags |= ALLOC_HARDER;
1686 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1687 if (!in_interrupt() &&
1688 ((p->flags & PF_MEMALLOC) ||
1689 unlikely(test_thread_flag(TIF_MEMDIE))))
1690 alloc_flags |= ALLOC_NO_WATERMARKS;
1696 static inline struct page *
1697 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1698 struct zonelist *zonelist, enum zone_type high_zoneidx,
1699 nodemask_t *nodemask, struct zone *preferred_zone,
1702 const gfp_t wait = gfp_mask & __GFP_WAIT;
1703 struct page *page = NULL;
1705 unsigned long pages_reclaimed = 0;
1706 unsigned long did_some_progress;
1707 struct task_struct *p = current;
1710 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1711 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1712 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1713 * using a larger set of nodes after it has established that the
1714 * allowed per node queues are empty and that nodes are
1717 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1720 wake_all_kswapd(order, zonelist, high_zoneidx);
1723 * OK, we're below the kswapd watermark and have kicked background
1724 * reclaim. Now things get more complex, so set up alloc_flags according
1725 * to how we want to proceed.
1727 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1730 /* This is the last chance, in general, before the goto nopage. */
1731 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1732 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1733 preferred_zone, migratetype);
1738 /* Allocate without watermarks if the context allows */
1739 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1740 page = __alloc_pages_high_priority(gfp_mask, order,
1741 zonelist, high_zoneidx, nodemask,
1742 preferred_zone, migratetype);
1747 /* Atomic allocations - we can't balance anything */
1751 /* Avoid recursion of direct reclaim */
1752 if (p->flags & PF_MEMALLOC)
1755 /* Try direct reclaim and then allocating */
1756 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1757 zonelist, high_zoneidx,
1759 alloc_flags, preferred_zone,
1760 migratetype, &did_some_progress);
1765 * If we failed to make any progress reclaiming, then we are
1766 * running out of options and have to consider going OOM
1768 if (!did_some_progress) {
1769 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1770 page = __alloc_pages_may_oom(gfp_mask, order,
1771 zonelist, high_zoneidx,
1772 nodemask, preferred_zone,
1778 * The OOM killer does not trigger for high-order allocations
1779 * but if no progress is being made, there are no other
1780 * options and retrying is unlikely to help
1782 if (order > PAGE_ALLOC_COSTLY_ORDER)
1789 /* Check if we should retry the allocation */
1790 pages_reclaimed += did_some_progress;
1791 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1792 /* Wait for some write requests to complete then retry */
1793 congestion_wait(WRITE, HZ/50);
1798 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1799 printk(KERN_WARNING "%s: page allocation failure."
1800 " order:%d, mode:0x%x\n",
1801 p->comm, order, gfp_mask);
1811 * This is the 'heart' of the zoned buddy allocator.
1814 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1815 struct zonelist *zonelist, nodemask_t *nodemask)
1817 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1818 struct zone *preferred_zone;
1820 int migratetype = allocflags_to_migratetype(gfp_mask);
1822 lockdep_trace_alloc(gfp_mask);
1824 might_sleep_if(gfp_mask & __GFP_WAIT);
1826 if (should_fail_alloc_page(gfp_mask, order))
1830 * Check the zones suitable for the gfp_mask contain at least one
1831 * valid zone. It's possible to have an empty zonelist as a result
1832 * of GFP_THISNODE and a memoryless node
1834 if (unlikely(!zonelist->_zonerefs->zone))
1837 /* The preferred zone is used for statistics later */
1838 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1839 if (!preferred_zone)
1842 /* First allocation attempt */
1843 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1844 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1845 preferred_zone, migratetype);
1846 if (unlikely(!page))
1847 page = __alloc_pages_slowpath(gfp_mask, order,
1848 zonelist, high_zoneidx, nodemask,
1849 preferred_zone, migratetype);
1853 EXPORT_SYMBOL(__alloc_pages_nodemask);
1856 * Common helper functions.
1858 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1861 page = alloc_pages(gfp_mask, order);
1864 return (unsigned long) page_address(page);
1867 EXPORT_SYMBOL(__get_free_pages);
1869 unsigned long get_zeroed_page(gfp_t gfp_mask)
1874 * get_zeroed_page() returns a 32-bit address, which cannot represent
1877 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1879 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1881 return (unsigned long) page_address(page);
1885 EXPORT_SYMBOL(get_zeroed_page);
1887 void __pagevec_free(struct pagevec *pvec)
1889 int i = pagevec_count(pvec);
1892 free_hot_cold_page(pvec->pages[i], pvec->cold);
1895 void __free_pages(struct page *page, unsigned int order)
1897 if (put_page_testzero(page)) {
1899 free_hot_page(page);
1901 __free_pages_ok(page, order);
1905 EXPORT_SYMBOL(__free_pages);
1907 void free_pages(unsigned long addr, unsigned int order)
1910 VM_BUG_ON(!virt_addr_valid((void *)addr));
1911 __free_pages(virt_to_page((void *)addr), order);
1915 EXPORT_SYMBOL(free_pages);
1918 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1919 * @size: the number of bytes to allocate
1920 * @gfp_mask: GFP flags for the allocation
1922 * This function is similar to alloc_pages(), except that it allocates the
1923 * minimum number of pages to satisfy the request. alloc_pages() can only
1924 * allocate memory in power-of-two pages.
1926 * This function is also limited by MAX_ORDER.
1928 * Memory allocated by this function must be released by free_pages_exact().
1930 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1932 unsigned int order = get_order(size);
1935 addr = __get_free_pages(gfp_mask, order);
1937 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1938 unsigned long used = addr + PAGE_ALIGN(size);
1940 split_page(virt_to_page(addr), order);
1941 while (used < alloc_end) {
1947 return (void *)addr;
1949 EXPORT_SYMBOL(alloc_pages_exact);
1952 * free_pages_exact - release memory allocated via alloc_pages_exact()
1953 * @virt: the value returned by alloc_pages_exact.
1954 * @size: size of allocation, same value as passed to alloc_pages_exact().
1956 * Release the memory allocated by a previous call to alloc_pages_exact.
1958 void free_pages_exact(void *virt, size_t size)
1960 unsigned long addr = (unsigned long)virt;
1961 unsigned long end = addr + PAGE_ALIGN(size);
1963 while (addr < end) {
1968 EXPORT_SYMBOL(free_pages_exact);
1970 static unsigned int nr_free_zone_pages(int offset)
1975 /* Just pick one node, since fallback list is circular */
1976 unsigned int sum = 0;
1978 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1980 for_each_zone_zonelist(zone, z, zonelist, offset) {
1981 unsigned long size = zone->present_pages;
1982 unsigned long high = high_wmark_pages(zone);
1991 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1993 unsigned int nr_free_buffer_pages(void)
1995 return nr_free_zone_pages(gfp_zone(GFP_USER));
1997 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2000 * Amount of free RAM allocatable within all zones
2002 unsigned int nr_free_pagecache_pages(void)
2004 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2007 static inline void show_node(struct zone *zone)
2010 printk("Node %d ", zone_to_nid(zone));
2013 void si_meminfo(struct sysinfo *val)
2015 val->totalram = totalram_pages;
2017 val->freeram = global_page_state(NR_FREE_PAGES);
2018 val->bufferram = nr_blockdev_pages();
2019 val->totalhigh = totalhigh_pages;
2020 val->freehigh = nr_free_highpages();
2021 val->mem_unit = PAGE_SIZE;
2024 EXPORT_SYMBOL(si_meminfo);
2027 void si_meminfo_node(struct sysinfo *val, int nid)
2029 pg_data_t *pgdat = NODE_DATA(nid);
2031 val->totalram = pgdat->node_present_pages;
2032 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2033 #ifdef CONFIG_HIGHMEM
2034 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2035 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2041 val->mem_unit = PAGE_SIZE;
2045 #define K(x) ((x) << (PAGE_SHIFT-10))
2048 * Show free area list (used inside shift_scroll-lock stuff)
2049 * We also calculate the percentage fragmentation. We do this by counting the
2050 * memory on each free list with the exception of the first item on the list.
2052 void show_free_areas(void)
2057 for_each_populated_zone(zone) {
2059 printk("%s per-cpu:\n", zone->name);
2061 for_each_online_cpu(cpu) {
2062 struct per_cpu_pageset *pageset;
2064 pageset = zone_pcp(zone, cpu);
2066 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2067 cpu, pageset->pcp.high,
2068 pageset->pcp.batch, pageset->pcp.count);
2072 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2073 " inactive_file:%lu"
2074 //TODO: check/adjust line lengths
2075 #ifdef CONFIG_UNEVICTABLE_LRU
2078 " dirty:%lu writeback:%lu unstable:%lu\n"
2079 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2080 global_page_state(NR_ACTIVE_ANON),
2081 global_page_state(NR_ACTIVE_FILE),
2082 global_page_state(NR_INACTIVE_ANON),
2083 global_page_state(NR_INACTIVE_FILE),
2084 #ifdef CONFIG_UNEVICTABLE_LRU
2085 global_page_state(NR_UNEVICTABLE),
2087 global_page_state(NR_FILE_DIRTY),
2088 global_page_state(NR_WRITEBACK),
2089 global_page_state(NR_UNSTABLE_NFS),
2090 global_page_state(NR_FREE_PAGES),
2091 global_page_state(NR_SLAB_RECLAIMABLE) +
2092 global_page_state(NR_SLAB_UNRECLAIMABLE),
2093 global_page_state(NR_FILE_MAPPED),
2094 global_page_state(NR_PAGETABLE),
2095 global_page_state(NR_BOUNCE));
2097 for_each_populated_zone(zone) {
2106 " active_anon:%lukB"
2107 " inactive_anon:%lukB"
2108 " active_file:%lukB"
2109 " inactive_file:%lukB"
2110 #ifdef CONFIG_UNEVICTABLE_LRU
2111 " unevictable:%lukB"
2114 " pages_scanned:%lu"
2115 " all_unreclaimable? %s"
2118 K(zone_page_state(zone, NR_FREE_PAGES)),
2119 K(min_wmark_pages(zone)),
2120 K(low_wmark_pages(zone)),
2121 K(high_wmark_pages(zone)),
2122 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2123 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2124 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2125 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2126 #ifdef CONFIG_UNEVICTABLE_LRU
2127 K(zone_page_state(zone, NR_UNEVICTABLE)),
2129 K(zone->present_pages),
2130 zone->pages_scanned,
2131 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2133 printk("lowmem_reserve[]:");
2134 for (i = 0; i < MAX_NR_ZONES; i++)
2135 printk(" %lu", zone->lowmem_reserve[i]);
2139 for_each_populated_zone(zone) {
2140 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2143 printk("%s: ", zone->name);
2145 spin_lock_irqsave(&zone->lock, flags);
2146 for (order = 0; order < MAX_ORDER; order++) {
2147 nr[order] = zone->free_area[order].nr_free;
2148 total += nr[order] << order;
2150 spin_unlock_irqrestore(&zone->lock, flags);
2151 for (order = 0; order < MAX_ORDER; order++)
2152 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2153 printk("= %lukB\n", K(total));
2156 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2158 show_swap_cache_info();
2161 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2163 zoneref->zone = zone;
2164 zoneref->zone_idx = zone_idx(zone);
2168 * Builds allocation fallback zone lists.
2170 * Add all populated zones of a node to the zonelist.
2172 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2173 int nr_zones, enum zone_type zone_type)
2177 BUG_ON(zone_type >= MAX_NR_ZONES);
2182 zone = pgdat->node_zones + zone_type;
2183 if (populated_zone(zone)) {
2184 zoneref_set_zone(zone,
2185 &zonelist->_zonerefs[nr_zones++]);
2186 check_highest_zone(zone_type);
2189 } while (zone_type);
2196 * 0 = automatic detection of better ordering.
2197 * 1 = order by ([node] distance, -zonetype)
2198 * 2 = order by (-zonetype, [node] distance)
2200 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2201 * the same zonelist. So only NUMA can configure this param.
2203 #define ZONELIST_ORDER_DEFAULT 0
2204 #define ZONELIST_ORDER_NODE 1
2205 #define ZONELIST_ORDER_ZONE 2
2207 /* zonelist order in the kernel.
2208 * set_zonelist_order() will set this to NODE or ZONE.
2210 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2211 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2215 /* The value user specified ....changed by config */
2216 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2217 /* string for sysctl */
2218 #define NUMA_ZONELIST_ORDER_LEN 16
2219 char numa_zonelist_order[16] = "default";
2222 * interface for configure zonelist ordering.
2223 * command line option "numa_zonelist_order"
2224 * = "[dD]efault - default, automatic configuration.
2225 * = "[nN]ode - order by node locality, then by zone within node
2226 * = "[zZ]one - order by zone, then by locality within zone
2229 static int __parse_numa_zonelist_order(char *s)
2231 if (*s == 'd' || *s == 'D') {
2232 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2233 } else if (*s == 'n' || *s == 'N') {
2234 user_zonelist_order = ZONELIST_ORDER_NODE;
2235 } else if (*s == 'z' || *s == 'Z') {
2236 user_zonelist_order = ZONELIST_ORDER_ZONE;
2239 "Ignoring invalid numa_zonelist_order value: "
2246 static __init int setup_numa_zonelist_order(char *s)
2249 return __parse_numa_zonelist_order(s);
2252 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2255 * sysctl handler for numa_zonelist_order
2257 int numa_zonelist_order_handler(ctl_table *table, int write,
2258 struct file *file, void __user *buffer, size_t *length,
2261 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2265 strncpy(saved_string, (char*)table->data,
2266 NUMA_ZONELIST_ORDER_LEN);
2267 ret = proc_dostring(table, write, file, buffer, length, ppos);
2271 int oldval = user_zonelist_order;
2272 if (__parse_numa_zonelist_order((char*)table->data)) {
2274 * bogus value. restore saved string
2276 strncpy((char*)table->data, saved_string,
2277 NUMA_ZONELIST_ORDER_LEN);
2278 user_zonelist_order = oldval;
2279 } else if (oldval != user_zonelist_order)
2280 build_all_zonelists();
2286 #define MAX_NODE_LOAD (nr_online_nodes)
2287 static int node_load[MAX_NUMNODES];
2290 * find_next_best_node - find the next node that should appear in a given node's fallback list
2291 * @node: node whose fallback list we're appending
2292 * @used_node_mask: nodemask_t of already used nodes
2294 * We use a number of factors to determine which is the next node that should
2295 * appear on a given node's fallback list. The node should not have appeared
2296 * already in @node's fallback list, and it should be the next closest node
2297 * according to the distance array (which contains arbitrary distance values
2298 * from each node to each node in the system), and should also prefer nodes
2299 * with no CPUs, since presumably they'll have very little allocation pressure
2300 * on them otherwise.
2301 * It returns -1 if no node is found.
2303 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2306 int min_val = INT_MAX;
2308 const struct cpumask *tmp = cpumask_of_node(0);
2310 /* Use the local node if we haven't already */
2311 if (!node_isset(node, *used_node_mask)) {
2312 node_set(node, *used_node_mask);
2316 for_each_node_state(n, N_HIGH_MEMORY) {
2318 /* Don't want a node to appear more than once */
2319 if (node_isset(n, *used_node_mask))
2322 /* Use the distance array to find the distance */
2323 val = node_distance(node, n);
2325 /* Penalize nodes under us ("prefer the next node") */
2328 /* Give preference to headless and unused nodes */
2329 tmp = cpumask_of_node(n);
2330 if (!cpumask_empty(tmp))
2331 val += PENALTY_FOR_NODE_WITH_CPUS;
2333 /* Slight preference for less loaded node */
2334 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2335 val += node_load[n];
2337 if (val < min_val) {
2344 node_set(best_node, *used_node_mask);
2351 * Build zonelists ordered by node and zones within node.
2352 * This results in maximum locality--normal zone overflows into local
2353 * DMA zone, if any--but risks exhausting DMA zone.
2355 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2358 struct zonelist *zonelist;
2360 zonelist = &pgdat->node_zonelists[0];
2361 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2363 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2365 zonelist->_zonerefs[j].zone = NULL;
2366 zonelist->_zonerefs[j].zone_idx = 0;
2370 * Build gfp_thisnode zonelists
2372 static void build_thisnode_zonelists(pg_data_t *pgdat)
2375 struct zonelist *zonelist;
2377 zonelist = &pgdat->node_zonelists[1];
2378 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2379 zonelist->_zonerefs[j].zone = NULL;
2380 zonelist->_zonerefs[j].zone_idx = 0;
2384 * Build zonelists ordered by zone and nodes within zones.
2385 * This results in conserving DMA zone[s] until all Normal memory is
2386 * exhausted, but results in overflowing to remote node while memory
2387 * may still exist in local DMA zone.
2389 static int node_order[MAX_NUMNODES];
2391 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2394 int zone_type; /* needs to be signed */
2396 struct zonelist *zonelist;
2398 zonelist = &pgdat->node_zonelists[0];
2400 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2401 for (j = 0; j < nr_nodes; j++) {
2402 node = node_order[j];
2403 z = &NODE_DATA(node)->node_zones[zone_type];
2404 if (populated_zone(z)) {
2406 &zonelist->_zonerefs[pos++]);
2407 check_highest_zone(zone_type);
2411 zonelist->_zonerefs[pos].zone = NULL;
2412 zonelist->_zonerefs[pos].zone_idx = 0;
2415 static int default_zonelist_order(void)
2418 unsigned long low_kmem_size,total_size;
2422 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2423 * If they are really small and used heavily, the system can fall
2424 * into OOM very easily.
2425 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2427 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2430 for_each_online_node(nid) {
2431 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2432 z = &NODE_DATA(nid)->node_zones[zone_type];
2433 if (populated_zone(z)) {
2434 if (zone_type < ZONE_NORMAL)
2435 low_kmem_size += z->present_pages;
2436 total_size += z->present_pages;
2440 if (!low_kmem_size || /* there are no DMA area. */
2441 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2442 return ZONELIST_ORDER_NODE;
2444 * look into each node's config.
2445 * If there is a node whose DMA/DMA32 memory is very big area on
2446 * local memory, NODE_ORDER may be suitable.
2448 average_size = total_size /
2449 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2450 for_each_online_node(nid) {
2453 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2454 z = &NODE_DATA(nid)->node_zones[zone_type];
2455 if (populated_zone(z)) {
2456 if (zone_type < ZONE_NORMAL)
2457 low_kmem_size += z->present_pages;
2458 total_size += z->present_pages;
2461 if (low_kmem_size &&
2462 total_size > average_size && /* ignore small node */
2463 low_kmem_size > total_size * 70/100)
2464 return ZONELIST_ORDER_NODE;
2466 return ZONELIST_ORDER_ZONE;
2469 static void set_zonelist_order(void)
2471 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2472 current_zonelist_order = default_zonelist_order();
2474 current_zonelist_order = user_zonelist_order;
2477 static void build_zonelists(pg_data_t *pgdat)
2481 nodemask_t used_mask;
2482 int local_node, prev_node;
2483 struct zonelist *zonelist;
2484 int order = current_zonelist_order;
2486 /* initialize zonelists */
2487 for (i = 0; i < MAX_ZONELISTS; i++) {
2488 zonelist = pgdat->node_zonelists + i;
2489 zonelist->_zonerefs[0].zone = NULL;
2490 zonelist->_zonerefs[0].zone_idx = 0;
2493 /* NUMA-aware ordering of nodes */
2494 local_node = pgdat->node_id;
2495 load = nr_online_nodes;
2496 prev_node = local_node;
2497 nodes_clear(used_mask);
2499 memset(node_load, 0, sizeof(node_load));
2500 memset(node_order, 0, sizeof(node_order));
2503 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2504 int distance = node_distance(local_node, node);
2507 * If another node is sufficiently far away then it is better
2508 * to reclaim pages in a zone before going off node.
2510 if (distance > RECLAIM_DISTANCE)
2511 zone_reclaim_mode = 1;
2514 * We don't want to pressure a particular node.
2515 * So adding penalty to the first node in same
2516 * distance group to make it round-robin.
2518 if (distance != node_distance(local_node, prev_node))
2519 node_load[node] = load;
2523 if (order == ZONELIST_ORDER_NODE)
2524 build_zonelists_in_node_order(pgdat, node);
2526 node_order[j++] = node; /* remember order */
2529 if (order == ZONELIST_ORDER_ZONE) {
2530 /* calculate node order -- i.e., DMA last! */
2531 build_zonelists_in_zone_order(pgdat, j);
2534 build_thisnode_zonelists(pgdat);
2537 /* Construct the zonelist performance cache - see further mmzone.h */
2538 static void build_zonelist_cache(pg_data_t *pgdat)
2540 struct zonelist *zonelist;
2541 struct zonelist_cache *zlc;
2544 zonelist = &pgdat->node_zonelists[0];
2545 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2546 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2547 for (z = zonelist->_zonerefs; z->zone; z++)
2548 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2552 #else /* CONFIG_NUMA */
2554 static void set_zonelist_order(void)
2556 current_zonelist_order = ZONELIST_ORDER_ZONE;
2559 static void build_zonelists(pg_data_t *pgdat)
2561 int node, local_node;
2563 struct zonelist *zonelist;
2565 local_node = pgdat->node_id;
2567 zonelist = &pgdat->node_zonelists[0];
2568 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2571 * Now we build the zonelist so that it contains the zones
2572 * of all the other nodes.
2573 * We don't want to pressure a particular node, so when
2574 * building the zones for node N, we make sure that the
2575 * zones coming right after the local ones are those from
2576 * node N+1 (modulo N)
2578 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2579 if (!node_online(node))
2581 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2584 for (node = 0; node < local_node; node++) {
2585 if (!node_online(node))
2587 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2591 zonelist->_zonerefs[j].zone = NULL;
2592 zonelist->_zonerefs[j].zone_idx = 0;
2595 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2596 static void build_zonelist_cache(pg_data_t *pgdat)
2598 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2601 #endif /* CONFIG_NUMA */
2603 /* return values int ....just for stop_machine() */
2604 static int __build_all_zonelists(void *dummy)
2608 for_each_online_node(nid) {
2609 pg_data_t *pgdat = NODE_DATA(nid);
2611 build_zonelists(pgdat);
2612 build_zonelist_cache(pgdat);
2617 void build_all_zonelists(void)
2619 set_zonelist_order();
2621 if (system_state == SYSTEM_BOOTING) {
2622 __build_all_zonelists(NULL);
2623 mminit_verify_zonelist();
2624 cpuset_init_current_mems_allowed();
2626 /* we have to stop all cpus to guarantee there is no user
2628 stop_machine(__build_all_zonelists, NULL, NULL);
2629 /* cpuset refresh routine should be here */
2631 vm_total_pages = nr_free_pagecache_pages();
2633 * Disable grouping by mobility if the number of pages in the
2634 * system is too low to allow the mechanism to work. It would be
2635 * more accurate, but expensive to check per-zone. This check is
2636 * made on memory-hotadd so a system can start with mobility
2637 * disabled and enable it later
2639 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2640 page_group_by_mobility_disabled = 1;
2642 page_group_by_mobility_disabled = 0;
2644 printk("Built %i zonelists in %s order, mobility grouping %s. "
2645 "Total pages: %ld\n",
2647 zonelist_order_name[current_zonelist_order],
2648 page_group_by_mobility_disabled ? "off" : "on",
2651 printk("Policy zone: %s\n", zone_names[policy_zone]);
2656 * Helper functions to size the waitqueue hash table.
2657 * Essentially these want to choose hash table sizes sufficiently
2658 * large so that collisions trying to wait on pages are rare.
2659 * But in fact, the number of active page waitqueues on typical
2660 * systems is ridiculously low, less than 200. So this is even
2661 * conservative, even though it seems large.
2663 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2664 * waitqueues, i.e. the size of the waitq table given the number of pages.
2666 #define PAGES_PER_WAITQUEUE 256
2668 #ifndef CONFIG_MEMORY_HOTPLUG
2669 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2671 unsigned long size = 1;
2673 pages /= PAGES_PER_WAITQUEUE;
2675 while (size < pages)
2679 * Once we have dozens or even hundreds of threads sleeping
2680 * on IO we've got bigger problems than wait queue collision.
2681 * Limit the size of the wait table to a reasonable size.
2683 size = min(size, 4096UL);
2685 return max(size, 4UL);
2689 * A zone's size might be changed by hot-add, so it is not possible to determine
2690 * a suitable size for its wait_table. So we use the maximum size now.
2692 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2694 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2695 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2696 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2698 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2699 * or more by the traditional way. (See above). It equals:
2701 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2702 * ia64(16K page size) : = ( 8G + 4M)byte.
2703 * powerpc (64K page size) : = (32G +16M)byte.
2705 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2712 * This is an integer logarithm so that shifts can be used later
2713 * to extract the more random high bits from the multiplicative
2714 * hash function before the remainder is taken.
2716 static inline unsigned long wait_table_bits(unsigned long size)
2721 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2724 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2725 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2726 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2727 * higher will lead to a bigger reserve which will get freed as contiguous
2728 * blocks as reclaim kicks in
2730 static void setup_zone_migrate_reserve(struct zone *zone)
2732 unsigned long start_pfn, pfn, end_pfn;
2734 unsigned long reserve, block_migratetype;
2736 /* Get the start pfn, end pfn and the number of blocks to reserve */
2737 start_pfn = zone->zone_start_pfn;
2738 end_pfn = start_pfn + zone->spanned_pages;
2739 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2742 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2743 if (!pfn_valid(pfn))
2745 page = pfn_to_page(pfn);
2747 /* Watch out for overlapping nodes */
2748 if (page_to_nid(page) != zone_to_nid(zone))
2751 /* Blocks with reserved pages will never free, skip them. */
2752 if (PageReserved(page))
2755 block_migratetype = get_pageblock_migratetype(page);
2757 /* If this block is reserved, account for it */
2758 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2763 /* Suitable for reserving if this block is movable */
2764 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2765 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2766 move_freepages_block(zone, page, MIGRATE_RESERVE);
2772 * If the reserve is met and this is a previous reserved block,
2775 if (block_migratetype == MIGRATE_RESERVE) {
2776 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2777 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2783 * Initially all pages are reserved - free ones are freed
2784 * up by free_all_bootmem() once the early boot process is
2785 * done. Non-atomic initialization, single-pass.
2787 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2788 unsigned long start_pfn, enum memmap_context context)
2791 unsigned long end_pfn = start_pfn + size;
2795 if (highest_memmap_pfn < end_pfn - 1)
2796 highest_memmap_pfn = end_pfn - 1;
2798 z = &NODE_DATA(nid)->node_zones[zone];
2799 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2801 * There can be holes in boot-time mem_map[]s
2802 * handed to this function. They do not
2803 * exist on hotplugged memory.
2805 if (context == MEMMAP_EARLY) {
2806 if (!early_pfn_valid(pfn))
2808 if (!early_pfn_in_nid(pfn, nid))
2811 page = pfn_to_page(pfn);
2812 set_page_links(page, zone, nid, pfn);
2813 mminit_verify_page_links(page, zone, nid, pfn);
2814 init_page_count(page);
2815 reset_page_mapcount(page);
2816 SetPageReserved(page);
2818 * Mark the block movable so that blocks are reserved for
2819 * movable at startup. This will force kernel allocations
2820 * to reserve their blocks rather than leaking throughout
2821 * the address space during boot when many long-lived
2822 * kernel allocations are made. Later some blocks near
2823 * the start are marked MIGRATE_RESERVE by
2824 * setup_zone_migrate_reserve()
2826 * bitmap is created for zone's valid pfn range. but memmap
2827 * can be created for invalid pages (for alignment)
2828 * check here not to call set_pageblock_migratetype() against
2831 if ((z->zone_start_pfn <= pfn)
2832 && (pfn < z->zone_start_pfn + z->spanned_pages)
2833 && !(pfn & (pageblock_nr_pages - 1)))
2834 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2836 INIT_LIST_HEAD(&page->lru);
2837 #ifdef WANT_PAGE_VIRTUAL
2838 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2839 if (!is_highmem_idx(zone))
2840 set_page_address(page, __va(pfn << PAGE_SHIFT));
2845 static void __meminit zone_init_free_lists(struct zone *zone)
2848 for_each_migratetype_order(order, t) {
2849 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2850 zone->free_area[order].nr_free = 0;
2854 #ifndef __HAVE_ARCH_MEMMAP_INIT
2855 #define memmap_init(size, nid, zone, start_pfn) \
2856 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2859 static int zone_batchsize(struct zone *zone)
2865 * The per-cpu-pages pools are set to around 1000th of the
2866 * size of the zone. But no more than 1/2 of a meg.
2868 * OK, so we don't know how big the cache is. So guess.
2870 batch = zone->present_pages / 1024;
2871 if (batch * PAGE_SIZE > 512 * 1024)
2872 batch = (512 * 1024) / PAGE_SIZE;
2873 batch /= 4; /* We effectively *= 4 below */
2878 * Clamp the batch to a 2^n - 1 value. Having a power
2879 * of 2 value was found to be more likely to have
2880 * suboptimal cache aliasing properties in some cases.
2882 * For example if 2 tasks are alternately allocating
2883 * batches of pages, one task can end up with a lot
2884 * of pages of one half of the possible page colors
2885 * and the other with pages of the other colors.
2887 batch = rounddown_pow_of_two(batch + batch/2) - 1;
2892 /* The deferral and batching of frees should be suppressed under NOMMU
2895 * The problem is that NOMMU needs to be able to allocate large chunks
2896 * of contiguous memory as there's no hardware page translation to
2897 * assemble apparent contiguous memory from discontiguous pages.
2899 * Queueing large contiguous runs of pages for batching, however,
2900 * causes the pages to actually be freed in smaller chunks. As there
2901 * can be a significant delay between the individual batches being
2902 * recycled, this leads to the once large chunks of space being
2903 * fragmented and becoming unavailable for high-order allocations.
2909 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2911 struct per_cpu_pages *pcp;
2913 memset(p, 0, sizeof(*p));
2917 pcp->high = 6 * batch;
2918 pcp->batch = max(1UL, 1 * batch);
2919 INIT_LIST_HEAD(&pcp->list);
2923 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2924 * to the value high for the pageset p.
2927 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2930 struct per_cpu_pages *pcp;
2934 pcp->batch = max(1UL, high/4);
2935 if ((high/4) > (PAGE_SHIFT * 8))
2936 pcp->batch = PAGE_SHIFT * 8;
2942 * Boot pageset table. One per cpu which is going to be used for all
2943 * zones and all nodes. The parameters will be set in such a way
2944 * that an item put on a list will immediately be handed over to
2945 * the buddy list. This is safe since pageset manipulation is done
2946 * with interrupts disabled.
2948 * Some NUMA counter updates may also be caught by the boot pagesets.
2950 * The boot_pagesets must be kept even after bootup is complete for
2951 * unused processors and/or zones. They do play a role for bootstrapping
2952 * hotplugged processors.
2954 * zoneinfo_show() and maybe other functions do
2955 * not check if the processor is online before following the pageset pointer.
2956 * Other parts of the kernel may not check if the zone is available.
2958 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2961 * Dynamically allocate memory for the
2962 * per cpu pageset array in struct zone.
2964 static int __cpuinit process_zones(int cpu)
2966 struct zone *zone, *dzone;
2967 int node = cpu_to_node(cpu);
2969 node_set_state(node, N_CPU); /* this node has a cpu */
2971 for_each_populated_zone(zone) {
2972 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2974 if (!zone_pcp(zone, cpu))
2977 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2979 if (percpu_pagelist_fraction)
2980 setup_pagelist_highmark(zone_pcp(zone, cpu),
2981 (zone->present_pages / percpu_pagelist_fraction));
2986 for_each_zone(dzone) {
2987 if (!populated_zone(dzone))
2991 kfree(zone_pcp(dzone, cpu));
2992 zone_pcp(dzone, cpu) = NULL;
2997 static inline void free_zone_pagesets(int cpu)
3001 for_each_zone(zone) {
3002 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3004 /* Free per_cpu_pageset if it is slab allocated */
3005 if (pset != &boot_pageset[cpu])
3007 zone_pcp(zone, cpu) = NULL;
3011 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3012 unsigned long action,
3015 int cpu = (long)hcpu;
3016 int ret = NOTIFY_OK;
3019 case CPU_UP_PREPARE:
3020 case CPU_UP_PREPARE_FROZEN:
3021 if (process_zones(cpu))
3024 case CPU_UP_CANCELED:
3025 case CPU_UP_CANCELED_FROZEN:
3027 case CPU_DEAD_FROZEN:
3028 free_zone_pagesets(cpu);
3036 static struct notifier_block __cpuinitdata pageset_notifier =
3037 { &pageset_cpuup_callback, NULL, 0 };
3039 void __init setup_per_cpu_pageset(void)
3043 /* Initialize per_cpu_pageset for cpu 0.
3044 * A cpuup callback will do this for every cpu
3045 * as it comes online
3047 err = process_zones(smp_processor_id());
3049 register_cpu_notifier(&pageset_notifier);
3054 static noinline __init_refok
3055 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3058 struct pglist_data *pgdat = zone->zone_pgdat;
3062 * The per-page waitqueue mechanism uses hashed waitqueues
3065 zone->wait_table_hash_nr_entries =
3066 wait_table_hash_nr_entries(zone_size_pages);
3067 zone->wait_table_bits =
3068 wait_table_bits(zone->wait_table_hash_nr_entries);
3069 alloc_size = zone->wait_table_hash_nr_entries
3070 * sizeof(wait_queue_head_t);
3072 if (!slab_is_available()) {
3073 zone->wait_table = (wait_queue_head_t *)
3074 alloc_bootmem_node(pgdat, alloc_size);
3077 * This case means that a zone whose size was 0 gets new memory
3078 * via memory hot-add.
3079 * But it may be the case that a new node was hot-added. In
3080 * this case vmalloc() will not be able to use this new node's
3081 * memory - this wait_table must be initialized to use this new
3082 * node itself as well.
3083 * To use this new node's memory, further consideration will be
3086 zone->wait_table = vmalloc(alloc_size);
3088 if (!zone->wait_table)
3091 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3092 init_waitqueue_head(zone->wait_table + i);
3097 static __meminit void zone_pcp_init(struct zone *zone)
3100 unsigned long batch = zone_batchsize(zone);
3102 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3104 /* Early boot. Slab allocator not functional yet */
3105 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3106 setup_pageset(&boot_pageset[cpu],0);
3108 setup_pageset(zone_pcp(zone,cpu), batch);
3111 if (zone->present_pages)
3112 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3113 zone->name, zone->present_pages, batch);
3116 __meminit int init_currently_empty_zone(struct zone *zone,
3117 unsigned long zone_start_pfn,
3119 enum memmap_context context)
3121 struct pglist_data *pgdat = zone->zone_pgdat;
3123 ret = zone_wait_table_init(zone, size);
3126 pgdat->nr_zones = zone_idx(zone) + 1;
3128 zone->zone_start_pfn = zone_start_pfn;
3130 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3131 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3133 (unsigned long)zone_idx(zone),
3134 zone_start_pfn, (zone_start_pfn + size));
3136 zone_init_free_lists(zone);
3141 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3143 * Basic iterator support. Return the first range of PFNs for a node
3144 * Note: nid == MAX_NUMNODES returns first region regardless of node
3146 static int __meminit first_active_region_index_in_nid(int nid)
3150 for (i = 0; i < nr_nodemap_entries; i++)
3151 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3158 * Basic iterator support. Return the next active range of PFNs for a node
3159 * Note: nid == MAX_NUMNODES returns next region regardless of node
3161 static int __meminit next_active_region_index_in_nid(int index, int nid)
3163 for (index = index + 1; index < nr_nodemap_entries; index++)
3164 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3170 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3172 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3173 * Architectures may implement their own version but if add_active_range()
3174 * was used and there are no special requirements, this is a convenient
3177 int __meminit __early_pfn_to_nid(unsigned long pfn)
3181 for (i = 0; i < nr_nodemap_entries; i++) {
3182 unsigned long start_pfn = early_node_map[i].start_pfn;
3183 unsigned long end_pfn = early_node_map[i].end_pfn;
3185 if (start_pfn <= pfn && pfn < end_pfn)
3186 return early_node_map[i].nid;
3188 /* This is a memory hole */
3191 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3193 int __meminit early_pfn_to_nid(unsigned long pfn)
3197 nid = __early_pfn_to_nid(pfn);
3200 /* just returns 0 */
3204 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3205 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3209 nid = __early_pfn_to_nid(pfn);
3210 if (nid >= 0 && nid != node)
3216 /* Basic iterator support to walk early_node_map[] */
3217 #define for_each_active_range_index_in_nid(i, nid) \
3218 for (i = first_active_region_index_in_nid(nid); i != -1; \
3219 i = next_active_region_index_in_nid(i, nid))
3222 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3223 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3224 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3226 * If an architecture guarantees that all ranges registered with
3227 * add_active_ranges() contain no holes and may be freed, this
3228 * this function may be used instead of calling free_bootmem() manually.
3230 void __init free_bootmem_with_active_regions(int nid,
3231 unsigned long max_low_pfn)
3235 for_each_active_range_index_in_nid(i, nid) {
3236 unsigned long size_pages = 0;
3237 unsigned long end_pfn = early_node_map[i].end_pfn;
3239 if (early_node_map[i].start_pfn >= max_low_pfn)
3242 if (end_pfn > max_low_pfn)
3243 end_pfn = max_low_pfn;
3245 size_pages = end_pfn - early_node_map[i].start_pfn;
3246 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3247 PFN_PHYS(early_node_map[i].start_pfn),
3248 size_pages << PAGE_SHIFT);
3252 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3257 for_each_active_range_index_in_nid(i, nid) {
3258 ret = work_fn(early_node_map[i].start_pfn,
3259 early_node_map[i].end_pfn, data);
3265 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3266 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3268 * If an architecture guarantees that all ranges registered with
3269 * add_active_ranges() contain no holes and may be freed, this
3270 * function may be used instead of calling memory_present() manually.
3272 void __init sparse_memory_present_with_active_regions(int nid)
3276 for_each_active_range_index_in_nid(i, nid)
3277 memory_present(early_node_map[i].nid,
3278 early_node_map[i].start_pfn,
3279 early_node_map[i].end_pfn);
3283 * get_pfn_range_for_nid - Return the start and end page frames for a node
3284 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3285 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3286 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3288 * It returns the start and end page frame of a node based on information
3289 * provided by an arch calling add_active_range(). If called for a node
3290 * with no available memory, a warning is printed and the start and end
3293 void __meminit get_pfn_range_for_nid(unsigned int nid,
3294 unsigned long *start_pfn, unsigned long *end_pfn)
3300 for_each_active_range_index_in_nid(i, nid) {
3301 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3302 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3305 if (*start_pfn == -1UL)
3310 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3311 * assumption is made that zones within a node are ordered in monotonic
3312 * increasing memory addresses so that the "highest" populated zone is used
3314 static void __init find_usable_zone_for_movable(void)
3317 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3318 if (zone_index == ZONE_MOVABLE)
3321 if (arch_zone_highest_possible_pfn[zone_index] >
3322 arch_zone_lowest_possible_pfn[zone_index])
3326 VM_BUG_ON(zone_index == -1);
3327 movable_zone = zone_index;
3331 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3332 * because it is sized independant of architecture. Unlike the other zones,
3333 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3334 * in each node depending on the size of each node and how evenly kernelcore
3335 * is distributed. This helper function adjusts the zone ranges
3336 * provided by the architecture for a given node by using the end of the
3337 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3338 * zones within a node are in order of monotonic increases memory addresses
3340 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3341 unsigned long zone_type,
3342 unsigned long node_start_pfn,
3343 unsigned long node_end_pfn,
3344 unsigned long *zone_start_pfn,
3345 unsigned long *zone_end_pfn)
3347 /* Only adjust if ZONE_MOVABLE is on this node */
3348 if (zone_movable_pfn[nid]) {
3349 /* Size ZONE_MOVABLE */
3350 if (zone_type == ZONE_MOVABLE) {
3351 *zone_start_pfn = zone_movable_pfn[nid];
3352 *zone_end_pfn = min(node_end_pfn,
3353 arch_zone_highest_possible_pfn[movable_zone]);
3355 /* Adjust for ZONE_MOVABLE starting within this range */
3356 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3357 *zone_end_pfn > zone_movable_pfn[nid]) {
3358 *zone_end_pfn = zone_movable_pfn[nid];
3360 /* Check if this whole range is within ZONE_MOVABLE */
3361 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3362 *zone_start_pfn = *zone_end_pfn;
3367 * Return the number of pages a zone spans in a node, including holes
3368 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3370 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3371 unsigned long zone_type,
3372 unsigned long *ignored)
3374 unsigned long node_start_pfn, node_end_pfn;
3375 unsigned long zone_start_pfn, zone_end_pfn;
3377 /* Get the start and end of the node and zone */
3378 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3379 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3380 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3381 adjust_zone_range_for_zone_movable(nid, zone_type,
3382 node_start_pfn, node_end_pfn,
3383 &zone_start_pfn, &zone_end_pfn);
3385 /* Check that this node has pages within the zone's required range */
3386 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3389 /* Move the zone boundaries inside the node if necessary */
3390 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3391 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3393 /* Return the spanned pages */
3394 return zone_end_pfn - zone_start_pfn;
3398 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3399 * then all holes in the requested range will be accounted for.
3401 static unsigned long __meminit __absent_pages_in_range(int nid,
3402 unsigned long range_start_pfn,
3403 unsigned long range_end_pfn)
3406 unsigned long prev_end_pfn = 0, hole_pages = 0;
3407 unsigned long start_pfn;
3409 /* Find the end_pfn of the first active range of pfns in the node */
3410 i = first_active_region_index_in_nid(nid);
3414 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3416 /* Account for ranges before physical memory on this node */
3417 if (early_node_map[i].start_pfn > range_start_pfn)
3418 hole_pages = prev_end_pfn - range_start_pfn;
3420 /* Find all holes for the zone within the node */
3421 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3423 /* No need to continue if prev_end_pfn is outside the zone */
3424 if (prev_end_pfn >= range_end_pfn)
3427 /* Make sure the end of the zone is not within the hole */
3428 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3429 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3431 /* Update the hole size cound and move on */
3432 if (start_pfn > range_start_pfn) {
3433 BUG_ON(prev_end_pfn > start_pfn);
3434 hole_pages += start_pfn - prev_end_pfn;
3436 prev_end_pfn = early_node_map[i].end_pfn;
3439 /* Account for ranges past physical memory on this node */
3440 if (range_end_pfn > prev_end_pfn)
3441 hole_pages += range_end_pfn -
3442 max(range_start_pfn, prev_end_pfn);
3448 * absent_pages_in_range - Return number of page frames in holes within a range
3449 * @start_pfn: The start PFN to start searching for holes
3450 * @end_pfn: The end PFN to stop searching for holes
3452 * It returns the number of pages frames in memory holes within a range.
3454 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3455 unsigned long end_pfn)
3457 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3460 /* Return the number of page frames in holes in a zone on a node */
3461 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3462 unsigned long zone_type,
3463 unsigned long *ignored)
3465 unsigned long node_start_pfn, node_end_pfn;
3466 unsigned long zone_start_pfn, zone_end_pfn;
3468 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3469 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3471 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3474 adjust_zone_range_for_zone_movable(nid, zone_type,
3475 node_start_pfn, node_end_pfn,
3476 &zone_start_pfn, &zone_end_pfn);
3477 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3481 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3482 unsigned long zone_type,
3483 unsigned long *zones_size)
3485 return zones_size[zone_type];
3488 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3489 unsigned long zone_type,
3490 unsigned long *zholes_size)
3495 return zholes_size[zone_type];
3500 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3501 unsigned long *zones_size, unsigned long *zholes_size)
3503 unsigned long realtotalpages, totalpages = 0;
3506 for (i = 0; i < MAX_NR_ZONES; i++)
3507 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3509 pgdat->node_spanned_pages = totalpages;
3511 realtotalpages = totalpages;
3512 for (i = 0; i < MAX_NR_ZONES; i++)
3514 zone_absent_pages_in_node(pgdat->node_id, i,
3516 pgdat->node_present_pages = realtotalpages;
3517 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3521 #ifndef CONFIG_SPARSEMEM
3523 * Calculate the size of the zone->blockflags rounded to an unsigned long
3524 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3525 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3526 * round what is now in bits to nearest long in bits, then return it in
3529 static unsigned long __init usemap_size(unsigned long zonesize)
3531 unsigned long usemapsize;
3533 usemapsize = roundup(zonesize, pageblock_nr_pages);
3534 usemapsize = usemapsize >> pageblock_order;
3535 usemapsize *= NR_PAGEBLOCK_BITS;
3536 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3538 return usemapsize / 8;
3541 static void __init setup_usemap(struct pglist_data *pgdat,
3542 struct zone *zone, unsigned long zonesize)
3544 unsigned long usemapsize = usemap_size(zonesize);
3545 zone->pageblock_flags = NULL;
3547 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3550 static void inline setup_usemap(struct pglist_data *pgdat,
3551 struct zone *zone, unsigned long zonesize) {}
3552 #endif /* CONFIG_SPARSEMEM */
3554 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3556 /* Return a sensible default order for the pageblock size. */
3557 static inline int pageblock_default_order(void)
3559 if (HPAGE_SHIFT > PAGE_SHIFT)
3560 return HUGETLB_PAGE_ORDER;
3565 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3566 static inline void __init set_pageblock_order(unsigned int order)
3568 /* Check that pageblock_nr_pages has not already been setup */
3569 if (pageblock_order)
3573 * Assume the largest contiguous order of interest is a huge page.
3574 * This value may be variable depending on boot parameters on IA64
3576 pageblock_order = order;
3578 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3581 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3582 * and pageblock_default_order() are unused as pageblock_order is set
3583 * at compile-time. See include/linux/pageblock-flags.h for the values of
3584 * pageblock_order based on the kernel config
3586 static inline int pageblock_default_order(unsigned int order)
3590 #define set_pageblock_order(x) do {} while (0)
3592 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3595 * Set up the zone data structures:
3596 * - mark all pages reserved
3597 * - mark all memory queues empty
3598 * - clear the memory bitmaps
3600 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3601 unsigned long *zones_size, unsigned long *zholes_size)
3604 int nid = pgdat->node_id;
3605 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3608 pgdat_resize_init(pgdat);
3609 pgdat->nr_zones = 0;
3610 init_waitqueue_head(&pgdat->kswapd_wait);
3611 pgdat->kswapd_max_order = 0;
3612 pgdat_page_cgroup_init(pgdat);
3614 for (j = 0; j < MAX_NR_ZONES; j++) {
3615 struct zone *zone = pgdat->node_zones + j;
3616 unsigned long size, realsize, memmap_pages;
3619 size = zone_spanned_pages_in_node(nid, j, zones_size);
3620 realsize = size - zone_absent_pages_in_node(nid, j,
3624 * Adjust realsize so that it accounts for how much memory
3625 * is used by this zone for memmap. This affects the watermark
3626 * and per-cpu initialisations
3629 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3630 if (realsize >= memmap_pages) {
3631 realsize -= memmap_pages;
3634 " %s zone: %lu pages used for memmap\n",
3635 zone_names[j], memmap_pages);
3638 " %s zone: %lu pages exceeds realsize %lu\n",
3639 zone_names[j], memmap_pages, realsize);
3641 /* Account for reserved pages */
3642 if (j == 0 && realsize > dma_reserve) {
3643 realsize -= dma_reserve;
3644 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3645 zone_names[0], dma_reserve);
3648 if (!is_highmem_idx(j))
3649 nr_kernel_pages += realsize;
3650 nr_all_pages += realsize;
3652 zone->spanned_pages = size;
3653 zone->present_pages = realsize;
3656 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3658 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3660 zone->name = zone_names[j];
3661 spin_lock_init(&zone->lock);
3662 spin_lock_init(&zone->lru_lock);
3663 zone_seqlock_init(zone);
3664 zone->zone_pgdat = pgdat;
3666 zone->prev_priority = DEF_PRIORITY;
3668 zone_pcp_init(zone);
3670 INIT_LIST_HEAD(&zone->lru[l].list);
3671 zone->lru[l].nr_scan = 0;
3673 zone->reclaim_stat.recent_rotated[0] = 0;
3674 zone->reclaim_stat.recent_rotated[1] = 0;
3675 zone->reclaim_stat.recent_scanned[0] = 0;
3676 zone->reclaim_stat.recent_scanned[1] = 0;
3677 zap_zone_vm_stats(zone);
3682 set_pageblock_order(pageblock_default_order());
3683 setup_usemap(pgdat, zone, size);
3684 ret = init_currently_empty_zone(zone, zone_start_pfn,
3685 size, MEMMAP_EARLY);
3687 memmap_init(size, nid, j, zone_start_pfn);
3688 zone_start_pfn += size;
3692 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3694 /* Skip empty nodes */
3695 if (!pgdat->node_spanned_pages)
3698 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3699 /* ia64 gets its own node_mem_map, before this, without bootmem */
3700 if (!pgdat->node_mem_map) {
3701 unsigned long size, start, end;
3705 * The zone's endpoints aren't required to be MAX_ORDER
3706 * aligned but the node_mem_map endpoints must be in order
3707 * for the buddy allocator to function correctly.
3709 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3710 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3711 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3712 size = (end - start) * sizeof(struct page);
3713 map = alloc_remap(pgdat->node_id, size);
3715 map = alloc_bootmem_node(pgdat, size);
3716 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3718 #ifndef CONFIG_NEED_MULTIPLE_NODES
3720 * With no DISCONTIG, the global mem_map is just set as node 0's
3722 if (pgdat == NODE_DATA(0)) {
3723 mem_map = NODE_DATA(0)->node_mem_map;
3724 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3725 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3726 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3727 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3730 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3733 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3734 unsigned long node_start_pfn, unsigned long *zholes_size)
3736 pg_data_t *pgdat = NODE_DATA(nid);
3738 pgdat->node_id = nid;
3739 pgdat->node_start_pfn = node_start_pfn;
3740 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3742 alloc_node_mem_map(pgdat);
3743 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3744 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3745 nid, (unsigned long)pgdat,
3746 (unsigned long)pgdat->node_mem_map);
3749 free_area_init_core(pgdat, zones_size, zholes_size);
3752 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3754 #if MAX_NUMNODES > 1
3756 * Figure out the number of possible node ids.
3758 static void __init setup_nr_node_ids(void)
3761 unsigned int highest = 0;
3763 for_each_node_mask(node, node_possible_map)
3765 nr_node_ids = highest + 1;
3768 static inline void setup_nr_node_ids(void)
3774 * add_active_range - Register a range of PFNs backed by physical memory
3775 * @nid: The node ID the range resides on
3776 * @start_pfn: The start PFN of the available physical memory
3777 * @end_pfn: The end PFN of the available physical memory
3779 * These ranges are stored in an early_node_map[] and later used by
3780 * free_area_init_nodes() to calculate zone sizes and holes. If the
3781 * range spans a memory hole, it is up to the architecture to ensure
3782 * the memory is not freed by the bootmem allocator. If possible
3783 * the range being registered will be merged with existing ranges.
3785 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3786 unsigned long end_pfn)
3790 mminit_dprintk(MMINIT_TRACE, "memory_register",
3791 "Entering add_active_range(%d, %#lx, %#lx) "
3792 "%d entries of %d used\n",
3793 nid, start_pfn, end_pfn,
3794 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3796 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3798 /* Merge with existing active regions if possible */
3799 for (i = 0; i < nr_nodemap_entries; i++) {
3800 if (early_node_map[i].nid != nid)
3803 /* Skip if an existing region covers this new one */
3804 if (start_pfn >= early_node_map[i].start_pfn &&
3805 end_pfn <= early_node_map[i].end_pfn)
3808 /* Merge forward if suitable */
3809 if (start_pfn <= early_node_map[i].end_pfn &&
3810 end_pfn > early_node_map[i].end_pfn) {
3811 early_node_map[i].end_pfn = end_pfn;
3815 /* Merge backward if suitable */
3816 if (start_pfn < early_node_map[i].end_pfn &&
3817 end_pfn >= early_node_map[i].start_pfn) {
3818 early_node_map[i].start_pfn = start_pfn;
3823 /* Check that early_node_map is large enough */
3824 if (i >= MAX_ACTIVE_REGIONS) {
3825 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3826 MAX_ACTIVE_REGIONS);
3830 early_node_map[i].nid = nid;
3831 early_node_map[i].start_pfn = start_pfn;
3832 early_node_map[i].end_pfn = end_pfn;
3833 nr_nodemap_entries = i + 1;
3837 * remove_active_range - Shrink an existing registered range of PFNs
3838 * @nid: The node id the range is on that should be shrunk
3839 * @start_pfn: The new PFN of the range
3840 * @end_pfn: The new PFN of the range
3842 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3843 * The map is kept near the end physical page range that has already been
3844 * registered. This function allows an arch to shrink an existing registered
3847 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3848 unsigned long end_pfn)
3853 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3854 nid, start_pfn, end_pfn);
3856 /* Find the old active region end and shrink */
3857 for_each_active_range_index_in_nid(i, nid) {
3858 if (early_node_map[i].start_pfn >= start_pfn &&
3859 early_node_map[i].end_pfn <= end_pfn) {
3861 early_node_map[i].start_pfn = 0;
3862 early_node_map[i].end_pfn = 0;
3866 if (early_node_map[i].start_pfn < start_pfn &&
3867 early_node_map[i].end_pfn > start_pfn) {
3868 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3869 early_node_map[i].end_pfn = start_pfn;
3870 if (temp_end_pfn > end_pfn)
3871 add_active_range(nid, end_pfn, temp_end_pfn);
3874 if (early_node_map[i].start_pfn >= start_pfn &&
3875 early_node_map[i].end_pfn > end_pfn &&
3876 early_node_map[i].start_pfn < end_pfn) {
3877 early_node_map[i].start_pfn = end_pfn;
3885 /* remove the blank ones */
3886 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3887 if (early_node_map[i].nid != nid)
3889 if (early_node_map[i].end_pfn)
3891 /* we found it, get rid of it */
3892 for (j = i; j < nr_nodemap_entries - 1; j++)
3893 memcpy(&early_node_map[j], &early_node_map[j+1],
3894 sizeof(early_node_map[j]));
3895 j = nr_nodemap_entries - 1;
3896 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3897 nr_nodemap_entries--;
3902 * remove_all_active_ranges - Remove all currently registered regions
3904 * During discovery, it may be found that a table like SRAT is invalid
3905 * and an alternative discovery method must be used. This function removes
3906 * all currently registered regions.
3908 void __init remove_all_active_ranges(void)
3910 memset(early_node_map, 0, sizeof(early_node_map));
3911 nr_nodemap_entries = 0;
3914 /* Compare two active node_active_regions */
3915 static int __init cmp_node_active_region(const void *a, const void *b)
3917 struct node_active_region *arange = (struct node_active_region *)a;
3918 struct node_active_region *brange = (struct node_active_region *)b;
3920 /* Done this way to avoid overflows */
3921 if (arange->start_pfn > brange->start_pfn)
3923 if (arange->start_pfn < brange->start_pfn)
3929 /* sort the node_map by start_pfn */
3930 static void __init sort_node_map(void)
3932 sort(early_node_map, (size_t)nr_nodemap_entries,
3933 sizeof(struct node_active_region),
3934 cmp_node_active_region, NULL);
3937 /* Find the lowest pfn for a node */
3938 static unsigned long __init find_min_pfn_for_node(int nid)
3941 unsigned long min_pfn = ULONG_MAX;
3943 /* Assuming a sorted map, the first range found has the starting pfn */
3944 for_each_active_range_index_in_nid(i, nid)
3945 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3947 if (min_pfn == ULONG_MAX) {
3949 "Could not find start_pfn for node %d\n", nid);
3957 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3959 * It returns the minimum PFN based on information provided via
3960 * add_active_range().
3962 unsigned long __init find_min_pfn_with_active_regions(void)
3964 return find_min_pfn_for_node(MAX_NUMNODES);
3968 * early_calculate_totalpages()
3969 * Sum pages in active regions for movable zone.
3970 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3972 static unsigned long __init early_calculate_totalpages(void)
3975 unsigned long totalpages = 0;
3977 for (i = 0; i < nr_nodemap_entries; i++) {
3978 unsigned long pages = early_node_map[i].end_pfn -
3979 early_node_map[i].start_pfn;
3980 totalpages += pages;
3982 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3988 * Find the PFN the Movable zone begins in each node. Kernel memory
3989 * is spread evenly between nodes as long as the nodes have enough
3990 * memory. When they don't, some nodes will have more kernelcore than
3993 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3996 unsigned long usable_startpfn;
3997 unsigned long kernelcore_node, kernelcore_remaining;
3998 unsigned long totalpages = early_calculate_totalpages();
3999 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4002 * If movablecore was specified, calculate what size of
4003 * kernelcore that corresponds so that memory usable for
4004 * any allocation type is evenly spread. If both kernelcore
4005 * and movablecore are specified, then the value of kernelcore
4006 * will be used for required_kernelcore if it's greater than
4007 * what movablecore would have allowed.
4009 if (required_movablecore) {
4010 unsigned long corepages;
4013 * Round-up so that ZONE_MOVABLE is at least as large as what
4014 * was requested by the user
4016 required_movablecore =
4017 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4018 corepages = totalpages - required_movablecore;
4020 required_kernelcore = max(required_kernelcore, corepages);
4023 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4024 if (!required_kernelcore)
4027 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4028 find_usable_zone_for_movable();
4029 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4032 /* Spread kernelcore memory as evenly as possible throughout nodes */
4033 kernelcore_node = required_kernelcore / usable_nodes;
4034 for_each_node_state(nid, N_HIGH_MEMORY) {
4036 * Recalculate kernelcore_node if the division per node
4037 * now exceeds what is necessary to satisfy the requested
4038 * amount of memory for the kernel
4040 if (required_kernelcore < kernelcore_node)
4041 kernelcore_node = required_kernelcore / usable_nodes;
4044 * As the map is walked, we track how much memory is usable
4045 * by the kernel using kernelcore_remaining. When it is
4046 * 0, the rest of the node is usable by ZONE_MOVABLE
4048 kernelcore_remaining = kernelcore_node;
4050 /* Go through each range of PFNs within this node */
4051 for_each_active_range_index_in_nid(i, nid) {
4052 unsigned long start_pfn, end_pfn;
4053 unsigned long size_pages;
4055 start_pfn = max(early_node_map[i].start_pfn,
4056 zone_movable_pfn[nid]);
4057 end_pfn = early_node_map[i].end_pfn;
4058 if (start_pfn >= end_pfn)
4061 /* Account for what is only usable for kernelcore */
4062 if (start_pfn < usable_startpfn) {
4063 unsigned long kernel_pages;
4064 kernel_pages = min(end_pfn, usable_startpfn)
4067 kernelcore_remaining -= min(kernel_pages,
4068 kernelcore_remaining);
4069 required_kernelcore -= min(kernel_pages,
4070 required_kernelcore);
4072 /* Continue if range is now fully accounted */
4073 if (end_pfn <= usable_startpfn) {
4076 * Push zone_movable_pfn to the end so
4077 * that if we have to rebalance
4078 * kernelcore across nodes, we will
4079 * not double account here
4081 zone_movable_pfn[nid] = end_pfn;
4084 start_pfn = usable_startpfn;
4088 * The usable PFN range for ZONE_MOVABLE is from
4089 * start_pfn->end_pfn. Calculate size_pages as the
4090 * number of pages used as kernelcore
4092 size_pages = end_pfn - start_pfn;
4093 if (size_pages > kernelcore_remaining)
4094 size_pages = kernelcore_remaining;
4095 zone_movable_pfn[nid] = start_pfn + size_pages;
4098 * Some kernelcore has been met, update counts and
4099 * break if the kernelcore for this node has been
4102 required_kernelcore -= min(required_kernelcore,
4104 kernelcore_remaining -= size_pages;
4105 if (!kernelcore_remaining)
4111 * If there is still required_kernelcore, we do another pass with one
4112 * less node in the count. This will push zone_movable_pfn[nid] further
4113 * along on the nodes that still have memory until kernelcore is
4117 if (usable_nodes && required_kernelcore > usable_nodes)
4120 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4121 for (nid = 0; nid < MAX_NUMNODES; nid++)
4122 zone_movable_pfn[nid] =
4123 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4126 /* Any regular memory on that node ? */
4127 static void check_for_regular_memory(pg_data_t *pgdat)
4129 #ifdef CONFIG_HIGHMEM
4130 enum zone_type zone_type;
4132 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4133 struct zone *zone = &pgdat->node_zones[zone_type];
4134 if (zone->present_pages)
4135 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4141 * free_area_init_nodes - Initialise all pg_data_t and zone data
4142 * @max_zone_pfn: an array of max PFNs for each zone
4144 * This will call free_area_init_node() for each active node in the system.
4145 * Using the page ranges provided by add_active_range(), the size of each
4146 * zone in each node and their holes is calculated. If the maximum PFN
4147 * between two adjacent zones match, it is assumed that the zone is empty.
4148 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4149 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4150 * starts where the previous one ended. For example, ZONE_DMA32 starts
4151 * at arch_max_dma_pfn.
4153 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4158 /* Sort early_node_map as initialisation assumes it is sorted */
4161 /* Record where the zone boundaries are */
4162 memset(arch_zone_lowest_possible_pfn, 0,
4163 sizeof(arch_zone_lowest_possible_pfn));
4164 memset(arch_zone_highest_possible_pfn, 0,
4165 sizeof(arch_zone_highest_possible_pfn));
4166 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4167 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4168 for (i = 1; i < MAX_NR_ZONES; i++) {
4169 if (i == ZONE_MOVABLE)
4171 arch_zone_lowest_possible_pfn[i] =
4172 arch_zone_highest_possible_pfn[i-1];
4173 arch_zone_highest_possible_pfn[i] =
4174 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4176 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4177 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4179 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4180 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4181 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4183 /* Print out the zone ranges */
4184 printk("Zone PFN ranges:\n");
4185 for (i = 0; i < MAX_NR_ZONES; i++) {
4186 if (i == ZONE_MOVABLE)
4188 printk(" %-8s %0#10lx -> %0#10lx\n",
4190 arch_zone_lowest_possible_pfn[i],
4191 arch_zone_highest_possible_pfn[i]);
4194 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4195 printk("Movable zone start PFN for each node\n");
4196 for (i = 0; i < MAX_NUMNODES; i++) {
4197 if (zone_movable_pfn[i])
4198 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4201 /* Print out the early_node_map[] */
4202 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4203 for (i = 0; i < nr_nodemap_entries; i++)
4204 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4205 early_node_map[i].start_pfn,
4206 early_node_map[i].end_pfn);
4208 /* Initialise every node */
4209 mminit_verify_pageflags_layout();
4210 setup_nr_node_ids();
4211 for_each_online_node(nid) {
4212 pg_data_t *pgdat = NODE_DATA(nid);
4213 free_area_init_node(nid, NULL,
4214 find_min_pfn_for_node(nid), NULL);
4216 /* Any memory on that node */
4217 if (pgdat->node_present_pages)
4218 node_set_state(nid, N_HIGH_MEMORY);
4219 check_for_regular_memory(pgdat);
4223 static int __init cmdline_parse_core(char *p, unsigned long *core)
4225 unsigned long long coremem;
4229 coremem = memparse(p, &p);
4230 *core = coremem >> PAGE_SHIFT;
4232 /* Paranoid check that UL is enough for the coremem value */
4233 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4239 * kernelcore=size sets the amount of memory for use for allocations that
4240 * cannot be reclaimed or migrated.
4242 static int __init cmdline_parse_kernelcore(char *p)
4244 return cmdline_parse_core(p, &required_kernelcore);
4248 * movablecore=size sets the amount of memory for use for allocations that
4249 * can be reclaimed or migrated.
4251 static int __init cmdline_parse_movablecore(char *p)
4253 return cmdline_parse_core(p, &required_movablecore);
4256 early_param("kernelcore", cmdline_parse_kernelcore);
4257 early_param("movablecore", cmdline_parse_movablecore);
4259 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4262 * set_dma_reserve - set the specified number of pages reserved in the first zone
4263 * @new_dma_reserve: The number of pages to mark reserved
4265 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4266 * In the DMA zone, a significant percentage may be consumed by kernel image
4267 * and other unfreeable allocations which can skew the watermarks badly. This
4268 * function may optionally be used to account for unfreeable pages in the
4269 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4270 * smaller per-cpu batchsize.
4272 void __init set_dma_reserve(unsigned long new_dma_reserve)
4274 dma_reserve = new_dma_reserve;
4277 #ifndef CONFIG_NEED_MULTIPLE_NODES
4278 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4279 EXPORT_SYMBOL(contig_page_data);
4282 void __init free_area_init(unsigned long *zones_size)
4284 free_area_init_node(0, zones_size,
4285 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4288 static int page_alloc_cpu_notify(struct notifier_block *self,
4289 unsigned long action, void *hcpu)
4291 int cpu = (unsigned long)hcpu;
4293 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4297 * Spill the event counters of the dead processor
4298 * into the current processors event counters.
4299 * This artificially elevates the count of the current
4302 vm_events_fold_cpu(cpu);
4305 * Zero the differential counters of the dead processor
4306 * so that the vm statistics are consistent.
4308 * This is only okay since the processor is dead and cannot
4309 * race with what we are doing.
4311 refresh_cpu_vm_stats(cpu);
4316 void __init page_alloc_init(void)
4318 hotcpu_notifier(page_alloc_cpu_notify, 0);
4322 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4323 * or min_free_kbytes changes.
4325 static void calculate_totalreserve_pages(void)
4327 struct pglist_data *pgdat;
4328 unsigned long reserve_pages = 0;
4329 enum zone_type i, j;
4331 for_each_online_pgdat(pgdat) {
4332 for (i = 0; i < MAX_NR_ZONES; i++) {
4333 struct zone *zone = pgdat->node_zones + i;
4334 unsigned long max = 0;
4336 /* Find valid and maximum lowmem_reserve in the zone */
4337 for (j = i; j < MAX_NR_ZONES; j++) {
4338 if (zone->lowmem_reserve[j] > max)
4339 max = zone->lowmem_reserve[j];
4342 /* we treat the high watermark as reserved pages. */
4343 max += high_wmark_pages(zone);
4345 if (max > zone->present_pages)
4346 max = zone->present_pages;
4347 reserve_pages += max;
4350 totalreserve_pages = reserve_pages;
4354 * setup_per_zone_lowmem_reserve - called whenever
4355 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4356 * has a correct pages reserved value, so an adequate number of
4357 * pages are left in the zone after a successful __alloc_pages().
4359 static void setup_per_zone_lowmem_reserve(void)
4361 struct pglist_data *pgdat;
4362 enum zone_type j, idx;
4364 for_each_online_pgdat(pgdat) {
4365 for (j = 0; j < MAX_NR_ZONES; j++) {
4366 struct zone *zone = pgdat->node_zones + j;
4367 unsigned long present_pages = zone->present_pages;
4369 zone->lowmem_reserve[j] = 0;
4373 struct zone *lower_zone;
4377 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4378 sysctl_lowmem_reserve_ratio[idx] = 1;
4380 lower_zone = pgdat->node_zones + idx;
4381 lower_zone->lowmem_reserve[j] = present_pages /
4382 sysctl_lowmem_reserve_ratio[idx];
4383 present_pages += lower_zone->present_pages;
4388 /* update totalreserve_pages */
4389 calculate_totalreserve_pages();
4393 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4395 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4396 * with respect to min_free_kbytes.
4398 void setup_per_zone_pages_min(void)
4400 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4401 unsigned long lowmem_pages = 0;
4403 unsigned long flags;
4405 /* Calculate total number of !ZONE_HIGHMEM pages */
4406 for_each_zone(zone) {
4407 if (!is_highmem(zone))
4408 lowmem_pages += zone->present_pages;
4411 for_each_zone(zone) {
4414 spin_lock_irqsave(&zone->lock, flags);
4415 tmp = (u64)pages_min * zone->present_pages;
4416 do_div(tmp, lowmem_pages);
4417 if (is_highmem(zone)) {
4419 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4420 * need highmem pages, so cap pages_min to a small
4423 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4424 * deltas controls asynch page reclaim, and so should
4425 * not be capped for highmem.
4429 min_pages = zone->present_pages / 1024;
4430 if (min_pages < SWAP_CLUSTER_MAX)
4431 min_pages = SWAP_CLUSTER_MAX;
4432 if (min_pages > 128)
4434 zone->watermark[WMARK_MIN] = min_pages;
4437 * If it's a lowmem zone, reserve a number of pages
4438 * proportionate to the zone's size.
4440 zone->watermark[WMARK_MIN] = tmp;
4443 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4444 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4445 setup_zone_migrate_reserve(zone);
4446 spin_unlock_irqrestore(&zone->lock, flags);
4449 /* update totalreserve_pages */
4450 calculate_totalreserve_pages();
4454 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4456 * The inactive anon list should be small enough that the VM never has to
4457 * do too much work, but large enough that each inactive page has a chance
4458 * to be referenced again before it is swapped out.
4460 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4461 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4462 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4463 * the anonymous pages are kept on the inactive list.
4466 * memory ratio inactive anon
4467 * -------------------------------------
4476 static void setup_per_zone_inactive_ratio(void)
4480 for_each_zone(zone) {
4481 unsigned int gb, ratio;
4483 /* Zone size in gigabytes */
4484 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4485 ratio = int_sqrt(10 * gb);
4489 zone->inactive_ratio = ratio;
4494 * Initialise min_free_kbytes.
4496 * For small machines we want it small (128k min). For large machines
4497 * we want it large (64MB max). But it is not linear, because network
4498 * bandwidth does not increase linearly with machine size. We use
4500 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4501 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4517 static int __init init_per_zone_pages_min(void)
4519 unsigned long lowmem_kbytes;
4521 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4523 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4524 if (min_free_kbytes < 128)
4525 min_free_kbytes = 128;
4526 if (min_free_kbytes > 65536)
4527 min_free_kbytes = 65536;
4528 setup_per_zone_pages_min();
4529 setup_per_zone_lowmem_reserve();
4530 setup_per_zone_inactive_ratio();
4533 module_init(init_per_zone_pages_min)
4536 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4537 * that we can call two helper functions whenever min_free_kbytes
4540 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4541 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4543 proc_dointvec(table, write, file, buffer, length, ppos);
4545 setup_per_zone_pages_min();
4550 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4551 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4556 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4561 zone->min_unmapped_pages = (zone->present_pages *
4562 sysctl_min_unmapped_ratio) / 100;
4566 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4567 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4572 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4577 zone->min_slab_pages = (zone->present_pages *
4578 sysctl_min_slab_ratio) / 100;
4584 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4585 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4586 * whenever sysctl_lowmem_reserve_ratio changes.
4588 * The reserve ratio obviously has absolutely no relation with the
4589 * minimum watermarks. The lowmem reserve ratio can only make sense
4590 * if in function of the boot time zone sizes.
4592 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4593 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4595 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4596 setup_per_zone_lowmem_reserve();
4601 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4602 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4603 * can have before it gets flushed back to buddy allocator.
4606 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4607 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4613 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4614 if (!write || (ret == -EINVAL))
4616 for_each_zone(zone) {
4617 for_each_online_cpu(cpu) {
4619 high = zone->present_pages / percpu_pagelist_fraction;
4620 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4626 int hashdist = HASHDIST_DEFAULT;
4629 static int __init set_hashdist(char *str)
4633 hashdist = simple_strtoul(str, &str, 0);
4636 __setup("hashdist=", set_hashdist);
4640 * allocate a large system hash table from bootmem
4641 * - it is assumed that the hash table must contain an exact power-of-2
4642 * quantity of entries
4643 * - limit is the number of hash buckets, not the total allocation size
4645 void *__init alloc_large_system_hash(const char *tablename,
4646 unsigned long bucketsize,
4647 unsigned long numentries,
4650 unsigned int *_hash_shift,
4651 unsigned int *_hash_mask,
4652 unsigned long limit)
4654 unsigned long long max = limit;
4655 unsigned long log2qty, size;
4658 /* allow the kernel cmdline to have a say */
4660 /* round applicable memory size up to nearest megabyte */
4661 numentries = nr_kernel_pages;
4662 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4663 numentries >>= 20 - PAGE_SHIFT;
4664 numentries <<= 20 - PAGE_SHIFT;
4666 /* limit to 1 bucket per 2^scale bytes of low memory */
4667 if (scale > PAGE_SHIFT)
4668 numentries >>= (scale - PAGE_SHIFT);
4670 numentries <<= (PAGE_SHIFT - scale);
4672 /* Make sure we've got at least a 0-order allocation.. */
4673 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4674 numentries = PAGE_SIZE / bucketsize;
4676 numentries = roundup_pow_of_two(numentries);
4678 /* limit allocation size to 1/16 total memory by default */
4680 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4681 do_div(max, bucketsize);
4684 if (numentries > max)
4687 log2qty = ilog2(numentries);
4690 size = bucketsize << log2qty;
4691 if (flags & HASH_EARLY)
4692 table = alloc_bootmem_nopanic(size);
4694 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4696 unsigned long order = get_order(size);
4698 if (order < MAX_ORDER)
4699 table = (void *)__get_free_pages(GFP_ATOMIC,
4702 * If bucketsize is not a power-of-two, we may free
4703 * some pages at the end of hash table.
4706 unsigned long alloc_end = (unsigned long)table +
4707 (PAGE_SIZE << order);
4708 unsigned long used = (unsigned long)table +
4710 split_page(virt_to_page(table), order);
4711 while (used < alloc_end) {
4717 } while (!table && size > PAGE_SIZE && --log2qty);
4720 panic("Failed to allocate %s hash table\n", tablename);
4722 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4725 ilog2(size) - PAGE_SHIFT,
4729 *_hash_shift = log2qty;
4731 *_hash_mask = (1 << log2qty) - 1;
4734 * If hashdist is set, the table allocation is done with __vmalloc()
4735 * which invokes the kmemleak_alloc() callback. This function may also
4736 * be called before the slab and kmemleak are initialised when
4737 * kmemleak simply buffers the request to be executed later
4738 * (GFP_ATOMIC flag ignored in this case).
4741 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4746 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4747 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4750 #ifdef CONFIG_SPARSEMEM
4751 return __pfn_to_section(pfn)->pageblock_flags;
4753 return zone->pageblock_flags;
4754 #endif /* CONFIG_SPARSEMEM */
4757 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4759 #ifdef CONFIG_SPARSEMEM
4760 pfn &= (PAGES_PER_SECTION-1);
4761 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4763 pfn = pfn - zone->zone_start_pfn;
4764 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4765 #endif /* CONFIG_SPARSEMEM */
4769 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4770 * @page: The page within the block of interest
4771 * @start_bitidx: The first bit of interest to retrieve
4772 * @end_bitidx: The last bit of interest
4773 * returns pageblock_bits flags
4775 unsigned long get_pageblock_flags_group(struct page *page,
4776 int start_bitidx, int end_bitidx)
4779 unsigned long *bitmap;
4780 unsigned long pfn, bitidx;
4781 unsigned long flags = 0;
4782 unsigned long value = 1;
4784 zone = page_zone(page);
4785 pfn = page_to_pfn(page);
4786 bitmap = get_pageblock_bitmap(zone, pfn);
4787 bitidx = pfn_to_bitidx(zone, pfn);
4789 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4790 if (test_bit(bitidx + start_bitidx, bitmap))
4797 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4798 * @page: The page within the block of interest
4799 * @start_bitidx: The first bit of interest
4800 * @end_bitidx: The last bit of interest
4801 * @flags: The flags to set
4803 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4804 int start_bitidx, int end_bitidx)
4807 unsigned long *bitmap;
4808 unsigned long pfn, bitidx;
4809 unsigned long value = 1;
4811 zone = page_zone(page);
4812 pfn = page_to_pfn(page);
4813 bitmap = get_pageblock_bitmap(zone, pfn);
4814 bitidx = pfn_to_bitidx(zone, pfn);
4815 VM_BUG_ON(pfn < zone->zone_start_pfn);
4816 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4818 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4820 __set_bit(bitidx + start_bitidx, bitmap);
4822 __clear_bit(bitidx + start_bitidx, bitmap);
4826 * This is designed as sub function...plz see page_isolation.c also.
4827 * set/clear page block's type to be ISOLATE.
4828 * page allocater never alloc memory from ISOLATE block.
4831 int set_migratetype_isolate(struct page *page)
4834 unsigned long flags;
4837 zone = page_zone(page);
4838 spin_lock_irqsave(&zone->lock, flags);
4840 * In future, more migrate types will be able to be isolation target.
4842 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4844 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4845 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4848 spin_unlock_irqrestore(&zone->lock, flags);
4854 void unset_migratetype_isolate(struct page *page)
4857 unsigned long flags;
4858 zone = page_zone(page);
4859 spin_lock_irqsave(&zone->lock, flags);
4860 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4862 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4863 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4865 spin_unlock_irqrestore(&zone->lock, flags);
4868 #ifdef CONFIG_MEMORY_HOTREMOVE
4870 * All pages in the range must be isolated before calling this.
4873 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4879 unsigned long flags;
4880 /* find the first valid pfn */
4881 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4886 zone = page_zone(pfn_to_page(pfn));
4887 spin_lock_irqsave(&zone->lock, flags);
4889 while (pfn < end_pfn) {
4890 if (!pfn_valid(pfn)) {
4894 page = pfn_to_page(pfn);
4895 BUG_ON(page_count(page));
4896 BUG_ON(!PageBuddy(page));
4897 order = page_order(page);
4898 #ifdef CONFIG_DEBUG_VM
4899 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4900 pfn, 1 << order, end_pfn);
4902 list_del(&page->lru);
4903 rmv_page_order(page);
4904 zone->free_area[order].nr_free--;
4905 __mod_zone_page_state(zone, NR_FREE_PAGES,
4907 for (i = 0; i < (1 << order); i++)
4908 SetPageReserved((page+i));
4909 pfn += (1 << order);
4911 spin_unlock_irqrestore(&zone->lock, flags);