2  *  drivers/cpufreq/cpufreq_conservative.c
 
   4  *  Copyright (C)  2001 Russell King
 
   5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 
   6  *                      Jun Nakajima <jun.nakajima@intel.com>
 
   7  *            (C)  2004 Alexander Clouter <alex-kernel@digriz.org.uk>
 
   9  * This program is free software; you can redistribute it and/or modify
 
  10  * it under the terms of the GNU General Public License version 2 as
 
  11  * published by the Free Software Foundation.
 
  14 #include <linux/kernel.h>
 
  15 #include <linux/module.h>
 
  16 #include <linux/smp.h>
 
  17 #include <linux/init.h>
 
  18 #include <linux/interrupt.h>
 
  19 #include <linux/ctype.h>
 
  20 #include <linux/cpufreq.h>
 
  21 #include <linux/sysctl.h>
 
  22 #include <linux/types.h>
 
  24 #include <linux/sysfs.h>
 
  25 #include <linux/sched.h>
 
  26 #include <linux/kmod.h>
 
  27 #include <linux/workqueue.h>
 
  28 #include <linux/jiffies.h>
 
  29 #include <linux/kernel_stat.h>
 
  30 #include <linux/percpu.h>
 
  33  * dbs is used in this file as a shortform for demandbased switching
 
  34  * It helps to keep variable names smaller, simpler
 
  37 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
 
  38 #define MIN_FREQUENCY_UP_THRESHOLD              (0)
 
  39 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
 
  41 #define DEF_FREQUENCY_DOWN_THRESHOLD            (20)
 
  42 #define MIN_FREQUENCY_DOWN_THRESHOLD            (0)
 
  43 #define MAX_FREQUENCY_DOWN_THRESHOLD            (100)
 
  46  * The polling frequency of this governor depends on the capability of 
 
  47  * the processor. Default polling frequency is 1000 times the transition
 
  48  * latency of the processor. The governor will work on any processor with 
 
  49  * transition latency <= 10mS, using appropriate sampling 
 
  51  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
 
  52  * this governor will not work.
 
  53  * All times here are in uS.
 
  55 static unsigned int                             def_sampling_rate;
 
  56 #define MIN_SAMPLING_RATE                       (def_sampling_rate / 2)
 
  57 #define MAX_SAMPLING_RATE                       (500 * def_sampling_rate)
 
  58 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER    (100000)
 
  59 #define DEF_SAMPLING_DOWN_FACTOR                (5)
 
  60 #define TRANSITION_LATENCY_LIMIT                (10 * 1000)
 
  62 static void do_dbs_timer(void *data);
 
  64 struct cpu_dbs_info_s {
 
  65         struct cpufreq_policy   *cur_policy;
 
  66         unsigned int            prev_cpu_idle_up;
 
  67         unsigned int            prev_cpu_idle_down;
 
  70 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
 
  72 static unsigned int dbs_enable; /* number of CPUs using this policy */
 
  74 static DECLARE_MUTEX    (dbs_sem);
 
  75 static DECLARE_WORK     (dbs_work, do_dbs_timer, NULL);
 
  78         unsigned int            sampling_rate;
 
  79         unsigned int            sampling_down_factor;
 
  80         unsigned int            up_threshold;
 
  81         unsigned int            down_threshold;
 
  82         unsigned int            ignore_nice;
 
  83         unsigned int            freq_step;
 
  86 static struct dbs_tuners dbs_tuners_ins = {
 
  87         .up_threshold           = DEF_FREQUENCY_UP_THRESHOLD,
 
  88         .down_threshold         = DEF_FREQUENCY_DOWN_THRESHOLD,
 
  89         .sampling_down_factor   = DEF_SAMPLING_DOWN_FACTOR,
 
  92 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
 
  94         return  kstat_cpu(cpu).cpustat.idle +
 
  95                 kstat_cpu(cpu).cpustat.iowait +
 
  96                 ( dbs_tuners_ins.ignore_nice ?
 
  97                   kstat_cpu(cpu).cpustat.nice :
 
 101 /************************** sysfs interface ************************/
 
 102 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
 
 104         return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
 
 107 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
 
 109         return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
 
 112 #define define_one_ro(_name)                                    \
 
 113 static struct freq_attr _name =                                 \
 
 114 __ATTR(_name, 0444, show_##_name, NULL)
 
 116 define_one_ro(sampling_rate_max);
 
 117 define_one_ro(sampling_rate_min);
 
 119 /* cpufreq_conservative Governor Tunables */
 
 120 #define show_one(file_name, object)                                     \
 
 121 static ssize_t show_##file_name                                         \
 
 122 (struct cpufreq_policy *unused, char *buf)                              \
 
 124         return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
 
 126 show_one(sampling_rate, sampling_rate);
 
 127 show_one(sampling_down_factor, sampling_down_factor);
 
 128 show_one(up_threshold, up_threshold);
 
 129 show_one(down_threshold, down_threshold);
 
 130 show_one(ignore_nice_load, ignore_nice);
 
 131 show_one(freq_step, freq_step);
 
 133 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused, 
 
 134                 const char *buf, size_t count)
 
 138         ret = sscanf (buf, "%u", &input);
 
 143         dbs_tuners_ins.sampling_down_factor = input;
 
 149 static ssize_t store_sampling_rate(struct cpufreq_policy *unused, 
 
 150                 const char *buf, size_t count)
 
 154         ret = sscanf (buf, "%u", &input);
 
 157         if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
 
 162         dbs_tuners_ins.sampling_rate = input;
 
 168 static ssize_t store_up_threshold(struct cpufreq_policy *unused, 
 
 169                 const char *buf, size_t count)
 
 173         ret = sscanf (buf, "%u", &input);
 
 176         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || 
 
 177                         input < MIN_FREQUENCY_UP_THRESHOLD ||
 
 178                         input <= dbs_tuners_ins.down_threshold) {
 
 183         dbs_tuners_ins.up_threshold = input;
 
 189 static ssize_t store_down_threshold(struct cpufreq_policy *unused, 
 
 190                 const char *buf, size_t count)
 
 194         ret = sscanf (buf, "%u", &input);
 
 197         if (ret != 1 || input > MAX_FREQUENCY_DOWN_THRESHOLD || 
 
 198                         input < MIN_FREQUENCY_DOWN_THRESHOLD ||
 
 199                         input >= dbs_tuners_ins.up_threshold) {
 
 204         dbs_tuners_ins.down_threshold = input;
 
 210 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
 
 211                 const char *buf, size_t count)
 
 218         ret = sscanf (buf, "%u", &input);
 
 226         if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
 
 230         dbs_tuners_ins.ignore_nice = input;
 
 232         /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
 
 233         for_each_online_cpu(j) {
 
 234                 struct cpu_dbs_info_s *j_dbs_info;
 
 235                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
 
 236                 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
 
 237                 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
 
 244 static ssize_t store_freq_step(struct cpufreq_policy *policy,
 
 245                 const char *buf, size_t count)
 
 250         ret = sscanf (buf, "%u", &input);
 
 258         /* no need to test here if freq_step is zero as the user might actually
 
 259          * want this, they would be crazy though :) */
 
 261         dbs_tuners_ins.freq_step = input;
 
 267 #define define_one_rw(_name) \
 
 268 static struct freq_attr _name = \
 
 269 __ATTR(_name, 0644, show_##_name, store_##_name)
 
 271 define_one_rw(sampling_rate);
 
 272 define_one_rw(sampling_down_factor);
 
 273 define_one_rw(up_threshold);
 
 274 define_one_rw(down_threshold);
 
 275 define_one_rw(ignore_nice_load);
 
 276 define_one_rw(freq_step);
 
 278 static struct attribute * dbs_attributes[] = {
 
 279         &sampling_rate_max.attr,
 
 280         &sampling_rate_min.attr,
 
 282         &sampling_down_factor.attr,
 
 284         &down_threshold.attr,
 
 285         &ignore_nice_load.attr,
 
 290 static struct attribute_group dbs_attr_group = {
 
 291         .attrs = dbs_attributes,
 
 292         .name = "conservative",
 
 295 /************************** sysfs end ************************/
 
 297 static void dbs_check_cpu(int cpu)
 
 299         unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
 
 300         unsigned int freq_step;
 
 301         unsigned int freq_down_sampling_rate;
 
 302         static int down_skip[NR_CPUS];
 
 303         static int requested_freq[NR_CPUS];
 
 304         static unsigned short init_flag = 0;
 
 305         struct cpu_dbs_info_s *this_dbs_info;
 
 306         struct cpu_dbs_info_s *dbs_info;
 
 308         struct cpufreq_policy *policy;
 
 311         this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
 
 312         if (!this_dbs_info->enable)
 
 315         policy = this_dbs_info->cur_policy;
 
 317         if ( init_flag == 0 ) {
 
 318                 for_each_online_cpu(j) {
 
 319                         dbs_info = &per_cpu(cpu_dbs_info, j);
 
 320                         requested_freq[j] = dbs_info->cur_policy->cur;
 
 326          * The default safe range is 20% to 80% 
 
 327          * Every sampling_rate, we check
 
 328          *      - If current idle time is less than 20%, then we try to 
 
 330          * Every sampling_rate*sampling_down_factor, we check
 
 331          *      - If current idle time is more than 80%, then we try to
 
 334          * Any frequency increase takes it to the maximum frequency. 
 
 335          * Frequency reduction happens at minimum steps of 
 
 336          * 5% (default) of max_frequency 
 
 339         /* Check for frequency increase */
 
 341         idle_ticks = UINT_MAX;
 
 342         for_each_cpu_mask(j, policy->cpus) {
 
 343                 unsigned int tmp_idle_ticks, total_idle_ticks;
 
 344                 struct cpu_dbs_info_s *j_dbs_info;
 
 346                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
 
 347                 /* Check for frequency increase */
 
 348                 total_idle_ticks = get_cpu_idle_time(j);
 
 349                 tmp_idle_ticks = total_idle_ticks -
 
 350                         j_dbs_info->prev_cpu_idle_up;
 
 351                 j_dbs_info->prev_cpu_idle_up = total_idle_ticks;
 
 353                 if (tmp_idle_ticks < idle_ticks)
 
 354                         idle_ticks = tmp_idle_ticks;
 
 357         /* Scale idle ticks by 100 and compare with up and down ticks */
 
 359         up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
 
 360                 usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
 
 362         if (idle_ticks < up_idle_ticks) {
 
 364                 for_each_cpu_mask(j, policy->cpus) {
 
 365                         struct cpu_dbs_info_s *j_dbs_info;
 
 367                         j_dbs_info = &per_cpu(cpu_dbs_info, j);
 
 368                         j_dbs_info->prev_cpu_idle_down = 
 
 369                                         j_dbs_info->prev_cpu_idle_up;
 
 371                 /* if we are already at full speed then break out early */
 
 372                 if (requested_freq[cpu] == policy->max)
 
 375                 freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
 
 377                 /* max freq cannot be less than 100. But who knows.... */
 
 378                 if (unlikely(freq_step == 0))
 
 381                 requested_freq[cpu] += freq_step;
 
 382                 if (requested_freq[cpu] > policy->max)
 
 383                         requested_freq[cpu] = policy->max;
 
 385                 __cpufreq_driver_target(policy, requested_freq[cpu], 
 
 390         /* Check for frequency decrease */
 
 392         if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
 
 395         idle_ticks = UINT_MAX;
 
 396         for_each_cpu_mask(j, policy->cpus) {
 
 397                 unsigned int tmp_idle_ticks, total_idle_ticks;
 
 398                 struct cpu_dbs_info_s *j_dbs_info;
 
 400                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
 
 401                 total_idle_ticks = j_dbs_info->prev_cpu_idle_up;
 
 402                 tmp_idle_ticks = total_idle_ticks -
 
 403                         j_dbs_info->prev_cpu_idle_down;
 
 404                 j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
 
 406                 if (tmp_idle_ticks < idle_ticks)
 
 407                         idle_ticks = tmp_idle_ticks;
 
 410         /* Scale idle ticks by 100 and compare with up and down ticks */
 
 414         freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
 
 415                 dbs_tuners_ins.sampling_down_factor;
 
 416         down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
 
 417                         usecs_to_jiffies(freq_down_sampling_rate);
 
 419         if (idle_ticks > down_idle_ticks) {
 
 420                 /* if we are already at the lowest speed then break out early
 
 421                  * or if we 'cannot' reduce the speed as the user might want
 
 422                  * freq_step to be zero */
 
 423                 if (requested_freq[cpu] == policy->min
 
 424                                 || dbs_tuners_ins.freq_step == 0)
 
 427                 freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
 
 429                 /* max freq cannot be less than 100. But who knows.... */
 
 430                 if (unlikely(freq_step == 0))
 
 433                 requested_freq[cpu] -= freq_step;
 
 434                 if (requested_freq[cpu] < policy->min)
 
 435                         requested_freq[cpu] = policy->min;
 
 437                 __cpufreq_driver_target(policy,
 
 444 static void do_dbs_timer(void *data)
 
 448         for_each_online_cpu(i)
 
 450         schedule_delayed_work(&dbs_work, 
 
 451                         usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
 
 455 static inline void dbs_timer_init(void)
 
 457         INIT_WORK(&dbs_work, do_dbs_timer, NULL);
 
 458         schedule_delayed_work(&dbs_work,
 
 459                         usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
 
 463 static inline void dbs_timer_exit(void)
 
 465         cancel_delayed_work(&dbs_work);
 
 469 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
 
 472         unsigned int cpu = policy->cpu;
 
 473         struct cpu_dbs_info_s *this_dbs_info;
 
 476         this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
 
 479         case CPUFREQ_GOV_START:
 
 480                 if ((!cpu_online(cpu)) || 
 
 484                 if (policy->cpuinfo.transition_latency >
 
 485                                 (TRANSITION_LATENCY_LIMIT * 1000))
 
 487                 if (this_dbs_info->enable) /* Already enabled */
 
 491                 for_each_cpu_mask(j, policy->cpus) {
 
 492                         struct cpu_dbs_info_s *j_dbs_info;
 
 493                         j_dbs_info = &per_cpu(cpu_dbs_info, j);
 
 494                         j_dbs_info->cur_policy = policy;
 
 496                         j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
 
 497                         j_dbs_info->prev_cpu_idle_down
 
 498                                 = j_dbs_info->prev_cpu_idle_up;
 
 500                 this_dbs_info->enable = 1;
 
 501                 sysfs_create_group(&policy->kobj, &dbs_attr_group);
 
 504                  * Start the timerschedule work, when this governor
 
 505                  * is used for first time
 
 507                 if (dbs_enable == 1) {
 
 508                         unsigned int latency;
 
 509                         /* policy latency is in nS. Convert it to uS first */
 
 511                         latency = policy->cpuinfo.transition_latency;
 
 515                         def_sampling_rate = (latency / 1000) *
 
 516                                         DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
 
 517                         dbs_tuners_ins.sampling_rate = def_sampling_rate;
 
 518                         dbs_tuners_ins.ignore_nice = 0;
 
 519                         dbs_tuners_ins.freq_step = 5;
 
 527         case CPUFREQ_GOV_STOP:
 
 529                 this_dbs_info->enable = 0;
 
 530                 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
 
 533                  * Stop the timerschedule work, when this governor
 
 534                  * is used for first time
 
 543         case CPUFREQ_GOV_LIMITS:
 
 545                 if (policy->max < this_dbs_info->cur_policy->cur)
 
 546                         __cpufreq_driver_target(
 
 547                                         this_dbs_info->cur_policy,
 
 548                                         policy->max, CPUFREQ_RELATION_H);
 
 549                 else if (policy->min > this_dbs_info->cur_policy->cur)
 
 550                         __cpufreq_driver_target(
 
 551                                         this_dbs_info->cur_policy,
 
 552                                         policy->min, CPUFREQ_RELATION_L);
 
 559 static struct cpufreq_governor cpufreq_gov_dbs = {
 
 560         .name           = "conservative",
 
 561         .governor       = cpufreq_governor_dbs,
 
 562         .owner          = THIS_MODULE,
 
 565 static int __init cpufreq_gov_dbs_init(void)
 
 567         return cpufreq_register_governor(&cpufreq_gov_dbs);
 
 570 static void __exit cpufreq_gov_dbs_exit(void)
 
 572         /* Make sure that the scheduled work is indeed not running */
 
 573         flush_scheduled_work();
 
 575         cpufreq_unregister_governor(&cpufreq_gov_dbs);
 
 579 MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
 
 580 MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
 
 581                 "Low Latency Frequency Transition capable processors "
 
 582                 "optimised for use in a battery environment");
 
 583 MODULE_LICENSE ("GPL");
 
 585 module_init(cpufreq_gov_dbs_init);
 
 586 module_exit(cpufreq_gov_dbs_exit);