2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
8 * (c) Copyright 2000, 2001 Red Hat Inc
10 * Development of this driver was funded by Equiinet Ltd
11 * http://www.equiinet.com
15 * Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
16 * unification of all the Z85x30 asynchronous drivers for real.
18 * DMA now uses get_free_page as kmalloc buffers may span a 64K
21 * Modified for SMP safety and SMP locking by Alan Cox
22 * <alan@lxorguk.ukuu.org.uk>
27 * Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
28 * X.25 is not unrealistic on all machines. DMA mode can in theory
29 * handle T1/E1 quite nicely. In practice the limit seems to be about
30 * 512Kbit->1Mbit depending on motherboard.
33 * 64K will take DMA, 9600 baud X.25 should be ok.
36 * Synchronous mode without DMA is unlikely to pass about 2400 baud.
39 #include <linux/module.h>
40 #include <linux/kernel.h>
42 #include <linux/net.h>
43 #include <linux/skbuff.h>
44 #include <linux/netdevice.h>
45 #include <linux/if_arp.h>
46 #include <linux/delay.h>
47 #include <linux/hdlc.h>
48 #include <linux/ioport.h>
49 #include <linux/init.h>
54 #include <linux/spinlock.h>
60 * z8530_read_port - Architecture specific interface function
63 * Provided port access methods. The Comtrol SV11 requires no delays
64 * between accesses and uses PC I/O. Some drivers may need a 5uS delay
66 * In the longer term this should become an architecture specific
67 * section so that this can become a generic driver interface for all
68 * platforms. For now we only handle PC I/O ports with or without the
69 * dread 5uS sanity delay.
71 * The caller must hold sufficient locks to avoid violating the horrible
75 static inline int z8530_read_port(unsigned long p)
77 u8 r=inb(Z8530_PORT_OF(p));
78 if(p&Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */
84 * z8530_write_port - Architecture specific interface function
88 * Write a value to a port with delays if need be. Note that the
89 * caller must hold locks to avoid read/writes from other contexts
90 * violating the 5uS rule
92 * In the longer term this should become an architecture specific
93 * section so that this can become a generic driver interface for all
94 * platforms. For now we only handle PC I/O ports with or without the
95 * dread 5uS sanity delay.
99 static inline void z8530_write_port(unsigned long p, u8 d)
101 outb(d,Z8530_PORT_OF(p));
102 if(p&Z8530_PORT_SLEEP)
108 static void z8530_rx_done(struct z8530_channel *c);
109 static void z8530_tx_done(struct z8530_channel *c);
113 * read_zsreg - Read a register from a Z85230
114 * @c: Z8530 channel to read from (2 per chip)
115 * @reg: Register to read
116 * FIXME: Use a spinlock.
118 * Most of the Z8530 registers are indexed off the control registers.
119 * A read is done by writing to the control register and reading the
120 * register back. The caller must hold the lock
123 static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
126 z8530_write_port(c->ctrlio, reg);
127 return z8530_read_port(c->ctrlio);
131 * read_zsdata - Read the data port of a Z8530 channel
132 * @c: The Z8530 channel to read the data port from
134 * The data port provides fast access to some things. We still
135 * have all the 5uS delays to worry about.
138 static inline u8 read_zsdata(struct z8530_channel *c)
141 r=z8530_read_port(c->dataio);
146 * write_zsreg - Write to a Z8530 channel register
147 * @c: The Z8530 channel
148 * @reg: Register number
149 * @val: Value to write
151 * Write a value to an indexed register. The caller must hold the lock
152 * to honour the irritating delay rules. We know about register 0
153 * being fast to access.
155 * Assumes c->lock is held.
157 static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
160 z8530_write_port(c->ctrlio, reg);
161 z8530_write_port(c->ctrlio, val);
166 * write_zsctrl - Write to a Z8530 control register
167 * @c: The Z8530 channel
168 * @val: Value to write
170 * Write directly to the control register on the Z8530
173 static inline void write_zsctrl(struct z8530_channel *c, u8 val)
175 z8530_write_port(c->ctrlio, val);
179 * write_zsdata - Write to a Z8530 control register
180 * @c: The Z8530 channel
181 * @val: Value to write
183 * Write directly to the data register on the Z8530
187 static inline void write_zsdata(struct z8530_channel *c, u8 val)
189 z8530_write_port(c->dataio, val);
193 * Register loading parameters for a dead port
196 u8 z8530_dead_port[]=
201 EXPORT_SYMBOL(z8530_dead_port);
204 * Register loading parameters for currently supported circuit types
209 * Data clocked by telco end. This is the correct data for the UK
210 * "kilostream" service, and most other similar services.
213 u8 z8530_hdlc_kilostream[]=
215 4, SYNC_ENAB|SDLC|X1CLK,
216 2, 0, /* No vector */
218 3, ENT_HM|RxCRC_ENAB|Rx8,
219 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
220 9, 0, /* Disable interrupts */
223 10, ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
226 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
227 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
232 EXPORT_SYMBOL(z8530_hdlc_kilostream);
235 * As above but for enhanced chips.
238 u8 z8530_hdlc_kilostream_85230[]=
240 4, SYNC_ENAB|SDLC|X1CLK,
241 2, 0, /* No vector */
243 3, ENT_HM|RxCRC_ENAB|Rx8,
244 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
245 9, 0, /* Disable interrupts */
248 10, ABUNDER|NRZ|CRCPS, /* MARKIDLE?? */
251 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
252 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
254 23, 3, /* Extended mode AUTO TX and EOM*/
259 EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
262 * z8530_flush_fifo - Flush on chip RX FIFO
263 * @c: Channel to flush
265 * Flush the receive FIFO. There is no specific option for this, we
266 * blindly read bytes and discard them. Reading when there is no data
267 * is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
269 * All locking is handled for the caller. On return data may still be
270 * present if it arrived during the flush.
273 static void z8530_flush_fifo(struct z8530_channel *c)
279 if(c->dev->type==Z85230)
289 * z8530_rtsdtr - Control the outgoing DTS/RTS line
290 * @c: The Z8530 channel to control;
291 * @set: 1 to set, 0 to clear
293 * Sets or clears DTR/RTS on the requested line. All locking is handled
294 * by the caller. For now we assume all boards use the actual RTS/DTR
295 * on the chip. Apparently one or two don't. We'll scream about them
299 static void z8530_rtsdtr(struct z8530_channel *c, int set)
302 c->regs[5] |= (RTS | DTR);
304 c->regs[5] &= ~(RTS | DTR);
305 write_zsreg(c, R5, c->regs[5]);
309 * z8530_rx - Handle a PIO receive event
310 * @c: Z8530 channel to process
312 * Receive handler for receiving in PIO mode. This is much like the
313 * async one but not quite the same or as complex
315 * Note: Its intended that this handler can easily be separated from
316 * the main code to run realtime. That'll be needed for some machines
317 * (eg to ever clock 64kbits on a sparc ;)).
319 * The RT_LOCK macros don't do anything now. Keep the code covered
320 * by them as short as possible in all circumstances - clocks cost
321 * baud. The interrupt handler is assumed to be atomic w.r.t. to
322 * other code - this is true in the RT case too.
324 * We only cover the sync cases for this. If you want 2Mbit async
325 * do it yourself but consider medical assistance first. This non DMA
326 * synchronous mode is portable code. The DMA mode assumes PCI like
329 * Called with the device lock held
332 static void z8530_rx(struct z8530_channel *c)
339 if(!(read_zsreg(c, R0)&1))
342 stat=read_zsreg(c, R1);
347 if(c->count < c->max)
359 if(stat&(Rx_OVR|CRC_ERR))
361 /* Rewind the buffer and return */
363 c->dptr=c->skb->data;
367 printk(KERN_WARNING "%s: overrun\n", c->dev->name);
373 /* printk("crc error\n"); */
375 /* Shove the frame upstream */
380 * Drop the lock for RX processing, or
381 * there are deadlocks
384 write_zsctrl(c, RES_Rx_CRC);
391 write_zsctrl(c, ERR_RES);
392 write_zsctrl(c, RES_H_IUS);
397 * z8530_tx - Handle a PIO transmit event
398 * @c: Z8530 channel to process
400 * Z8530 transmit interrupt handler for the PIO mode. The basic
401 * idea is to attempt to keep the FIFO fed. We fill as many bytes
402 * in as possible, its quite possible that we won't keep up with the
403 * data rate otherwise.
406 static void z8530_tx(struct z8530_channel *c)
410 if(!(read_zsreg(c, R0)&4))
414 * Shovel out the byte
416 write_zsreg(c, R8, *c->tx_ptr++);
417 write_zsctrl(c, RES_H_IUS);
418 /* We are about to underflow */
421 write_zsctrl(c, RES_EOM_L);
422 write_zsreg(c, R10, c->regs[10]&~ABUNDER);
428 * End of frame TX - fire another one
431 write_zsctrl(c, RES_Tx_P);
434 write_zsctrl(c, RES_H_IUS);
438 * z8530_status - Handle a PIO status exception
439 * @chan: Z8530 channel to process
441 * A status event occurred in PIO synchronous mode. There are several
442 * reasons the chip will bother us here. A transmit underrun means we
443 * failed to feed the chip fast enough and just broke a packet. A DCD
444 * change is a line up or down.
447 static void z8530_status(struct z8530_channel *chan)
451 status = read_zsreg(chan, R0);
452 altered = chan->status ^ status;
454 chan->status = status;
456 if (status & TxEOM) {
457 /* printk("%s: Tx underrun.\n", chan->dev->name); */
458 chan->netdevice->stats.tx_fifo_errors++;
459 write_zsctrl(chan, ERR_RES);
463 if (altered & chan->dcdcheck)
465 if (status & chan->dcdcheck) {
466 printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
467 write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
469 netif_carrier_on(chan->netdevice);
471 printk(KERN_INFO "%s: DCD lost\n", chan->dev->name);
472 write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
473 z8530_flush_fifo(chan);
475 netif_carrier_off(chan->netdevice);
479 write_zsctrl(chan, RES_EXT_INT);
480 write_zsctrl(chan, RES_H_IUS);
483 struct z8530_irqhandler z8530_sync =
490 EXPORT_SYMBOL(z8530_sync);
493 * z8530_dma_rx - Handle a DMA RX event
494 * @chan: Channel to handle
496 * Non bus mastering DMA interfaces for the Z8x30 devices. This
497 * is really pretty PC specific. The DMA mode means that most receive
498 * events are handled by the DMA hardware. We get a kick here only if
502 static void z8530_dma_rx(struct z8530_channel *chan)
506 /* Special condition check only */
509 read_zsreg(chan, R7);
510 read_zsreg(chan, R6);
512 status=read_zsreg(chan, R1);
516 z8530_rx_done(chan); /* Fire up the next one */
518 write_zsctrl(chan, ERR_RES);
519 write_zsctrl(chan, RES_H_IUS);
523 /* DMA is off right now, drain the slow way */
529 * z8530_dma_tx - Handle a DMA TX event
530 * @chan: The Z8530 channel to handle
532 * We have received an interrupt while doing DMA transmissions. It
533 * shouldn't happen. Scream loudly if it does.
536 static void z8530_dma_tx(struct z8530_channel *chan)
540 printk(KERN_WARNING "Hey who turned the DMA off?\n");
544 /* This shouldnt occur in DMA mode */
545 printk(KERN_ERR "DMA tx - bogus event!\n");
550 * z8530_dma_status - Handle a DMA status exception
551 * @chan: Z8530 channel to process
553 * A status event occurred on the Z8530. We receive these for two reasons
554 * when in DMA mode. Firstly if we finished a packet transfer we get one
555 * and kick the next packet out. Secondly we may see a DCD change.
559 static void z8530_dma_status(struct z8530_channel *chan)
563 status=read_zsreg(chan, R0);
564 altered=chan->status^status;
575 flags=claim_dma_lock();
576 disable_dma(chan->txdma);
577 clear_dma_ff(chan->txdma);
579 release_dma_lock(flags);
584 if (altered & chan->dcdcheck)
586 if (status & chan->dcdcheck) {
587 printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
588 write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
590 netif_carrier_on(chan->netdevice);
592 printk(KERN_INFO "%s:DCD lost\n", chan->dev->name);
593 write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
594 z8530_flush_fifo(chan);
596 netif_carrier_off(chan->netdevice);
600 write_zsctrl(chan, RES_EXT_INT);
601 write_zsctrl(chan, RES_H_IUS);
604 struct z8530_irqhandler z8530_dma_sync=
611 EXPORT_SYMBOL(z8530_dma_sync);
613 struct z8530_irqhandler z8530_txdma_sync=
620 EXPORT_SYMBOL(z8530_txdma_sync);
623 * z8530_rx_clear - Handle RX events from a stopped chip
624 * @c: Z8530 channel to shut up
626 * Receive interrupt vectors for a Z8530 that is in 'parked' mode.
627 * For machines with PCI Z85x30 cards, or level triggered interrupts
628 * (eg the MacII) we must clear the interrupt cause or die.
632 static void z8530_rx_clear(struct z8530_channel *c)
635 * Data and status bytes
640 stat=read_zsreg(c, R1);
643 write_zsctrl(c, RES_Rx_CRC);
647 write_zsctrl(c, ERR_RES);
648 write_zsctrl(c, RES_H_IUS);
652 * z8530_tx_clear - Handle TX events from a stopped chip
653 * @c: Z8530 channel to shut up
655 * Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
656 * For machines with PCI Z85x30 cards, or level triggered interrupts
657 * (eg the MacII) we must clear the interrupt cause or die.
660 static void z8530_tx_clear(struct z8530_channel *c)
662 write_zsctrl(c, RES_Tx_P);
663 write_zsctrl(c, RES_H_IUS);
667 * z8530_status_clear - Handle status events from a stopped chip
668 * @chan: Z8530 channel to shut up
670 * Status interrupt vectors for a Z8530 that is in 'parked' mode.
671 * For machines with PCI Z85x30 cards, or level triggered interrupts
672 * (eg the MacII) we must clear the interrupt cause or die.
675 static void z8530_status_clear(struct z8530_channel *chan)
677 u8 status=read_zsreg(chan, R0);
679 write_zsctrl(chan, ERR_RES);
680 write_zsctrl(chan, RES_EXT_INT);
681 write_zsctrl(chan, RES_H_IUS);
684 struct z8530_irqhandler z8530_nop=
692 EXPORT_SYMBOL(z8530_nop);
695 * z8530_interrupt - Handle an interrupt from a Z8530
696 * @irq: Interrupt number
697 * @dev_id: The Z8530 device that is interrupting.
700 * A Z85[2]30 device has stuck its hand in the air for attention.
701 * We scan both the channels on the chip for events and then call
702 * the channel specific call backs for each channel that has events.
703 * We have to use callback functions because the two channels can be
704 * in different modes.
706 * Locking is done for the handlers. Note that locking is done
707 * at the chip level (the 5uS delay issue is per chip not per
708 * channel). c->lock for both channels points to dev->lock
711 irqreturn_t z8530_interrupt(int irq, void *dev_id)
713 struct z8530_dev *dev=dev_id;
715 static volatile int locker=0;
717 struct z8530_irqhandler *irqs;
721 printk(KERN_ERR "IRQ re-enter\n");
726 spin_lock(&dev->lock);
731 intr = read_zsreg(&dev->chanA, R3);
732 if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
735 /* This holds the IRQ status. On the 8530 you must read it from chan
736 A even though it applies to the whole chip */
738 /* Now walk the chip and see what it is wanting - it may be
739 an IRQ for someone else remember */
741 irqs=dev->chanA.irqs;
743 if(intr & (CHARxIP|CHATxIP|CHAEXT))
746 irqs->rx(&dev->chanA);
748 irqs->tx(&dev->chanA);
750 irqs->status(&dev->chanA);
753 irqs=dev->chanB.irqs;
755 if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
758 irqs->rx(&dev->chanB);
760 irqs->tx(&dev->chanB);
762 irqs->status(&dev->chanB);
765 spin_unlock(&dev->lock);
767 printk(KERN_ERR "%s: interrupt jammed - abort(0x%X)!\n", dev->name, intr);
773 EXPORT_SYMBOL(z8530_interrupt);
775 static char reg_init[16]=
785 * z8530_sync_open - Open a Z8530 channel for PIO
786 * @dev: The network interface we are using
787 * @c: The Z8530 channel to open in synchronous PIO mode
789 * Switch a Z8530 into synchronous mode without DMA assist. We
790 * raise the RTS/DTR and commence network operation.
793 int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
797 spin_lock_irqsave(c->lock, flags);
800 c->mtu = dev->mtu+64;
804 c->irqs = &z8530_sync;
806 /* This loads the double buffer up */
807 z8530_rx_done(c); /* Load the frame ring */
808 z8530_rx_done(c); /* Load the backup frame */
811 c->regs[R1]|=TxINT_ENAB;
812 write_zsreg(c, R1, c->regs[R1]);
813 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
815 spin_unlock_irqrestore(c->lock, flags);
820 EXPORT_SYMBOL(z8530_sync_open);
823 * z8530_sync_close - Close a PIO Z8530 channel
824 * @dev: Network device to close
825 * @c: Z8530 channel to disassociate and move to idle
827 * Close down a Z8530 interface and switch its interrupt handlers
828 * to discard future events.
831 int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
836 spin_lock_irqsave(c->lock, flags);
837 c->irqs = &z8530_nop;
841 chk=read_zsreg(c,R0);
842 write_zsreg(c, R3, c->regs[R3]);
845 spin_unlock_irqrestore(c->lock, flags);
849 EXPORT_SYMBOL(z8530_sync_close);
852 * z8530_sync_dma_open - Open a Z8530 for DMA I/O
853 * @dev: The network device to attach
854 * @c: The Z8530 channel to configure in sync DMA mode.
856 * Set up a Z85x30 device for synchronous DMA in both directions. Two
857 * ISA DMA channels must be available for this to work. We assume ISA
858 * DMA driven I/O and PC limits on access.
861 int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
863 unsigned long cflags, dflags;
866 c->mtu = dev->mtu+64;
871 * Load the DMA interfaces up
877 * Allocate the DMA flip buffers. Limit by page size.
878 * Everyone runs 1500 mtu or less on wan links so this
882 if(c->mtu > PAGE_SIZE/2)
885 c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
886 if(c->rx_buf[0]==NULL)
888 c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
890 c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
891 if(c->tx_dma_buf[0]==NULL)
893 free_page((unsigned long)c->rx_buf[0]);
897 c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
905 * Enable DMA control mode
908 spin_lock_irqsave(c->lock, cflags);
914 c->regs[R14]|= DTRREQ;
915 write_zsreg(c, R14, c->regs[R14]);
917 c->regs[R1]&= ~TxINT_ENAB;
918 write_zsreg(c, R1, c->regs[R1]);
924 c->regs[R1]|= WT_FN_RDYFN;
925 c->regs[R1]|= WT_RDY_RT;
926 c->regs[R1]|= INT_ERR_Rx;
927 c->regs[R1]&= ~TxINT_ENAB;
928 write_zsreg(c, R1, c->regs[R1]);
929 c->regs[R1]|= WT_RDY_ENAB;
930 write_zsreg(c, R1, c->regs[R1]);
937 * Set up the DMA configuration
940 dflags=claim_dma_lock();
942 disable_dma(c->rxdma);
943 clear_dma_ff(c->rxdma);
944 set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
945 set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
946 set_dma_count(c->rxdma, c->mtu);
947 enable_dma(c->rxdma);
949 disable_dma(c->txdma);
950 clear_dma_ff(c->txdma);
951 set_dma_mode(c->txdma, DMA_MODE_WRITE);
952 disable_dma(c->txdma);
954 release_dma_lock(dflags);
957 * Select the DMA interrupt handlers
964 c->irqs = &z8530_dma_sync;
966 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
968 spin_unlock_irqrestore(c->lock, cflags);
973 EXPORT_SYMBOL(z8530_sync_dma_open);
976 * z8530_sync_dma_close - Close down DMA I/O
977 * @dev: Network device to detach
978 * @c: Z8530 channel to move into discard mode
980 * Shut down a DMA mode synchronous interface. Halt the DMA, and
984 int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
989 c->irqs = &z8530_nop;
994 * Disable the PC DMA channels
997 flags=claim_dma_lock();
998 disable_dma(c->rxdma);
999 clear_dma_ff(c->rxdma);
1003 disable_dma(c->txdma);
1004 clear_dma_ff(c->txdma);
1005 release_dma_lock(flags);
1010 spin_lock_irqsave(c->lock, flags);
1013 * Disable DMA control mode
1016 c->regs[R1]&= ~WT_RDY_ENAB;
1017 write_zsreg(c, R1, c->regs[R1]);
1018 c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1019 c->regs[R1]|= INT_ALL_Rx;
1020 write_zsreg(c, R1, c->regs[R1]);
1021 c->regs[R14]&= ~DTRREQ;
1022 write_zsreg(c, R14, c->regs[R14]);
1026 free_page((unsigned long)c->rx_buf[0]);
1029 if(c->tx_dma_buf[0])
1031 free_page((unsigned long)c->tx_dma_buf[0]);
1032 c->tx_dma_buf[0]=NULL;
1034 chk=read_zsreg(c,R0);
1035 write_zsreg(c, R3, c->regs[R3]);
1038 spin_unlock_irqrestore(c->lock, flags);
1043 EXPORT_SYMBOL(z8530_sync_dma_close);
1046 * z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1047 * @dev: The network device to attach
1048 * @c: The Z8530 channel to configure in sync DMA mode.
1050 * Set up a Z85x30 device for synchronous DMA tranmission. One
1051 * ISA DMA channel must be available for this to work. The receive
1052 * side is run in PIO mode, but then it has the bigger FIFO.
1055 int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
1057 unsigned long cflags, dflags;
1059 printk("Opening sync interface for TX-DMA\n");
1061 c->mtu = dev->mtu+64;
1067 * Allocate the DMA flip buffers. Limit by page size.
1068 * Everyone runs 1500 mtu or less on wan links so this
1072 if(c->mtu > PAGE_SIZE/2)
1075 c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
1076 if(c->tx_dma_buf[0]==NULL)
1079 c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
1082 spin_lock_irqsave(c->lock, cflags);
1085 * Load the PIO receive ring
1092 * Load the DMA interfaces up
1104 * Enable DMA control mode
1108 * TX DMA via DIR/REQ
1110 c->regs[R14]|= DTRREQ;
1111 write_zsreg(c, R14, c->regs[R14]);
1113 c->regs[R1]&= ~TxINT_ENAB;
1114 write_zsreg(c, R1, c->regs[R1]);
1117 * Set up the DMA configuration
1120 dflags = claim_dma_lock();
1122 disable_dma(c->txdma);
1123 clear_dma_ff(c->txdma);
1124 set_dma_mode(c->txdma, DMA_MODE_WRITE);
1125 disable_dma(c->txdma);
1127 release_dma_lock(dflags);
1130 * Select the DMA interrupt handlers
1137 c->irqs = &z8530_txdma_sync;
1139 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1140 spin_unlock_irqrestore(c->lock, cflags);
1145 EXPORT_SYMBOL(z8530_sync_txdma_open);
1148 * z8530_sync_txdma_close - Close down a TX driven DMA channel
1149 * @dev: Network device to detach
1150 * @c: Z8530 channel to move into discard mode
1152 * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
1153 * and free the buffers.
1156 int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
1158 unsigned long dflags, cflags;
1162 spin_lock_irqsave(c->lock, cflags);
1164 c->irqs = &z8530_nop;
1169 * Disable the PC DMA channels
1172 dflags = claim_dma_lock();
1174 disable_dma(c->txdma);
1175 clear_dma_ff(c->txdma);
1179 release_dma_lock(dflags);
1182 * Disable DMA control mode
1185 c->regs[R1]&= ~WT_RDY_ENAB;
1186 write_zsreg(c, R1, c->regs[R1]);
1187 c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1188 c->regs[R1]|= INT_ALL_Rx;
1189 write_zsreg(c, R1, c->regs[R1]);
1190 c->regs[R14]&= ~DTRREQ;
1191 write_zsreg(c, R14, c->regs[R14]);
1193 if(c->tx_dma_buf[0])
1195 free_page((unsigned long)c->tx_dma_buf[0]);
1196 c->tx_dma_buf[0]=NULL;
1198 chk=read_zsreg(c,R0);
1199 write_zsreg(c, R3, c->regs[R3]);
1202 spin_unlock_irqrestore(c->lock, cflags);
1207 EXPORT_SYMBOL(z8530_sync_txdma_close);
1211 * Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1215 static char *z8530_type_name[]={
1222 * z8530_describe - Uniformly describe a Z8530 port
1223 * @dev: Z8530 device to describe
1224 * @mapping: string holding mapping type (eg "I/O" or "Mem")
1225 * @io: the port value in question
1227 * Describe a Z8530 in a standard format. We must pass the I/O as
1228 * the port offset isnt predictable. The main reason for this function
1229 * is to try and get a common format of report.
1232 void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
1234 printk(KERN_INFO "%s: %s found at %s 0x%lX, IRQ %d.\n",
1236 z8530_type_name[dev->type],
1242 EXPORT_SYMBOL(z8530_describe);
1245 * Locked operation part of the z8530 init code
1248 static inline int do_z8530_init(struct z8530_dev *dev)
1250 /* NOP the interrupt handlers first - we might get a
1251 floating IRQ transition when we reset the chip */
1252 dev->chanA.irqs=&z8530_nop;
1253 dev->chanB.irqs=&z8530_nop;
1254 dev->chanA.dcdcheck=DCD;
1255 dev->chanB.dcdcheck=DCD;
1257 /* Reset the chip */
1258 write_zsreg(&dev->chanA, R9, 0xC0);
1260 /* Now check its valid */
1261 write_zsreg(&dev->chanA, R12, 0xAA);
1262 if(read_zsreg(&dev->chanA, R12)!=0xAA)
1264 write_zsreg(&dev->chanA, R12, 0x55);
1265 if(read_zsreg(&dev->chanA, R12)!=0x55)
1271 * See the application note.
1274 write_zsreg(&dev->chanA, R15, 0x01);
1277 * If we can set the low bit of R15 then
1278 * the chip is enhanced.
1281 if(read_zsreg(&dev->chanA, R15)==0x01)
1283 /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1284 /* Put a char in the fifo */
1285 write_zsreg(&dev->chanA, R8, 0);
1286 if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
1287 dev->type = Z85230; /* Has a FIFO */
1289 dev->type = Z85C30; /* Z85C30, 1 byte FIFO */
1293 * The code assumes R7' and friends are
1294 * off. Use write_zsext() for these and keep
1298 write_zsreg(&dev->chanA, R15, 0);
1301 * At this point it looks like the chip is behaving
1304 memcpy(dev->chanA.regs, reg_init, 16);
1305 memcpy(dev->chanB.regs, reg_init ,16);
1311 * z8530_init - Initialise a Z8530 device
1312 * @dev: Z8530 device to initialise.
1314 * Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1315 * is present, identify the type and then program it to hopefully
1316 * keep quite and behave. This matters a lot, a Z8530 in the wrong
1317 * state will sometimes get into stupid modes generating 10Khz
1318 * interrupt streams and the like.
1320 * We set the interrupt handler up to discard any events, in case
1321 * we get them during reset or setp.
1323 * Return 0 for success, or a negative value indicating the problem
1327 int z8530_init(struct z8530_dev *dev)
1329 unsigned long flags;
1332 /* Set up the chip level lock */
1333 spin_lock_init(&dev->lock);
1334 dev->chanA.lock = &dev->lock;
1335 dev->chanB.lock = &dev->lock;
1337 spin_lock_irqsave(&dev->lock, flags);
1338 ret = do_z8530_init(dev);
1339 spin_unlock_irqrestore(&dev->lock, flags);
1345 EXPORT_SYMBOL(z8530_init);
1348 * z8530_shutdown - Shutdown a Z8530 device
1349 * @dev: The Z8530 chip to shutdown
1351 * We set the interrupt handlers to silence any interrupts. We then
1352 * reset the chip and wait 100uS to be sure the reset completed. Just
1353 * in case the caller then tries to do stuff.
1355 * This is called without the lock held
1358 int z8530_shutdown(struct z8530_dev *dev)
1360 unsigned long flags;
1361 /* Reset the chip */
1363 spin_lock_irqsave(&dev->lock, flags);
1364 dev->chanA.irqs=&z8530_nop;
1365 dev->chanB.irqs=&z8530_nop;
1366 write_zsreg(&dev->chanA, R9, 0xC0);
1367 /* We must lock the udelay, the chip is offlimits here */
1369 spin_unlock_irqrestore(&dev->lock, flags);
1373 EXPORT_SYMBOL(z8530_shutdown);
1376 * z8530_channel_load - Load channel data
1377 * @c: Z8530 channel to configure
1378 * @rtable: table of register, value pairs
1379 * FIXME: ioctl to allow user uploaded tables
1381 * Load a Z8530 channel up from the system data. We use +16 to
1382 * indicate the "prime" registers. The value 255 terminates the
1386 int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
1388 unsigned long flags;
1390 spin_lock_irqsave(c->lock, flags);
1396 write_zsreg(c, R15, c->regs[15]|1);
1397 write_zsreg(c, reg&0x0F, *rtable);
1399 write_zsreg(c, R15, c->regs[15]&~1);
1400 c->regs[reg]=*rtable++;
1402 c->rx_function=z8530_null_rx;
1405 c->tx_next_skb=NULL;
1409 c->status=read_zsreg(c, R0);
1411 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1413 spin_unlock_irqrestore(c->lock, flags);
1417 EXPORT_SYMBOL(z8530_channel_load);
1421 * z8530_tx_begin - Begin packet transmission
1422 * @c: The Z8530 channel to kick
1424 * This is the speed sensitive side of transmission. If we are called
1425 * and no buffer is being transmitted we commence the next buffer. If
1426 * nothing is queued we idle the sync.
1428 * Note: We are handling this code path in the interrupt path, keep it
1429 * fast or bad things will happen.
1431 * Called with the lock held.
1434 static void z8530_tx_begin(struct z8530_channel *c)
1436 unsigned long flags;
1440 c->tx_skb=c->tx_next_skb;
1441 c->tx_next_skb=NULL;
1442 c->tx_ptr=c->tx_next_ptr;
1449 flags=claim_dma_lock();
1450 disable_dma(c->txdma);
1452 * Check if we crapped out.
1454 if (get_dma_residue(c->txdma))
1456 c->netdevice->stats.tx_dropped++;
1457 c->netdevice->stats.tx_fifo_errors++;
1459 release_dma_lock(flags);
1465 c->txcount=c->tx_skb->len;
1471 * FIXME. DMA is broken for the original 8530,
1472 * on the older parts we need to set a flag and
1473 * wait for a further TX interrupt to fire this
1477 flags=claim_dma_lock();
1478 disable_dma(c->txdma);
1481 * These two are needed by the 8530/85C30
1482 * and must be issued when idling.
1485 if(c->dev->type!=Z85230)
1487 write_zsctrl(c, RES_Tx_CRC);
1488 write_zsctrl(c, RES_EOM_L);
1490 write_zsreg(c, R10, c->regs[10]&~ABUNDER);
1491 clear_dma_ff(c->txdma);
1492 set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
1493 set_dma_count(c->txdma, c->txcount);
1494 enable_dma(c->txdma);
1495 release_dma_lock(flags);
1496 write_zsctrl(c, RES_EOM_L);
1497 write_zsreg(c, R5, c->regs[R5]|TxENAB);
1503 write_zsreg(c, R10, c->regs[10]);
1504 write_zsctrl(c, RES_Tx_CRC);
1506 while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
1508 write_zsreg(c, R8, *c->tx_ptr++);
1515 * Since we emptied tx_skb we can ask for more
1517 netif_wake_queue(c->netdevice);
1521 * z8530_tx_done - TX complete callback
1522 * @c: The channel that completed a transmit.
1524 * This is called when we complete a packet send. We wake the queue,
1525 * start the next packet going and then free the buffer of the existing
1526 * packet. This code is fairly timing sensitive.
1528 * Called with the register lock held.
1531 static void z8530_tx_done(struct z8530_channel *c)
1533 struct sk_buff *skb;
1535 /* Actually this can happen.*/
1536 if (c->tx_skb == NULL)
1542 c->netdevice->stats.tx_packets++;
1543 c->netdevice->stats.tx_bytes += skb->len;
1544 dev_kfree_skb_irq(skb);
1548 * z8530_null_rx - Discard a packet
1549 * @c: The channel the packet arrived on
1552 * We point the receive handler at this function when idle. Instead
1553 * of processing the frames we get to throw them away.
1556 void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
1558 dev_kfree_skb_any(skb);
1561 EXPORT_SYMBOL(z8530_null_rx);
1564 * z8530_rx_done - Receive completion callback
1565 * @c: The channel that completed a receive
1567 * A new packet is complete. Our goal here is to get back into receive
1568 * mode as fast as possible. On the Z85230 we could change to using
1569 * ESCC mode, but on the older chips we have no choice. We flip to the
1570 * new buffer immediately in DMA mode so that the DMA of the next
1571 * frame can occur while we are copying the previous buffer to an sk_buff
1573 * Called with the lock held
1576 static void z8530_rx_done(struct z8530_channel *c)
1578 struct sk_buff *skb;
1582 * Is our receive engine in DMA mode
1588 * Save the ready state and the buffer currently
1589 * being used as the DMA target
1592 int ready=c->dma_ready;
1593 unsigned char *rxb=c->rx_buf[c->dma_num];
1594 unsigned long flags;
1597 * Complete this DMA. Neccessary to find the length
1600 flags=claim_dma_lock();
1602 disable_dma(c->rxdma);
1603 clear_dma_ff(c->rxdma);
1605 ct=c->mtu-get_dma_residue(c->rxdma);
1607 ct=2; /* Shit happens.. */
1611 * Normal case: the other slot is free, start the next DMA
1612 * into it immediately.
1618 set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
1619 set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
1620 set_dma_count(c->rxdma, c->mtu);
1622 enable_dma(c->rxdma);
1623 /* Stop any frames that we missed the head of
1625 write_zsreg(c, R0, RES_Rx_CRC);
1628 /* Can't occur as we dont reenable the DMA irq until
1629 after the flip is done */
1630 printk(KERN_WARNING "%s: DMA flip overrun!\n",
1631 c->netdevice->name);
1633 release_dma_lock(flags);
1636 * Shove the old buffer into an sk_buff. We can't DMA
1637 * directly into one on a PC - it might be above the 16Mb
1638 * boundary. Optimisation - we could check to see if we
1639 * can avoid the copy. Optimisation 2 - make the memcpy
1643 skb = dev_alloc_skb(ct);
1645 c->netdevice->stats.rx_dropped++;
1646 printk(KERN_WARNING "%s: Memory squeeze.\n",
1647 c->netdevice->name);
1650 skb_copy_to_linear_data(skb, rxb, ct);
1651 c->netdevice->stats.rx_packets++;
1652 c->netdevice->stats.rx_bytes += ct;
1660 * The game we play for non DMA is similar. We want to
1661 * get the controller set up for the next packet as fast
1662 * as possible. We potentially only have one byte + the
1663 * fifo length for this. Thus we want to flip to the new
1664 * buffer and then mess around copying and allocating
1665 * things. For the current case it doesn't matter but
1666 * if you build a system where the sync irq isnt blocked
1667 * by the kernel IRQ disable then you need only block the
1668 * sync IRQ for the RT_LOCK area.
1677 c->dptr = c->skb->data;
1685 c->skb2 = dev_alloc_skb(c->mtu);
1686 if (c->skb2 == NULL)
1687 printk(KERN_WARNING "%s: memory squeeze.\n",
1688 c->netdevice->name);
1690 skb_put(c->skb2, c->mtu);
1691 c->netdevice->stats.rx_packets++;
1692 c->netdevice->stats.rx_bytes += ct;
1695 * If we received a frame we must now process it.
1699 c->rx_function(c, skb);
1701 c->netdevice->stats.rx_dropped++;
1702 printk(KERN_ERR "%s: Lost a frame\n", c->netdevice->name);
1707 * spans_boundary - Check a packet can be ISA DMA'd
1708 * @skb: The buffer to check
1710 * Returns true if the buffer cross a DMA boundary on a PC. The poor
1711 * thing can only DMA within a 64K block not across the edges of it.
1714 static inline int spans_boundary(struct sk_buff *skb)
1716 unsigned long a=(unsigned long)skb->data;
1718 if(a&0x00010000) /* If the 64K bit is different.. */
1724 * z8530_queue_xmit - Queue a packet
1725 * @c: The channel to use
1726 * @skb: The packet to kick down the channel
1728 * Queue a packet for transmission. Because we have rather
1729 * hard to hit interrupt latencies for the Z85230 per packet
1730 * even in DMA mode we do the flip to DMA buffer if needed here
1733 * Called from the network code. The lock is not held at this
1737 int z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
1739 unsigned long flags;
1741 netif_stop_queue(c->netdevice);
1747 /* PC SPECIFIC - DMA limits */
1750 * If we will DMA the transmit and its gone over the ISA bus
1751 * limit, then copy to the flip buffer
1754 if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
1757 * Send the flip buffer, and flip the flippy bit.
1758 * We don't care which is used when just so long as
1759 * we never use the same buffer twice in a row. Since
1760 * only one buffer can be going out at a time the other
1763 c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
1764 c->tx_dma_used^=1; /* Flip temp buffer */
1765 skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
1768 c->tx_next_ptr=skb->data;
1773 spin_lock_irqsave(c->lock, flags);
1775 spin_unlock_irqrestore(c->lock, flags);
1780 EXPORT_SYMBOL(z8530_queue_xmit);
1785 static char banner[] __initdata = KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
1787 static int __init z85230_init_driver(void)
1792 module_init(z85230_init_driver);
1794 static void __exit z85230_cleanup_driver(void)
1797 module_exit(z85230_cleanup_driver);
1799 MODULE_AUTHOR("Red Hat Inc.");
1800 MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1801 MODULE_LICENSE("GPL");