2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6 * Thanks to Essential Communication for providing us with hardware
7 * and very comprehensive documentation without which I would not have
8 * been able to write this driver. A special thank you to John Gibbon
9 * for sorting out the legal issues, with the NDA, allowing the code to
10 * be released under the GPL.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18 * stupid bugs in my code.
20 * Softnet support and various other patches from Val Henson of
23 * PCI DMA mapping code partly based on work by Francois Romieu.
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
45 #include <asm/system.h>
46 #include <asm/cache.h>
47 #include <asm/byteorder.h>
50 #include <asm/uaccess.h>
52 #define rr_if_busy(dev) netif_queue_stopped(dev)
53 #define rr_if_running(dev) netif_running(dev)
57 #define RUN_AT(x) (jiffies + (x))
60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62 MODULE_LICENSE("GPL");
64 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
67 * Implementation notes:
69 * The DMA engine only allows for DMA within physical 64KB chunks of
70 * memory. The current approach of the driver (and stack) is to use
71 * linear blocks of memory for the skbuffs. However, as the data block
72 * is always the first part of the skb and skbs are 2^n aligned so we
73 * are guarantted to get the whole block within one 64KB align 64KB
76 * On the long term, relying on being able to allocate 64KB linear
77 * chunks of memory is not feasible and the skb handling code and the
78 * stack will need to know about I/O vectors or something similar.
82 * These are checked at init time to see if they are at least 256KB
83 * and increased to 256KB if they are not. This is done to avoid ending
84 * up with socket buffers smaller than the MTU size,
86 extern __u32 sysctl_wmem_max;
87 extern __u32 sysctl_rmem_max;
89 static int __devinit rr_init_one(struct pci_dev *pdev,
90 const struct pci_device_id *ent)
92 struct net_device *dev;
93 static int version_disp;
95 struct rr_private *rrpriv;
100 dev = alloc_hippi_dev(sizeof(struct rr_private));
104 ret = pci_enable_device(pdev);
110 rrpriv = netdev_priv(dev);
112 SET_NETDEV_DEV(dev, &pdev->dev);
114 if (pci_request_regions(pdev, "rrunner")) {
119 pci_set_drvdata(pdev, dev);
121 rrpriv->pci_dev = pdev;
123 spin_lock_init(&rrpriv->lock);
125 dev->irq = pdev->irq;
126 dev->open = &rr_open;
127 dev->hard_start_xmit = &rr_start_xmit;
128 dev->stop = &rr_close;
129 dev->do_ioctl = &rr_ioctl;
131 dev->base_addr = pci_resource_start(pdev, 0);
133 /* display version info if adapter is found */
135 /* set display flag to TRUE so that */
136 /* we only display this string ONCE */
141 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
142 if (pci_latency <= 0x58){
144 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
147 pci_set_master(pdev);
149 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
150 "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
151 dev->base_addr, dev->irq, pci_latency);
154 * Remap the regs into kernel space.
157 rrpriv->regs = ioremap(dev->base_addr, 0x1000);
160 printk(KERN_ERR "%s: Unable to map I/O register, "
161 "RoadRunner will be disabled.\n", dev->name);
166 tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
167 rrpriv->tx_ring = tmpptr;
168 rrpriv->tx_ring_dma = ring_dma;
175 tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
176 rrpriv->rx_ring = tmpptr;
177 rrpriv->rx_ring_dma = ring_dma;
184 tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
185 rrpriv->evt_ring = tmpptr;
186 rrpriv->evt_ring_dma = ring_dma;
194 * Don't access any register before this point!
197 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
198 &rrpriv->regs->HostCtrl);
201 * Need to add a case for little-endian 64-bit hosts here.
208 ret = register_netdev(dev);
215 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
216 rrpriv->rx_ring_dma);
218 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
219 rrpriv->tx_ring_dma);
221 iounmap(rrpriv->regs);
223 pci_release_regions(pdev);
224 pci_set_drvdata(pdev, NULL);
232 static void __devexit rr_remove_one (struct pci_dev *pdev)
234 struct net_device *dev = pci_get_drvdata(pdev);
237 struct rr_private *rr = netdev_priv(dev);
239 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
240 printk(KERN_ERR "%s: trying to unload running NIC\n",
242 writel(HALT_NIC, &rr->regs->HostCtrl);
245 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
247 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
249 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
251 unregister_netdev(dev);
254 pci_release_regions(pdev);
255 pci_disable_device(pdev);
256 pci_set_drvdata(pdev, NULL);
262 * Commands are considered to be slow, thus there is no reason to
265 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
267 struct rr_regs __iomem *regs;
272 * This is temporary - it will go away in the final version.
273 * We probably also want to make this function inline.
275 if (readl(®s->HostCtrl) & NIC_HALTED){
276 printk("issuing command for halted NIC, code 0x%x, "
277 "HostCtrl %08x\n", cmd->code, readl(®s->HostCtrl));
278 if (readl(®s->Mode) & FATAL_ERR)
279 printk("error codes Fail1 %02x, Fail2 %02x\n",
280 readl(®s->Fail1), readl(®s->Fail2));
283 idx = rrpriv->info->cmd_ctrl.pi;
285 writel(*(u32*)(cmd), ®s->CmdRing[idx]);
288 idx = (idx - 1) % CMD_RING_ENTRIES;
289 rrpriv->info->cmd_ctrl.pi = idx;
292 if (readl(®s->Mode) & FATAL_ERR)
293 printk("error code %02x\n", readl(®s->Fail1));
298 * Reset the board in a sensible manner. The NIC is already halted
299 * when we get here and a spin-lock is held.
301 static int rr_reset(struct net_device *dev)
303 struct rr_private *rrpriv;
304 struct rr_regs __iomem *regs;
305 struct eeprom *hw = NULL;
309 rrpriv = netdev_priv(dev);
312 rr_load_firmware(dev);
314 writel(0x01000000, ®s->TX_state);
315 writel(0xff800000, ®s->RX_state);
316 writel(0, ®s->AssistState);
317 writel(CLEAR_INTA, ®s->LocalCtrl);
318 writel(0x01, ®s->BrkPt);
319 writel(0, ®s->Timer);
320 writel(0, ®s->TimerRef);
321 writel(RESET_DMA, ®s->DmaReadState);
322 writel(RESET_DMA, ®s->DmaWriteState);
323 writel(0, ®s->DmaWriteHostHi);
324 writel(0, ®s->DmaWriteHostLo);
325 writel(0, ®s->DmaReadHostHi);
326 writel(0, ®s->DmaReadHostLo);
327 writel(0, ®s->DmaReadLen);
328 writel(0, ®s->DmaWriteLen);
329 writel(0, ®s->DmaWriteLcl);
330 writel(0, ®s->DmaWriteIPchecksum);
331 writel(0, ®s->DmaReadLcl);
332 writel(0, ®s->DmaReadIPchecksum);
333 writel(0, ®s->PciState);
334 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
335 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, ®s->Mode);
336 #elif (BITS_PER_LONG == 64)
337 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, ®s->Mode);
339 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, ®s->Mode);
344 * Don't worry, this is just black magic.
346 writel(0xdf000, ®s->RxBase);
347 writel(0xdf000, ®s->RxPrd);
348 writel(0xdf000, ®s->RxCon);
349 writel(0xce000, ®s->TxBase);
350 writel(0xce000, ®s->TxPrd);
351 writel(0xce000, ®s->TxCon);
352 writel(0, ®s->RxIndPro);
353 writel(0, ®s->RxIndCon);
354 writel(0, ®s->RxIndRef);
355 writel(0, ®s->TxIndPro);
356 writel(0, ®s->TxIndCon);
357 writel(0, ®s->TxIndRef);
358 writel(0xcc000, ®s->pad10[0]);
359 writel(0, ®s->DrCmndPro);
360 writel(0, ®s->DrCmndCon);
361 writel(0, ®s->DwCmndPro);
362 writel(0, ®s->DwCmndCon);
363 writel(0, ®s->DwCmndRef);
364 writel(0, ®s->DrDataPro);
365 writel(0, ®s->DrDataCon);
366 writel(0, ®s->DrDataRef);
367 writel(0, ®s->DwDataPro);
368 writel(0, ®s->DwDataCon);
369 writel(0, ®s->DwDataRef);
372 writel(0xffffffff, ®s->MbEvent);
373 writel(0, ®s->Event);
375 writel(0, ®s->TxPi);
376 writel(0, ®s->IpRxPi);
378 writel(0, ®s->EvtCon);
379 writel(0, ®s->EvtPrd);
381 rrpriv->info->evt_ctrl.pi = 0;
383 for (i = 0; i < CMD_RING_ENTRIES; i++)
384 writel(0, ®s->CmdRing[i]);
387 * Why 32 ? is this not cache line size dependent?
389 writel(RBURST_64|WBURST_64, ®s->PciState);
392 start_pc = rr_read_eeprom_word(rrpriv, &hw->rncd_info.FwStart);
395 printk("%s: Executing firmware at address 0x%06x\n",
396 dev->name, start_pc);
399 writel(start_pc + 0x800, ®s->Pc);
403 writel(start_pc, ®s->Pc);
411 * Read a string from the EEPROM.
413 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
414 unsigned long offset,
416 unsigned long length)
418 struct rr_regs __iomem *regs = rrpriv->regs;
419 u32 misc, io, host, i;
421 io = readl(®s->ExtIo);
422 writel(0, ®s->ExtIo);
423 misc = readl(®s->LocalCtrl);
424 writel(0, ®s->LocalCtrl);
425 host = readl(®s->HostCtrl);
426 writel(host | HALT_NIC, ®s->HostCtrl);
429 for (i = 0; i < length; i++){
430 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase);
432 buf[i] = (readl(®s->WinData) >> 24) & 0xff;
436 writel(host, ®s->HostCtrl);
437 writel(misc, ®s->LocalCtrl);
438 writel(io, ®s->ExtIo);
445 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
446 * it to our CPU byte-order.
448 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
453 if ((rr_read_eeprom(rrpriv, (unsigned long)offset,
454 (char *)&word, 4) == 4))
455 return be32_to_cpu(word);
461 * Write a string to the EEPROM.
463 * This is only called when the firmware is not running.
465 static unsigned int write_eeprom(struct rr_private *rrpriv,
466 unsigned long offset,
468 unsigned long length)
470 struct rr_regs __iomem *regs = rrpriv->regs;
471 u32 misc, io, data, i, j, ready, error = 0;
473 io = readl(®s->ExtIo);
474 writel(0, ®s->ExtIo);
475 misc = readl(®s->LocalCtrl);
476 writel(ENABLE_EEPROM_WRITE, ®s->LocalCtrl);
479 for (i = 0; i < length; i++){
480 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase);
484 * Only try to write the data if it is not the same
487 if ((readl(®s->WinData) & 0xff000000) != data){
488 writel(data, ®s->WinData);
494 if ((readl(®s->WinData) & 0xff000000) ==
499 printk("data mismatch: %08x, "
500 "WinData %08x\n", data,
501 readl(®s->WinData));
509 writel(misc, ®s->LocalCtrl);
510 writel(io, ®s->ExtIo);
517 static int __devinit rr_init(struct net_device *dev)
519 struct rr_private *rrpriv;
520 struct rr_regs __iomem *regs;
521 struct eeprom *hw = NULL;
525 rrpriv = netdev_priv(dev);
528 rev = readl(®s->FwRev);
529 rrpriv->fw_rev = rev;
530 if (rev > 0x00020024)
531 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
532 ((rev >> 8) & 0xff), (rev & 0xff));
533 else if (rev >= 0x00020000) {
534 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
535 "later is recommended)\n", (rev >> 16),
536 ((rev >> 8) & 0xff), (rev & 0xff));
538 printk(" Firmware revision too old: %i.%i.%i, please "
539 "upgrade to 2.0.37 or later.\n",
540 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
544 printk(" Maximum receive rings %i\n", readl(®s->MaxRxRng));
548 * Read the hardware address from the eeprom. The HW address
549 * is not really necessary for HIPPI but awfully convenient.
550 * The pointer arithmetic to put it in dev_addr is ugly, but
551 * Donald Becker does it this way for the GigE version of this
552 * card and it's shorter and more portable than any
553 * other method I've seen. -VAL
556 *(u16 *)(dev->dev_addr) =
557 htons(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA));
558 *(u32 *)(dev->dev_addr+2) =
559 htonl(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA[4]));
563 for (i = 0; i < 5; i++)
564 printk("%2.2x:", dev->dev_addr[i]);
565 printk("%2.2x\n", dev->dev_addr[i]);
567 sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
568 printk(" SRAM size 0x%06x\n", sram_size);
570 if (sysctl_rmem_max < 262144){
571 printk(" Receive socket buffer limit too low (%i), "
572 "setting to 262144\n", sysctl_rmem_max);
573 sysctl_rmem_max = 262144;
576 if (sysctl_wmem_max < 262144){
577 printk(" Transmit socket buffer limit too low (%i), "
578 "setting to 262144\n", sysctl_wmem_max);
579 sysctl_wmem_max = 262144;
586 static int rr_init1(struct net_device *dev)
588 struct rr_private *rrpriv;
589 struct rr_regs __iomem *regs;
590 unsigned long myjif, flags;
596 rrpriv = netdev_priv(dev);
599 spin_lock_irqsave(&rrpriv->lock, flags);
601 hostctrl = readl(®s->HostCtrl);
602 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, ®s->HostCtrl);
605 if (hostctrl & PARITY_ERR){
606 printk("%s: Parity error halting NIC - this is serious!\n",
608 spin_unlock_irqrestore(&rrpriv->lock, flags);
613 set_rxaddr(regs, rrpriv->rx_ctrl_dma);
614 set_infoaddr(regs, rrpriv->info_dma);
616 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
617 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
618 rrpriv->info->evt_ctrl.mode = 0;
619 rrpriv->info->evt_ctrl.pi = 0;
620 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
622 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
623 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
624 rrpriv->info->cmd_ctrl.mode = 0;
625 rrpriv->info->cmd_ctrl.pi = 15;
627 for (i = 0; i < CMD_RING_ENTRIES; i++) {
628 writel(0, ®s->CmdRing[i]);
631 for (i = 0; i < TX_RING_ENTRIES; i++) {
632 rrpriv->tx_ring[i].size = 0;
633 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
634 rrpriv->tx_skbuff[i] = NULL;
636 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
637 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
638 rrpriv->info->tx_ctrl.mode = 0;
639 rrpriv->info->tx_ctrl.pi = 0;
640 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
643 * Set dirty_tx before we start receiving interrupts, otherwise
644 * the interrupt handler might think it is supposed to process
645 * tx ints before we are up and running, which may cause a null
646 * pointer access in the int handler.
650 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
655 writel(0x5000, ®s->ConRetry);
656 writel(0x100, ®s->ConRetryTmr);
657 writel(0x500000, ®s->ConTmout);
658 writel(0x60, ®s->IntrTmr);
659 writel(0x500000, ®s->TxDataMvTimeout);
660 writel(0x200000, ®s->RxDataMvTimeout);
661 writel(0x80, ®s->WriteDmaThresh);
662 writel(0x80, ®s->ReadDmaThresh);
664 rrpriv->fw_running = 0;
667 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
668 writel(hostctrl, ®s->HostCtrl);
671 spin_unlock_irqrestore(&rrpriv->lock, flags);
673 for (i = 0; i < RX_RING_ENTRIES; i++) {
677 rrpriv->rx_ring[i].mode = 0;
678 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
680 printk(KERN_WARNING "%s: Unable to allocate memory "
681 "for receive ring - halting NIC\n", dev->name);
685 rrpriv->rx_skbuff[i] = skb;
686 addr = pci_map_single(rrpriv->pci_dev, skb->data,
687 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
689 * Sanity test to see if we conflict with the DMA
690 * limitations of the Roadrunner.
692 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
693 printk("skb alloc error\n");
695 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
696 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
699 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
700 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
701 rrpriv->rx_ctrl[4].mode = 8;
702 rrpriv->rx_ctrl[4].pi = 0;
704 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
709 * Now start the FirmWare.
711 cmd.code = C_START_FW;
715 rr_issue_cmd(rrpriv, &cmd);
718 * Give the FirmWare time to chew on the `get running' command.
720 myjif = jiffies + 5 * HZ;
721 while (time_before(jiffies, myjif) && !rrpriv->fw_running)
724 netif_start_queue(dev);
730 * We might have gotten here because we are out of memory,
731 * make sure we release everything we allocated before failing
733 for (i = 0; i < RX_RING_ENTRIES; i++) {
734 struct sk_buff *skb = rrpriv->rx_skbuff[i];
737 pci_unmap_single(rrpriv->pci_dev,
738 rrpriv->rx_ring[i].addr.addrlo,
739 dev->mtu + HIPPI_HLEN,
741 rrpriv->rx_ring[i].size = 0;
742 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
744 rrpriv->rx_skbuff[i] = NULL;
752 * All events are considered to be slow (RX/TX ints do not generate
753 * events) and are handled here, outside the main interrupt handler,
754 * to reduce the size of the handler.
756 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
758 struct rr_private *rrpriv;
759 struct rr_regs __iomem *regs;
762 rrpriv = netdev_priv(dev);
765 while (prodidx != eidx){
766 switch (rrpriv->evt_ring[eidx].code){
768 tmp = readl(®s->FwRev);
769 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
770 "up and running\n", dev->name,
771 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
772 rrpriv->fw_running = 1;
773 writel(RX_RING_ENTRIES - 1, ®s->IpRxPi);
777 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
780 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
783 printk(KERN_WARNING "%s: RX data not moving\n",
787 printk(KERN_INFO "%s: The watchdog is here to see "
791 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
793 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
798 printk(KERN_ERR "%s: Host software error\n",
800 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
808 printk(KERN_WARNING "%s: Connection rejected\n",
810 dev->stats.tx_aborted_errors++;
813 printk(KERN_WARNING "%s: Connection timeout\n",
817 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
819 dev->stats.tx_aborted_errors++;
822 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
824 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
829 printk(KERN_WARNING "%s: Transmitter idle\n",
833 printk(KERN_WARNING "%s: Link lost during transmit\n",
835 dev->stats.tx_aborted_errors++;
836 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
841 printk(KERN_ERR "%s: Invalid send ring block\n",
843 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
848 printk(KERN_ERR "%s: Invalid send buffer address\n",
850 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
855 printk(KERN_ERR "%s: Invalid descriptor address\n",
857 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
865 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
869 printk(KERN_WARNING "%s: Receive parity error\n",
873 printk(KERN_WARNING "%s: Receive LLRC error\n",
877 printk(KERN_WARNING "%s: Receive packet length "
878 "error\n", dev->name);
881 printk(KERN_WARNING "%s: Data checksum error\n",
885 printk(KERN_WARNING "%s: Unexpected short burst "
886 "error\n", dev->name);
889 printk(KERN_WARNING "%s: Recv. state transition"
890 " error\n", dev->name);
893 printk(KERN_WARNING "%s: Unexpected data error\n",
897 printk(KERN_WARNING "%s: Link lost error\n",
901 printk(KERN_WARNING "%s: Framming Error\n",
905 printk(KERN_WARNING "%s: Flag sync. lost during"
906 "packet\n", dev->name);
909 printk(KERN_ERR "%s: Invalid receive buffer "
910 "address\n", dev->name);
911 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
916 printk(KERN_ERR "%s: Invalid receive descriptor "
917 "address\n", dev->name);
918 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
923 printk(KERN_ERR "%s: Invalid ring block\n",
925 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
930 /* Label packet to be dropped.
931 * Actual dropping occurs in rx
934 * The index of packet we get to drop is
935 * the index of the packet following
936 * the bad packet. -kbf
939 u16 index = rrpriv->evt_ring[eidx].index;
940 index = (index + (RX_RING_ENTRIES - 1)) %
942 rrpriv->rx_ring[index].mode |=
943 (PACKET_BAD | PACKET_END);
947 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
948 dev->name, rrpriv->evt_ring[eidx].code);
950 eidx = (eidx + 1) % EVT_RING_ENTRIES;
953 rrpriv->info->evt_ctrl.pi = eidx;
959 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
961 struct rr_private *rrpriv = netdev_priv(dev);
962 struct rr_regs __iomem *regs = rrpriv->regs;
965 struct rx_desc *desc;
968 desc = &(rrpriv->rx_ring[index]);
969 pkt_len = desc->size;
971 printk("index %i, rxlimit %i\n", index, rxlimit);
972 printk("len %x, mode %x\n", pkt_len, desc->mode);
974 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
975 dev->stats.rx_dropped++;
980 struct sk_buff *skb, *rx_skb;
982 rx_skb = rrpriv->rx_skbuff[index];
984 if (pkt_len < PKT_COPY_THRESHOLD) {
985 skb = alloc_skb(pkt_len, GFP_ATOMIC);
987 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
988 dev->stats.rx_dropped++;
991 pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
996 memcpy(skb_put(skb, pkt_len),
997 rx_skb->data, pkt_len);
999 pci_dma_sync_single_for_device(rrpriv->pci_dev,
1002 PCI_DMA_FROMDEVICE);
1005 struct sk_buff *newskb;
1007 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
1012 pci_unmap_single(rrpriv->pci_dev,
1013 desc->addr.addrlo, dev->mtu +
1014 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1016 skb_put(skb, pkt_len);
1017 rrpriv->rx_skbuff[index] = newskb;
1018 addr = pci_map_single(rrpriv->pci_dev,
1020 dev->mtu + HIPPI_HLEN,
1021 PCI_DMA_FROMDEVICE);
1022 set_rraddr(&desc->addr, addr);
1024 printk("%s: Out of memory, deferring "
1025 "packet\n", dev->name);
1026 dev->stats.rx_dropped++;
1030 skb->protocol = hippi_type_trans(skb, dev);
1032 netif_rx(skb); /* send it up */
1034 dev->last_rx = jiffies;
1035 dev->stats.rx_packets++;
1036 dev->stats.rx_bytes += pkt_len;
1040 desc->size = dev->mtu + HIPPI_HLEN;
1042 if ((index & 7) == 7)
1043 writel(index, ®s->IpRxPi);
1045 index = (index + 1) % RX_RING_ENTRIES;
1046 } while(index != rxlimit);
1048 rrpriv->cur_rx = index;
1053 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1055 struct rr_private *rrpriv;
1056 struct rr_regs __iomem *regs;
1057 struct net_device *dev = (struct net_device *)dev_id;
1058 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1060 rrpriv = netdev_priv(dev);
1061 regs = rrpriv->regs;
1063 if (!(readl(®s->HostCtrl) & RR_INT))
1066 spin_lock(&rrpriv->lock);
1068 prodidx = readl(®s->EvtPrd);
1069 txcsmr = (prodidx >> 8) & 0xff;
1070 rxlimit = (prodidx >> 16) & 0xff;
1074 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1075 prodidx, rrpriv->info->evt_ctrl.pi);
1078 * Order here is important. We must handle events
1079 * before doing anything else in order to catch
1080 * such things as LLRC errors, etc -kbf
1083 eidx = rrpriv->info->evt_ctrl.pi;
1084 if (prodidx != eidx)
1085 eidx = rr_handle_event(dev, prodidx, eidx);
1087 rxindex = rrpriv->cur_rx;
1088 if (rxindex != rxlimit)
1089 rx_int(dev, rxlimit, rxindex);
1091 txcon = rrpriv->dirty_tx;
1092 if (txcsmr != txcon) {
1094 /* Due to occational firmware TX producer/consumer out
1095 * of sync. error need to check entry in ring -kbf
1097 if(rrpriv->tx_skbuff[txcon]){
1098 struct tx_desc *desc;
1099 struct sk_buff *skb;
1101 desc = &(rrpriv->tx_ring[txcon]);
1102 skb = rrpriv->tx_skbuff[txcon];
1104 dev->stats.tx_packets++;
1105 dev->stats.tx_bytes += skb->len;
1107 pci_unmap_single(rrpriv->pci_dev,
1108 desc->addr.addrlo, skb->len,
1110 dev_kfree_skb_irq(skb);
1112 rrpriv->tx_skbuff[txcon] = NULL;
1114 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1117 txcon = (txcon + 1) % TX_RING_ENTRIES;
1118 } while (txcsmr != txcon);
1121 rrpriv->dirty_tx = txcon;
1122 if (rrpriv->tx_full && rr_if_busy(dev) &&
1123 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1124 != rrpriv->dirty_tx)){
1125 rrpriv->tx_full = 0;
1126 netif_wake_queue(dev);
1130 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1131 writel(eidx, ®s->EvtCon);
1134 spin_unlock(&rrpriv->lock);
1138 static inline void rr_raz_tx(struct rr_private *rrpriv,
1139 struct net_device *dev)
1143 for (i = 0; i < TX_RING_ENTRIES; i++) {
1144 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1147 struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1149 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1150 skb->len, PCI_DMA_TODEVICE);
1152 set_rraddr(&desc->addr, 0);
1154 rrpriv->tx_skbuff[i] = NULL;
1160 static inline void rr_raz_rx(struct rr_private *rrpriv,
1161 struct net_device *dev)
1165 for (i = 0; i < RX_RING_ENTRIES; i++) {
1166 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1169 struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1171 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1172 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1174 set_rraddr(&desc->addr, 0);
1176 rrpriv->rx_skbuff[i] = NULL;
1181 static void rr_timer(unsigned long data)
1183 struct net_device *dev = (struct net_device *)data;
1184 struct rr_private *rrpriv = netdev_priv(dev);
1185 struct rr_regs __iomem *regs = rrpriv->regs;
1186 unsigned long flags;
1188 if (readl(®s->HostCtrl) & NIC_HALTED){
1189 printk("%s: Restarting nic\n", dev->name);
1190 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1191 memset(rrpriv->info, 0, sizeof(struct rr_info));
1194 rr_raz_tx(rrpriv, dev);
1195 rr_raz_rx(rrpriv, dev);
1197 if (rr_init1(dev)) {
1198 spin_lock_irqsave(&rrpriv->lock, flags);
1199 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1201 spin_unlock_irqrestore(&rrpriv->lock, flags);
1204 rrpriv->timer.expires = RUN_AT(5*HZ);
1205 add_timer(&rrpriv->timer);
1209 static int rr_open(struct net_device *dev)
1211 struct rr_private *rrpriv = netdev_priv(dev);
1212 struct pci_dev *pdev = rrpriv->pci_dev;
1213 struct rr_regs __iomem *regs;
1215 unsigned long flags;
1216 dma_addr_t dma_addr;
1218 regs = rrpriv->regs;
1220 if (rrpriv->fw_rev < 0x00020000) {
1221 printk(KERN_WARNING "%s: trying to configure device with "
1222 "obsolete firmware\n", dev->name);
1227 rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1228 256 * sizeof(struct ring_ctrl),
1230 if (!rrpriv->rx_ctrl) {
1234 rrpriv->rx_ctrl_dma = dma_addr;
1235 memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1237 rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1239 if (!rrpriv->info) {
1243 rrpriv->info_dma = dma_addr;
1244 memset(rrpriv->info, 0, sizeof(struct rr_info));
1247 spin_lock_irqsave(&rrpriv->lock, flags);
1248 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl);
1249 readl(®s->HostCtrl);
1250 spin_unlock_irqrestore(&rrpriv->lock, flags);
1252 if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1253 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1254 dev->name, dev->irq);
1259 if ((ecode = rr_init1(dev)))
1262 /* Set the timer to switch to check for link beat and perhaps switch
1263 to an alternate media type. */
1264 init_timer(&rrpriv->timer);
1265 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1266 rrpriv->timer.data = (unsigned long)dev;
1267 rrpriv->timer.function = &rr_timer; /* timer handler */
1268 add_timer(&rrpriv->timer);
1270 netif_start_queue(dev);
1275 spin_lock_irqsave(&rrpriv->lock, flags);
1276 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl);
1277 spin_unlock_irqrestore(&rrpriv->lock, flags);
1280 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1282 rrpriv->info = NULL;
1284 if (rrpriv->rx_ctrl) {
1285 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1286 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1287 rrpriv->rx_ctrl = NULL;
1290 netif_stop_queue(dev);
1296 static void rr_dump(struct net_device *dev)
1298 struct rr_private *rrpriv;
1299 struct rr_regs __iomem *regs;
1304 rrpriv = netdev_priv(dev);
1305 regs = rrpriv->regs;
1307 printk("%s: dumping NIC TX rings\n", dev->name);
1309 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1310 readl(®s->RxPrd), readl(®s->TxPrd),
1311 readl(®s->EvtPrd), readl(®s->TxPi),
1312 rrpriv->info->tx_ctrl.pi);
1314 printk("Error code 0x%x\n", readl(®s->Fail1));
1316 index = (((readl(®s->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES;
1317 cons = rrpriv->dirty_tx;
1318 printk("TX ring index %i, TX consumer %i\n",
1321 if (rrpriv->tx_skbuff[index]){
1322 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1323 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1324 for (i = 0; i < len; i++){
1327 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1332 if (rrpriv->tx_skbuff[cons]){
1333 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1334 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1335 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1336 rrpriv->tx_ring[cons].mode,
1337 rrpriv->tx_ring[cons].size,
1338 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1339 (unsigned long)rrpriv->tx_skbuff[cons]->data,
1340 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1341 for (i = 0; i < len; i++){
1344 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1349 printk("dumping TX ring info:\n");
1350 for (i = 0; i < TX_RING_ENTRIES; i++)
1351 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1352 rrpriv->tx_ring[i].mode,
1353 rrpriv->tx_ring[i].size,
1354 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1359 static int rr_close(struct net_device *dev)
1361 struct rr_private *rrpriv;
1362 struct rr_regs __iomem *regs;
1363 unsigned long flags;
1367 netif_stop_queue(dev);
1369 rrpriv = netdev_priv(dev);
1370 regs = rrpriv->regs;
1373 * Lock to make sure we are not cleaning up while another CPU
1374 * is handling interrupts.
1376 spin_lock_irqsave(&rrpriv->lock, flags);
1378 tmp = readl(®s->HostCtrl);
1379 if (tmp & NIC_HALTED){
1380 printk("%s: NIC already halted\n", dev->name);
1383 tmp |= HALT_NIC | RR_CLEAR_INT;
1384 writel(tmp, ®s->HostCtrl);
1385 readl(®s->HostCtrl);
1388 rrpriv->fw_running = 0;
1390 del_timer_sync(&rrpriv->timer);
1392 writel(0, ®s->TxPi);
1393 writel(0, ®s->IpRxPi);
1395 writel(0, ®s->EvtCon);
1396 writel(0, ®s->EvtPrd);
1398 for (i = 0; i < CMD_RING_ENTRIES; i++)
1399 writel(0, ®s->CmdRing[i]);
1401 rrpriv->info->tx_ctrl.entries = 0;
1402 rrpriv->info->cmd_ctrl.pi = 0;
1403 rrpriv->info->evt_ctrl.pi = 0;
1404 rrpriv->rx_ctrl[4].entries = 0;
1406 rr_raz_tx(rrpriv, dev);
1407 rr_raz_rx(rrpriv, dev);
1409 pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
1410 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1411 rrpriv->rx_ctrl = NULL;
1413 pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
1414 rrpriv->info, rrpriv->info_dma);
1415 rrpriv->info = NULL;
1417 free_irq(dev->irq, dev);
1418 spin_unlock_irqrestore(&rrpriv->lock, flags);
1424 static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev)
1426 struct rr_private *rrpriv = netdev_priv(dev);
1427 struct rr_regs __iomem *regs = rrpriv->regs;
1428 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1429 struct ring_ctrl *txctrl;
1430 unsigned long flags;
1431 u32 index, len = skb->len;
1433 struct sk_buff *new_skb;
1435 if (readl(®s->Mode) & FATAL_ERR)
1436 printk("error codes Fail1 %02x, Fail2 %02x\n",
1437 readl(®s->Fail1), readl(®s->Fail2));
1440 * We probably need to deal with tbusy here to prevent overruns.
1443 if (skb_headroom(skb) < 8){
1444 printk("incoming skb too small - reallocating\n");
1445 if (!(new_skb = dev_alloc_skb(len + 8))) {
1447 netif_wake_queue(dev);
1450 skb_reserve(new_skb, 8);
1451 skb_put(new_skb, len);
1452 skb_copy_from_linear_data(skb, new_skb->data, len);
1457 ifield = (u32 *)skb_push(skb, 8);
1460 ifield[1] = hcb->ifield;
1463 * We don't need the lock before we are actually going to start
1464 * fiddling with the control blocks.
1466 spin_lock_irqsave(&rrpriv->lock, flags);
1468 txctrl = &rrpriv->info->tx_ctrl;
1472 rrpriv->tx_skbuff[index] = skb;
1473 set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1474 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1475 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1476 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1477 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1479 writel(txctrl->pi, ®s->TxPi);
1481 if (txctrl->pi == rrpriv->dirty_tx){
1482 rrpriv->tx_full = 1;
1483 netif_stop_queue(dev);
1486 spin_unlock_irqrestore(&rrpriv->lock, flags);
1488 dev->trans_start = jiffies;
1494 * Read the firmware out of the EEPROM and put it into the SRAM
1495 * (or from user space - later)
1497 * This operation requires the NIC to be halted and is performed with
1498 * interrupts disabled and with the spinlock hold.
1500 static int rr_load_firmware(struct net_device *dev)
1502 struct rr_private *rrpriv;
1503 struct rr_regs __iomem *regs;
1504 unsigned long eptr, segptr;
1506 u32 localctrl, sptr, len, tmp;
1507 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1508 struct eeprom *hw = NULL;
1510 rrpriv = netdev_priv(dev);
1511 regs = rrpriv->regs;
1513 if (dev->flags & IFF_UP)
1516 if (!(readl(®s->HostCtrl) & NIC_HALTED)){
1517 printk("%s: Trying to load firmware to a running NIC.\n",
1522 localctrl = readl(®s->LocalCtrl);
1523 writel(0, ®s->LocalCtrl);
1525 writel(0, ®s->EvtPrd);
1526 writel(0, ®s->RxPrd);
1527 writel(0, ®s->TxPrd);
1530 * First wipe the entire SRAM, otherwise we might run into all
1531 * kinds of trouble ... sigh, this took almost all afternoon
1534 io = readl(®s->ExtIo);
1535 writel(0, ®s->ExtIo);
1536 sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
1538 for (i = 200; i < sram_size / 4; i++){
1539 writel(i * 4, ®s->WinBase);
1541 writel(0, ®s->WinData);
1544 writel(io, ®s->ExtIo);
1547 eptr = (unsigned long)rr_read_eeprom_word(rrpriv,
1548 &hw->rncd_info.AddrRunCodeSegs);
1549 eptr = ((eptr & 0x1fffff) >> 3);
1551 p2len = rr_read_eeprom_word(rrpriv, (void *)(0x83*4));
1552 p2len = (p2len << 2);
1553 p2size = rr_read_eeprom_word(rrpriv, (void *)(0x84*4));
1554 p2size = ((p2size & 0x1fffff) >> 3);
1556 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1557 printk("%s: eptr is invalid\n", dev->name);
1561 revision = rr_read_eeprom_word(rrpriv, &hw->manf.HeaderFmt);
1564 printk("%s: invalid firmware format (%i)\n",
1565 dev->name, revision);
1569 nr_seg = rr_read_eeprom_word(rrpriv, (void *)eptr);
1572 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1575 for (i = 0; i < nr_seg; i++){
1576 sptr = rr_read_eeprom_word(rrpriv, (void *)eptr);
1578 len = rr_read_eeprom_word(rrpriv, (void *)eptr);
1580 segptr = (unsigned long)rr_read_eeprom_word(rrpriv, (void *)eptr);
1581 segptr = ((segptr & 0x1fffff) >> 3);
1584 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1585 dev->name, i, sptr, len, segptr);
1587 for (j = 0; j < len; j++){
1588 tmp = rr_read_eeprom_word(rrpriv, (void *)segptr);
1589 writel(sptr, ®s->WinBase);
1591 writel(tmp, ®s->WinData);
1599 writel(localctrl, ®s->LocalCtrl);
1605 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1607 struct rr_private *rrpriv;
1608 unsigned char *image, *oldimage;
1609 unsigned long flags;
1611 int error = -EOPNOTSUPP;
1613 rrpriv = netdev_priv(dev);
1617 if (!capable(CAP_SYS_RAWIO)){
1621 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1623 printk(KERN_ERR "%s: Unable to allocate memory "
1624 "for EEPROM image\n", dev->name);
1629 if (rrpriv->fw_running){
1630 printk("%s: Firmware already running\n", dev->name);
1635 spin_lock_irqsave(&rrpriv->lock, flags);
1636 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1637 spin_unlock_irqrestore(&rrpriv->lock, flags);
1638 if (i != EEPROM_BYTES){
1639 printk(KERN_ERR "%s: Error reading EEPROM\n",
1644 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1652 if (!capable(CAP_SYS_RAWIO)){
1656 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1657 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1658 if (!image || !oldimage) {
1659 printk(KERN_ERR "%s: Unable to allocate memory "
1660 "for EEPROM image\n", dev->name);
1665 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1671 if (rrpriv->fw_running){
1672 printk("%s: Firmware already running\n", dev->name);
1677 printk("%s: Updating EEPROM firmware\n", dev->name);
1679 spin_lock_irqsave(&rrpriv->lock, flags);
1680 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1682 printk(KERN_ERR "%s: Error writing EEPROM\n",
1685 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1686 spin_unlock_irqrestore(&rrpriv->lock, flags);
1688 if (i != EEPROM_BYTES)
1689 printk(KERN_ERR "%s: Error reading back EEPROM "
1690 "image\n", dev->name);
1692 error = memcmp(image, oldimage, EEPROM_BYTES);
1694 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1704 return put_user(0x52523032, (int __user *)rq->ifr_data);
1710 static struct pci_device_id rr_pci_tbl[] = {
1711 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1712 PCI_ANY_ID, PCI_ANY_ID, },
1715 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1717 static struct pci_driver rr_driver = {
1719 .id_table = rr_pci_tbl,
1720 .probe = rr_init_one,
1721 .remove = __devexit_p(rr_remove_one),
1724 static int __init rr_init_module(void)
1726 return pci_register_driver(&rr_driver);
1729 static void __exit rr_cleanup_module(void)
1731 pci_unregister_driver(&rr_driver);
1734 module_init(rr_init_module);
1735 module_exit(rr_cleanup_module);
1739 * compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c rrunner.c"