libata: fix ata_dev_disable()
[linux-2.6] / drivers / char / tty_io.c
1 /*
2  *  linux/drivers/char/tty_io.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9  * or rs-channels. It also implements echoing, cooked mode etc.
10  *
11  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12  *
13  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14  * tty_struct and tty_queue structures.  Previously there was an array
15  * of 256 tty_struct's which was statically allocated, and the
16  * tty_queue structures were allocated at boot time.  Both are now
17  * dynamically allocated only when the tty is open.
18  *
19  * Also restructured routines so that there is more of a separation
20  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21  * the low-level tty routines (serial.c, pty.c, console.c).  This
22  * makes for cleaner and more compact code.  -TYT, 9/17/92 
23  *
24  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25  * which can be dynamically activated and de-activated by the line
26  * discipline handling modules (like SLIP).
27  *
28  * NOTE: pay no attention to the line discipline code (yet); its
29  * interface is still subject to change in this version...
30  * -- TYT, 1/31/92
31  *
32  * Added functionality to the OPOST tty handling.  No delays, but all
33  * other bits should be there.
34  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35  *
36  * Rewrote canonical mode and added more termios flags.
37  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38  *
39  * Reorganized FASYNC support so mouse code can share it.
40  *      -- ctm@ardi.com, 9Sep95
41  *
42  * New TIOCLINUX variants added.
43  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
44  * 
45  * Restrict vt switching via ioctl()
46  *      -- grif@cs.ucr.edu, 5-Dec-95
47  *
48  * Move console and virtual terminal code to more appropriate files,
49  * implement CONFIG_VT and generalize console device interface.
50  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51  *
52  * Rewrote init_dev and release_dev to eliminate races.
53  *      -- Bill Hawes <whawes@star.net>, June 97
54  *
55  * Added devfs support.
56  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57  *
58  * Added support for a Unix98-style ptmx device.
59  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60  *
61  * Reduced memory usage for older ARM systems
62  *      -- Russell King <rmk@arm.linux.org.uk>
63  *
64  * Move do_SAK() into process context.  Less stack use in devfs functions.
65  * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66  */
67
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
97
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106
107 #undef TTY_DEBUG_HANGUP
108
109 #define TTY_PARANOIA_CHECK 1
110 #define CHECK_TTY_COUNT 1
111
112 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
113         .c_iflag = ICRNL | IXON,
114         .c_oflag = OPOST | ONLCR,
115         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
116         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
117                    ECHOCTL | ECHOKE | IEXTEN,
118         .c_cc = INIT_C_CC,
119         .c_ispeed = 38400,
120         .c_ospeed = 38400
121 };
122
123 EXPORT_SYMBOL(tty_std_termios);
124
125 /* This list gets poked at by procfs and various bits of boot up code. This
126    could do with some rationalisation such as pulling the tty proc function
127    into this file */
128    
129 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
130
131 /* Mutex to protect creating and releasing a tty. This is shared with
132    vt.c for deeply disgusting hack reasons */
133 DEFINE_MUTEX(tty_mutex);
134 EXPORT_SYMBOL(tty_mutex);
135
136 #ifdef CONFIG_UNIX98_PTYS
137 extern struct tty_driver *ptm_driver;   /* Unix98 pty masters; for /dev/ptmx */
138 extern int pty_limit;           /* Config limit on Unix98 ptys */
139 static DEFINE_IDR(allocated_ptys);
140 static DECLARE_MUTEX(allocated_ptys_lock);
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
143
144 static void initialize_tty_struct(struct tty_struct *tty);
145
146 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
147 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
148 ssize_t redirected_tty_write(struct file *, const char __user *, size_t, loff_t *);
149 static unsigned int tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 static int tty_release(struct inode *, struct file *);
152 int tty_ioctl(struct inode * inode, struct file * file,
153               unsigned int cmd, unsigned long arg);
154 #ifdef CONFIG_COMPAT
155 static long tty_compat_ioctl(struct file * file, unsigned int cmd,
156                                 unsigned long arg);
157 #else
158 #define tty_compat_ioctl NULL
159 #endif
160 static int tty_fasync(int fd, struct file * filp, int on);
161 static void release_tty(struct tty_struct *tty, int idx);
162 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
163 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
164
165 /**
166  *      alloc_tty_struct        -       allocate a tty object
167  *
168  *      Return a new empty tty structure. The data fields have not
169  *      been initialized in any way but has been zeroed
170  *
171  *      Locking: none
172  */
173
174 static struct tty_struct *alloc_tty_struct(void)
175 {
176         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
177 }
178
179 static void tty_buffer_free_all(struct tty_struct *);
180
181 /**
182  *      free_tty_struct         -       free a disused tty
183  *      @tty: tty struct to free
184  *
185  *      Free the write buffers, tty queue and tty memory itself.
186  *
187  *      Locking: none. Must be called after tty is definitely unused
188  */
189
190 static inline void free_tty_struct(struct tty_struct *tty)
191 {
192         kfree(tty->write_buf);
193         tty_buffer_free_all(tty);
194         kfree(tty);
195 }
196
197 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
198
199 /**
200  *      tty_name        -       return tty naming
201  *      @tty: tty structure
202  *      @buf: buffer for output
203  *
204  *      Convert a tty structure into a name. The name reflects the kernel
205  *      naming policy and if udev is in use may not reflect user space
206  *
207  *      Locking: none
208  */
209
210 char *tty_name(struct tty_struct *tty, char *buf)
211 {
212         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
213                 strcpy(buf, "NULL tty");
214         else
215                 strcpy(buf, tty->name);
216         return buf;
217 }
218
219 EXPORT_SYMBOL(tty_name);
220
221 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
222                               const char *routine)
223 {
224 #ifdef TTY_PARANOIA_CHECK
225         if (!tty) {
226                 printk(KERN_WARNING
227                         "null TTY for (%d:%d) in %s\n",
228                         imajor(inode), iminor(inode), routine);
229                 return 1;
230         }
231         if (tty->magic != TTY_MAGIC) {
232                 printk(KERN_WARNING
233                         "bad magic number for tty struct (%d:%d) in %s\n",
234                         imajor(inode), iminor(inode), routine);
235                 return 1;
236         }
237 #endif
238         return 0;
239 }
240
241 static int check_tty_count(struct tty_struct *tty, const char *routine)
242 {
243 #ifdef CHECK_TTY_COUNT
244         struct list_head *p;
245         int count = 0;
246         
247         file_list_lock();
248         list_for_each(p, &tty->tty_files) {
249                 count++;
250         }
251         file_list_unlock();
252         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
253             tty->driver->subtype == PTY_TYPE_SLAVE &&
254             tty->link && tty->link->count)
255                 count++;
256         if (tty->count != count) {
257                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
258                                     "!= #fd's(%d) in %s\n",
259                        tty->name, tty->count, count, routine);
260                 return count;
261         }
262 #endif
263         return 0;
264 }
265
266 /*
267  * Tty buffer allocation management
268  */
269
270 /**
271  *      tty_buffer_free_all             -       free buffers used by a tty
272  *      @tty: tty to free from
273  *
274  *      Remove all the buffers pending on a tty whether queued with data
275  *      or in the free ring. Must be called when the tty is no longer in use
276  *
277  *      Locking: none
278  */
279
280 static void tty_buffer_free_all(struct tty_struct *tty)
281 {
282         struct tty_buffer *thead;
283         while((thead = tty->buf.head) != NULL) {
284                 tty->buf.head = thead->next;
285                 kfree(thead);
286         }
287         while((thead = tty->buf.free) != NULL) {
288                 tty->buf.free = thead->next;
289                 kfree(thead);
290         }
291         tty->buf.tail = NULL;
292         tty->buf.memory_used = 0;
293 }
294
295 /**
296  *      tty_buffer_init         -       prepare a tty buffer structure
297  *      @tty: tty to initialise
298  *
299  *      Set up the initial state of the buffer management for a tty device.
300  *      Must be called before the other tty buffer functions are used.
301  *
302  *      Locking: none
303  */
304
305 static void tty_buffer_init(struct tty_struct *tty)
306 {
307         spin_lock_init(&tty->buf.lock);
308         tty->buf.head = NULL;
309         tty->buf.tail = NULL;
310         tty->buf.free = NULL;
311         tty->buf.memory_used = 0;
312 }
313
314 /**
315  *      tty_buffer_alloc        -       allocate a tty buffer
316  *      @tty: tty device
317  *      @size: desired size (characters)
318  *
319  *      Allocate a new tty buffer to hold the desired number of characters.
320  *      Return NULL if out of memory or the allocation would exceed the
321  *      per device queue
322  *
323  *      Locking: Caller must hold tty->buf.lock
324  */
325
326 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
327 {
328         struct tty_buffer *p;
329
330         if (tty->buf.memory_used + size > 65536)
331                 return NULL;
332         p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
333         if(p == NULL)
334                 return NULL;
335         p->used = 0;
336         p->size = size;
337         p->next = NULL;
338         p->commit = 0;
339         p->read = 0;
340         p->char_buf_ptr = (char *)(p->data);
341         p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
342         tty->buf.memory_used += size;
343         return p;
344 }
345
346 /**
347  *      tty_buffer_free         -       free a tty buffer
348  *      @tty: tty owning the buffer
349  *      @b: the buffer to free
350  *
351  *      Free a tty buffer, or add it to the free list according to our
352  *      internal strategy
353  *
354  *      Locking: Caller must hold tty->buf.lock
355  */
356
357 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
358 {
359         /* Dumb strategy for now - should keep some stats */
360         tty->buf.memory_used -= b->size;
361         WARN_ON(tty->buf.memory_used < 0);
362
363         if(b->size >= 512)
364                 kfree(b);
365         else {
366                 b->next = tty->buf.free;
367                 tty->buf.free = b;
368         }
369 }
370
371 /**
372  *      tty_buffer_flush                -       flush full tty buffers
373  *      @tty: tty to flush
374  *
375  *      flush all the buffers containing receive data
376  *
377  *      Locking: none
378  */
379
380 static void tty_buffer_flush(struct tty_struct *tty)
381 {
382         struct tty_buffer *thead;
383         unsigned long flags;
384
385         spin_lock_irqsave(&tty->buf.lock, flags);
386         while((thead = tty->buf.head) != NULL) {
387                 tty->buf.head = thead->next;
388                 tty_buffer_free(tty, thead);
389         }
390         tty->buf.tail = NULL;
391         spin_unlock_irqrestore(&tty->buf.lock, flags);
392 }
393
394 /**
395  *      tty_buffer_find         -       find a free tty buffer
396  *      @tty: tty owning the buffer
397  *      @size: characters wanted
398  *
399  *      Locate an existing suitable tty buffer or if we are lacking one then
400  *      allocate a new one. We round our buffers off in 256 character chunks
401  *      to get better allocation behaviour.
402  *
403  *      Locking: Caller must hold tty->buf.lock
404  */
405
406 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
407 {
408         struct tty_buffer **tbh = &tty->buf.free;
409         while((*tbh) != NULL) {
410                 struct tty_buffer *t = *tbh;
411                 if(t->size >= size) {
412                         *tbh = t->next;
413                         t->next = NULL;
414                         t->used = 0;
415                         t->commit = 0;
416                         t->read = 0;
417                         tty->buf.memory_used += t->size;
418                         return t;
419                 }
420                 tbh = &((*tbh)->next);
421         }
422         /* Round the buffer size out */
423         size = (size + 0xFF) & ~ 0xFF;
424         return tty_buffer_alloc(tty, size);
425         /* Should possibly check if this fails for the largest buffer we
426            have queued and recycle that ? */
427 }
428
429 /**
430  *      tty_buffer_request_room         -       grow tty buffer if needed
431  *      @tty: tty structure
432  *      @size: size desired
433  *
434  *      Make at least size bytes of linear space available for the tty
435  *      buffer. If we fail return the size we managed to find.
436  *
437  *      Locking: Takes tty->buf.lock
438  */
439 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
440 {
441         struct tty_buffer *b, *n;
442         int left;
443         unsigned long flags;
444
445         spin_lock_irqsave(&tty->buf.lock, flags);
446
447         /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
448            remove this conditional if its worth it. This would be invisible
449            to the callers */
450         if ((b = tty->buf.tail) != NULL)
451                 left = b->size - b->used;
452         else
453                 left = 0;
454
455         if (left < size) {
456                 /* This is the slow path - looking for new buffers to use */
457                 if ((n = tty_buffer_find(tty, size)) != NULL) {
458                         if (b != NULL) {
459                                 b->next = n;
460                                 b->commit = b->used;
461                         } else
462                                 tty->buf.head = n;
463                         tty->buf.tail = n;
464                 } else
465                         size = left;
466         }
467
468         spin_unlock_irqrestore(&tty->buf.lock, flags);
469         return size;
470 }
471 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
472
473 /**
474  *      tty_insert_flip_string  -       Add characters to the tty buffer
475  *      @tty: tty structure
476  *      @chars: characters
477  *      @size: size
478  *
479  *      Queue a series of bytes to the tty buffering. All the characters
480  *      passed are marked as without error. Returns the number added.
481  *
482  *      Locking: Called functions may take tty->buf.lock
483  */
484
485 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
486                                 size_t size)
487 {
488         int copied = 0;
489         do {
490                 int space = tty_buffer_request_room(tty, size - copied);
491                 struct tty_buffer *tb = tty->buf.tail;
492                 /* If there is no space then tb may be NULL */
493                 if(unlikely(space == 0))
494                         break;
495                 memcpy(tb->char_buf_ptr + tb->used, chars, space);
496                 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
497                 tb->used += space;
498                 copied += space;
499                 chars += space;
500                 /* There is a small chance that we need to split the data over
501                    several buffers. If this is the case we must loop */
502         } while (unlikely(size > copied));
503         return copied;
504 }
505 EXPORT_SYMBOL(tty_insert_flip_string);
506
507 /**
508  *      tty_insert_flip_string_flags    -       Add characters to the tty buffer
509  *      @tty: tty structure
510  *      @chars: characters
511  *      @flags: flag bytes
512  *      @size: size
513  *
514  *      Queue a series of bytes to the tty buffering. For each character
515  *      the flags array indicates the status of the character. Returns the
516  *      number added.
517  *
518  *      Locking: Called functions may take tty->buf.lock
519  */
520
521 int tty_insert_flip_string_flags(struct tty_struct *tty,
522                 const unsigned char *chars, const char *flags, size_t size)
523 {
524         int copied = 0;
525         do {
526                 int space = tty_buffer_request_room(tty, size - copied);
527                 struct tty_buffer *tb = tty->buf.tail;
528                 /* If there is no space then tb may be NULL */
529                 if(unlikely(space == 0))
530                         break;
531                 memcpy(tb->char_buf_ptr + tb->used, chars, space);
532                 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
533                 tb->used += space;
534                 copied += space;
535                 chars += space;
536                 flags += space;
537                 /* There is a small chance that we need to split the data over
538                    several buffers. If this is the case we must loop */
539         } while (unlikely(size > copied));
540         return copied;
541 }
542 EXPORT_SYMBOL(tty_insert_flip_string_flags);
543
544 /**
545  *      tty_schedule_flip       -       push characters to ldisc
546  *      @tty: tty to push from
547  *
548  *      Takes any pending buffers and transfers their ownership to the
549  *      ldisc side of the queue. It then schedules those characters for
550  *      processing by the line discipline.
551  *
552  *      Locking: Takes tty->buf.lock
553  */
554
555 void tty_schedule_flip(struct tty_struct *tty)
556 {
557         unsigned long flags;
558         spin_lock_irqsave(&tty->buf.lock, flags);
559         if (tty->buf.tail != NULL)
560                 tty->buf.tail->commit = tty->buf.tail->used;
561         spin_unlock_irqrestore(&tty->buf.lock, flags);
562         schedule_delayed_work(&tty->buf.work, 1);
563 }
564 EXPORT_SYMBOL(tty_schedule_flip);
565
566 /**
567  *      tty_prepare_flip_string         -       make room for characters
568  *      @tty: tty
569  *      @chars: return pointer for character write area
570  *      @size: desired size
571  *
572  *      Prepare a block of space in the buffer for data. Returns the length
573  *      available and buffer pointer to the space which is now allocated and
574  *      accounted for as ready for normal characters. This is used for drivers
575  *      that need their own block copy routines into the buffer. There is no
576  *      guarantee the buffer is a DMA target!
577  *
578  *      Locking: May call functions taking tty->buf.lock
579  */
580
581 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars, size_t size)
582 {
583         int space = tty_buffer_request_room(tty, size);
584         if (likely(space)) {
585                 struct tty_buffer *tb = tty->buf.tail;
586                 *chars = tb->char_buf_ptr + tb->used;
587                 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
588                 tb->used += space;
589         }
590         return space;
591 }
592
593 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
594
595 /**
596  *      tty_prepare_flip_string_flags   -       make room for characters
597  *      @tty: tty
598  *      @chars: return pointer for character write area
599  *      @flags: return pointer for status flag write area
600  *      @size: desired size
601  *
602  *      Prepare a block of space in the buffer for data. Returns the length
603  *      available and buffer pointer to the space which is now allocated and
604  *      accounted for as ready for characters. This is used for drivers
605  *      that need their own block copy routines into the buffer. There is no
606  *      guarantee the buffer is a DMA target!
607  *
608  *      Locking: May call functions taking tty->buf.lock
609  */
610
611 int tty_prepare_flip_string_flags(struct tty_struct *tty, unsigned char **chars, char **flags, size_t size)
612 {
613         int space = tty_buffer_request_room(tty, size);
614         if (likely(space)) {
615                 struct tty_buffer *tb = tty->buf.tail;
616                 *chars = tb->char_buf_ptr + tb->used;
617                 *flags = tb->flag_buf_ptr + tb->used;
618                 tb->used += space;
619         }
620         return space;
621 }
622
623 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
624
625
626
627 /**
628  *      tty_set_termios_ldisc           -       set ldisc field
629  *      @tty: tty structure
630  *      @num: line discipline number
631  *
632  *      This is probably overkill for real world processors but
633  *      they are not on hot paths so a little discipline won't do 
634  *      any harm.
635  *
636  *      Locking: takes termios_mutex
637  */
638  
639 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
640 {
641         mutex_lock(&tty->termios_mutex);
642         tty->termios->c_line = num;
643         mutex_unlock(&tty->termios_mutex);
644 }
645
646 /*
647  *      This guards the refcounted line discipline lists. The lock
648  *      must be taken with irqs off because there are hangup path
649  *      callers who will do ldisc lookups and cannot sleep.
650  */
651  
652 static DEFINE_SPINLOCK(tty_ldisc_lock);
653 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
654 static struct tty_ldisc tty_ldiscs[NR_LDISCS];  /* line disc dispatch table */
655
656 /**
657  *      tty_register_ldisc      -       install a line discipline
658  *      @disc: ldisc number
659  *      @new_ldisc: pointer to the ldisc object
660  *
661  *      Installs a new line discipline into the kernel. The discipline
662  *      is set up as unreferenced and then made available to the kernel
663  *      from this point onwards.
664  *
665  *      Locking:
666  *              takes tty_ldisc_lock to guard against ldisc races
667  */
668
669 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
670 {
671         unsigned long flags;
672         int ret = 0;
673         
674         if (disc < N_TTY || disc >= NR_LDISCS)
675                 return -EINVAL;
676         
677         spin_lock_irqsave(&tty_ldisc_lock, flags);
678         tty_ldiscs[disc] = *new_ldisc;
679         tty_ldiscs[disc].num = disc;
680         tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
681         tty_ldiscs[disc].refcount = 0;
682         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
683         
684         return ret;
685 }
686 EXPORT_SYMBOL(tty_register_ldisc);
687
688 /**
689  *      tty_unregister_ldisc    -       unload a line discipline
690  *      @disc: ldisc number
691  *      @new_ldisc: pointer to the ldisc object
692  *
693  *      Remove a line discipline from the kernel providing it is not
694  *      currently in use.
695  *
696  *      Locking:
697  *              takes tty_ldisc_lock to guard against ldisc races
698  */
699
700 int tty_unregister_ldisc(int disc)
701 {
702         unsigned long flags;
703         int ret = 0;
704
705         if (disc < N_TTY || disc >= NR_LDISCS)
706                 return -EINVAL;
707
708         spin_lock_irqsave(&tty_ldisc_lock, flags);
709         if (tty_ldiscs[disc].refcount)
710                 ret = -EBUSY;
711         else
712                 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
713         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
714
715         return ret;
716 }
717 EXPORT_SYMBOL(tty_unregister_ldisc);
718
719 /**
720  *      tty_ldisc_get           -       take a reference to an ldisc
721  *      @disc: ldisc number
722  *
723  *      Takes a reference to a line discipline. Deals with refcounts and
724  *      module locking counts. Returns NULL if the discipline is not available.
725  *      Returns a pointer to the discipline and bumps the ref count if it is
726  *      available
727  *
728  *      Locking:
729  *              takes tty_ldisc_lock to guard against ldisc races
730  */
731
732 struct tty_ldisc *tty_ldisc_get(int disc)
733 {
734         unsigned long flags;
735         struct tty_ldisc *ld;
736
737         if (disc < N_TTY || disc >= NR_LDISCS)
738                 return NULL;
739         
740         spin_lock_irqsave(&tty_ldisc_lock, flags);
741
742         ld = &tty_ldiscs[disc];
743         /* Check the entry is defined */
744         if(ld->flags & LDISC_FLAG_DEFINED)
745         {
746                 /* If the module is being unloaded we can't use it */
747                 if (!try_module_get(ld->owner))
748                         ld = NULL;
749                 else /* lock it */
750                         ld->refcount++;
751         }
752         else
753                 ld = NULL;
754         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
755         return ld;
756 }
757
758 EXPORT_SYMBOL_GPL(tty_ldisc_get);
759
760 /**
761  *      tty_ldisc_put           -       drop ldisc reference
762  *      @disc: ldisc number
763  *
764  *      Drop a reference to a line discipline. Manage refcounts and
765  *      module usage counts
766  *
767  *      Locking:
768  *              takes tty_ldisc_lock to guard against ldisc races
769  */
770
771 void tty_ldisc_put(int disc)
772 {
773         struct tty_ldisc *ld;
774         unsigned long flags;
775         
776         BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
777                 
778         spin_lock_irqsave(&tty_ldisc_lock, flags);
779         ld = &tty_ldiscs[disc];
780         BUG_ON(ld->refcount == 0);
781         ld->refcount--;
782         module_put(ld->owner);
783         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
784 }
785         
786 EXPORT_SYMBOL_GPL(tty_ldisc_put);
787
788 /**
789  *      tty_ldisc_assign        -       set ldisc on a tty
790  *      @tty: tty to assign
791  *      @ld: line discipline
792  *
793  *      Install an instance of a line discipline into a tty structure. The
794  *      ldisc must have a reference count above zero to ensure it remains/
795  *      The tty instance refcount starts at zero.
796  *
797  *      Locking:
798  *              Caller must hold references
799  */
800
801 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
802 {
803         tty->ldisc = *ld;
804         tty->ldisc.refcount = 0;
805 }
806
807 /**
808  *      tty_ldisc_try           -       internal helper
809  *      @tty: the tty
810  *
811  *      Make a single attempt to grab and bump the refcount on
812  *      the tty ldisc. Return 0 on failure or 1 on success. This is
813  *      used to implement both the waiting and non waiting versions
814  *      of tty_ldisc_ref
815  *
816  *      Locking: takes tty_ldisc_lock
817  */
818
819 static int tty_ldisc_try(struct tty_struct *tty)
820 {
821         unsigned long flags;
822         struct tty_ldisc *ld;
823         int ret = 0;
824         
825         spin_lock_irqsave(&tty_ldisc_lock, flags);
826         ld = &tty->ldisc;
827         if(test_bit(TTY_LDISC, &tty->flags))
828         {
829                 ld->refcount++;
830                 ret = 1;
831         }
832         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
833         return ret;
834 }
835
836 /**
837  *      tty_ldisc_ref_wait      -       wait for the tty ldisc
838  *      @tty: tty device
839  *
840  *      Dereference the line discipline for the terminal and take a 
841  *      reference to it. If the line discipline is in flux then 
842  *      wait patiently until it changes.
843  *
844  *      Note: Must not be called from an IRQ/timer context. The caller
845  *      must also be careful not to hold other locks that will deadlock
846  *      against a discipline change, such as an existing ldisc reference
847  *      (which we check for)
848  *
849  *      Locking: call functions take tty_ldisc_lock
850  */
851  
852 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
853 {
854         /* wait_event is a macro */
855         wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
856         if(tty->ldisc.refcount == 0)
857                 printk(KERN_ERR "tty_ldisc_ref_wait\n");
858         return &tty->ldisc;
859 }
860
861 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
862
863 /**
864  *      tty_ldisc_ref           -       get the tty ldisc
865  *      @tty: tty device
866  *
867  *      Dereference the line discipline for the terminal and take a 
868  *      reference to it. If the line discipline is in flux then 
869  *      return NULL. Can be called from IRQ and timer functions.
870  *
871  *      Locking: called functions take tty_ldisc_lock
872  */
873  
874 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
875 {
876         if(tty_ldisc_try(tty))
877                 return &tty->ldisc;
878         return NULL;
879 }
880
881 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
882
883 /**
884  *      tty_ldisc_deref         -       free a tty ldisc reference
885  *      @ld: reference to free up
886  *
887  *      Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
888  *      be called in IRQ context.
889  *
890  *      Locking: takes tty_ldisc_lock
891  */
892  
893 void tty_ldisc_deref(struct tty_ldisc *ld)
894 {
895         unsigned long flags;
896
897         BUG_ON(ld == NULL);
898                 
899         spin_lock_irqsave(&tty_ldisc_lock, flags);
900         if(ld->refcount == 0)
901                 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
902         else
903                 ld->refcount--;
904         if(ld->refcount == 0)
905                 wake_up(&tty_ldisc_wait);
906         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
907 }
908
909 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
910
911 /**
912  *      tty_ldisc_enable        -       allow ldisc use
913  *      @tty: terminal to activate ldisc on
914  *
915  *      Set the TTY_LDISC flag when the line discipline can be called
916  *      again. Do neccessary wakeups for existing sleepers.
917  *
918  *      Note: nobody should set this bit except via this function. Clearing
919  *      directly is allowed.
920  */
921
922 static void tty_ldisc_enable(struct tty_struct *tty)
923 {
924         set_bit(TTY_LDISC, &tty->flags);
925         wake_up(&tty_ldisc_wait);
926 }
927         
928 /**
929  *      tty_set_ldisc           -       set line discipline
930  *      @tty: the terminal to set
931  *      @ldisc: the line discipline
932  *
933  *      Set the discipline of a tty line. Must be called from a process
934  *      context.
935  *
936  *      Locking: takes tty_ldisc_lock.
937  *               called functions take termios_mutex
938  */
939  
940 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
941 {
942         int retval = 0;
943         struct tty_ldisc o_ldisc;
944         char buf[64];
945         int work;
946         unsigned long flags;
947         struct tty_ldisc *ld;
948         struct tty_struct *o_tty;
949
950         if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
951                 return -EINVAL;
952
953 restart:
954
955         ld = tty_ldisc_get(ldisc);
956         /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
957         /* Cyrus Durgin <cider@speakeasy.org> */
958         if (ld == NULL) {
959                 request_module("tty-ldisc-%d", ldisc);
960                 ld = tty_ldisc_get(ldisc);
961         }
962         if (ld == NULL)
963                 return -EINVAL;
964
965         /*
966          *      Problem: What do we do if this blocks ?
967          */
968
969         tty_wait_until_sent(tty, 0);
970
971         if (tty->ldisc.num == ldisc) {
972                 tty_ldisc_put(ldisc);
973                 return 0;
974         }
975
976         /*
977          *      No more input please, we are switching. The new ldisc
978          *      will update this value in the ldisc open function
979          */
980
981         tty->receive_room = 0;
982
983         o_ldisc = tty->ldisc;
984         o_tty = tty->link;
985
986         /*
987          *      Make sure we don't change while someone holds a
988          *      reference to the line discipline. The TTY_LDISC bit
989          *      prevents anyone taking a reference once it is clear.
990          *      We need the lock to avoid racing reference takers.
991          */
992
993         spin_lock_irqsave(&tty_ldisc_lock, flags);
994         if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
995                 if(tty->ldisc.refcount) {
996                         /* Free the new ldisc we grabbed. Must drop the lock
997                            first. */
998                         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
999                         tty_ldisc_put(ldisc);
1000                         /*
1001                          * There are several reasons we may be busy, including
1002                          * random momentary I/O traffic. We must therefore
1003                          * retry. We could distinguish between blocking ops
1004                          * and retries if we made tty_ldisc_wait() smarter. That
1005                          * is up for discussion.
1006                          */
1007                         if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
1008                                 return -ERESTARTSYS;
1009                         goto restart;
1010                 }
1011                 if(o_tty && o_tty->ldisc.refcount) {
1012                         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1013                         tty_ldisc_put(ldisc);
1014                         if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
1015                                 return -ERESTARTSYS;
1016                         goto restart;
1017                 }
1018         }
1019
1020         /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
1021
1022         if (!test_bit(TTY_LDISC, &tty->flags)) {
1023                 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1024                 tty_ldisc_put(ldisc);
1025                 ld = tty_ldisc_ref_wait(tty);
1026                 tty_ldisc_deref(ld);
1027                 goto restart;
1028         }
1029
1030         clear_bit(TTY_LDISC, &tty->flags);
1031         if (o_tty)
1032                 clear_bit(TTY_LDISC, &o_tty->flags);
1033         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1034
1035         /*
1036          *      From this point on we know nobody has an ldisc
1037          *      usage reference, nor can they obtain one until
1038          *      we say so later on.
1039          */
1040
1041         work = cancel_delayed_work(&tty->buf.work);
1042         /*
1043          * Wait for ->hangup_work and ->buf.work handlers to terminate
1044          */
1045          
1046         flush_scheduled_work();
1047         /* Shutdown the current discipline. */
1048         if (tty->ldisc.close)
1049                 (tty->ldisc.close)(tty);
1050
1051         /* Now set up the new line discipline. */
1052         tty_ldisc_assign(tty, ld);
1053         tty_set_termios_ldisc(tty, ldisc);
1054         if (tty->ldisc.open)
1055                 retval = (tty->ldisc.open)(tty);
1056         if (retval < 0) {
1057                 tty_ldisc_put(ldisc);
1058                 /* There is an outstanding reference here so this is safe */
1059                 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1060                 tty_set_termios_ldisc(tty, tty->ldisc.num);
1061                 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1062                         tty_ldisc_put(o_ldisc.num);
1063                         /* This driver is always present */
1064                         tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1065                         tty_set_termios_ldisc(tty, N_TTY);
1066                         if (tty->ldisc.open) {
1067                                 int r = tty->ldisc.open(tty);
1068
1069                                 if (r < 0)
1070                                         panic("Couldn't open N_TTY ldisc for "
1071                                               "%s --- error %d.",
1072                                               tty_name(tty, buf), r);
1073                         }
1074                 }
1075         }
1076         /* At this point we hold a reference to the new ldisc and a
1077            a reference to the old ldisc. If we ended up flipping back
1078            to the existing ldisc we have two references to it */
1079         
1080         if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1081                 tty->driver->set_ldisc(tty);
1082                 
1083         tty_ldisc_put(o_ldisc.num);
1084         
1085         /*
1086          *      Allow ldisc referencing to occur as soon as the driver
1087          *      ldisc callback completes.
1088          */
1089          
1090         tty_ldisc_enable(tty);
1091         if (o_tty)
1092                 tty_ldisc_enable(o_tty);
1093         
1094         /* Restart it in case no characters kick it off. Safe if
1095            already running */
1096         if (work)
1097                 schedule_delayed_work(&tty->buf.work, 1);
1098         return retval;
1099 }
1100
1101 /**
1102  *      get_tty_driver          -       find device of a tty
1103  *      @dev_t: device identifier
1104  *      @index: returns the index of the tty
1105  *
1106  *      This routine returns a tty driver structure, given a device number
1107  *      and also passes back the index number.
1108  *
1109  *      Locking: caller must hold tty_mutex
1110  */
1111
1112 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1113 {
1114         struct tty_driver *p;
1115
1116         list_for_each_entry(p, &tty_drivers, tty_drivers) {
1117                 dev_t base = MKDEV(p->major, p->minor_start);
1118                 if (device < base || device >= base + p->num)
1119                         continue;
1120                 *index = device - base;
1121                 return p;
1122         }
1123         return NULL;
1124 }
1125
1126 /**
1127  *      tty_check_change        -       check for POSIX terminal changes
1128  *      @tty: tty to check
1129  *
1130  *      If we try to write to, or set the state of, a terminal and we're
1131  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
1132  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
1133  *
1134  *      Locking: none
1135  */
1136
1137 int tty_check_change(struct tty_struct * tty)
1138 {
1139         if (current->signal->tty != tty)
1140                 return 0;
1141         if (!tty->pgrp) {
1142                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
1143                 return 0;
1144         }
1145         if (task_pgrp(current) == tty->pgrp)
1146                 return 0;
1147         if (is_ignored(SIGTTOU))
1148                 return 0;
1149         if (is_current_pgrp_orphaned())
1150                 return -EIO;
1151         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
1152         set_thread_flag(TIF_SIGPENDING);
1153         return -ERESTARTSYS;
1154 }
1155
1156 EXPORT_SYMBOL(tty_check_change);
1157
1158 static ssize_t hung_up_tty_read(struct file * file, char __user * buf,
1159                                 size_t count, loff_t *ppos)
1160 {
1161         return 0;
1162 }
1163
1164 static ssize_t hung_up_tty_write(struct file * file, const char __user * buf,
1165                                  size_t count, loff_t *ppos)
1166 {
1167         return -EIO;
1168 }
1169
1170 /* No kernel lock held - none needed ;) */
1171 static unsigned int hung_up_tty_poll(struct file * filp, poll_table * wait)
1172 {
1173         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1174 }
1175
1176 static int hung_up_tty_ioctl(struct inode * inode, struct file * file,
1177                              unsigned int cmd, unsigned long arg)
1178 {
1179         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1180 }
1181
1182 static long hung_up_tty_compat_ioctl(struct file * file,
1183                                      unsigned int cmd, unsigned long arg)
1184 {
1185         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1186 }
1187
1188 static const struct file_operations tty_fops = {
1189         .llseek         = no_llseek,
1190         .read           = tty_read,
1191         .write          = tty_write,
1192         .poll           = tty_poll,
1193         .ioctl          = tty_ioctl,
1194         .compat_ioctl   = tty_compat_ioctl,
1195         .open           = tty_open,
1196         .release        = tty_release,
1197         .fasync         = tty_fasync,
1198 };
1199
1200 #ifdef CONFIG_UNIX98_PTYS
1201 static const struct file_operations ptmx_fops = {
1202         .llseek         = no_llseek,
1203         .read           = tty_read,
1204         .write          = tty_write,
1205         .poll           = tty_poll,
1206         .ioctl          = tty_ioctl,
1207         .compat_ioctl   = tty_compat_ioctl,
1208         .open           = ptmx_open,
1209         .release        = tty_release,
1210         .fasync         = tty_fasync,
1211 };
1212 #endif
1213
1214 static const struct file_operations console_fops = {
1215         .llseek         = no_llseek,
1216         .read           = tty_read,
1217         .write          = redirected_tty_write,
1218         .poll           = tty_poll,
1219         .ioctl          = tty_ioctl,
1220         .compat_ioctl   = tty_compat_ioctl,
1221         .open           = tty_open,
1222         .release        = tty_release,
1223         .fasync         = tty_fasync,
1224 };
1225
1226 static const struct file_operations hung_up_tty_fops = {
1227         .llseek         = no_llseek,
1228         .read           = hung_up_tty_read,
1229         .write          = hung_up_tty_write,
1230         .poll           = hung_up_tty_poll,
1231         .ioctl          = hung_up_tty_ioctl,
1232         .compat_ioctl   = hung_up_tty_compat_ioctl,
1233         .release        = tty_release,
1234 };
1235
1236 static DEFINE_SPINLOCK(redirect_lock);
1237 static struct file *redirect;
1238
1239 /**
1240  *      tty_wakeup      -       request more data
1241  *      @tty: terminal
1242  *
1243  *      Internal and external helper for wakeups of tty. This function
1244  *      informs the line discipline if present that the driver is ready
1245  *      to receive more output data.
1246  */
1247  
1248 void tty_wakeup(struct tty_struct *tty)
1249 {
1250         struct tty_ldisc *ld;
1251         
1252         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1253                 ld = tty_ldisc_ref(tty);
1254                 if(ld) {
1255                         if(ld->write_wakeup)
1256                                 ld->write_wakeup(tty);
1257                         tty_ldisc_deref(ld);
1258                 }
1259         }
1260         wake_up_interruptible(&tty->write_wait);
1261 }
1262
1263 EXPORT_SYMBOL_GPL(tty_wakeup);
1264
1265 /**
1266  *      tty_ldisc_flush -       flush line discipline queue
1267  *      @tty: tty
1268  *
1269  *      Flush the line discipline queue (if any) for this tty. If there
1270  *      is no line discipline active this is a no-op.
1271  */
1272  
1273 void tty_ldisc_flush(struct tty_struct *tty)
1274 {
1275         struct tty_ldisc *ld = tty_ldisc_ref(tty);
1276         if(ld) {
1277                 if(ld->flush_buffer)
1278                         ld->flush_buffer(tty);
1279                 tty_ldisc_deref(ld);
1280         }
1281         tty_buffer_flush(tty);
1282 }
1283
1284 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1285
1286 /**
1287  *      tty_reset_termios       -       reset terminal state
1288  *      @tty: tty to reset
1289  *
1290  *      Restore a terminal to the driver default state
1291  */
1292
1293 static void tty_reset_termios(struct tty_struct *tty)
1294 {
1295         mutex_lock(&tty->termios_mutex);
1296         *tty->termios = tty->driver->init_termios;
1297         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1298         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1299         mutex_unlock(&tty->termios_mutex);
1300 }
1301         
1302 /**
1303  *      do_tty_hangup           -       actual handler for hangup events
1304  *      @work: tty device
1305  *
1306  *      This can be called by the "eventd" kernel thread.  That is process
1307  *      synchronous but doesn't hold any locks, so we need to make sure we
1308  *      have the appropriate locks for what we're doing.
1309  *
1310  *      The hangup event clears any pending redirections onto the hung up
1311  *      device. It ensures future writes will error and it does the needed
1312  *      line discipline hangup and signal delivery. The tty object itself
1313  *      remains intact.
1314  *
1315  *      Locking:
1316  *              BKL
1317  *                redirect lock for undoing redirection
1318  *                file list lock for manipulating list of ttys
1319  *                tty_ldisc_lock from called functions
1320  *                termios_mutex resetting termios data
1321  *                tasklist_lock to walk task list for hangup event
1322  *                  ->siglock to protect ->signal/->sighand
1323  */
1324 static void do_tty_hangup(struct work_struct *work)
1325 {
1326         struct tty_struct *tty =
1327                 container_of(work, struct tty_struct, hangup_work);
1328         struct file * cons_filp = NULL;
1329         struct file *filp, *f = NULL;
1330         struct task_struct *p;
1331         struct tty_ldisc *ld;
1332         int    closecount = 0, n;
1333
1334         if (!tty)
1335                 return;
1336
1337         /* inuse_filps is protected by the single kernel lock */
1338         lock_kernel();
1339
1340         spin_lock(&redirect_lock);
1341         if (redirect && redirect->private_data == tty) {
1342                 f = redirect;
1343                 redirect = NULL;
1344         }
1345         spin_unlock(&redirect_lock);
1346         
1347         check_tty_count(tty, "do_tty_hangup");
1348         file_list_lock();
1349         /* This breaks for file handles being sent over AF_UNIX sockets ? */
1350         list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1351                 if (filp->f_op->write == redirected_tty_write)
1352                         cons_filp = filp;
1353                 if (filp->f_op->write != tty_write)
1354                         continue;
1355                 closecount++;
1356                 tty_fasync(-1, filp, 0);        /* can't block */
1357                 filp->f_op = &hung_up_tty_fops;
1358         }
1359         file_list_unlock();
1360         
1361         /* FIXME! What are the locking issues here? This may me overdoing things..
1362          * this question is especially important now that we've removed the irqlock. */
1363
1364         ld = tty_ldisc_ref(tty);
1365         if(ld != NULL)  /* We may have no line discipline at this point */
1366         {
1367                 if (ld->flush_buffer)
1368                         ld->flush_buffer(tty);
1369                 if (tty->driver->flush_buffer)
1370                         tty->driver->flush_buffer(tty);
1371                 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1372                     ld->write_wakeup)
1373                         ld->write_wakeup(tty);
1374                 if (ld->hangup)
1375                         ld->hangup(tty);
1376         }
1377
1378         /* FIXME: Once we trust the LDISC code better we can wait here for
1379            ldisc completion and fix the driver call race */
1380            
1381         wake_up_interruptible(&tty->write_wait);
1382         wake_up_interruptible(&tty->read_wait);
1383
1384         /*
1385          * Shutdown the current line discipline, and reset it to
1386          * N_TTY.
1387          */
1388         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1389                 tty_reset_termios(tty);
1390         
1391         /* Defer ldisc switch */
1392         /* tty_deferred_ldisc_switch(N_TTY);
1393         
1394           This should get done automatically when the port closes and
1395           tty_release is called */
1396         
1397         read_lock(&tasklist_lock);
1398         if (tty->session) {
1399                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
1400                         spin_lock_irq(&p->sighand->siglock);
1401                         if (p->signal->tty == tty)
1402                                 p->signal->tty = NULL;
1403                         if (!p->signal->leader) {
1404                                 spin_unlock_irq(&p->sighand->siglock);
1405                                 continue;
1406                         }
1407                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1408                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1409                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
1410                         if (tty->pgrp)
1411                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
1412                         spin_unlock_irq(&p->sighand->siglock);
1413                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
1414         }
1415         read_unlock(&tasklist_lock);
1416
1417         tty->flags = 0;
1418         put_pid(tty->session);
1419         put_pid(tty->pgrp);
1420         tty->session = NULL;
1421         tty->pgrp = NULL;
1422         tty->ctrl_status = 0;
1423         /*
1424          *      If one of the devices matches a console pointer, we
1425          *      cannot just call hangup() because that will cause
1426          *      tty->count and state->count to go out of sync.
1427          *      So we just call close() the right number of times.
1428          */
1429         if (cons_filp) {
1430                 if (tty->driver->close)
1431                         for (n = 0; n < closecount; n++)
1432                                 tty->driver->close(tty, cons_filp);
1433         } else if (tty->driver->hangup)
1434                 (tty->driver->hangup)(tty);
1435                 
1436         /* We don't want to have driver/ldisc interactions beyond
1437            the ones we did here. The driver layer expects no
1438            calls after ->hangup() from the ldisc side. However we
1439            can't yet guarantee all that */
1440
1441         set_bit(TTY_HUPPED, &tty->flags);
1442         if (ld) {
1443                 tty_ldisc_enable(tty);
1444                 tty_ldisc_deref(ld);
1445         }
1446         unlock_kernel();
1447         if (f)
1448                 fput(f);
1449 }
1450
1451 /**
1452  *      tty_hangup              -       trigger a hangup event
1453  *      @tty: tty to hangup
1454  *
1455  *      A carrier loss (virtual or otherwise) has occurred on this like
1456  *      schedule a hangup sequence to run after this event.
1457  */
1458
1459 void tty_hangup(struct tty_struct * tty)
1460 {
1461 #ifdef TTY_DEBUG_HANGUP
1462         char    buf[64];
1463         
1464         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1465 #endif
1466         schedule_work(&tty->hangup_work);
1467 }
1468
1469 EXPORT_SYMBOL(tty_hangup);
1470
1471 /**
1472  *      tty_vhangup             -       process vhangup
1473  *      @tty: tty to hangup
1474  *
1475  *      The user has asked via system call for the terminal to be hung up.
1476  *      We do this synchronously so that when the syscall returns the process
1477  *      is complete. That guarantee is neccessary for security reasons.
1478  */
1479
1480 void tty_vhangup(struct tty_struct * tty)
1481 {
1482 #ifdef TTY_DEBUG_HANGUP
1483         char    buf[64];
1484
1485         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1486 #endif
1487         do_tty_hangup(&tty->hangup_work);
1488 }
1489 EXPORT_SYMBOL(tty_vhangup);
1490
1491 /**
1492  *      tty_hung_up_p           -       was tty hung up
1493  *      @filp: file pointer of tty
1494  *
1495  *      Return true if the tty has been subject to a vhangup or a carrier
1496  *      loss
1497  */
1498
1499 int tty_hung_up_p(struct file * filp)
1500 {
1501         return (filp->f_op == &hung_up_tty_fops);
1502 }
1503
1504 EXPORT_SYMBOL(tty_hung_up_p);
1505
1506 static void session_clear_tty(struct pid *session)
1507 {
1508         struct task_struct *p;
1509         do_each_pid_task(session, PIDTYPE_SID, p) {
1510                 proc_clear_tty(p);
1511         } while_each_pid_task(session, PIDTYPE_SID, p);
1512 }
1513
1514 /**
1515  *      disassociate_ctty       -       disconnect controlling tty
1516  *      @on_exit: true if exiting so need to "hang up" the session
1517  *
1518  *      This function is typically called only by the session leader, when
1519  *      it wants to disassociate itself from its controlling tty.
1520  *
1521  *      It performs the following functions:
1522  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
1523  *      (2)  Clears the tty from being controlling the session
1524  *      (3)  Clears the controlling tty for all processes in the
1525  *              session group.
1526  *
1527  *      The argument on_exit is set to 1 if called when a process is
1528  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
1529  *
1530  *      Locking:
1531  *              BKL is taken for hysterical raisins
1532  *                tty_mutex is taken to protect tty
1533  *                ->siglock is taken to protect ->signal/->sighand
1534  *                tasklist_lock is taken to walk process list for sessions
1535  *                  ->siglock is taken to protect ->signal/->sighand
1536  */
1537
1538 void disassociate_ctty(int on_exit)
1539 {
1540         struct tty_struct *tty;
1541         struct pid *tty_pgrp = NULL;
1542
1543         lock_kernel();
1544
1545         mutex_lock(&tty_mutex);
1546         tty = get_current_tty();
1547         if (tty) {
1548                 tty_pgrp = get_pid(tty->pgrp);
1549                 mutex_unlock(&tty_mutex);
1550                 /* XXX: here we race, there is nothing protecting tty */
1551                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1552                         tty_vhangup(tty);
1553         } else if (on_exit) {
1554                 struct pid *old_pgrp;
1555                 spin_lock_irq(&current->sighand->siglock);
1556                 old_pgrp = current->signal->tty_old_pgrp;
1557                 current->signal->tty_old_pgrp = NULL;
1558                 spin_unlock_irq(&current->sighand->siglock);
1559                 if (old_pgrp) {
1560                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
1561                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
1562                         put_pid(old_pgrp);
1563                 }
1564                 mutex_unlock(&tty_mutex);
1565                 unlock_kernel();        
1566                 return;
1567         }
1568         if (tty_pgrp) {
1569                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
1570                 if (!on_exit)
1571                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
1572                 put_pid(tty_pgrp);
1573         }
1574
1575         spin_lock_irq(&current->sighand->siglock);
1576         put_pid(current->signal->tty_old_pgrp);
1577         current->signal->tty_old_pgrp = NULL;
1578         spin_unlock_irq(&current->sighand->siglock);
1579
1580         mutex_lock(&tty_mutex);
1581         /* It is possible that do_tty_hangup has free'd this tty */
1582         tty = get_current_tty();
1583         if (tty) {
1584                 put_pid(tty->session);
1585                 put_pid(tty->pgrp);
1586                 tty->session = NULL;
1587                 tty->pgrp = NULL;
1588         } else {
1589 #ifdef TTY_DEBUG_HANGUP
1590                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1591                        " = NULL", tty);
1592 #endif
1593         }
1594         mutex_unlock(&tty_mutex);
1595
1596         /* Now clear signal->tty under the lock */
1597         read_lock(&tasklist_lock);
1598         session_clear_tty(task_session(current));
1599         read_unlock(&tasklist_lock);
1600         unlock_kernel();
1601 }
1602
1603 /**
1604  *
1605  *      no_tty  - Ensure the current process does not have a controlling tty
1606  */
1607 void no_tty(void)
1608 {
1609         struct task_struct *tsk = current;
1610         if (tsk->signal->leader)
1611                 disassociate_ctty(0);
1612         proc_clear_tty(tsk);
1613 }
1614
1615
1616 /**
1617  *      stop_tty        -       propagate flow control
1618  *      @tty: tty to stop
1619  *
1620  *      Perform flow control to the driver. For PTY/TTY pairs we
1621  *      must also propagate the TIOCKPKT status. May be called
1622  *      on an already stopped device and will not re-call the driver
1623  *      method.
1624  *
1625  *      This functionality is used by both the line disciplines for
1626  *      halting incoming flow and by the driver. It may therefore be
1627  *      called from any context, may be under the tty atomic_write_lock
1628  *      but not always.
1629  *
1630  *      Locking:
1631  *              Broken. Relies on BKL which is unsafe here.
1632  */
1633
1634 void stop_tty(struct tty_struct *tty)
1635 {
1636         if (tty->stopped)
1637                 return;
1638         tty->stopped = 1;
1639         if (tty->link && tty->link->packet) {
1640                 tty->ctrl_status &= ~TIOCPKT_START;
1641                 tty->ctrl_status |= TIOCPKT_STOP;
1642                 wake_up_interruptible(&tty->link->read_wait);
1643         }
1644         if (tty->driver->stop)
1645                 (tty->driver->stop)(tty);
1646 }
1647
1648 EXPORT_SYMBOL(stop_tty);
1649
1650 /**
1651  *      start_tty       -       propagate flow control
1652  *      @tty: tty to start
1653  *
1654  *      Start a tty that has been stopped if at all possible. Perform
1655  *      any neccessary wakeups and propagate the TIOCPKT status. If this
1656  *      is the tty was previous stopped and is being started then the
1657  *      driver start method is invoked and the line discipline woken.
1658  *
1659  *      Locking:
1660  *              Broken. Relies on BKL which is unsafe here.
1661  */
1662
1663 void start_tty(struct tty_struct *tty)
1664 {
1665         if (!tty->stopped || tty->flow_stopped)
1666                 return;
1667         tty->stopped = 0;
1668         if (tty->link && tty->link->packet) {
1669                 tty->ctrl_status &= ~TIOCPKT_STOP;
1670                 tty->ctrl_status |= TIOCPKT_START;
1671                 wake_up_interruptible(&tty->link->read_wait);
1672         }
1673         if (tty->driver->start)
1674                 (tty->driver->start)(tty);
1675
1676         /* If we have a running line discipline it may need kicking */
1677         tty_wakeup(tty);
1678 }
1679
1680 EXPORT_SYMBOL(start_tty);
1681
1682 /**
1683  *      tty_read        -       read method for tty device files
1684  *      @file: pointer to tty file
1685  *      @buf: user buffer
1686  *      @count: size of user buffer
1687  *      @ppos: unused
1688  *
1689  *      Perform the read system call function on this terminal device. Checks
1690  *      for hung up devices before calling the line discipline method.
1691  *
1692  *      Locking:
1693  *              Locks the line discipline internally while needed
1694  *              For historical reasons the line discipline read method is
1695  *      invoked under the BKL. This will go away in time so do not rely on it
1696  *      in new code. Multiple read calls may be outstanding in parallel.
1697  */
1698
1699 static ssize_t tty_read(struct file * file, char __user * buf, size_t count, 
1700                         loff_t *ppos)
1701 {
1702         int i;
1703         struct tty_struct * tty;
1704         struct inode *inode;
1705         struct tty_ldisc *ld;
1706
1707         tty = (struct tty_struct *)file->private_data;
1708         inode = file->f_path.dentry->d_inode;
1709         if (tty_paranoia_check(tty, inode, "tty_read"))
1710                 return -EIO;
1711         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1712                 return -EIO;
1713
1714         /* We want to wait for the line discipline to sort out in this
1715            situation */
1716         ld = tty_ldisc_ref_wait(tty);
1717         lock_kernel();
1718         if (ld->read)
1719                 i = (ld->read)(tty,file,buf,count);
1720         else
1721                 i = -EIO;
1722         tty_ldisc_deref(ld);
1723         unlock_kernel();
1724         if (i > 0)
1725                 inode->i_atime = current_fs_time(inode->i_sb);
1726         return i;
1727 }
1728
1729 /*
1730  * Split writes up in sane blocksizes to avoid
1731  * denial-of-service type attacks
1732  */
1733 static inline ssize_t do_tty_write(
1734         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1735         struct tty_struct *tty,
1736         struct file *file,
1737         const char __user *buf,
1738         size_t count)
1739 {
1740         ssize_t ret = 0, written = 0;
1741         unsigned int chunk;
1742         
1743         /* FIXME: O_NDELAY ... */
1744         if (mutex_lock_interruptible(&tty->atomic_write_lock)) {
1745                 return -ERESTARTSYS;
1746         }
1747
1748         /*
1749          * We chunk up writes into a temporary buffer. This
1750          * simplifies low-level drivers immensely, since they
1751          * don't have locking issues and user mode accesses.
1752          *
1753          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1754          * big chunk-size..
1755          *
1756          * The default chunk-size is 2kB, because the NTTY
1757          * layer has problems with bigger chunks. It will
1758          * claim to be able to handle more characters than
1759          * it actually does.
1760          *
1761          * FIXME: This can probably go away now except that 64K chunks
1762          * are too likely to fail unless switched to vmalloc...
1763          */
1764         chunk = 2048;
1765         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1766                 chunk = 65536;
1767         if (count < chunk)
1768                 chunk = count;
1769
1770         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1771         if (tty->write_cnt < chunk) {
1772                 unsigned char *buf;
1773
1774                 if (chunk < 1024)
1775                         chunk = 1024;
1776
1777                 buf = kmalloc(chunk, GFP_KERNEL);
1778                 if (!buf) {
1779                         mutex_unlock(&tty->atomic_write_lock);
1780                         return -ENOMEM;
1781                 }
1782                 kfree(tty->write_buf);
1783                 tty->write_cnt = chunk;
1784                 tty->write_buf = buf;
1785         }
1786
1787         /* Do the write .. */
1788         for (;;) {
1789                 size_t size = count;
1790                 if (size > chunk)
1791                         size = chunk;
1792                 ret = -EFAULT;
1793                 if (copy_from_user(tty->write_buf, buf, size))
1794                         break;
1795                 lock_kernel();
1796                 ret = write(tty, file, tty->write_buf, size);
1797                 unlock_kernel();
1798                 if (ret <= 0)
1799                         break;
1800                 written += ret;
1801                 buf += ret;
1802                 count -= ret;
1803                 if (!count)
1804                         break;
1805                 ret = -ERESTARTSYS;
1806                 if (signal_pending(current))
1807                         break;
1808                 cond_resched();
1809         }
1810         if (written) {
1811                 struct inode *inode = file->f_path.dentry->d_inode;
1812                 inode->i_mtime = current_fs_time(inode->i_sb);
1813                 ret = written;
1814         }
1815         mutex_unlock(&tty->atomic_write_lock);
1816         return ret;
1817 }
1818
1819
1820 /**
1821  *      tty_write               -       write method for tty device file
1822  *      @file: tty file pointer
1823  *      @buf: user data to write
1824  *      @count: bytes to write
1825  *      @ppos: unused
1826  *
1827  *      Write data to a tty device via the line discipline.
1828  *
1829  *      Locking:
1830  *              Locks the line discipline as required
1831  *              Writes to the tty driver are serialized by the atomic_write_lock
1832  *      and are then processed in chunks to the device. The line discipline
1833  *      write method will not be involked in parallel for each device
1834  *              The line discipline write method is called under the big
1835  *      kernel lock for historical reasons. New code should not rely on this.
1836  */
1837
1838 static ssize_t tty_write(struct file * file, const char __user * buf, size_t count,
1839                          loff_t *ppos)
1840 {
1841         struct tty_struct * tty;
1842         struct inode *inode = file->f_path.dentry->d_inode;
1843         ssize_t ret;
1844         struct tty_ldisc *ld;
1845         
1846         tty = (struct tty_struct *)file->private_data;
1847         if (tty_paranoia_check(tty, inode, "tty_write"))
1848                 return -EIO;
1849         if (!tty || !tty->driver->write || (test_bit(TTY_IO_ERROR, &tty->flags)))
1850                 return -EIO;
1851
1852         ld = tty_ldisc_ref_wait(tty);           
1853         if (!ld->write)
1854                 ret = -EIO;
1855         else
1856                 ret = do_tty_write(ld->write, tty, file, buf, count);
1857         tty_ldisc_deref(ld);
1858         return ret;
1859 }
1860
1861 ssize_t redirected_tty_write(struct file * file, const char __user * buf, size_t count,
1862                          loff_t *ppos)
1863 {
1864         struct file *p = NULL;
1865
1866         spin_lock(&redirect_lock);
1867         if (redirect) {
1868                 get_file(redirect);
1869                 p = redirect;
1870         }
1871         spin_unlock(&redirect_lock);
1872
1873         if (p) {
1874                 ssize_t res;
1875                 res = vfs_write(p, buf, count, &p->f_pos);
1876                 fput(p);
1877                 return res;
1878         }
1879
1880         return tty_write(file, buf, count, ppos);
1881 }
1882
1883 static char ptychar[] = "pqrstuvwxyzabcde";
1884
1885 /**
1886  *      pty_line_name   -       generate name for a pty
1887  *      @driver: the tty driver in use
1888  *      @index: the minor number
1889  *      @p: output buffer of at least 6 bytes
1890  *
1891  *      Generate a name from a driver reference and write it to the output
1892  *      buffer.
1893  *
1894  *      Locking: None
1895  */
1896 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1897 {
1898         int i = index + driver->name_base;
1899         /* ->name is initialized to "ttyp", but "tty" is expected */
1900         sprintf(p, "%s%c%x",
1901                         driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1902                         ptychar[i >> 4 & 0xf], i & 0xf);
1903 }
1904
1905 /**
1906  *      pty_line_name   -       generate name for a tty
1907  *      @driver: the tty driver in use
1908  *      @index: the minor number
1909  *      @p: output buffer of at least 7 bytes
1910  *
1911  *      Generate a name from a driver reference and write it to the output
1912  *      buffer.
1913  *
1914  *      Locking: None
1915  */
1916 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1917 {
1918         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1919 }
1920
1921 /**
1922  *      init_dev                -       initialise a tty device
1923  *      @driver: tty driver we are opening a device on
1924  *      @idx: device index
1925  *      @tty: returned tty structure
1926  *
1927  *      Prepare a tty device. This may not be a "new" clean device but
1928  *      could also be an active device. The pty drivers require special
1929  *      handling because of this.
1930  *
1931  *      Locking:
1932  *              The function is called under the tty_mutex, which
1933  *      protects us from the tty struct or driver itself going away.
1934  *
1935  *      On exit the tty device has the line discipline attached and
1936  *      a reference count of 1. If a pair was created for pty/tty use
1937  *      and the other was a pty master then it too has a reference count of 1.
1938  *
1939  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1940  * failed open.  The new code protects the open with a mutex, so it's
1941  * really quite straightforward.  The mutex locking can probably be
1942  * relaxed for the (most common) case of reopening a tty.
1943  */
1944
1945 static int init_dev(struct tty_driver *driver, int idx,
1946         struct tty_struct **ret_tty)
1947 {
1948         struct tty_struct *tty, *o_tty;
1949         struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1950         struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1951         int retval = 0;
1952
1953         /* check whether we're reopening an existing tty */
1954         if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1955                 tty = devpts_get_tty(idx);
1956                 /*
1957                  * If we don't have a tty here on a slave open, it's because
1958                  * the master already started the close process and there's
1959                  * no relation between devpts file and tty anymore.
1960                  */
1961                 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
1962                         retval = -EIO;
1963                         goto end_init;
1964                 }
1965                 /*
1966                  * It's safe from now on because init_dev() is called with
1967                  * tty_mutex held and release_dev() won't change tty->count
1968                  * or tty->flags without having to grab tty_mutex
1969                  */
1970                 if (tty && driver->subtype == PTY_TYPE_MASTER)
1971                         tty = tty->link;
1972         } else {
1973                 tty = driver->ttys[idx];
1974         }
1975         if (tty) goto fast_track;
1976
1977         /*
1978          * First time open is complex, especially for PTY devices.
1979          * This code guarantees that either everything succeeds and the
1980          * TTY is ready for operation, or else the table slots are vacated
1981          * and the allocated memory released.  (Except that the termios 
1982          * and locked termios may be retained.)
1983          */
1984
1985         if (!try_module_get(driver->owner)) {
1986                 retval = -ENODEV;
1987                 goto end_init;
1988         }
1989
1990         o_tty = NULL;
1991         tp = o_tp = NULL;
1992         ltp = o_ltp = NULL;
1993
1994         tty = alloc_tty_struct();
1995         if(!tty)
1996                 goto fail_no_mem;
1997         initialize_tty_struct(tty);
1998         tty->driver = driver;
1999         tty->index = idx;
2000         tty_line_name(driver, idx, tty->name);
2001
2002         if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2003                 tp_loc = &tty->termios;
2004                 ltp_loc = &tty->termios_locked;
2005         } else {
2006                 tp_loc = &driver->termios[idx];
2007                 ltp_loc = &driver->termios_locked[idx];
2008         }
2009
2010         if (!*tp_loc) {
2011                 tp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
2012                                                 GFP_KERNEL);
2013                 if (!tp)
2014                         goto free_mem_out;
2015                 *tp = driver->init_termios;
2016         }
2017
2018         if (!*ltp_loc) {
2019                 ltp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
2020                                                  GFP_KERNEL);
2021                 if (!ltp)
2022                         goto free_mem_out;
2023                 memset(ltp, 0, sizeof(struct ktermios));
2024         }
2025
2026         if (driver->type == TTY_DRIVER_TYPE_PTY) {
2027                 o_tty = alloc_tty_struct();
2028                 if (!o_tty)
2029                         goto free_mem_out;
2030                 initialize_tty_struct(o_tty);
2031                 o_tty->driver = driver->other;
2032                 o_tty->index = idx;
2033                 tty_line_name(driver->other, idx, o_tty->name);
2034
2035                 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2036                         o_tp_loc = &o_tty->termios;
2037                         o_ltp_loc = &o_tty->termios_locked;
2038                 } else {
2039                         o_tp_loc = &driver->other->termios[idx];
2040                         o_ltp_loc = &driver->other->termios_locked[idx];
2041                 }
2042
2043                 if (!*o_tp_loc) {
2044                         o_tp = (struct ktermios *)
2045                                 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2046                         if (!o_tp)
2047                                 goto free_mem_out;
2048                         *o_tp = driver->other->init_termios;
2049                 }
2050
2051                 if (!*o_ltp_loc) {
2052                         o_ltp = (struct ktermios *)
2053                                 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2054                         if (!o_ltp)
2055                                 goto free_mem_out;
2056                         memset(o_ltp, 0, sizeof(struct ktermios));
2057                 }
2058
2059                 /*
2060                  * Everything allocated ... set up the o_tty structure.
2061                  */
2062                 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM)) {
2063                         driver->other->ttys[idx] = o_tty;
2064                 }
2065                 if (!*o_tp_loc)
2066                         *o_tp_loc = o_tp;
2067                 if (!*o_ltp_loc)
2068                         *o_ltp_loc = o_ltp;
2069                 o_tty->termios = *o_tp_loc;
2070                 o_tty->termios_locked = *o_ltp_loc;
2071                 driver->other->refcount++;
2072                 if (driver->subtype == PTY_TYPE_MASTER)
2073                         o_tty->count++;
2074
2075                 /* Establish the links in both directions */
2076                 tty->link   = o_tty;
2077                 o_tty->link = tty;
2078         }
2079
2080         /* 
2081          * All structures have been allocated, so now we install them.
2082          * Failures after this point use release_tty to clean up, so
2083          * there's no need to null out the local pointers.
2084          */
2085         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2086                 driver->ttys[idx] = tty;
2087         }
2088         
2089         if (!*tp_loc)
2090                 *tp_loc = tp;
2091         if (!*ltp_loc)
2092                 *ltp_loc = ltp;
2093         tty->termios = *tp_loc;
2094         tty->termios_locked = *ltp_loc;
2095         /* Compatibility until drivers always set this */
2096         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2097         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2098         driver->refcount++;
2099         tty->count++;
2100
2101         /* 
2102          * Structures all installed ... call the ldisc open routines.
2103          * If we fail here just call release_tty to clean up.  No need
2104          * to decrement the use counts, as release_tty doesn't care.
2105          */
2106
2107         if (tty->ldisc.open) {
2108                 retval = (tty->ldisc.open)(tty);
2109                 if (retval)
2110                         goto release_mem_out;
2111         }
2112         if (o_tty && o_tty->ldisc.open) {
2113                 retval = (o_tty->ldisc.open)(o_tty);
2114                 if (retval) {
2115                         if (tty->ldisc.close)
2116                                 (tty->ldisc.close)(tty);
2117                         goto release_mem_out;
2118                 }
2119                 tty_ldisc_enable(o_tty);
2120         }
2121         tty_ldisc_enable(tty);
2122         goto success;
2123
2124         /*
2125          * This fast open can be used if the tty is already open.
2126          * No memory is allocated, and the only failures are from
2127          * attempting to open a closing tty or attempting multiple
2128          * opens on a pty master.
2129          */
2130 fast_track:
2131         if (test_bit(TTY_CLOSING, &tty->flags)) {
2132                 retval = -EIO;
2133                 goto end_init;
2134         }
2135         if (driver->type == TTY_DRIVER_TYPE_PTY &&
2136             driver->subtype == PTY_TYPE_MASTER) {
2137                 /*
2138                  * special case for PTY masters: only one open permitted, 
2139                  * and the slave side open count is incremented as well.
2140                  */
2141                 if (tty->count) {
2142                         retval = -EIO;
2143                         goto end_init;
2144                 }
2145                 tty->link->count++;
2146         }
2147         tty->count++;
2148         tty->driver = driver; /* N.B. why do this every time?? */
2149
2150         /* FIXME */
2151         if(!test_bit(TTY_LDISC, &tty->flags))
2152                 printk(KERN_ERR "init_dev but no ldisc\n");
2153 success:
2154         *ret_tty = tty;
2155         
2156         /* All paths come through here to release the mutex */
2157 end_init:
2158         return retval;
2159
2160         /* Release locally allocated memory ... nothing placed in slots */
2161 free_mem_out:
2162         kfree(o_tp);
2163         if (o_tty)
2164                 free_tty_struct(o_tty);
2165         kfree(ltp);
2166         kfree(tp);
2167         free_tty_struct(tty);
2168
2169 fail_no_mem:
2170         module_put(driver->owner);
2171         retval = -ENOMEM;
2172         goto end_init;
2173
2174         /* call the tty release_tty routine to clean out this slot */
2175 release_mem_out:
2176         if (printk_ratelimit())
2177                 printk(KERN_INFO "init_dev: ldisc open failed, "
2178                                  "clearing slot %d\n", idx);
2179         release_tty(tty, idx);
2180         goto end_init;
2181 }
2182
2183 /**
2184  *      release_one_tty         -       release tty structure memory
2185  *
2186  *      Releases memory associated with a tty structure, and clears out the
2187  *      driver table slots. This function is called when a device is no longer
2188  *      in use. It also gets called when setup of a device fails.
2189  *
2190  *      Locking:
2191  *              tty_mutex - sometimes only
2192  *              takes the file list lock internally when working on the list
2193  *      of ttys that the driver keeps.
2194  *              FIXME: should we require tty_mutex is held here ??
2195  */
2196 static void release_one_tty(struct tty_struct *tty, int idx)
2197 {
2198         int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2199         struct ktermios *tp;
2200
2201         if (!devpts)
2202                 tty->driver->ttys[idx] = NULL;
2203
2204         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2205                 tp = tty->termios;
2206                 if (!devpts)
2207                         tty->driver->termios[idx] = NULL;
2208                 kfree(tp);
2209
2210                 tp = tty->termios_locked;
2211                 if (!devpts)
2212                         tty->driver->termios_locked[idx] = NULL;
2213                 kfree(tp);
2214         }
2215
2216
2217         tty->magic = 0;
2218         tty->driver->refcount--;
2219
2220         file_list_lock();
2221         list_del_init(&tty->tty_files);
2222         file_list_unlock();
2223
2224         free_tty_struct(tty);
2225 }
2226
2227 /**
2228  *      release_tty             -       release tty structure memory
2229  *
2230  *      Release both @tty and a possible linked partner (think pty pair),
2231  *      and decrement the refcount of the backing module.
2232  *
2233  *      Locking:
2234  *              tty_mutex - sometimes only
2235  *              takes the file list lock internally when working on the list
2236  *      of ttys that the driver keeps.
2237  *              FIXME: should we require tty_mutex is held here ??
2238  */
2239 static void release_tty(struct tty_struct *tty, int idx)
2240 {
2241         struct tty_driver *driver = tty->driver;
2242
2243         if (tty->link)
2244                 release_one_tty(tty->link, idx);
2245         release_one_tty(tty, idx);
2246         module_put(driver->owner);
2247 }
2248
2249 /*
2250  * Even releasing the tty structures is a tricky business.. We have
2251  * to be very careful that the structures are all released at the
2252  * same time, as interrupts might otherwise get the wrong pointers.
2253  *
2254  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2255  * lead to double frees or releasing memory still in use.
2256  */
2257 static void release_dev(struct file * filp)
2258 {
2259         struct tty_struct *tty, *o_tty;
2260         int     pty_master, tty_closing, o_tty_closing, do_sleep;
2261         int     devpts;
2262         int     idx;
2263         char    buf[64];
2264         unsigned long flags;
2265         
2266         tty = (struct tty_struct *)filp->private_data;
2267         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "release_dev"))
2268                 return;
2269
2270         check_tty_count(tty, "release_dev");
2271
2272         tty_fasync(-1, filp, 0);
2273
2274         idx = tty->index;
2275         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2276                       tty->driver->subtype == PTY_TYPE_MASTER);
2277         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2278         o_tty = tty->link;
2279
2280 #ifdef TTY_PARANOIA_CHECK
2281         if (idx < 0 || idx >= tty->driver->num) {
2282                 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2283                                   "free (%s)\n", tty->name);
2284                 return;
2285         }
2286         if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2287                 if (tty != tty->driver->ttys[idx]) {
2288                         printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2289                                "for (%s)\n", idx, tty->name);
2290                         return;
2291                 }
2292                 if (tty->termios != tty->driver->termios[idx]) {
2293                         printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2294                                "for (%s)\n",
2295                                idx, tty->name);
2296                         return;
2297                 }
2298                 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2299                         printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2300                                "termios_locked for (%s)\n",
2301                                idx, tty->name);
2302                         return;
2303                 }
2304         }
2305 #endif
2306
2307 #ifdef TTY_DEBUG_HANGUP
2308         printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2309                tty_name(tty, buf), tty->count);
2310 #endif
2311
2312 #ifdef TTY_PARANOIA_CHECK
2313         if (tty->driver->other &&
2314              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2315                 if (o_tty != tty->driver->other->ttys[idx]) {
2316                         printk(KERN_DEBUG "release_dev: other->table[%d] "
2317                                           "not o_tty for (%s)\n",
2318                                idx, tty->name);
2319                         return;
2320                 }
2321                 if (o_tty->termios != tty->driver->other->termios[idx]) {
2322                         printk(KERN_DEBUG "release_dev: other->termios[%d] "
2323                                           "not o_termios for (%s)\n",
2324                                idx, tty->name);
2325                         return;
2326                 }
2327                 if (o_tty->termios_locked != 
2328                       tty->driver->other->termios_locked[idx]) {
2329                         printk(KERN_DEBUG "release_dev: other->termios_locked["
2330                                           "%d] not o_termios_locked for (%s)\n",
2331                                idx, tty->name);
2332                         return;
2333                 }
2334                 if (o_tty->link != tty) {
2335                         printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2336                         return;
2337                 }
2338         }
2339 #endif
2340         if (tty->driver->close)
2341                 tty->driver->close(tty, filp);
2342
2343         /*
2344          * Sanity check: if tty->count is going to zero, there shouldn't be
2345          * any waiters on tty->read_wait or tty->write_wait.  We test the
2346          * wait queues and kick everyone out _before_ actually starting to
2347          * close.  This ensures that we won't block while releasing the tty
2348          * structure.
2349          *
2350          * The test for the o_tty closing is necessary, since the master and
2351          * slave sides may close in any order.  If the slave side closes out
2352          * first, its count will be one, since the master side holds an open.
2353          * Thus this test wouldn't be triggered at the time the slave closes,
2354          * so we do it now.
2355          *
2356          * Note that it's possible for the tty to be opened again while we're
2357          * flushing out waiters.  By recalculating the closing flags before
2358          * each iteration we avoid any problems.
2359          */
2360         while (1) {
2361                 /* Guard against races with tty->count changes elsewhere and
2362                    opens on /dev/tty */
2363                    
2364                 mutex_lock(&tty_mutex);
2365                 tty_closing = tty->count <= 1;
2366                 o_tty_closing = o_tty &&
2367                         (o_tty->count <= (pty_master ? 1 : 0));
2368                 do_sleep = 0;
2369
2370                 if (tty_closing) {
2371                         if (waitqueue_active(&tty->read_wait)) {
2372                                 wake_up(&tty->read_wait);
2373                                 do_sleep++;
2374                         }
2375                         if (waitqueue_active(&tty->write_wait)) {
2376                                 wake_up(&tty->write_wait);
2377                                 do_sleep++;
2378                         }
2379                 }
2380                 if (o_tty_closing) {
2381                         if (waitqueue_active(&o_tty->read_wait)) {
2382                                 wake_up(&o_tty->read_wait);
2383                                 do_sleep++;
2384                         }
2385                         if (waitqueue_active(&o_tty->write_wait)) {
2386                                 wake_up(&o_tty->write_wait);
2387                                 do_sleep++;
2388                         }
2389                 }
2390                 if (!do_sleep)
2391                         break;
2392
2393                 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2394                                     "active!\n", tty_name(tty, buf));
2395                 mutex_unlock(&tty_mutex);
2396                 schedule();
2397         }       
2398
2399         /*
2400          * The closing flags are now consistent with the open counts on 
2401          * both sides, and we've completed the last operation that could 
2402          * block, so it's safe to proceed with closing.
2403          */
2404         if (pty_master) {
2405                 if (--o_tty->count < 0) {
2406                         printk(KERN_WARNING "release_dev: bad pty slave count "
2407                                             "(%d) for %s\n",
2408                                o_tty->count, tty_name(o_tty, buf));
2409                         o_tty->count = 0;
2410                 }
2411         }
2412         if (--tty->count < 0) {
2413                 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2414                        tty->count, tty_name(tty, buf));
2415                 tty->count = 0;
2416         }
2417         
2418         /*
2419          * We've decremented tty->count, so we need to remove this file
2420          * descriptor off the tty->tty_files list; this serves two
2421          * purposes:
2422          *  - check_tty_count sees the correct number of file descriptors
2423          *    associated with this tty.
2424          *  - do_tty_hangup no longer sees this file descriptor as
2425          *    something that needs to be handled for hangups.
2426          */
2427         file_kill(filp);
2428         filp->private_data = NULL;
2429
2430         /*
2431          * Perform some housekeeping before deciding whether to return.
2432          *
2433          * Set the TTY_CLOSING flag if this was the last open.  In the
2434          * case of a pty we may have to wait around for the other side
2435          * to close, and TTY_CLOSING makes sure we can't be reopened.
2436          */
2437         if(tty_closing)
2438                 set_bit(TTY_CLOSING, &tty->flags);
2439         if(o_tty_closing)
2440                 set_bit(TTY_CLOSING, &o_tty->flags);
2441
2442         /*
2443          * If _either_ side is closing, make sure there aren't any
2444          * processes that still think tty or o_tty is their controlling
2445          * tty.
2446          */
2447         if (tty_closing || o_tty_closing) {
2448                 read_lock(&tasklist_lock);
2449                 session_clear_tty(tty->session);
2450                 if (o_tty)
2451                         session_clear_tty(o_tty->session);
2452                 read_unlock(&tasklist_lock);
2453         }
2454
2455         mutex_unlock(&tty_mutex);
2456
2457         /* check whether both sides are closing ... */
2458         if (!tty_closing || (o_tty && !o_tty_closing))
2459                 return;
2460         
2461 #ifdef TTY_DEBUG_HANGUP
2462         printk(KERN_DEBUG "freeing tty structure...");
2463 #endif
2464         /*
2465          * Prevent flush_to_ldisc() from rescheduling the work for later.  Then
2466          * kill any delayed work. As this is the final close it does not
2467          * race with the set_ldisc code path.
2468          */
2469         clear_bit(TTY_LDISC, &tty->flags);
2470         cancel_delayed_work(&tty->buf.work);
2471
2472         /*
2473          * Wait for ->hangup_work and ->buf.work handlers to terminate
2474          */
2475          
2476         flush_scheduled_work();
2477         
2478         /*
2479          * Wait for any short term users (we know they are just driver
2480          * side waiters as the file is closing so user count on the file
2481          * side is zero.
2482          */
2483         spin_lock_irqsave(&tty_ldisc_lock, flags);
2484         while(tty->ldisc.refcount)
2485         {
2486                 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2487                 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2488                 spin_lock_irqsave(&tty_ldisc_lock, flags);
2489         }
2490         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2491         /*
2492          * Shutdown the current line discipline, and reset it to N_TTY.
2493          * N.B. why reset ldisc when we're releasing the memory??
2494          *
2495          * FIXME: this MUST get fixed for the new reflocking
2496          */
2497         if (tty->ldisc.close)
2498                 (tty->ldisc.close)(tty);
2499         tty_ldisc_put(tty->ldisc.num);
2500         
2501         /*
2502          *      Switch the line discipline back
2503          */
2504         tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2505         tty_set_termios_ldisc(tty,N_TTY); 
2506         if (o_tty) {
2507                 /* FIXME: could o_tty be in setldisc here ? */
2508                 clear_bit(TTY_LDISC, &o_tty->flags);
2509                 if (o_tty->ldisc.close)
2510                         (o_tty->ldisc.close)(o_tty);
2511                 tty_ldisc_put(o_tty->ldisc.num);
2512                 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2513                 tty_set_termios_ldisc(o_tty,N_TTY); 
2514         }
2515         /*
2516          * The release_tty function takes care of the details of clearing
2517          * the slots and preserving the termios structure.
2518          */
2519         release_tty(tty, idx);
2520
2521 #ifdef CONFIG_UNIX98_PTYS
2522         /* Make this pty number available for reallocation */
2523         if (devpts) {
2524                 down(&allocated_ptys_lock);
2525                 idr_remove(&allocated_ptys, idx);
2526                 up(&allocated_ptys_lock);
2527         }
2528 #endif
2529
2530 }
2531
2532 /**
2533  *      tty_open                -       open a tty device
2534  *      @inode: inode of device file
2535  *      @filp: file pointer to tty
2536  *
2537  *      tty_open and tty_release keep up the tty count that contains the
2538  *      number of opens done on a tty. We cannot use the inode-count, as
2539  *      different inodes might point to the same tty.
2540  *
2541  *      Open-counting is needed for pty masters, as well as for keeping
2542  *      track of serial lines: DTR is dropped when the last close happens.
2543  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
2544  *
2545  *      The termios state of a pty is reset on first open so that
2546  *      settings don't persist across reuse.
2547  *
2548  *      Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2549  *               tty->count should protect the rest.
2550  *               ->siglock protects ->signal/->sighand
2551  */
2552
2553 static int tty_open(struct inode * inode, struct file * filp)
2554 {
2555         struct tty_struct *tty;
2556         int noctty, retval;
2557         struct tty_driver *driver;
2558         int index;
2559         dev_t device = inode->i_rdev;
2560         unsigned short saved_flags = filp->f_flags;
2561
2562         nonseekable_open(inode, filp);
2563         
2564 retry_open:
2565         noctty = filp->f_flags & O_NOCTTY;
2566         index  = -1;
2567         retval = 0;
2568         
2569         mutex_lock(&tty_mutex);
2570
2571         if (device == MKDEV(TTYAUX_MAJOR,0)) {
2572                 tty = get_current_tty();
2573                 if (!tty) {
2574                         mutex_unlock(&tty_mutex);
2575                         return -ENXIO;
2576                 }
2577                 driver = tty->driver;
2578                 index = tty->index;
2579                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2580                 /* noctty = 1; */
2581                 goto got_driver;
2582         }
2583 #ifdef CONFIG_VT
2584         if (device == MKDEV(TTY_MAJOR,0)) {
2585                 extern struct tty_driver *console_driver;
2586                 driver = console_driver;
2587                 index = fg_console;
2588                 noctty = 1;
2589                 goto got_driver;
2590         }
2591 #endif
2592         if (device == MKDEV(TTYAUX_MAJOR,1)) {
2593                 driver = console_device(&index);
2594                 if (driver) {
2595                         /* Don't let /dev/console block */
2596                         filp->f_flags |= O_NONBLOCK;
2597                         noctty = 1;
2598                         goto got_driver;
2599                 }
2600                 mutex_unlock(&tty_mutex);
2601                 return -ENODEV;
2602         }
2603
2604         driver = get_tty_driver(device, &index);
2605         if (!driver) {
2606                 mutex_unlock(&tty_mutex);
2607                 return -ENODEV;
2608         }
2609 got_driver:
2610         retval = init_dev(driver, index, &tty);
2611         mutex_unlock(&tty_mutex);
2612         if (retval)
2613                 return retval;
2614
2615         filp->private_data = tty;
2616         file_move(filp, &tty->tty_files);
2617         check_tty_count(tty, "tty_open");
2618         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2619             tty->driver->subtype == PTY_TYPE_MASTER)
2620                 noctty = 1;
2621 #ifdef TTY_DEBUG_HANGUP
2622         printk(KERN_DEBUG "opening %s...", tty->name);
2623 #endif
2624         if (!retval) {
2625                 if (tty->driver->open)
2626                         retval = tty->driver->open(tty, filp);
2627                 else
2628                         retval = -ENODEV;
2629         }
2630         filp->f_flags = saved_flags;
2631
2632         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
2633                 retval = -EBUSY;
2634
2635         if (retval) {
2636 #ifdef TTY_DEBUG_HANGUP
2637                 printk(KERN_DEBUG "error %d in opening %s...", retval,
2638                        tty->name);
2639 #endif
2640                 release_dev(filp);
2641                 if (retval != -ERESTARTSYS)
2642                         return retval;
2643                 if (signal_pending(current))
2644                         return retval;
2645                 schedule();
2646                 /*
2647                  * Need to reset f_op in case a hangup happened.
2648                  */
2649                 if (filp->f_op == &hung_up_tty_fops)
2650                         filp->f_op = &tty_fops;
2651                 goto retry_open;
2652         }
2653
2654         mutex_lock(&tty_mutex);
2655         spin_lock_irq(&current->sighand->siglock);
2656         if (!noctty &&
2657             current->signal->leader &&
2658             !current->signal->tty &&
2659             tty->session == NULL)
2660                 __proc_set_tty(current, tty);
2661         spin_unlock_irq(&current->sighand->siglock);
2662         mutex_unlock(&tty_mutex);
2663         return 0;
2664 }
2665
2666 #ifdef CONFIG_UNIX98_PTYS
2667 /**
2668  *      ptmx_open               -       open a unix 98 pty master
2669  *      @inode: inode of device file
2670  *      @filp: file pointer to tty
2671  *
2672  *      Allocate a unix98 pty master device from the ptmx driver.
2673  *
2674  *      Locking: tty_mutex protects theinit_dev work. tty->count should
2675                 protect the rest.
2676  *              allocated_ptys_lock handles the list of free pty numbers
2677  */
2678
2679 static int ptmx_open(struct inode * inode, struct file * filp)
2680 {
2681         struct tty_struct *tty;
2682         int retval;
2683         int index;
2684         int idr_ret;
2685
2686         nonseekable_open(inode, filp);
2687
2688         /* find a device that is not in use. */
2689         down(&allocated_ptys_lock);
2690         if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2691                 up(&allocated_ptys_lock);
2692                 return -ENOMEM;
2693         }
2694         idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2695         if (idr_ret < 0) {
2696                 up(&allocated_ptys_lock);
2697                 if (idr_ret == -EAGAIN)
2698                         return -ENOMEM;
2699                 return -EIO;
2700         }
2701         if (index >= pty_limit) {
2702                 idr_remove(&allocated_ptys, index);
2703                 up(&allocated_ptys_lock);
2704                 return -EIO;
2705         }
2706         up(&allocated_ptys_lock);
2707
2708         mutex_lock(&tty_mutex);
2709         retval = init_dev(ptm_driver, index, &tty);
2710         mutex_unlock(&tty_mutex);
2711         
2712         if (retval)
2713                 goto out;
2714
2715         set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2716         filp->private_data = tty;
2717         file_move(filp, &tty->tty_files);
2718
2719         retval = -ENOMEM;
2720         if (devpts_pty_new(tty->link))
2721                 goto out1;
2722
2723         check_tty_count(tty, "tty_open");
2724         retval = ptm_driver->open(tty, filp);
2725         if (!retval)
2726                 return 0;
2727 out1:
2728         release_dev(filp);
2729         return retval;
2730 out:
2731         down(&allocated_ptys_lock);
2732         idr_remove(&allocated_ptys, index);
2733         up(&allocated_ptys_lock);
2734         return retval;
2735 }
2736 #endif
2737
2738 /**
2739  *      tty_release             -       vfs callback for close
2740  *      @inode: inode of tty
2741  *      @filp: file pointer for handle to tty
2742  *
2743  *      Called the last time each file handle is closed that references
2744  *      this tty. There may however be several such references.
2745  *
2746  *      Locking:
2747  *              Takes bkl. See release_dev
2748  */
2749
2750 static int tty_release(struct inode * inode, struct file * filp)
2751 {
2752         lock_kernel();
2753         release_dev(filp);
2754         unlock_kernel();
2755         return 0;
2756 }
2757
2758 /**
2759  *      tty_poll        -       check tty status
2760  *      @filp: file being polled
2761  *      @wait: poll wait structures to update
2762  *
2763  *      Call the line discipline polling method to obtain the poll
2764  *      status of the device.
2765  *
2766  *      Locking: locks called line discipline but ldisc poll method
2767  *      may be re-entered freely by other callers.
2768  */
2769
2770 static unsigned int tty_poll(struct file * filp, poll_table * wait)
2771 {
2772         struct tty_struct * tty;
2773         struct tty_ldisc *ld;
2774         int ret = 0;
2775
2776         tty = (struct tty_struct *)filp->private_data;
2777         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2778                 return 0;
2779                 
2780         ld = tty_ldisc_ref_wait(tty);
2781         if (ld->poll)
2782                 ret = (ld->poll)(tty, filp, wait);
2783         tty_ldisc_deref(ld);
2784         return ret;
2785 }
2786
2787 static int tty_fasync(int fd, struct file * filp, int on)
2788 {
2789         struct tty_struct * tty;
2790         int retval;
2791
2792         tty = (struct tty_struct *)filp->private_data;
2793         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2794                 return 0;
2795         
2796         retval = fasync_helper(fd, filp, on, &tty->fasync);
2797         if (retval <= 0)
2798                 return retval;
2799
2800         if (on) {
2801                 enum pid_type type;
2802                 struct pid *pid;
2803                 if (!waitqueue_active(&tty->read_wait))
2804                         tty->minimum_to_wake = 1;
2805                 if (tty->pgrp) {
2806                         pid = tty->pgrp;
2807                         type = PIDTYPE_PGID;
2808                 } else {
2809                         pid = task_pid(current);
2810                         type = PIDTYPE_PID;
2811                 }
2812                 retval = __f_setown(filp, pid, type, 0);
2813                 if (retval)
2814                         return retval;
2815         } else {
2816                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2817                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2818         }
2819         return 0;
2820 }
2821
2822 /**
2823  *      tiocsti                 -       fake input character
2824  *      @tty: tty to fake input into
2825  *      @p: pointer to character
2826  *
2827  *      Fake input to a tty device. Does the neccessary locking and
2828  *      input management.
2829  *
2830  *      FIXME: does not honour flow control ??
2831  *
2832  *      Locking:
2833  *              Called functions take tty_ldisc_lock
2834  *              current->signal->tty check is safe without locks
2835  *
2836  *      FIXME: may race normal receive processing
2837  */
2838
2839 static int tiocsti(struct tty_struct *tty, char __user *p)
2840 {
2841         char ch, mbz = 0;
2842         struct tty_ldisc *ld;
2843         
2844         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2845                 return -EPERM;
2846         if (get_user(ch, p))
2847                 return -EFAULT;
2848         ld = tty_ldisc_ref_wait(tty);
2849         ld->receive_buf(tty, &ch, &mbz, 1);
2850         tty_ldisc_deref(ld);
2851         return 0;
2852 }
2853
2854 /**
2855  *      tiocgwinsz              -       implement window query ioctl
2856  *      @tty; tty
2857  *      @arg: user buffer for result
2858  *
2859  *      Copies the kernel idea of the window size into the user buffer.
2860  *
2861  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2862  *              is consistent.
2863  */
2864
2865 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user * arg)
2866 {
2867         int err;
2868
2869         mutex_lock(&tty->termios_mutex);
2870         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2871         mutex_unlock(&tty->termios_mutex);
2872
2873         return err ? -EFAULT: 0;
2874 }
2875
2876 /**
2877  *      tiocswinsz              -       implement window size set ioctl
2878  *      @tty; tty
2879  *      @arg: user buffer for result
2880  *
2881  *      Copies the user idea of the window size to the kernel. Traditionally
2882  *      this is just advisory information but for the Linux console it
2883  *      actually has driver level meaning and triggers a VC resize.
2884  *
2885  *      Locking:
2886  *              Called function use the console_sem is used to ensure we do
2887  *      not try and resize the console twice at once.
2888  *              The tty->termios_mutex is used to ensure we don't double
2889  *      resize and get confused. Lock order - tty->termios_mutex before
2890  *      console sem
2891  */
2892
2893 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2894         struct winsize __user * arg)
2895 {
2896         struct winsize tmp_ws;
2897
2898         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2899                 return -EFAULT;
2900
2901         mutex_lock(&tty->termios_mutex);
2902         if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2903                 goto done;
2904
2905 #ifdef CONFIG_VT
2906         if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2907                 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2908                                         tmp_ws.ws_row)) {
2909                         mutex_unlock(&tty->termios_mutex);
2910                         return -ENXIO;
2911                 }
2912         }
2913 #endif
2914         if (tty->pgrp)
2915                 kill_pgrp(tty->pgrp, SIGWINCH, 1);
2916         if ((real_tty->pgrp != tty->pgrp) && real_tty->pgrp)
2917                 kill_pgrp(real_tty->pgrp, SIGWINCH, 1);
2918         tty->winsize = tmp_ws;
2919         real_tty->winsize = tmp_ws;
2920 done:
2921         mutex_unlock(&tty->termios_mutex);
2922         return 0;
2923 }
2924
2925 /**
2926  *      tioccons        -       allow admin to move logical console
2927  *      @file: the file to become console
2928  *
2929  *      Allow the adminstrator to move the redirected console device
2930  *
2931  *      Locking: uses redirect_lock to guard the redirect information
2932  */
2933
2934 static int tioccons(struct file *file)
2935 {
2936         if (!capable(CAP_SYS_ADMIN))
2937                 return -EPERM;
2938         if (file->f_op->write == redirected_tty_write) {
2939                 struct file *f;
2940                 spin_lock(&redirect_lock);
2941                 f = redirect;
2942                 redirect = NULL;
2943                 spin_unlock(&redirect_lock);
2944                 if (f)
2945                         fput(f);
2946                 return 0;
2947         }
2948         spin_lock(&redirect_lock);
2949         if (redirect) {
2950                 spin_unlock(&redirect_lock);
2951                 return -EBUSY;
2952         }
2953         get_file(file);
2954         redirect = file;
2955         spin_unlock(&redirect_lock);
2956         return 0;
2957 }
2958
2959 /**
2960  *      fionbio         -       non blocking ioctl
2961  *      @file: file to set blocking value
2962  *      @p: user parameter
2963  *
2964  *      Historical tty interfaces had a blocking control ioctl before
2965  *      the generic functionality existed. This piece of history is preserved
2966  *      in the expected tty API of posix OS's.
2967  *
2968  *      Locking: none, the open fle handle ensures it won't go away.
2969  */
2970
2971 static int fionbio(struct file *file, int __user *p)
2972 {
2973         int nonblock;
2974
2975         if (get_user(nonblock, p))
2976                 return -EFAULT;
2977
2978         if (nonblock)
2979                 file->f_flags |= O_NONBLOCK;
2980         else
2981                 file->f_flags &= ~O_NONBLOCK;
2982         return 0;
2983 }
2984
2985 /**
2986  *      tiocsctty       -       set controlling tty
2987  *      @tty: tty structure
2988  *      @arg: user argument
2989  *
2990  *      This ioctl is used to manage job control. It permits a session
2991  *      leader to set this tty as the controlling tty for the session.
2992  *
2993  *      Locking:
2994  *              Takes tty_mutex() to protect tty instance
2995  *              Takes tasklist_lock internally to walk sessions
2996  *              Takes ->siglock() when updating signal->tty
2997  */
2998
2999 static int tiocsctty(struct tty_struct *tty, int arg)
3000 {
3001         int ret = 0;
3002         if (current->signal->leader && (task_session(current) == tty->session))
3003                 return ret;
3004
3005         mutex_lock(&tty_mutex);
3006         /*
3007          * The process must be a session leader and
3008          * not have a controlling tty already.
3009          */
3010         if (!current->signal->leader || current->signal->tty) {
3011                 ret = -EPERM;
3012                 goto unlock;
3013         }
3014
3015         if (tty->session) {
3016                 /*
3017                  * This tty is already the controlling
3018                  * tty for another session group!
3019                  */
3020                 if ((arg == 1) && capable(CAP_SYS_ADMIN)) {
3021                         /*
3022                          * Steal it away
3023                          */
3024                         read_lock(&tasklist_lock);
3025                         session_clear_tty(tty->session);
3026                         read_unlock(&tasklist_lock);
3027                 } else {
3028                         ret = -EPERM;
3029                         goto unlock;
3030                 }
3031         }
3032         proc_set_tty(current, tty);
3033 unlock:
3034         mutex_unlock(&tty_mutex);
3035         return ret;
3036 }
3037
3038 /**
3039  *      tiocgpgrp               -       get process group
3040  *      @tty: tty passed by user
3041  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
3042  *      @p: returned pid
3043  *
3044  *      Obtain the process group of the tty. If there is no process group
3045  *      return an error.
3046  *
3047  *      Locking: none. Reference to current->signal->tty is safe.
3048  */
3049
3050 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3051 {
3052         /*
3053          * (tty == real_tty) is a cheap way of
3054          * testing if the tty is NOT a master pty.
3055          */
3056         if (tty == real_tty && current->signal->tty != real_tty)
3057                 return -ENOTTY;
3058         return put_user(pid_nr(real_tty->pgrp), p);
3059 }
3060
3061 /**
3062  *      tiocspgrp               -       attempt to set process group
3063  *      @tty: tty passed by user
3064  *      @real_tty: tty side device matching tty passed by user
3065  *      @p: pid pointer
3066  *
3067  *      Set the process group of the tty to the session passed. Only
3068  *      permitted where the tty session is our session.
3069  *
3070  *      Locking: None
3071  */
3072
3073 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3074 {
3075         struct pid *pgrp;
3076         pid_t pgrp_nr;
3077         int retval = tty_check_change(real_tty);
3078
3079         if (retval == -EIO)
3080                 return -ENOTTY;
3081         if (retval)
3082                 return retval;
3083         if (!current->signal->tty ||
3084             (current->signal->tty != real_tty) ||
3085             (real_tty->session != task_session(current)))
3086                 return -ENOTTY;
3087         if (get_user(pgrp_nr, p))
3088                 return -EFAULT;
3089         if (pgrp_nr < 0)
3090                 return -EINVAL;
3091         rcu_read_lock();
3092         pgrp = find_pid(pgrp_nr);
3093         retval = -ESRCH;
3094         if (!pgrp)
3095                 goto out_unlock;
3096         retval = -EPERM;
3097         if (session_of_pgrp(pgrp) != task_session(current))
3098                 goto out_unlock;
3099         retval = 0;
3100         put_pid(real_tty->pgrp);
3101         real_tty->pgrp = get_pid(pgrp);
3102 out_unlock:
3103         rcu_read_unlock();
3104         return retval;
3105 }
3106
3107 /**
3108  *      tiocgsid                -       get session id
3109  *      @tty: tty passed by user
3110  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
3111  *      @p: pointer to returned session id
3112  *
3113  *      Obtain the session id of the tty. If there is no session
3114  *      return an error.
3115  *
3116  *      Locking: none. Reference to current->signal->tty is safe.
3117  */
3118
3119 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3120 {
3121         /*
3122          * (tty == real_tty) is a cheap way of
3123          * testing if the tty is NOT a master pty.
3124         */
3125         if (tty == real_tty && current->signal->tty != real_tty)
3126                 return -ENOTTY;
3127         if (!real_tty->session)
3128                 return -ENOTTY;
3129         return put_user(pid_nr(real_tty->session), p);
3130 }
3131
3132 /**
3133  *      tiocsetd        -       set line discipline
3134  *      @tty: tty device
3135  *      @p: pointer to user data
3136  *
3137  *      Set the line discipline according to user request.
3138  *
3139  *      Locking: see tty_set_ldisc, this function is just a helper
3140  */
3141
3142 static int tiocsetd(struct tty_struct *tty, int __user *p)
3143 {
3144         int ldisc;
3145
3146         if (get_user(ldisc, p))
3147                 return -EFAULT;
3148         return tty_set_ldisc(tty, ldisc);
3149 }
3150
3151 /**
3152  *      send_break      -       performed time break
3153  *      @tty: device to break on
3154  *      @duration: timeout in mS
3155  *
3156  *      Perform a timed break on hardware that lacks its own driver level
3157  *      timed break functionality.
3158  *
3159  *      Locking:
3160  *              atomic_write_lock serializes
3161  *
3162  */
3163
3164 static int send_break(struct tty_struct *tty, unsigned int duration)
3165 {
3166         if (mutex_lock_interruptible(&tty->atomic_write_lock))
3167                 return -EINTR;
3168         tty->driver->break_ctl(tty, -1);
3169         if (!signal_pending(current)) {
3170                 msleep_interruptible(duration);
3171         }
3172         tty->driver->break_ctl(tty, 0);
3173         mutex_unlock(&tty->atomic_write_lock);
3174         if (signal_pending(current))
3175                 return -EINTR;
3176         return 0;
3177 }
3178
3179 /**
3180  *      tiocmget                -       get modem status
3181  *      @tty: tty device
3182  *      @file: user file pointer
3183  *      @p: pointer to result
3184  *
3185  *      Obtain the modem status bits from the tty driver if the feature
3186  *      is supported. Return -EINVAL if it is not available.
3187  *
3188  *      Locking: none (up to the driver)
3189  */
3190
3191 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3192 {
3193         int retval = -EINVAL;
3194
3195         if (tty->driver->tiocmget) {
3196                 retval = tty->driver->tiocmget(tty, file);
3197
3198                 if (retval >= 0)
3199                         retval = put_user(retval, p);
3200         }
3201         return retval;
3202 }
3203
3204 /**
3205  *      tiocmset                -       set modem status
3206  *      @tty: tty device
3207  *      @file: user file pointer
3208  *      @cmd: command - clear bits, set bits or set all
3209  *      @p: pointer to desired bits
3210  *
3211  *      Set the modem status bits from the tty driver if the feature
3212  *      is supported. Return -EINVAL if it is not available.
3213  *
3214  *      Locking: none (up to the driver)
3215  */
3216
3217 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3218              unsigned __user *p)
3219 {
3220         int retval = -EINVAL;
3221
3222         if (tty->driver->tiocmset) {
3223                 unsigned int set, clear, val;
3224
3225                 retval = get_user(val, p);
3226                 if (retval)
3227                         return retval;
3228
3229                 set = clear = 0;
3230                 switch (cmd) {
3231                 case TIOCMBIS:
3232                         set = val;
3233                         break;
3234                 case TIOCMBIC:
3235                         clear = val;
3236                         break;
3237                 case TIOCMSET:
3238                         set = val;
3239                         clear = ~val;
3240                         break;
3241                 }
3242
3243                 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3244                 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3245
3246                 retval = tty->driver->tiocmset(tty, file, set, clear);
3247         }
3248         return retval;
3249 }
3250
3251 /*
3252  * Split this up, as gcc can choke on it otherwise..
3253  */
3254 int tty_ioctl(struct inode * inode, struct file * file,
3255               unsigned int cmd, unsigned long arg)
3256 {
3257         struct tty_struct *tty, *real_tty;
3258         void __user *p = (void __user *)arg;
3259         int retval;
3260         struct tty_ldisc *ld;
3261         
3262         tty = (struct tty_struct *)file->private_data;
3263         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3264                 return -EINVAL;
3265
3266         /* CHECKME: is this safe as one end closes ? */
3267
3268         real_tty = tty;
3269         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3270             tty->driver->subtype == PTY_TYPE_MASTER)
3271                 real_tty = tty->link;
3272
3273         /*
3274          * Break handling by driver
3275          */
3276         if (!tty->driver->break_ctl) {
3277                 switch(cmd) {
3278                 case TIOCSBRK:
3279                 case TIOCCBRK:
3280                         if (tty->driver->ioctl)
3281                                 return tty->driver->ioctl(tty, file, cmd, arg);
3282                         return -EINVAL;
3283                         
3284                 /* These two ioctl's always return success; even if */
3285                 /* the driver doesn't support them. */
3286                 case TCSBRK:
3287                 case TCSBRKP:
3288                         if (!tty->driver->ioctl)
3289                                 return 0;
3290                         retval = tty->driver->ioctl(tty, file, cmd, arg);
3291                         if (retval == -ENOIOCTLCMD)
3292                                 retval = 0;
3293                         return retval;
3294                 }
3295         }
3296
3297         /*
3298          * Factor out some common prep work
3299          */
3300         switch (cmd) {
3301         case TIOCSETD:
3302         case TIOCSBRK:
3303         case TIOCCBRK:
3304         case TCSBRK:
3305         case TCSBRKP:                   
3306                 retval = tty_check_change(tty);
3307                 if (retval)
3308                         return retval;
3309                 if (cmd != TIOCCBRK) {
3310                         tty_wait_until_sent(tty, 0);
3311                         if (signal_pending(current))
3312                                 return -EINTR;
3313                 }
3314                 break;
3315         }
3316
3317         switch (cmd) {
3318                 case TIOCSTI:
3319                         return tiocsti(tty, p);
3320                 case TIOCGWINSZ:
3321                         return tiocgwinsz(tty, p);
3322                 case TIOCSWINSZ:
3323                         return tiocswinsz(tty, real_tty, p);
3324                 case TIOCCONS:
3325                         return real_tty!=tty ? -EINVAL : tioccons(file);
3326                 case FIONBIO:
3327                         return fionbio(file, p);
3328                 case TIOCEXCL:
3329                         set_bit(TTY_EXCLUSIVE, &tty->flags);
3330                         return 0;
3331                 case TIOCNXCL:
3332                         clear_bit(TTY_EXCLUSIVE, &tty->flags);
3333                         return 0;
3334                 case TIOCNOTTY:
3335                         if (current->signal->tty != tty)
3336                                 return -ENOTTY;
3337                         no_tty();
3338                         return 0;
3339                 case TIOCSCTTY:
3340                         return tiocsctty(tty, arg);
3341                 case TIOCGPGRP:
3342                         return tiocgpgrp(tty, real_tty, p);
3343                 case TIOCSPGRP:
3344                         return tiocspgrp(tty, real_tty, p);
3345                 case TIOCGSID:
3346                         return tiocgsid(tty, real_tty, p);
3347                 case TIOCGETD:
3348                         /* FIXME: check this is ok */
3349                         return put_user(tty->ldisc.num, (int __user *)p);
3350                 case TIOCSETD:
3351                         return tiocsetd(tty, p);
3352 #ifdef CONFIG_VT
3353                 case TIOCLINUX:
3354                         return tioclinux(tty, arg);
3355 #endif
3356                 /*
3357                  * Break handling
3358                  */
3359                 case TIOCSBRK:  /* Turn break on, unconditionally */
3360                         tty->driver->break_ctl(tty, -1);
3361                         return 0;
3362                         
3363                 case TIOCCBRK:  /* Turn break off, unconditionally */
3364                         tty->driver->break_ctl(tty, 0);
3365                         return 0;
3366                 case TCSBRK:   /* SVID version: non-zero arg --> no break */
3367                         /* non-zero arg means wait for all output data
3368                          * to be sent (performed above) but don't send break.
3369                          * This is used by the tcdrain() termios function.
3370                          */
3371                         if (!arg)
3372                                 return send_break(tty, 250);
3373                         return 0;
3374                 case TCSBRKP:   /* support for POSIX tcsendbreak() */   
3375                         return send_break(tty, arg ? arg*100 : 250);
3376
3377                 case TIOCMGET:
3378                         return tty_tiocmget(tty, file, p);
3379
3380                 case TIOCMSET:
3381                 case TIOCMBIC:
3382                 case TIOCMBIS:
3383                         return tty_tiocmset(tty, file, cmd, p);
3384                 case TCFLSH:
3385                         switch (arg) {
3386                         case TCIFLUSH:
3387                         case TCIOFLUSH:
3388                                 /* flush tty buffer and allow ldisc to process ioctl */
3389                                 tty_buffer_flush(tty);
3390                                 break;
3391                         }
3392                         break;
3393         }
3394         if (tty->driver->ioctl) {
3395                 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3396                 if (retval != -ENOIOCTLCMD)
3397                         return retval;
3398         }
3399         ld = tty_ldisc_ref_wait(tty);
3400         retval = -EINVAL;
3401         if (ld->ioctl) {
3402                 retval = ld->ioctl(tty, file, cmd, arg);
3403                 if (retval == -ENOIOCTLCMD)
3404                         retval = -EINVAL;
3405         }
3406         tty_ldisc_deref(ld);
3407         return retval;
3408 }
3409
3410 #ifdef CONFIG_COMPAT
3411 static long tty_compat_ioctl(struct file * file, unsigned int cmd,
3412                                 unsigned long arg)
3413 {
3414         struct inode *inode = file->f_dentry->d_inode;
3415         struct tty_struct *tty = file->private_data;
3416         struct tty_ldisc *ld;
3417         int retval = -ENOIOCTLCMD;
3418
3419         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3420                 return -EINVAL;
3421
3422         if (tty->driver->compat_ioctl) {
3423                 retval = (tty->driver->compat_ioctl)(tty, file, cmd, arg);
3424                 if (retval != -ENOIOCTLCMD)
3425                         return retval;
3426         }
3427
3428         ld = tty_ldisc_ref_wait(tty);
3429         if (ld->compat_ioctl)
3430                 retval = ld->compat_ioctl(tty, file, cmd, arg);
3431         tty_ldisc_deref(ld);
3432
3433         return retval;
3434 }
3435 #endif
3436
3437 /*
3438  * This implements the "Secure Attention Key" ---  the idea is to
3439  * prevent trojan horses by killing all processes associated with this
3440  * tty when the user hits the "Secure Attention Key".  Required for
3441  * super-paranoid applications --- see the Orange Book for more details.
3442  * 
3443  * This code could be nicer; ideally it should send a HUP, wait a few
3444  * seconds, then send a INT, and then a KILL signal.  But you then
3445  * have to coordinate with the init process, since all processes associated
3446  * with the current tty must be dead before the new getty is allowed
3447  * to spawn.
3448  *
3449  * Now, if it would be correct ;-/ The current code has a nasty hole -
3450  * it doesn't catch files in flight. We may send the descriptor to ourselves
3451  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3452  *
3453  * Nasty bug: do_SAK is being called in interrupt context.  This can
3454  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3455  */
3456 void __do_SAK(struct tty_struct *tty)
3457 {
3458 #ifdef TTY_SOFT_SAK
3459         tty_hangup(tty);
3460 #else
3461         struct task_struct *g, *p;
3462         struct pid *session;
3463         int             i;
3464         struct file     *filp;
3465         struct fdtable *fdt;
3466         
3467         if (!tty)
3468                 return;
3469         session = tty->session;
3470         
3471         tty_ldisc_flush(tty);
3472
3473         if (tty->driver->flush_buffer)
3474                 tty->driver->flush_buffer(tty);
3475         
3476         read_lock(&tasklist_lock);
3477         /* Kill the entire session */
3478         do_each_pid_task(session, PIDTYPE_SID, p) {
3479                 printk(KERN_NOTICE "SAK: killed process %d"
3480                         " (%s): process_session(p)==tty->session\n",
3481                         p->pid, p->comm);
3482                 send_sig(SIGKILL, p, 1);
3483         } while_each_pid_task(session, PIDTYPE_SID, p);
3484         /* Now kill any processes that happen to have the
3485          * tty open.
3486          */
3487         do_each_thread(g, p) {
3488                 if (p->signal->tty == tty) {
3489                         printk(KERN_NOTICE "SAK: killed process %d"
3490                             " (%s): process_session(p)==tty->session\n",
3491                             p->pid, p->comm);
3492                         send_sig(SIGKILL, p, 1);
3493                         continue;
3494                 }
3495                 task_lock(p);
3496                 if (p->files) {
3497                         /*
3498                          * We don't take a ref to the file, so we must
3499                          * hold ->file_lock instead.
3500                          */
3501                         spin_lock(&p->files->file_lock);
3502                         fdt = files_fdtable(p->files);
3503                         for (i=0; i < fdt->max_fds; i++) {
3504                                 filp = fcheck_files(p->files, i);
3505                                 if (!filp)
3506                                         continue;
3507                                 if (filp->f_op->read == tty_read &&
3508                                     filp->private_data == tty) {
3509                                         printk(KERN_NOTICE "SAK: killed process %d"
3510                                             " (%s): fd#%d opened to the tty\n",
3511                                             p->pid, p->comm, i);
3512                                         force_sig(SIGKILL, p);
3513                                         break;
3514                                 }
3515                         }
3516                         spin_unlock(&p->files->file_lock);
3517                 }
3518                 task_unlock(p);
3519         } while_each_thread(g, p);
3520         read_unlock(&tasklist_lock);
3521 #endif
3522 }
3523
3524 static void do_SAK_work(struct work_struct *work)
3525 {
3526         struct tty_struct *tty =
3527                 container_of(work, struct tty_struct, SAK_work);
3528         __do_SAK(tty);
3529 }
3530
3531 /*
3532  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3533  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3534  * the values which we write to it will be identical to the values which it
3535  * already has. --akpm
3536  */
3537 void do_SAK(struct tty_struct *tty)
3538 {
3539         if (!tty)
3540                 return;
3541         schedule_work(&tty->SAK_work);
3542 }
3543
3544 EXPORT_SYMBOL(do_SAK);
3545
3546 /**
3547  *      flush_to_ldisc
3548  *      @work: tty structure passed from work queue.
3549  *
3550  *      This routine is called out of the software interrupt to flush data
3551  *      from the buffer chain to the line discipline.
3552  *
3553  *      Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3554  *      while invoking the line discipline receive_buf method. The
3555  *      receive_buf method is single threaded for each tty instance.
3556  */
3557  
3558 static void flush_to_ldisc(struct work_struct *work)
3559 {
3560         struct tty_struct *tty =
3561                 container_of(work, struct tty_struct, buf.work.work);
3562         unsigned long   flags;
3563         struct tty_ldisc *disc;
3564         struct tty_buffer *tbuf, *head;
3565         char *char_buf;
3566         unsigned char *flag_buf;
3567
3568         disc = tty_ldisc_ref(tty);
3569         if (disc == NULL)       /*  !TTY_LDISC */
3570                 return;
3571
3572         spin_lock_irqsave(&tty->buf.lock, flags);
3573         head = tty->buf.head;
3574         if (head != NULL) {
3575                 tty->buf.head = NULL;
3576                 for (;;) {
3577                         int count = head->commit - head->read;
3578                         if (!count) {
3579                                 if (head->next == NULL)
3580                                         break;
3581                                 tbuf = head;
3582                                 head = head->next;
3583                                 tty_buffer_free(tty, tbuf);
3584                                 continue;
3585                         }
3586                         if (!tty->receive_room) {
3587                                 schedule_delayed_work(&tty->buf.work, 1);
3588                                 break;
3589                         }
3590                         if (count > tty->receive_room)
3591                                 count = tty->receive_room;
3592                         char_buf = head->char_buf_ptr + head->read;
3593                         flag_buf = head->flag_buf_ptr + head->read;
3594                         head->read += count;
3595                         spin_unlock_irqrestore(&tty->buf.lock, flags);
3596                         disc->receive_buf(tty, char_buf, flag_buf, count);
3597                         spin_lock_irqsave(&tty->buf.lock, flags);
3598                 }
3599                 tty->buf.head = head;
3600         }
3601         spin_unlock_irqrestore(&tty->buf.lock, flags);
3602
3603         tty_ldisc_deref(disc);
3604 }
3605
3606 /**
3607  *      tty_flip_buffer_push    -       terminal
3608  *      @tty: tty to push
3609  *
3610  *      Queue a push of the terminal flip buffers to the line discipline. This
3611  *      function must not be called from IRQ context if tty->low_latency is set.
3612  *
3613  *      In the event of the queue being busy for flipping the work will be
3614  *      held off and retried later.
3615  *
3616  *      Locking: tty buffer lock. Driver locks in low latency mode.
3617  */
3618
3619 void tty_flip_buffer_push(struct tty_struct *tty)
3620 {
3621         unsigned long flags;
3622         spin_lock_irqsave(&tty->buf.lock, flags);
3623         if (tty->buf.tail != NULL)
3624                 tty->buf.tail->commit = tty->buf.tail->used;
3625         spin_unlock_irqrestore(&tty->buf.lock, flags);
3626
3627         if (tty->low_latency)
3628                 flush_to_ldisc(&tty->buf.work.work);
3629         else
3630                 schedule_delayed_work(&tty->buf.work, 1);
3631 }
3632
3633 EXPORT_SYMBOL(tty_flip_buffer_push);
3634
3635
3636 /**
3637  *      initialize_tty_struct
3638  *      @tty: tty to initialize
3639  *
3640  *      This subroutine initializes a tty structure that has been newly
3641  *      allocated.
3642  *
3643  *      Locking: none - tty in question must not be exposed at this point
3644  */
3645
3646 static void initialize_tty_struct(struct tty_struct *tty)
3647 {
3648         memset(tty, 0, sizeof(struct tty_struct));
3649         tty->magic = TTY_MAGIC;
3650         tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3651         tty->session = NULL;
3652         tty->pgrp = NULL;
3653         tty->overrun_time = jiffies;
3654         tty->buf.head = tty->buf.tail = NULL;
3655         tty_buffer_init(tty);
3656         INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3657         init_MUTEX(&tty->buf.pty_sem);
3658         mutex_init(&tty->termios_mutex);
3659         init_waitqueue_head(&tty->write_wait);
3660         init_waitqueue_head(&tty->read_wait);
3661         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3662         mutex_init(&tty->atomic_read_lock);
3663         mutex_init(&tty->atomic_write_lock);
3664         spin_lock_init(&tty->read_lock);
3665         INIT_LIST_HEAD(&tty->tty_files);
3666         INIT_WORK(&tty->SAK_work, do_SAK_work);
3667 }
3668
3669 /*
3670  * The default put_char routine if the driver did not define one.
3671  */
3672
3673 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3674 {
3675         tty->driver->write(tty, &ch, 1);
3676 }
3677
3678 static struct class *tty_class;
3679
3680 /**
3681  *      tty_register_device - register a tty device
3682  *      @driver: the tty driver that describes the tty device
3683  *      @index: the index in the tty driver for this tty device
3684  *      @device: a struct device that is associated with this tty device.
3685  *              This field is optional, if there is no known struct device
3686  *              for this tty device it can be set to NULL safely.
3687  *
3688  *      Returns a pointer to the struct device for this tty device
3689  *      (or ERR_PTR(-EFOO) on error).
3690  *
3691  *      This call is required to be made to register an individual tty device
3692  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3693  *      that bit is not set, this function should not be called by a tty
3694  *      driver.
3695  *
3696  *      Locking: ??
3697  */
3698
3699 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3700                                    struct device *device)
3701 {
3702         char name[64];
3703         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3704
3705         if (index >= driver->num) {
3706                 printk(KERN_ERR "Attempt to register invalid tty line number "
3707                        " (%d).\n", index);
3708                 return ERR_PTR(-EINVAL);
3709         }
3710
3711         if (driver->type == TTY_DRIVER_TYPE_PTY)
3712                 pty_line_name(driver, index, name);
3713         else
3714                 tty_line_name(driver, index, name);
3715
3716         return device_create(tty_class, device, dev, name);
3717 }
3718
3719 /**
3720  *      tty_unregister_device - unregister a tty device
3721  *      @driver: the tty driver that describes the tty device
3722  *      @index: the index in the tty driver for this tty device
3723  *
3724  *      If a tty device is registered with a call to tty_register_device() then
3725  *      this function must be called when the tty device is gone.
3726  *
3727  *      Locking: ??
3728  */
3729
3730 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3731 {
3732         device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index);
3733 }
3734
3735 EXPORT_SYMBOL(tty_register_device);
3736 EXPORT_SYMBOL(tty_unregister_device);
3737
3738 struct tty_driver *alloc_tty_driver(int lines)
3739 {
3740         struct tty_driver *driver;
3741
3742         driver = kmalloc(sizeof(struct tty_driver), GFP_KERNEL);
3743         if (driver) {
3744                 memset(driver, 0, sizeof(struct tty_driver));
3745                 driver->magic = TTY_DRIVER_MAGIC;
3746                 driver->num = lines;
3747                 /* later we'll move allocation of tables here */
3748         }
3749         return driver;
3750 }
3751
3752 void put_tty_driver(struct tty_driver *driver)
3753 {
3754         kfree(driver);
3755 }
3756
3757 void tty_set_operations(struct tty_driver *driver,
3758                         const struct tty_operations *op)
3759 {
3760         driver->open = op->open;
3761         driver->close = op->close;
3762         driver->write = op->write;
3763         driver->put_char = op->put_char;
3764         driver->flush_chars = op->flush_chars;
3765         driver->write_room = op->write_room;
3766         driver->chars_in_buffer = op->chars_in_buffer;
3767         driver->ioctl = op->ioctl;
3768         driver->compat_ioctl = op->compat_ioctl;
3769         driver->set_termios = op->set_termios;
3770         driver->throttle = op->throttle;
3771         driver->unthrottle = op->unthrottle;
3772         driver->stop = op->stop;
3773         driver->start = op->start;
3774         driver->hangup = op->hangup;
3775         driver->break_ctl = op->break_ctl;
3776         driver->flush_buffer = op->flush_buffer;
3777         driver->set_ldisc = op->set_ldisc;
3778         driver->wait_until_sent = op->wait_until_sent;
3779         driver->send_xchar = op->send_xchar;
3780         driver->read_proc = op->read_proc;
3781         driver->write_proc = op->write_proc;
3782         driver->tiocmget = op->tiocmget;
3783         driver->tiocmset = op->tiocmset;
3784 }
3785
3786
3787 EXPORT_SYMBOL(alloc_tty_driver);
3788 EXPORT_SYMBOL(put_tty_driver);
3789 EXPORT_SYMBOL(tty_set_operations);
3790
3791 /*
3792  * Called by a tty driver to register itself.
3793  */
3794 int tty_register_driver(struct tty_driver *driver)
3795 {
3796         int error;
3797         int i;
3798         dev_t dev;
3799         void **p = NULL;
3800
3801         if (driver->flags & TTY_DRIVER_INSTALLED)
3802                 return 0;
3803
3804         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3805                 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3806                 if (!p)
3807                         return -ENOMEM;
3808         }
3809
3810         if (!driver->major) {
3811                 error = alloc_chrdev_region(&dev, driver->minor_start, driver->num,
3812                                                 driver->name);
3813                 if (!error) {
3814                         driver->major = MAJOR(dev);
3815                         driver->minor_start = MINOR(dev);
3816                 }
3817         } else {
3818                 dev = MKDEV(driver->major, driver->minor_start);
3819                 error = register_chrdev_region(dev, driver->num, driver->name);
3820         }
3821         if (error < 0) {
3822                 kfree(p);
3823                 return error;
3824         }
3825
3826         if (p) {
3827                 driver->ttys = (struct tty_struct **)p;
3828                 driver->termios = (struct ktermios **)(p + driver->num);
3829                 driver->termios_locked = (struct ktermios **)(p + driver->num * 2);
3830         } else {
3831                 driver->ttys = NULL;
3832                 driver->termios = NULL;
3833                 driver->termios_locked = NULL;
3834         }
3835
3836         cdev_init(&driver->cdev, &tty_fops);
3837         driver->cdev.owner = driver->owner;
3838         error = cdev_add(&driver->cdev, dev, driver->num);
3839         if (error) {
3840                 unregister_chrdev_region(dev, driver->num);
3841                 driver->ttys = NULL;
3842                 driver->termios = driver->termios_locked = NULL;
3843                 kfree(p);
3844                 return error;
3845         }
3846
3847         if (!driver->put_char)
3848                 driver->put_char = tty_default_put_char;
3849         
3850         mutex_lock(&tty_mutex);
3851         list_add(&driver->tty_drivers, &tty_drivers);
3852         mutex_unlock(&tty_mutex);
3853         
3854         if ( !(driver->flags & TTY_DRIVER_DYNAMIC_DEV) ) {
3855                 for(i = 0; i < driver->num; i++)
3856                     tty_register_device(driver, i, NULL);
3857         }
3858         proc_tty_register_driver(driver);
3859         return 0;
3860 }
3861
3862 EXPORT_SYMBOL(tty_register_driver);
3863
3864 /*
3865  * Called by a tty driver to unregister itself.
3866  */
3867 int tty_unregister_driver(struct tty_driver *driver)
3868 {
3869         int i;
3870         struct ktermios *tp;
3871         void *p;
3872
3873         if (driver->refcount)
3874                 return -EBUSY;
3875
3876         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3877                                 driver->num);
3878         mutex_lock(&tty_mutex);
3879         list_del(&driver->tty_drivers);
3880         mutex_unlock(&tty_mutex);
3881
3882         /*
3883          * Free the termios and termios_locked structures because
3884          * we don't want to get memory leaks when modular tty
3885          * drivers are removed from the kernel.
3886          */
3887         for (i = 0; i < driver->num; i++) {
3888                 tp = driver->termios[i];
3889                 if (tp) {
3890                         driver->termios[i] = NULL;
3891                         kfree(tp);
3892                 }
3893                 tp = driver->termios_locked[i];
3894                 if (tp) {
3895                         driver->termios_locked[i] = NULL;
3896                         kfree(tp);
3897                 }
3898                 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3899                         tty_unregister_device(driver, i);
3900         }
3901         p = driver->ttys;
3902         proc_tty_unregister_driver(driver);
3903         driver->ttys = NULL;
3904         driver->termios = driver->termios_locked = NULL;
3905         kfree(p);
3906         cdev_del(&driver->cdev);
3907         return 0;
3908 }
3909 EXPORT_SYMBOL(tty_unregister_driver);
3910
3911 dev_t tty_devnum(struct tty_struct *tty)
3912 {
3913         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3914 }
3915 EXPORT_SYMBOL(tty_devnum);
3916
3917 void proc_clear_tty(struct task_struct *p)
3918 {
3919         spin_lock_irq(&p->sighand->siglock);
3920         p->signal->tty = NULL;
3921         spin_unlock_irq(&p->sighand->siglock);
3922 }
3923 EXPORT_SYMBOL(proc_clear_tty);
3924
3925 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3926 {
3927         if (tty) {
3928                 /* We should not have a session or pgrp to here but.... */
3929                 put_pid(tty->session);
3930                 put_pid(tty->pgrp);
3931                 tty->session = get_pid(task_session(tsk));
3932                 tty->pgrp = get_pid(task_pgrp(tsk));
3933         }
3934         put_pid(tsk->signal->tty_old_pgrp);
3935         tsk->signal->tty = tty;
3936         tsk->signal->tty_old_pgrp = NULL;
3937 }
3938
3939 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3940 {
3941         spin_lock_irq(&tsk->sighand->siglock);
3942         __proc_set_tty(tsk, tty);
3943         spin_unlock_irq(&tsk->sighand->siglock);
3944 }
3945
3946 struct tty_struct *get_current_tty(void)
3947 {
3948         struct tty_struct *tty;
3949         WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
3950         tty = current->signal->tty;
3951         /*
3952          * session->tty can be changed/cleared from under us, make sure we
3953          * issue the load. The obtained pointer, when not NULL, is valid as
3954          * long as we hold tty_mutex.
3955          */
3956         barrier();
3957         return tty;
3958 }
3959 EXPORT_SYMBOL_GPL(get_current_tty);
3960
3961 /*
3962  * Initialize the console device. This is called *early*, so
3963  * we can't necessarily depend on lots of kernel help here.
3964  * Just do some early initializations, and do the complex setup
3965  * later.
3966  */
3967 void __init console_init(void)
3968 {
3969         initcall_t *call;
3970
3971         /* Setup the default TTY line discipline. */
3972         (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
3973
3974         /*
3975          * set up the console device so that later boot sequences can 
3976          * inform about problems etc..
3977          */
3978         call = __con_initcall_start;
3979         while (call < __con_initcall_end) {
3980                 (*call)();
3981                 call++;
3982         }
3983 }
3984
3985 #ifdef CONFIG_VT
3986 extern int vty_init(void);
3987 #endif
3988
3989 static int __init tty_class_init(void)
3990 {
3991         tty_class = class_create(THIS_MODULE, "tty");
3992         if (IS_ERR(tty_class))
3993                 return PTR_ERR(tty_class);
3994         return 0;
3995 }
3996
3997 postcore_initcall(tty_class_init);
3998
3999 /* 3/2004 jmc: why do these devices exist? */
4000
4001 static struct cdev tty_cdev, console_cdev;
4002 #ifdef CONFIG_UNIX98_PTYS
4003 static struct cdev ptmx_cdev;
4004 #endif
4005 #ifdef CONFIG_VT
4006 static struct cdev vc0_cdev;
4007 #endif
4008
4009 /*
4010  * Ok, now we can initialize the rest of the tty devices and can count
4011  * on memory allocations, interrupts etc..
4012  */
4013 static int __init tty_init(void)
4014 {
4015         cdev_init(&tty_cdev, &tty_fops);
4016         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
4017             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
4018                 panic("Couldn't register /dev/tty driver\n");
4019         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
4020
4021         cdev_init(&console_cdev, &console_fops);
4022         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
4023             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
4024                 panic("Couldn't register /dev/console driver\n");
4025         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
4026
4027 #ifdef CONFIG_UNIX98_PTYS
4028         cdev_init(&ptmx_cdev, &ptmx_fops);
4029         if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
4030             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
4031                 panic("Couldn't register /dev/ptmx driver\n");
4032         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
4033 #endif
4034
4035 #ifdef CONFIG_VT
4036         cdev_init(&vc0_cdev, &console_fops);
4037         if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
4038             register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
4039                 panic("Couldn't register /dev/tty0 driver\n");
4040         device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
4041
4042         vty_init();
4043 #endif
4044         return 0;
4045 }
4046 module_init(tty_init);