3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
120 * SLAB_RED_ZONE & SLAB_POISON.
121 * 0 for faster, smaller code (especially in the critical paths).
123 * STATS - 1 to collect stats for /proc/slabinfo.
124 * 0 for faster, smaller code (especially in the critical paths).
126 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
129 #ifdef CONFIG_DEBUG_SLAB
132 #define FORCED_DEBUG 1
136 #define FORCED_DEBUG 0
139 /* Shouldn't this be in a header file somewhere? */
140 #define BYTES_PER_WORD sizeof(void *)
142 #ifndef cache_line_size
143 #define cache_line_size() L1_CACHE_BYTES
146 #ifndef ARCH_KMALLOC_MINALIGN
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
153 * Note that this flag disables some debug features.
155 #define ARCH_KMALLOC_MINALIGN 0
158 #ifndef ARCH_SLAB_MINALIGN
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
166 #define ARCH_SLAB_MINALIGN 0
169 #ifndef ARCH_KMALLOC_FLAGS
170 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
173 /* Legal flag mask for kmem_cache_create(). */
175 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
178 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
182 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
183 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
191 * Bufctl's are used for linking objs within a slab
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
207 typedef unsigned int kmem_bufctl_t;
208 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
210 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
226 unsigned short nodeid;
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
243 * We assume struct slab_rcu can overlay struct slab when destroying.
246 struct rcu_head head;
247 struct kmem_cache *cachep;
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
259 * The limit is stored in the per-cpu structure to reduce the data cache
266 unsigned int batchcount;
267 unsigned int touched;
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
273 * [0] is for gcc 2.95. It should really be [].
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init {
283 struct array_cache cache;
284 void *entries[BOOT_CPUCACHE_ENTRIES];
288 * The slab lists for all objects.
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
295 unsigned int free_limit;
296 unsigned int colour_next; /* Per-node cache coloring */
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
305 * Need this for bootstrapping a per node allocator.
307 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309 #define CACHE_CACHE 0
311 #define SIZE_L3 (1 + MAX_NUMNODES)
313 static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
317 static int enable_cpucache(struct kmem_cache *cachep);
318 static void cache_reap(struct work_struct *unused);
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
324 static __always_inline int index_of(const size_t size)
326 extern void __bad_size(void);
328 if (__builtin_constant_p(size)) {
336 #include "linux/kmalloc_sizes.h"
344 static int slab_early_init = 1;
346 #define INDEX_AC index_of(sizeof(struct arraycache_init))
347 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
349 static void kmem_list3_init(struct kmem_list3 *parent)
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
356 parent->colour_next = 0;
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
362 #define MAKE_LIST(cachep, listp, slab, nodeid) \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
368 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
382 /* 1) per-cpu data, touched during every alloc/free */
383 struct array_cache *array[NR_CPUS];
384 /* 2) Cache tunables. Protected by cache_chain_mutex */
385 unsigned int batchcount;
389 unsigned int buffer_size;
390 u32 reciprocal_buffer_size;
391 /* 3) touched by every alloc & free from the backend */
393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
396 /* 4) cache_grow/shrink */
397 /* order of pgs per slab (2^n) */
398 unsigned int gfporder;
400 /* force GFP flags, e.g. GFP_DMA */
403 size_t colour; /* cache colouring range */
404 unsigned int colour_off; /* colour offset */
405 struct kmem_cache *slabp_cache;
406 unsigned int slab_size;
407 unsigned int dflags; /* dynamic flags */
409 /* constructor func */
410 void (*ctor) (void *, struct kmem_cache *, unsigned long);
412 /* de-constructor func */
413 void (*dtor) (void *, struct kmem_cache *, unsigned long);
415 /* 5) cache creation/removal */
417 struct list_head next;
421 unsigned long num_active;
422 unsigned long num_allocations;
423 unsigned long high_mark;
425 unsigned long reaped;
426 unsigned long errors;
427 unsigned long max_freeable;
428 unsigned long node_allocs;
429 unsigned long node_frees;
430 unsigned long node_overflow;
438 * If debugging is enabled, then the allocator can add additional
439 * fields and/or padding to every object. buffer_size contains the total
440 * object size including these internal fields, the following two
441 * variables contain the offset to the user object and its size.
447 * We put nodelists[] at the end of kmem_cache, because we want to size
448 * this array to nr_node_ids slots instead of MAX_NUMNODES
449 * (see kmem_cache_init())
450 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
451 * is statically defined, so we reserve the max number of nodes.
453 struct kmem_list3 *nodelists[MAX_NUMNODES];
455 * Do not add fields after nodelists[]
459 #define CFLGS_OFF_SLAB (0x80000000UL)
460 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
462 #define BATCHREFILL_LIMIT 16
464 * Optimization question: fewer reaps means less probability for unnessary
465 * cpucache drain/refill cycles.
467 * OTOH the cpuarrays can contain lots of objects,
468 * which could lock up otherwise freeable slabs.
470 #define REAPTIMEOUT_CPUC (2*HZ)
471 #define REAPTIMEOUT_LIST3 (4*HZ)
474 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
475 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
476 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
477 #define STATS_INC_GROWN(x) ((x)->grown++)
478 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
479 #define STATS_SET_HIGH(x) \
481 if ((x)->num_active > (x)->high_mark) \
482 (x)->high_mark = (x)->num_active; \
484 #define STATS_INC_ERR(x) ((x)->errors++)
485 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
486 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
487 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
488 #define STATS_SET_FREEABLE(x, i) \
490 if ((x)->max_freeable < i) \
491 (x)->max_freeable = i; \
493 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
494 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
495 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
496 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
498 #define STATS_INC_ACTIVE(x) do { } while (0)
499 #define STATS_DEC_ACTIVE(x) do { } while (0)
500 #define STATS_INC_ALLOCED(x) do { } while (0)
501 #define STATS_INC_GROWN(x) do { } while (0)
502 #define STATS_ADD_REAPED(x,y) do { } while (0)
503 #define STATS_SET_HIGH(x) do { } while (0)
504 #define STATS_INC_ERR(x) do { } while (0)
505 #define STATS_INC_NODEALLOCS(x) do { } while (0)
506 #define STATS_INC_NODEFREES(x) do { } while (0)
507 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
508 #define STATS_SET_FREEABLE(x, i) do { } while (0)
509 #define STATS_INC_ALLOCHIT(x) do { } while (0)
510 #define STATS_INC_ALLOCMISS(x) do { } while (0)
511 #define STATS_INC_FREEHIT(x) do { } while (0)
512 #define STATS_INC_FREEMISS(x) do { } while (0)
518 * memory layout of objects:
520 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
521 * the end of an object is aligned with the end of the real
522 * allocation. Catches writes behind the end of the allocation.
523 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
525 * cachep->obj_offset: The real object.
526 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
527 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
528 * [BYTES_PER_WORD long]
530 static int obj_offset(struct kmem_cache *cachep)
532 return cachep->obj_offset;
535 static int obj_size(struct kmem_cache *cachep)
537 return cachep->obj_size;
540 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
542 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
543 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
546 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
548 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
549 if (cachep->flags & SLAB_STORE_USER)
550 return (unsigned long *)(objp + cachep->buffer_size -
552 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
555 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
557 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
558 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
563 #define obj_offset(x) 0
564 #define obj_size(cachep) (cachep->buffer_size)
565 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
566 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
567 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
572 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
575 #if defined(CONFIG_LARGE_ALLOCS)
576 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
577 #define MAX_GFP_ORDER 13 /* up to 32Mb */
578 #elif defined(CONFIG_MMU)
579 #define MAX_OBJ_ORDER 5 /* 32 pages */
580 #define MAX_GFP_ORDER 5 /* 32 pages */
582 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
583 #define MAX_GFP_ORDER 8 /* up to 1Mb */
587 * Do not go above this order unless 0 objects fit into the slab.
589 #define BREAK_GFP_ORDER_HI 1
590 #define BREAK_GFP_ORDER_LO 0
591 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
594 * Functions for storing/retrieving the cachep and or slab from the page
595 * allocator. These are used to find the slab an obj belongs to. With kfree(),
596 * these are used to find the cache which an obj belongs to.
598 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
600 page->lru.next = (struct list_head *)cache;
603 static inline struct kmem_cache *page_get_cache(struct page *page)
605 page = compound_head(page);
606 BUG_ON(!PageSlab(page));
607 return (struct kmem_cache *)page->lru.next;
610 static inline void page_set_slab(struct page *page, struct slab *slab)
612 page->lru.prev = (struct list_head *)slab;
615 static inline struct slab *page_get_slab(struct page *page)
617 BUG_ON(!PageSlab(page));
618 return (struct slab *)page->lru.prev;
621 static inline struct kmem_cache *virt_to_cache(const void *obj)
623 struct page *page = virt_to_head_page(obj);
624 return page_get_cache(page);
627 static inline struct slab *virt_to_slab(const void *obj)
629 struct page *page = virt_to_head_page(obj);
630 return page_get_slab(page);
633 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
636 return slab->s_mem + cache->buffer_size * idx;
640 * We want to avoid an expensive divide : (offset / cache->buffer_size)
641 * Using the fact that buffer_size is a constant for a particular cache,
642 * we can replace (offset / cache->buffer_size) by
643 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
645 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
646 const struct slab *slab, void *obj)
648 u32 offset = (obj - slab->s_mem);
649 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
653 * These are the default caches for kmalloc. Custom caches can have other sizes.
655 struct cache_sizes malloc_sizes[] = {
656 #define CACHE(x) { .cs_size = (x) },
657 #include <linux/kmalloc_sizes.h>
661 EXPORT_SYMBOL(malloc_sizes);
663 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
669 static struct cache_names __initdata cache_names[] = {
670 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
671 #include <linux/kmalloc_sizes.h>
676 static struct arraycache_init initarray_cache __initdata =
677 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
678 static struct arraycache_init initarray_generic =
679 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
681 /* internal cache of cache description objs */
682 static struct kmem_cache cache_cache = {
684 .limit = BOOT_CPUCACHE_ENTRIES,
686 .buffer_size = sizeof(struct kmem_cache),
687 .name = "kmem_cache",
690 #define BAD_ALIEN_MAGIC 0x01020304ul
692 #ifdef CONFIG_LOCKDEP
695 * Slab sometimes uses the kmalloc slabs to store the slab headers
696 * for other slabs "off slab".
697 * The locking for this is tricky in that it nests within the locks
698 * of all other slabs in a few places; to deal with this special
699 * locking we put on-slab caches into a separate lock-class.
701 * We set lock class for alien array caches which are up during init.
702 * The lock annotation will be lost if all cpus of a node goes down and
703 * then comes back up during hotplug
705 static struct lock_class_key on_slab_l3_key;
706 static struct lock_class_key on_slab_alc_key;
708 static inline void init_lock_keys(void)
712 struct cache_sizes *s = malloc_sizes;
714 while (s->cs_size != ULONG_MAX) {
716 struct array_cache **alc;
718 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
719 if (!l3 || OFF_SLAB(s->cs_cachep))
721 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
724 * FIXME: This check for BAD_ALIEN_MAGIC
725 * should go away when common slab code is taught to
726 * work even without alien caches.
727 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
728 * for alloc_alien_cache,
730 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
734 lockdep_set_class(&alc[r]->lock,
742 static inline void init_lock_keys(void)
748 * 1. Guard access to the cache-chain.
749 * 2. Protect sanity of cpu_online_map against cpu hotplug events
751 static DEFINE_MUTEX(cache_chain_mutex);
752 static struct list_head cache_chain;
755 * chicken and egg problem: delay the per-cpu array allocation
756 * until the general caches are up.
766 * used by boot code to determine if it can use slab based allocator
768 int slab_is_available(void)
770 return g_cpucache_up == FULL;
773 static DEFINE_PER_CPU(struct delayed_work, reap_work);
775 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
777 return cachep->array[smp_processor_id()];
780 static inline struct kmem_cache *__find_general_cachep(size_t size,
783 struct cache_sizes *csizep = malloc_sizes;
786 /* This happens if someone tries to call
787 * kmem_cache_create(), or __kmalloc(), before
788 * the generic caches are initialized.
790 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
792 while (size > csizep->cs_size)
796 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
797 * has cs_{dma,}cachep==NULL. Thus no special case
798 * for large kmalloc calls required.
800 #ifdef CONFIG_ZONE_DMA
801 if (unlikely(gfpflags & GFP_DMA))
802 return csizep->cs_dmacachep;
804 return csizep->cs_cachep;
807 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
809 return __find_general_cachep(size, gfpflags);
812 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
814 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
818 * Calculate the number of objects and left-over bytes for a given buffer size.
820 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
821 size_t align, int flags, size_t *left_over,
826 size_t slab_size = PAGE_SIZE << gfporder;
829 * The slab management structure can be either off the slab or
830 * on it. For the latter case, the memory allocated for a
834 * - One kmem_bufctl_t for each object
835 * - Padding to respect alignment of @align
836 * - @buffer_size bytes for each object
838 * If the slab management structure is off the slab, then the
839 * alignment will already be calculated into the size. Because
840 * the slabs are all pages aligned, the objects will be at the
841 * correct alignment when allocated.
843 if (flags & CFLGS_OFF_SLAB) {
845 nr_objs = slab_size / buffer_size;
847 if (nr_objs > SLAB_LIMIT)
848 nr_objs = SLAB_LIMIT;
851 * Ignore padding for the initial guess. The padding
852 * is at most @align-1 bytes, and @buffer_size is at
853 * least @align. In the worst case, this result will
854 * be one greater than the number of objects that fit
855 * into the memory allocation when taking the padding
858 nr_objs = (slab_size - sizeof(struct slab)) /
859 (buffer_size + sizeof(kmem_bufctl_t));
862 * This calculated number will be either the right
863 * amount, or one greater than what we want.
865 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
869 if (nr_objs > SLAB_LIMIT)
870 nr_objs = SLAB_LIMIT;
872 mgmt_size = slab_mgmt_size(nr_objs, align);
875 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
878 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
880 static void __slab_error(const char *function, struct kmem_cache *cachep,
883 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
884 function, cachep->name, msg);
889 * By default on NUMA we use alien caches to stage the freeing of
890 * objects allocated from other nodes. This causes massive memory
891 * inefficiencies when using fake NUMA setup to split memory into a
892 * large number of small nodes, so it can be disabled on the command
896 static int use_alien_caches __read_mostly = 1;
897 static int __init noaliencache_setup(char *s)
899 use_alien_caches = 0;
902 __setup("noaliencache", noaliencache_setup);
906 * Special reaping functions for NUMA systems called from cache_reap().
907 * These take care of doing round robin flushing of alien caches (containing
908 * objects freed on different nodes from which they were allocated) and the
909 * flushing of remote pcps by calling drain_node_pages.
911 static DEFINE_PER_CPU(unsigned long, reap_node);
913 static void init_reap_node(int cpu)
917 node = next_node(cpu_to_node(cpu), node_online_map);
918 if (node == MAX_NUMNODES)
919 node = first_node(node_online_map);
921 per_cpu(reap_node, cpu) = node;
924 static void next_reap_node(void)
926 int node = __get_cpu_var(reap_node);
929 * Also drain per cpu pages on remote zones
931 if (node != numa_node_id())
932 drain_node_pages(node);
934 node = next_node(node, node_online_map);
935 if (unlikely(node >= MAX_NUMNODES))
936 node = first_node(node_online_map);
937 __get_cpu_var(reap_node) = node;
941 #define init_reap_node(cpu) do { } while (0)
942 #define next_reap_node(void) do { } while (0)
946 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
947 * via the workqueue/eventd.
948 * Add the CPU number into the expiration time to minimize the possibility of
949 * the CPUs getting into lockstep and contending for the global cache chain
952 static void __devinit start_cpu_timer(int cpu)
954 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
957 * When this gets called from do_initcalls via cpucache_init(),
958 * init_workqueues() has already run, so keventd will be setup
961 if (keventd_up() && reap_work->work.func == NULL) {
963 INIT_DELAYED_WORK(reap_work, cache_reap);
964 schedule_delayed_work_on(cpu, reap_work,
965 __round_jiffies_relative(HZ, cpu));
969 static struct array_cache *alloc_arraycache(int node, int entries,
972 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
973 struct array_cache *nc = NULL;
975 nc = kmalloc_node(memsize, GFP_KERNEL, node);
979 nc->batchcount = batchcount;
981 spin_lock_init(&nc->lock);
987 * Transfer objects in one arraycache to another.
988 * Locking must be handled by the caller.
990 * Return the number of entries transferred.
992 static int transfer_objects(struct array_cache *to,
993 struct array_cache *from, unsigned int max)
995 /* Figure out how many entries to transfer */
996 int nr = min(min(from->avail, max), to->limit - to->avail);
1001 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1002 sizeof(void *) *nr);
1012 #define drain_alien_cache(cachep, alien) do { } while (0)
1013 #define reap_alien(cachep, l3) do { } while (0)
1015 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1017 return (struct array_cache **)BAD_ALIEN_MAGIC;
1020 static inline void free_alien_cache(struct array_cache **ac_ptr)
1024 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1029 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1035 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1036 gfp_t flags, int nodeid)
1041 #else /* CONFIG_NUMA */
1043 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1044 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1046 static struct array_cache **alloc_alien_cache(int node, int limit)
1048 struct array_cache **ac_ptr;
1049 int memsize = sizeof(void *) * nr_node_ids;
1054 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1057 if (i == node || !node_online(i)) {
1061 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1063 for (i--; i <= 0; i--)
1073 static void free_alien_cache(struct array_cache **ac_ptr)
1084 static void __drain_alien_cache(struct kmem_cache *cachep,
1085 struct array_cache *ac, int node)
1087 struct kmem_list3 *rl3 = cachep->nodelists[node];
1090 spin_lock(&rl3->list_lock);
1092 * Stuff objects into the remote nodes shared array first.
1093 * That way we could avoid the overhead of putting the objects
1094 * into the free lists and getting them back later.
1097 transfer_objects(rl3->shared, ac, ac->limit);
1099 free_block(cachep, ac->entry, ac->avail, node);
1101 spin_unlock(&rl3->list_lock);
1106 * Called from cache_reap() to regularly drain alien caches round robin.
1108 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1110 int node = __get_cpu_var(reap_node);
1113 struct array_cache *ac = l3->alien[node];
1115 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1116 __drain_alien_cache(cachep, ac, node);
1117 spin_unlock_irq(&ac->lock);
1122 static void drain_alien_cache(struct kmem_cache *cachep,
1123 struct array_cache **alien)
1126 struct array_cache *ac;
1127 unsigned long flags;
1129 for_each_online_node(i) {
1132 spin_lock_irqsave(&ac->lock, flags);
1133 __drain_alien_cache(cachep, ac, i);
1134 spin_unlock_irqrestore(&ac->lock, flags);
1139 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1141 struct slab *slabp = virt_to_slab(objp);
1142 int nodeid = slabp->nodeid;
1143 struct kmem_list3 *l3;
1144 struct array_cache *alien = NULL;
1147 node = numa_node_id();
1150 * Make sure we are not freeing a object from another node to the array
1151 * cache on this cpu.
1153 if (likely(slabp->nodeid == node))
1156 l3 = cachep->nodelists[node];
1157 STATS_INC_NODEFREES(cachep);
1158 if (l3->alien && l3->alien[nodeid]) {
1159 alien = l3->alien[nodeid];
1160 spin_lock(&alien->lock);
1161 if (unlikely(alien->avail == alien->limit)) {
1162 STATS_INC_ACOVERFLOW(cachep);
1163 __drain_alien_cache(cachep, alien, nodeid);
1165 alien->entry[alien->avail++] = objp;
1166 spin_unlock(&alien->lock);
1168 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1169 free_block(cachep, &objp, 1, nodeid);
1170 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1176 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1177 unsigned long action, void *hcpu)
1179 long cpu = (long)hcpu;
1180 struct kmem_cache *cachep;
1181 struct kmem_list3 *l3 = NULL;
1182 int node = cpu_to_node(cpu);
1183 int memsize = sizeof(struct kmem_list3);
1186 case CPU_UP_PREPARE:
1187 mutex_lock(&cache_chain_mutex);
1189 * We need to do this right in the beginning since
1190 * alloc_arraycache's are going to use this list.
1191 * kmalloc_node allows us to add the slab to the right
1192 * kmem_list3 and not this cpu's kmem_list3
1195 list_for_each_entry(cachep, &cache_chain, next) {
1197 * Set up the size64 kmemlist for cpu before we can
1198 * begin anything. Make sure some other cpu on this
1199 * node has not already allocated this
1201 if (!cachep->nodelists[node]) {
1202 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1205 kmem_list3_init(l3);
1206 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1207 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1210 * The l3s don't come and go as CPUs come and
1211 * go. cache_chain_mutex is sufficient
1214 cachep->nodelists[node] = l3;
1217 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1218 cachep->nodelists[node]->free_limit =
1219 (1 + nr_cpus_node(node)) *
1220 cachep->batchcount + cachep->num;
1221 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1225 * Now we can go ahead with allocating the shared arrays and
1228 list_for_each_entry(cachep, &cache_chain, next) {
1229 struct array_cache *nc;
1230 struct array_cache *shared = NULL;
1231 struct array_cache **alien = NULL;
1233 nc = alloc_arraycache(node, cachep->limit,
1234 cachep->batchcount);
1237 if (cachep->shared) {
1238 shared = alloc_arraycache(node,
1239 cachep->shared * cachep->batchcount,
1244 if (use_alien_caches) {
1245 alien = alloc_alien_cache(node, cachep->limit);
1249 cachep->array[cpu] = nc;
1250 l3 = cachep->nodelists[node];
1253 spin_lock_irq(&l3->list_lock);
1256 * We are serialised from CPU_DEAD or
1257 * CPU_UP_CANCELLED by the cpucontrol lock
1259 l3->shared = shared;
1268 spin_unlock_irq(&l3->list_lock);
1270 free_alien_cache(alien);
1274 mutex_unlock(&cache_chain_mutex);
1275 start_cpu_timer(cpu);
1277 #ifdef CONFIG_HOTPLUG_CPU
1278 case CPU_DOWN_PREPARE:
1279 mutex_lock(&cache_chain_mutex);
1281 case CPU_DOWN_FAILED:
1282 mutex_unlock(&cache_chain_mutex);
1286 * Even if all the cpus of a node are down, we don't free the
1287 * kmem_list3 of any cache. This to avoid a race between
1288 * cpu_down, and a kmalloc allocation from another cpu for
1289 * memory from the node of the cpu going down. The list3
1290 * structure is usually allocated from kmem_cache_create() and
1291 * gets destroyed at kmem_cache_destroy().
1295 case CPU_UP_CANCELED:
1296 list_for_each_entry(cachep, &cache_chain, next) {
1297 struct array_cache *nc;
1298 struct array_cache *shared;
1299 struct array_cache **alien;
1302 mask = node_to_cpumask(node);
1303 /* cpu is dead; no one can alloc from it. */
1304 nc = cachep->array[cpu];
1305 cachep->array[cpu] = NULL;
1306 l3 = cachep->nodelists[node];
1309 goto free_array_cache;
1311 spin_lock_irq(&l3->list_lock);
1313 /* Free limit for this kmem_list3 */
1314 l3->free_limit -= cachep->batchcount;
1316 free_block(cachep, nc->entry, nc->avail, node);
1318 if (!cpus_empty(mask)) {
1319 spin_unlock_irq(&l3->list_lock);
1320 goto free_array_cache;
1323 shared = l3->shared;
1325 free_block(cachep, shared->entry,
1326 shared->avail, node);
1333 spin_unlock_irq(&l3->list_lock);
1337 drain_alien_cache(cachep, alien);
1338 free_alien_cache(alien);
1344 * In the previous loop, all the objects were freed to
1345 * the respective cache's slabs, now we can go ahead and
1346 * shrink each nodelist to its limit.
1348 list_for_each_entry(cachep, &cache_chain, next) {
1349 l3 = cachep->nodelists[node];
1352 drain_freelist(cachep, l3, l3->free_objects);
1354 mutex_unlock(&cache_chain_mutex);
1362 static struct notifier_block __cpuinitdata cpucache_notifier = {
1363 &cpuup_callback, NULL, 0
1367 * swap the static kmem_list3 with kmalloced memory
1369 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1372 struct kmem_list3 *ptr;
1374 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1377 local_irq_disable();
1378 memcpy(ptr, list, sizeof(struct kmem_list3));
1380 * Do not assume that spinlocks can be initialized via memcpy:
1382 spin_lock_init(&ptr->list_lock);
1384 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1385 cachep->nodelists[nodeid] = ptr;
1390 * Initialisation. Called after the page allocator have been initialised and
1391 * before smp_init().
1393 void __init kmem_cache_init(void)
1396 struct cache_sizes *sizes;
1397 struct cache_names *names;
1402 if (num_possible_nodes() == 1)
1403 use_alien_caches = 0;
1405 for (i = 0; i < NUM_INIT_LISTS; i++) {
1406 kmem_list3_init(&initkmem_list3[i]);
1407 if (i < MAX_NUMNODES)
1408 cache_cache.nodelists[i] = NULL;
1412 * Fragmentation resistance on low memory - only use bigger
1413 * page orders on machines with more than 32MB of memory.
1415 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1416 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1418 /* Bootstrap is tricky, because several objects are allocated
1419 * from caches that do not exist yet:
1420 * 1) initialize the cache_cache cache: it contains the struct
1421 * kmem_cache structures of all caches, except cache_cache itself:
1422 * cache_cache is statically allocated.
1423 * Initially an __init data area is used for the head array and the
1424 * kmem_list3 structures, it's replaced with a kmalloc allocated
1425 * array at the end of the bootstrap.
1426 * 2) Create the first kmalloc cache.
1427 * The struct kmem_cache for the new cache is allocated normally.
1428 * An __init data area is used for the head array.
1429 * 3) Create the remaining kmalloc caches, with minimally sized
1431 * 4) Replace the __init data head arrays for cache_cache and the first
1432 * kmalloc cache with kmalloc allocated arrays.
1433 * 5) Replace the __init data for kmem_list3 for cache_cache and
1434 * the other cache's with kmalloc allocated memory.
1435 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1438 node = numa_node_id();
1440 /* 1) create the cache_cache */
1441 INIT_LIST_HEAD(&cache_chain);
1442 list_add(&cache_cache.next, &cache_chain);
1443 cache_cache.colour_off = cache_line_size();
1444 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1445 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1448 * struct kmem_cache size depends on nr_node_ids, which
1449 * can be less than MAX_NUMNODES.
1451 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1452 nr_node_ids * sizeof(struct kmem_list3 *);
1454 cache_cache.obj_size = cache_cache.buffer_size;
1456 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1458 cache_cache.reciprocal_buffer_size =
1459 reciprocal_value(cache_cache.buffer_size);
1461 for (order = 0; order < MAX_ORDER; order++) {
1462 cache_estimate(order, cache_cache.buffer_size,
1463 cache_line_size(), 0, &left_over, &cache_cache.num);
1464 if (cache_cache.num)
1467 BUG_ON(!cache_cache.num);
1468 cache_cache.gfporder = order;
1469 cache_cache.colour = left_over / cache_cache.colour_off;
1470 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1471 sizeof(struct slab), cache_line_size());
1473 /* 2+3) create the kmalloc caches */
1474 sizes = malloc_sizes;
1475 names = cache_names;
1478 * Initialize the caches that provide memory for the array cache and the
1479 * kmem_list3 structures first. Without this, further allocations will
1483 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1484 sizes[INDEX_AC].cs_size,
1485 ARCH_KMALLOC_MINALIGN,
1486 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1489 if (INDEX_AC != INDEX_L3) {
1490 sizes[INDEX_L3].cs_cachep =
1491 kmem_cache_create(names[INDEX_L3].name,
1492 sizes[INDEX_L3].cs_size,
1493 ARCH_KMALLOC_MINALIGN,
1494 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1498 slab_early_init = 0;
1500 while (sizes->cs_size != ULONG_MAX) {
1502 * For performance, all the general caches are L1 aligned.
1503 * This should be particularly beneficial on SMP boxes, as it
1504 * eliminates "false sharing".
1505 * Note for systems short on memory removing the alignment will
1506 * allow tighter packing of the smaller caches.
1508 if (!sizes->cs_cachep) {
1509 sizes->cs_cachep = kmem_cache_create(names->name,
1511 ARCH_KMALLOC_MINALIGN,
1512 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1515 #ifdef CONFIG_ZONE_DMA
1516 sizes->cs_dmacachep = kmem_cache_create(
1519 ARCH_KMALLOC_MINALIGN,
1520 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1527 /* 4) Replace the bootstrap head arrays */
1529 struct array_cache *ptr;
1531 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1533 local_irq_disable();
1534 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1535 memcpy(ptr, cpu_cache_get(&cache_cache),
1536 sizeof(struct arraycache_init));
1538 * Do not assume that spinlocks can be initialized via memcpy:
1540 spin_lock_init(&ptr->lock);
1542 cache_cache.array[smp_processor_id()] = ptr;
1545 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1547 local_irq_disable();
1548 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1549 != &initarray_generic.cache);
1550 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1551 sizeof(struct arraycache_init));
1553 * Do not assume that spinlocks can be initialized via memcpy:
1555 spin_lock_init(&ptr->lock);
1557 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1561 /* 5) Replace the bootstrap kmem_list3's */
1565 /* Replace the static kmem_list3 structures for the boot cpu */
1566 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1568 for_each_online_node(nid) {
1569 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1570 &initkmem_list3[SIZE_AC + nid], nid);
1572 if (INDEX_AC != INDEX_L3) {
1573 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1574 &initkmem_list3[SIZE_L3 + nid], nid);
1579 /* 6) resize the head arrays to their final sizes */
1581 struct kmem_cache *cachep;
1582 mutex_lock(&cache_chain_mutex);
1583 list_for_each_entry(cachep, &cache_chain, next)
1584 if (enable_cpucache(cachep))
1586 mutex_unlock(&cache_chain_mutex);
1589 /* Annotate slab for lockdep -- annotate the malloc caches */
1594 g_cpucache_up = FULL;
1597 * Register a cpu startup notifier callback that initializes
1598 * cpu_cache_get for all new cpus
1600 register_cpu_notifier(&cpucache_notifier);
1603 * The reap timers are started later, with a module init call: That part
1604 * of the kernel is not yet operational.
1608 static int __init cpucache_init(void)
1613 * Register the timers that return unneeded pages to the page allocator
1615 for_each_online_cpu(cpu)
1616 start_cpu_timer(cpu);
1619 __initcall(cpucache_init);
1622 * Interface to system's page allocator. No need to hold the cache-lock.
1624 * If we requested dmaable memory, we will get it. Even if we
1625 * did not request dmaable memory, we might get it, but that
1626 * would be relatively rare and ignorable.
1628 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1636 * Nommu uses slab's for process anonymous memory allocations, and thus
1637 * requires __GFP_COMP to properly refcount higher order allocations
1639 flags |= __GFP_COMP;
1642 flags |= cachep->gfpflags;
1644 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1648 nr_pages = (1 << cachep->gfporder);
1649 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1650 add_zone_page_state(page_zone(page),
1651 NR_SLAB_RECLAIMABLE, nr_pages);
1653 add_zone_page_state(page_zone(page),
1654 NR_SLAB_UNRECLAIMABLE, nr_pages);
1655 for (i = 0; i < nr_pages; i++)
1656 __SetPageSlab(page + i);
1657 return page_address(page);
1661 * Interface to system's page release.
1663 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1665 unsigned long i = (1 << cachep->gfporder);
1666 struct page *page = virt_to_page(addr);
1667 const unsigned long nr_freed = i;
1669 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1670 sub_zone_page_state(page_zone(page),
1671 NR_SLAB_RECLAIMABLE, nr_freed);
1673 sub_zone_page_state(page_zone(page),
1674 NR_SLAB_UNRECLAIMABLE, nr_freed);
1676 BUG_ON(!PageSlab(page));
1677 __ClearPageSlab(page);
1680 if (current->reclaim_state)
1681 current->reclaim_state->reclaimed_slab += nr_freed;
1682 free_pages((unsigned long)addr, cachep->gfporder);
1685 static void kmem_rcu_free(struct rcu_head *head)
1687 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1688 struct kmem_cache *cachep = slab_rcu->cachep;
1690 kmem_freepages(cachep, slab_rcu->addr);
1691 if (OFF_SLAB(cachep))
1692 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1697 #ifdef CONFIG_DEBUG_PAGEALLOC
1698 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1699 unsigned long caller)
1701 int size = obj_size(cachep);
1703 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1705 if (size < 5 * sizeof(unsigned long))
1708 *addr++ = 0x12345678;
1710 *addr++ = smp_processor_id();
1711 size -= 3 * sizeof(unsigned long);
1713 unsigned long *sptr = &caller;
1714 unsigned long svalue;
1716 while (!kstack_end(sptr)) {
1718 if (kernel_text_address(svalue)) {
1720 size -= sizeof(unsigned long);
1721 if (size <= sizeof(unsigned long))
1727 *addr++ = 0x87654321;
1731 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1733 int size = obj_size(cachep);
1734 addr = &((char *)addr)[obj_offset(cachep)];
1736 memset(addr, val, size);
1737 *(unsigned char *)(addr + size - 1) = POISON_END;
1740 static void dump_line(char *data, int offset, int limit)
1743 unsigned char error = 0;
1746 printk(KERN_ERR "%03x:", offset);
1747 for (i = 0; i < limit; i++) {
1748 if (data[offset + i] != POISON_FREE) {
1749 error = data[offset + i];
1752 printk(" %02x", (unsigned char)data[offset + i]);
1756 if (bad_count == 1) {
1757 error ^= POISON_FREE;
1758 if (!(error & (error - 1))) {
1759 printk(KERN_ERR "Single bit error detected. Probably "
1762 printk(KERN_ERR "Run memtest86+ or a similar memory "
1765 printk(KERN_ERR "Run a memory test tool.\n");
1774 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1779 if (cachep->flags & SLAB_RED_ZONE) {
1780 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1781 *dbg_redzone1(cachep, objp),
1782 *dbg_redzone2(cachep, objp));
1785 if (cachep->flags & SLAB_STORE_USER) {
1786 printk(KERN_ERR "Last user: [<%p>]",
1787 *dbg_userword(cachep, objp));
1788 print_symbol("(%s)",
1789 (unsigned long)*dbg_userword(cachep, objp));
1792 realobj = (char *)objp + obj_offset(cachep);
1793 size = obj_size(cachep);
1794 for (i = 0; i < size && lines; i += 16, lines--) {
1797 if (i + limit > size)
1799 dump_line(realobj, i, limit);
1803 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1809 realobj = (char *)objp + obj_offset(cachep);
1810 size = obj_size(cachep);
1812 for (i = 0; i < size; i++) {
1813 char exp = POISON_FREE;
1816 if (realobj[i] != exp) {
1822 "Slab corruption: %s start=%p, len=%d\n",
1823 cachep->name, realobj, size);
1824 print_objinfo(cachep, objp, 0);
1826 /* Hexdump the affected line */
1829 if (i + limit > size)
1831 dump_line(realobj, i, limit);
1834 /* Limit to 5 lines */
1840 /* Print some data about the neighboring objects, if they
1843 struct slab *slabp = virt_to_slab(objp);
1846 objnr = obj_to_index(cachep, slabp, objp);
1848 objp = index_to_obj(cachep, slabp, objnr - 1);
1849 realobj = (char *)objp + obj_offset(cachep);
1850 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1852 print_objinfo(cachep, objp, 2);
1854 if (objnr + 1 < cachep->num) {
1855 objp = index_to_obj(cachep, slabp, objnr + 1);
1856 realobj = (char *)objp + obj_offset(cachep);
1857 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1859 print_objinfo(cachep, objp, 2);
1867 * slab_destroy_objs - destroy a slab and its objects
1868 * @cachep: cache pointer being destroyed
1869 * @slabp: slab pointer being destroyed
1871 * Call the registered destructor for each object in a slab that is being
1874 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1877 for (i = 0; i < cachep->num; i++) {
1878 void *objp = index_to_obj(cachep, slabp, i);
1880 if (cachep->flags & SLAB_POISON) {
1881 #ifdef CONFIG_DEBUG_PAGEALLOC
1882 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1884 kernel_map_pages(virt_to_page(objp),
1885 cachep->buffer_size / PAGE_SIZE, 1);
1887 check_poison_obj(cachep, objp);
1889 check_poison_obj(cachep, objp);
1892 if (cachep->flags & SLAB_RED_ZONE) {
1893 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1894 slab_error(cachep, "start of a freed object "
1896 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1897 slab_error(cachep, "end of a freed object "
1900 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1901 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1905 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1909 for (i = 0; i < cachep->num; i++) {
1910 void *objp = index_to_obj(cachep, slabp, i);
1911 (cachep->dtor) (objp, cachep, 0);
1918 * slab_destroy - destroy and release all objects in a slab
1919 * @cachep: cache pointer being destroyed
1920 * @slabp: slab pointer being destroyed
1922 * Destroy all the objs in a slab, and release the mem back to the system.
1923 * Before calling the slab must have been unlinked from the cache. The
1924 * cache-lock is not held/needed.
1926 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1928 void *addr = slabp->s_mem - slabp->colouroff;
1930 slab_destroy_objs(cachep, slabp);
1931 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1932 struct slab_rcu *slab_rcu;
1934 slab_rcu = (struct slab_rcu *)slabp;
1935 slab_rcu->cachep = cachep;
1936 slab_rcu->addr = addr;
1937 call_rcu(&slab_rcu->head, kmem_rcu_free);
1939 kmem_freepages(cachep, addr);
1940 if (OFF_SLAB(cachep))
1941 kmem_cache_free(cachep->slabp_cache, slabp);
1946 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1947 * size of kmem_list3.
1949 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1953 for_each_online_node(node) {
1954 cachep->nodelists[node] = &initkmem_list3[index + node];
1955 cachep->nodelists[node]->next_reap = jiffies +
1957 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1961 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1964 struct kmem_list3 *l3;
1966 for_each_online_cpu(i)
1967 kfree(cachep->array[i]);
1969 /* NUMA: free the list3 structures */
1970 for_each_online_node(i) {
1971 l3 = cachep->nodelists[i];
1974 free_alien_cache(l3->alien);
1978 kmem_cache_free(&cache_cache, cachep);
1983 * calculate_slab_order - calculate size (page order) of slabs
1984 * @cachep: pointer to the cache that is being created
1985 * @size: size of objects to be created in this cache.
1986 * @align: required alignment for the objects.
1987 * @flags: slab allocation flags
1989 * Also calculates the number of objects per slab.
1991 * This could be made much more intelligent. For now, try to avoid using
1992 * high order pages for slabs. When the gfp() functions are more friendly
1993 * towards high-order requests, this should be changed.
1995 static size_t calculate_slab_order(struct kmem_cache *cachep,
1996 size_t size, size_t align, unsigned long flags)
1998 unsigned long offslab_limit;
1999 size_t left_over = 0;
2002 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
2006 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2010 if (flags & CFLGS_OFF_SLAB) {
2012 * Max number of objs-per-slab for caches which
2013 * use off-slab slabs. Needed to avoid a possible
2014 * looping condition in cache_grow().
2016 offslab_limit = size - sizeof(struct slab);
2017 offslab_limit /= sizeof(kmem_bufctl_t);
2019 if (num > offslab_limit)
2023 /* Found something acceptable - save it away */
2025 cachep->gfporder = gfporder;
2026 left_over = remainder;
2029 * A VFS-reclaimable slab tends to have most allocations
2030 * as GFP_NOFS and we really don't want to have to be allocating
2031 * higher-order pages when we are unable to shrink dcache.
2033 if (flags & SLAB_RECLAIM_ACCOUNT)
2037 * Large number of objects is good, but very large slabs are
2038 * currently bad for the gfp()s.
2040 if (gfporder >= slab_break_gfp_order)
2044 * Acceptable internal fragmentation?
2046 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2052 static int setup_cpu_cache(struct kmem_cache *cachep)
2054 if (g_cpucache_up == FULL)
2055 return enable_cpucache(cachep);
2057 if (g_cpucache_up == NONE) {
2059 * Note: the first kmem_cache_create must create the cache
2060 * that's used by kmalloc(24), otherwise the creation of
2061 * further caches will BUG().
2063 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2066 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2067 * the first cache, then we need to set up all its list3s,
2068 * otherwise the creation of further caches will BUG().
2070 set_up_list3s(cachep, SIZE_AC);
2071 if (INDEX_AC == INDEX_L3)
2072 g_cpucache_up = PARTIAL_L3;
2074 g_cpucache_up = PARTIAL_AC;
2076 cachep->array[smp_processor_id()] =
2077 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2079 if (g_cpucache_up == PARTIAL_AC) {
2080 set_up_list3s(cachep, SIZE_L3);
2081 g_cpucache_up = PARTIAL_L3;
2084 for_each_online_node(node) {
2085 cachep->nodelists[node] =
2086 kmalloc_node(sizeof(struct kmem_list3),
2088 BUG_ON(!cachep->nodelists[node]);
2089 kmem_list3_init(cachep->nodelists[node]);
2093 cachep->nodelists[numa_node_id()]->next_reap =
2094 jiffies + REAPTIMEOUT_LIST3 +
2095 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2097 cpu_cache_get(cachep)->avail = 0;
2098 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2099 cpu_cache_get(cachep)->batchcount = 1;
2100 cpu_cache_get(cachep)->touched = 0;
2101 cachep->batchcount = 1;
2102 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2107 * kmem_cache_create - Create a cache.
2108 * @name: A string which is used in /proc/slabinfo to identify this cache.
2109 * @size: The size of objects to be created in this cache.
2110 * @align: The required alignment for the objects.
2111 * @flags: SLAB flags
2112 * @ctor: A constructor for the objects.
2113 * @dtor: A destructor for the objects.
2115 * Returns a ptr to the cache on success, NULL on failure.
2116 * Cannot be called within a int, but can be interrupted.
2117 * The @ctor is run when new pages are allocated by the cache
2118 * and the @dtor is run before the pages are handed back.
2120 * @name must be valid until the cache is destroyed. This implies that
2121 * the module calling this has to destroy the cache before getting unloaded.
2125 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2126 * to catch references to uninitialised memory.
2128 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2129 * for buffer overruns.
2131 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2132 * cacheline. This can be beneficial if you're counting cycles as closely
2136 kmem_cache_create (const char *name, size_t size, size_t align,
2137 unsigned long flags,
2138 void (*ctor)(void*, struct kmem_cache *, unsigned long),
2139 void (*dtor)(void*, struct kmem_cache *, unsigned long))
2141 size_t left_over, slab_size, ralign;
2142 struct kmem_cache *cachep = NULL, *pc;
2145 * Sanity checks... these are all serious usage bugs.
2147 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2148 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
2149 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2155 * We use cache_chain_mutex to ensure a consistent view of
2156 * cpu_online_map as well. Please see cpuup_callback
2158 mutex_lock(&cache_chain_mutex);
2160 list_for_each_entry(pc, &cache_chain, next) {
2165 * This happens when the module gets unloaded and doesn't
2166 * destroy its slab cache and no-one else reuses the vmalloc
2167 * area of the module. Print a warning.
2169 res = probe_kernel_address(pc->name, tmp);
2172 "SLAB: cache with size %d has lost its name\n",
2177 if (!strcmp(pc->name, name)) {
2179 "kmem_cache_create: duplicate cache %s\n", name);
2186 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2187 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2188 /* No constructor, but inital state check requested */
2189 printk(KERN_ERR "%s: No con, but init state check "
2190 "requested - %s\n", __FUNCTION__, name);
2191 flags &= ~SLAB_DEBUG_INITIAL;
2195 * Enable redzoning and last user accounting, except for caches with
2196 * large objects, if the increased size would increase the object size
2197 * above the next power of two: caches with object sizes just above a
2198 * power of two have a significant amount of internal fragmentation.
2200 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2201 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2202 if (!(flags & SLAB_DESTROY_BY_RCU))
2203 flags |= SLAB_POISON;
2205 if (flags & SLAB_DESTROY_BY_RCU)
2206 BUG_ON(flags & SLAB_POISON);
2208 if (flags & SLAB_DESTROY_BY_RCU)
2212 * Always checks flags, a caller might be expecting debug support which
2215 BUG_ON(flags & ~CREATE_MASK);
2218 * Check that size is in terms of words. This is needed to avoid
2219 * unaligned accesses for some archs when redzoning is used, and makes
2220 * sure any on-slab bufctl's are also correctly aligned.
2222 if (size & (BYTES_PER_WORD - 1)) {
2223 size += (BYTES_PER_WORD - 1);
2224 size &= ~(BYTES_PER_WORD - 1);
2227 /* calculate the final buffer alignment: */
2229 /* 1) arch recommendation: can be overridden for debug */
2230 if (flags & SLAB_HWCACHE_ALIGN) {
2232 * Default alignment: as specified by the arch code. Except if
2233 * an object is really small, then squeeze multiple objects into
2236 ralign = cache_line_size();
2237 while (size <= ralign / 2)
2240 ralign = BYTES_PER_WORD;
2244 * Redzoning and user store require word alignment. Note this will be
2245 * overridden by architecture or caller mandated alignment if either
2246 * is greater than BYTES_PER_WORD.
2248 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2249 ralign = BYTES_PER_WORD;
2251 /* 2) arch mandated alignment */
2252 if (ralign < ARCH_SLAB_MINALIGN) {
2253 ralign = ARCH_SLAB_MINALIGN;
2255 /* 3) caller mandated alignment */
2256 if (ralign < align) {
2259 /* disable debug if necessary */
2260 if (ralign > BYTES_PER_WORD)
2261 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2267 /* Get cache's description obj. */
2268 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2273 cachep->obj_size = size;
2276 * Both debugging options require word-alignment which is calculated
2279 if (flags & SLAB_RED_ZONE) {
2280 /* add space for red zone words */
2281 cachep->obj_offset += BYTES_PER_WORD;
2282 size += 2 * BYTES_PER_WORD;
2284 if (flags & SLAB_STORE_USER) {
2285 /* user store requires one word storage behind the end of
2288 size += BYTES_PER_WORD;
2290 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2291 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2292 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2293 cachep->obj_offset += PAGE_SIZE - size;
2300 * Determine if the slab management is 'on' or 'off' slab.
2301 * (bootstrapping cannot cope with offslab caches so don't do
2304 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2306 * Size is large, assume best to place the slab management obj
2307 * off-slab (should allow better packing of objs).
2309 flags |= CFLGS_OFF_SLAB;
2311 size = ALIGN(size, align);
2313 left_over = calculate_slab_order(cachep, size, align, flags);
2317 "kmem_cache_create: couldn't create cache %s.\n", name);
2318 kmem_cache_free(&cache_cache, cachep);
2322 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2323 + sizeof(struct slab), align);
2326 * If the slab has been placed off-slab, and we have enough space then
2327 * move it on-slab. This is at the expense of any extra colouring.
2329 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2330 flags &= ~CFLGS_OFF_SLAB;
2331 left_over -= slab_size;
2334 if (flags & CFLGS_OFF_SLAB) {
2335 /* really off slab. No need for manual alignment */
2337 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2340 cachep->colour_off = cache_line_size();
2341 /* Offset must be a multiple of the alignment. */
2342 if (cachep->colour_off < align)
2343 cachep->colour_off = align;
2344 cachep->colour = left_over / cachep->colour_off;
2345 cachep->slab_size = slab_size;
2346 cachep->flags = flags;
2347 cachep->gfpflags = 0;
2348 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2349 cachep->gfpflags |= GFP_DMA;
2350 cachep->buffer_size = size;
2351 cachep->reciprocal_buffer_size = reciprocal_value(size);
2353 if (flags & CFLGS_OFF_SLAB) {
2354 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2356 * This is a possibility for one of the malloc_sizes caches.
2357 * But since we go off slab only for object size greater than
2358 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2359 * this should not happen at all.
2360 * But leave a BUG_ON for some lucky dude.
2362 BUG_ON(!cachep->slabp_cache);
2364 cachep->ctor = ctor;
2365 cachep->dtor = dtor;
2366 cachep->name = name;
2368 if (setup_cpu_cache(cachep)) {
2369 __kmem_cache_destroy(cachep);
2374 /* cache setup completed, link it into the list */
2375 list_add(&cachep->next, &cache_chain);
2377 if (!cachep && (flags & SLAB_PANIC))
2378 panic("kmem_cache_create(): failed to create slab `%s'\n",
2380 mutex_unlock(&cache_chain_mutex);
2383 EXPORT_SYMBOL(kmem_cache_create);
2386 static void check_irq_off(void)
2388 BUG_ON(!irqs_disabled());
2391 static void check_irq_on(void)
2393 BUG_ON(irqs_disabled());
2396 static void check_spinlock_acquired(struct kmem_cache *cachep)
2400 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2404 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2408 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2413 #define check_irq_off() do { } while(0)
2414 #define check_irq_on() do { } while(0)
2415 #define check_spinlock_acquired(x) do { } while(0)
2416 #define check_spinlock_acquired_node(x, y) do { } while(0)
2419 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2420 struct array_cache *ac,
2421 int force, int node);
2423 static void do_drain(void *arg)
2425 struct kmem_cache *cachep = arg;
2426 struct array_cache *ac;
2427 int node = numa_node_id();
2430 ac = cpu_cache_get(cachep);
2431 spin_lock(&cachep->nodelists[node]->list_lock);
2432 free_block(cachep, ac->entry, ac->avail, node);
2433 spin_unlock(&cachep->nodelists[node]->list_lock);
2437 static void drain_cpu_caches(struct kmem_cache *cachep)
2439 struct kmem_list3 *l3;
2442 on_each_cpu(do_drain, cachep, 1, 1);
2444 for_each_online_node(node) {
2445 l3 = cachep->nodelists[node];
2446 if (l3 && l3->alien)
2447 drain_alien_cache(cachep, l3->alien);
2450 for_each_online_node(node) {
2451 l3 = cachep->nodelists[node];
2453 drain_array(cachep, l3, l3->shared, 1, node);
2458 * Remove slabs from the list of free slabs.
2459 * Specify the number of slabs to drain in tofree.
2461 * Returns the actual number of slabs released.
2463 static int drain_freelist(struct kmem_cache *cache,
2464 struct kmem_list3 *l3, int tofree)
2466 struct list_head *p;
2471 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2473 spin_lock_irq(&l3->list_lock);
2474 p = l3->slabs_free.prev;
2475 if (p == &l3->slabs_free) {
2476 spin_unlock_irq(&l3->list_lock);
2480 slabp = list_entry(p, struct slab, list);
2482 BUG_ON(slabp->inuse);
2484 list_del(&slabp->list);
2486 * Safe to drop the lock. The slab is no longer linked
2489 l3->free_objects -= cache->num;
2490 spin_unlock_irq(&l3->list_lock);
2491 slab_destroy(cache, slabp);
2498 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2499 static int __cache_shrink(struct kmem_cache *cachep)
2502 struct kmem_list3 *l3;
2504 drain_cpu_caches(cachep);
2507 for_each_online_node(i) {
2508 l3 = cachep->nodelists[i];
2512 drain_freelist(cachep, l3, l3->free_objects);
2514 ret += !list_empty(&l3->slabs_full) ||
2515 !list_empty(&l3->slabs_partial);
2517 return (ret ? 1 : 0);
2521 * kmem_cache_shrink - Shrink a cache.
2522 * @cachep: The cache to shrink.
2524 * Releases as many slabs as possible for a cache.
2525 * To help debugging, a zero exit status indicates all slabs were released.
2527 int kmem_cache_shrink(struct kmem_cache *cachep)
2530 BUG_ON(!cachep || in_interrupt());
2532 mutex_lock(&cache_chain_mutex);
2533 ret = __cache_shrink(cachep);
2534 mutex_unlock(&cache_chain_mutex);
2537 EXPORT_SYMBOL(kmem_cache_shrink);
2540 * kmem_cache_destroy - delete a cache
2541 * @cachep: the cache to destroy
2543 * Remove a &struct kmem_cache object from the slab cache.
2545 * It is expected this function will be called by a module when it is
2546 * unloaded. This will remove the cache completely, and avoid a duplicate
2547 * cache being allocated each time a module is loaded and unloaded, if the
2548 * module doesn't have persistent in-kernel storage across loads and unloads.
2550 * The cache must be empty before calling this function.
2552 * The caller must guarantee that noone will allocate memory from the cache
2553 * during the kmem_cache_destroy().
2555 void kmem_cache_destroy(struct kmem_cache *cachep)
2557 BUG_ON(!cachep || in_interrupt());
2559 /* Find the cache in the chain of caches. */
2560 mutex_lock(&cache_chain_mutex);
2562 * the chain is never empty, cache_cache is never destroyed
2564 list_del(&cachep->next);
2565 if (__cache_shrink(cachep)) {
2566 slab_error(cachep, "Can't free all objects");
2567 list_add(&cachep->next, &cache_chain);
2568 mutex_unlock(&cache_chain_mutex);
2572 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2575 __kmem_cache_destroy(cachep);
2576 mutex_unlock(&cache_chain_mutex);
2578 EXPORT_SYMBOL(kmem_cache_destroy);
2581 * Get the memory for a slab management obj.
2582 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2583 * always come from malloc_sizes caches. The slab descriptor cannot
2584 * come from the same cache which is getting created because,
2585 * when we are searching for an appropriate cache for these
2586 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2587 * If we are creating a malloc_sizes cache here it would not be visible to
2588 * kmem_find_general_cachep till the initialization is complete.
2589 * Hence we cannot have slabp_cache same as the original cache.
2591 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2592 int colour_off, gfp_t local_flags,
2597 if (OFF_SLAB(cachep)) {
2598 /* Slab management obj is off-slab. */
2599 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2600 local_flags & ~GFP_THISNODE, nodeid);
2604 slabp = objp + colour_off;
2605 colour_off += cachep->slab_size;
2608 slabp->colouroff = colour_off;
2609 slabp->s_mem = objp + colour_off;
2610 slabp->nodeid = nodeid;
2614 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2616 return (kmem_bufctl_t *) (slabp + 1);
2619 static void cache_init_objs(struct kmem_cache *cachep,
2620 struct slab *slabp, unsigned long ctor_flags)
2624 for (i = 0; i < cachep->num; i++) {
2625 void *objp = index_to_obj(cachep, slabp, i);
2627 /* need to poison the objs? */
2628 if (cachep->flags & SLAB_POISON)
2629 poison_obj(cachep, objp, POISON_FREE);
2630 if (cachep->flags & SLAB_STORE_USER)
2631 *dbg_userword(cachep, objp) = NULL;
2633 if (cachep->flags & SLAB_RED_ZONE) {
2634 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2635 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2638 * Constructors are not allowed to allocate memory from the same
2639 * cache which they are a constructor for. Otherwise, deadlock.
2640 * They must also be threaded.
2642 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2643 cachep->ctor(objp + obj_offset(cachep), cachep,
2646 if (cachep->flags & SLAB_RED_ZONE) {
2647 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2648 slab_error(cachep, "constructor overwrote the"
2649 " end of an object");
2650 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2651 slab_error(cachep, "constructor overwrote the"
2652 " start of an object");
2654 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2655 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2656 kernel_map_pages(virt_to_page(objp),
2657 cachep->buffer_size / PAGE_SIZE, 0);
2660 cachep->ctor(objp, cachep, ctor_flags);
2662 slab_bufctl(slabp)[i] = i + 1;
2664 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2668 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2670 if (CONFIG_ZONE_DMA_FLAG) {
2671 if (flags & GFP_DMA)
2672 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2674 BUG_ON(cachep->gfpflags & GFP_DMA);
2678 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2681 void *objp = index_to_obj(cachep, slabp, slabp->free);
2685 next = slab_bufctl(slabp)[slabp->free];
2687 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2688 WARN_ON(slabp->nodeid != nodeid);
2695 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2696 void *objp, int nodeid)
2698 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2701 /* Verify that the slab belongs to the intended node */
2702 WARN_ON(slabp->nodeid != nodeid);
2704 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2705 printk(KERN_ERR "slab: double free detected in cache "
2706 "'%s', objp %p\n", cachep->name, objp);
2710 slab_bufctl(slabp)[objnr] = slabp->free;
2711 slabp->free = objnr;
2716 * Map pages beginning at addr to the given cache and slab. This is required
2717 * for the slab allocator to be able to lookup the cache and slab of a
2718 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2720 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2726 page = virt_to_page(addr);
2729 if (likely(!PageCompound(page)))
2730 nr_pages <<= cache->gfporder;
2733 page_set_cache(page, cache);
2734 page_set_slab(page, slab);
2736 } while (--nr_pages);
2740 * Grow (by 1) the number of slabs within a cache. This is called by
2741 * kmem_cache_alloc() when there are no active objs left in a cache.
2743 static int cache_grow(struct kmem_cache *cachep,
2744 gfp_t flags, int nodeid, void *objp)
2749 unsigned long ctor_flags;
2750 struct kmem_list3 *l3;
2753 * Be lazy and only check for valid flags here, keeping it out of the
2754 * critical path in kmem_cache_alloc().
2756 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
2757 if (flags & __GFP_NO_GROW)
2760 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2761 local_flags = (flags & GFP_LEVEL_MASK);
2762 if (!(local_flags & __GFP_WAIT))
2764 * Not allowed to sleep. Need to tell a constructor about
2765 * this - it might need to know...
2767 ctor_flags |= SLAB_CTOR_ATOMIC;
2769 /* Take the l3 list lock to change the colour_next on this node */
2771 l3 = cachep->nodelists[nodeid];
2772 spin_lock(&l3->list_lock);
2774 /* Get colour for the slab, and cal the next value. */
2775 offset = l3->colour_next;
2777 if (l3->colour_next >= cachep->colour)
2778 l3->colour_next = 0;
2779 spin_unlock(&l3->list_lock);
2781 offset *= cachep->colour_off;
2783 if (local_flags & __GFP_WAIT)
2787 * The test for missing atomic flag is performed here, rather than
2788 * the more obvious place, simply to reduce the critical path length
2789 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2790 * will eventually be caught here (where it matters).
2792 kmem_flagcheck(cachep, flags);
2795 * Get mem for the objs. Attempt to allocate a physical page from
2799 objp = kmem_getpages(cachep, flags, nodeid);
2803 /* Get slab management. */
2804 slabp = alloc_slabmgmt(cachep, objp, offset,
2805 local_flags & ~GFP_THISNODE, nodeid);
2809 slabp->nodeid = nodeid;
2810 slab_map_pages(cachep, slabp, objp);
2812 cache_init_objs(cachep, slabp, ctor_flags);
2814 if (local_flags & __GFP_WAIT)
2815 local_irq_disable();
2817 spin_lock(&l3->list_lock);
2819 /* Make slab active. */
2820 list_add_tail(&slabp->list, &(l3->slabs_free));
2821 STATS_INC_GROWN(cachep);
2822 l3->free_objects += cachep->num;
2823 spin_unlock(&l3->list_lock);
2826 kmem_freepages(cachep, objp);
2828 if (local_flags & __GFP_WAIT)
2829 local_irq_disable();
2836 * Perform extra freeing checks:
2837 * - detect bad pointers.
2838 * - POISON/RED_ZONE checking
2839 * - destructor calls, for caches with POISON+dtor
2841 static void kfree_debugcheck(const void *objp)
2843 if (!virt_addr_valid(objp)) {
2844 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2845 (unsigned long)objp);
2850 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2852 unsigned long redzone1, redzone2;
2854 redzone1 = *dbg_redzone1(cache, obj);
2855 redzone2 = *dbg_redzone2(cache, obj);
2860 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2863 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2864 slab_error(cache, "double free detected");
2866 slab_error(cache, "memory outside object was overwritten");
2868 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2869 obj, redzone1, redzone2);
2872 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2879 objp -= obj_offset(cachep);
2880 kfree_debugcheck(objp);
2881 page = virt_to_head_page(objp);
2883 slabp = page_get_slab(page);
2885 if (cachep->flags & SLAB_RED_ZONE) {
2886 verify_redzone_free(cachep, objp);
2887 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2888 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2890 if (cachep->flags & SLAB_STORE_USER)
2891 *dbg_userword(cachep, objp) = caller;
2893 objnr = obj_to_index(cachep, slabp, objp);
2895 BUG_ON(objnr >= cachep->num);
2896 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2898 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2900 * Need to call the slab's constructor so the caller can
2901 * perform a verify of its state (debugging). Called without
2902 * the cache-lock held.
2904 cachep->ctor(objp + obj_offset(cachep),
2905 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2907 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2908 /* we want to cache poison the object,
2909 * call the destruction callback
2911 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2913 #ifdef CONFIG_DEBUG_SLAB_LEAK
2914 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2916 if (cachep->flags & SLAB_POISON) {
2917 #ifdef CONFIG_DEBUG_PAGEALLOC
2918 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2919 store_stackinfo(cachep, objp, (unsigned long)caller);
2920 kernel_map_pages(virt_to_page(objp),
2921 cachep->buffer_size / PAGE_SIZE, 0);
2923 poison_obj(cachep, objp, POISON_FREE);
2926 poison_obj(cachep, objp, POISON_FREE);
2932 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2937 /* Check slab's freelist to see if this obj is there. */
2938 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2940 if (entries > cachep->num || i >= cachep->num)
2943 if (entries != cachep->num - slabp->inuse) {
2945 printk(KERN_ERR "slab: Internal list corruption detected in "
2946 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2947 cachep->name, cachep->num, slabp, slabp->inuse);
2949 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2952 printk("\n%03x:", i);
2953 printk(" %02x", ((unsigned char *)slabp)[i]);
2960 #define kfree_debugcheck(x) do { } while(0)
2961 #define cache_free_debugcheck(x,objp,z) (objp)
2962 #define check_slabp(x,y) do { } while(0)
2965 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2968 struct kmem_list3 *l3;
2969 struct array_cache *ac;
2972 node = numa_node_id();
2975 ac = cpu_cache_get(cachep);
2977 batchcount = ac->batchcount;
2978 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2980 * If there was little recent activity on this cache, then
2981 * perform only a partial refill. Otherwise we could generate
2984 batchcount = BATCHREFILL_LIMIT;
2986 l3 = cachep->nodelists[node];
2988 BUG_ON(ac->avail > 0 || !l3);
2989 spin_lock(&l3->list_lock);
2991 /* See if we can refill from the shared array */
2992 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2995 while (batchcount > 0) {
2996 struct list_head *entry;
2998 /* Get slab alloc is to come from. */
2999 entry = l3->slabs_partial.next;
3000 if (entry == &l3->slabs_partial) {
3001 l3->free_touched = 1;
3002 entry = l3->slabs_free.next;
3003 if (entry == &l3->slabs_free)
3007 slabp = list_entry(entry, struct slab, list);
3008 check_slabp(cachep, slabp);
3009 check_spinlock_acquired(cachep);
3012 * The slab was either on partial or free list so
3013 * there must be at least one object available for
3016 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3018 while (slabp->inuse < cachep->num && batchcount--) {
3019 STATS_INC_ALLOCED(cachep);
3020 STATS_INC_ACTIVE(cachep);
3021 STATS_SET_HIGH(cachep);
3023 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3026 check_slabp(cachep, slabp);
3028 /* move slabp to correct slabp list: */
3029 list_del(&slabp->list);
3030 if (slabp->free == BUFCTL_END)
3031 list_add(&slabp->list, &l3->slabs_full);
3033 list_add(&slabp->list, &l3->slabs_partial);
3037 l3->free_objects -= ac->avail;
3039 spin_unlock(&l3->list_lock);
3041 if (unlikely(!ac->avail)) {
3043 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3045 /* cache_grow can reenable interrupts, then ac could change. */
3046 ac = cpu_cache_get(cachep);
3047 if (!x && ac->avail == 0) /* no objects in sight? abort */
3050 if (!ac->avail) /* objects refilled by interrupt? */
3054 return ac->entry[--ac->avail];
3057 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3060 might_sleep_if(flags & __GFP_WAIT);
3062 kmem_flagcheck(cachep, flags);
3067 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3068 gfp_t flags, void *objp, void *caller)
3072 if (cachep->flags & SLAB_POISON) {
3073 #ifdef CONFIG_DEBUG_PAGEALLOC
3074 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3075 kernel_map_pages(virt_to_page(objp),
3076 cachep->buffer_size / PAGE_SIZE, 1);
3078 check_poison_obj(cachep, objp);
3080 check_poison_obj(cachep, objp);
3082 poison_obj(cachep, objp, POISON_INUSE);
3084 if (cachep->flags & SLAB_STORE_USER)
3085 *dbg_userword(cachep, objp) = caller;
3087 if (cachep->flags & SLAB_RED_ZONE) {
3088 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3089 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3090 slab_error(cachep, "double free, or memory outside"
3091 " object was overwritten");
3093 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3094 objp, *dbg_redzone1(cachep, objp),
3095 *dbg_redzone2(cachep, objp));
3097 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3098 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3100 #ifdef CONFIG_DEBUG_SLAB_LEAK
3105 slabp = page_get_slab(virt_to_head_page(objp));
3106 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3107 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3110 objp += obj_offset(cachep);
3111 if (cachep->ctor && cachep->flags & SLAB_POISON) {
3112 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
3114 if (!(flags & __GFP_WAIT))
3115 ctor_flags |= SLAB_CTOR_ATOMIC;
3117 cachep->ctor(objp, cachep, ctor_flags);
3119 #if ARCH_SLAB_MINALIGN
3120 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3121 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3122 objp, ARCH_SLAB_MINALIGN);
3128 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3131 #ifdef CONFIG_FAILSLAB
3133 static struct failslab_attr {
3135 struct fault_attr attr;
3137 u32 ignore_gfp_wait;
3138 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3139 struct dentry *ignore_gfp_wait_file;
3143 .attr = FAULT_ATTR_INITIALIZER,
3144 .ignore_gfp_wait = 1,
3147 static int __init setup_failslab(char *str)
3149 return setup_fault_attr(&failslab.attr, str);
3151 __setup("failslab=", setup_failslab);
3153 static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3155 if (cachep == &cache_cache)
3157 if (flags & __GFP_NOFAIL)
3159 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3162 return should_fail(&failslab.attr, obj_size(cachep));
3165 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3167 static int __init failslab_debugfs(void)
3169 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3173 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3176 dir = failslab.attr.dentries.dir;
3178 failslab.ignore_gfp_wait_file =
3179 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3180 &failslab.ignore_gfp_wait);
3182 if (!failslab.ignore_gfp_wait_file) {
3184 debugfs_remove(failslab.ignore_gfp_wait_file);
3185 cleanup_fault_attr_dentries(&failslab.attr);
3191 late_initcall(failslab_debugfs);
3193 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3195 #else /* CONFIG_FAILSLAB */
3197 static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3202 #endif /* CONFIG_FAILSLAB */
3204 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3207 struct array_cache *ac;
3211 if (should_failslab(cachep, flags))
3214 ac = cpu_cache_get(cachep);
3215 if (likely(ac->avail)) {
3216 STATS_INC_ALLOCHIT(cachep);
3218 objp = ac->entry[--ac->avail];
3220 STATS_INC_ALLOCMISS(cachep);
3221 objp = cache_alloc_refill(cachep, flags);
3228 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3230 * If we are in_interrupt, then process context, including cpusets and
3231 * mempolicy, may not apply and should not be used for allocation policy.
3233 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3235 int nid_alloc, nid_here;
3237 if (in_interrupt() || (flags & __GFP_THISNODE))
3239 nid_alloc = nid_here = numa_node_id();
3240 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3241 nid_alloc = cpuset_mem_spread_node();
3242 else if (current->mempolicy)
3243 nid_alloc = slab_node(current->mempolicy);
3244 if (nid_alloc != nid_here)
3245 return ____cache_alloc_node(cachep, flags, nid_alloc);
3250 * Fallback function if there was no memory available and no objects on a
3251 * certain node and fall back is permitted. First we scan all the
3252 * available nodelists for available objects. If that fails then we
3253 * perform an allocation without specifying a node. This allows the page
3254 * allocator to do its reclaim / fallback magic. We then insert the
3255 * slab into the proper nodelist and then allocate from it.
3257 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3259 struct zonelist *zonelist;
3265 if (flags & __GFP_THISNODE)
3268 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3269 ->node_zonelists[gfp_zone(flags)];
3270 local_flags = (flags & GFP_LEVEL_MASK);
3274 * Look through allowed nodes for objects available
3275 * from existing per node queues.
3277 for (z = zonelist->zones; *z && !obj; z++) {
3278 nid = zone_to_nid(*z);
3280 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3281 cache->nodelists[nid] &&
3282 cache->nodelists[nid]->free_objects)
3283 obj = ____cache_alloc_node(cache,
3284 flags | GFP_THISNODE, nid);
3287 if (!obj && !(flags & __GFP_NO_GROW)) {
3289 * This allocation will be performed within the constraints
3290 * of the current cpuset / memory policy requirements.
3291 * We may trigger various forms of reclaim on the allowed
3292 * set and go into memory reserves if necessary.
3294 if (local_flags & __GFP_WAIT)
3296 kmem_flagcheck(cache, flags);
3297 obj = kmem_getpages(cache, flags, -1);
3298 if (local_flags & __GFP_WAIT)
3299 local_irq_disable();
3302 * Insert into the appropriate per node queues
3304 nid = page_to_nid(virt_to_page(obj));
3305 if (cache_grow(cache, flags, nid, obj)) {
3306 obj = ____cache_alloc_node(cache,
3307 flags | GFP_THISNODE, nid);
3310 * Another processor may allocate the
3311 * objects in the slab since we are
3312 * not holding any locks.
3316 /* cache_grow already freed obj */
3325 * A interface to enable slab creation on nodeid
3327 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3330 struct list_head *entry;
3332 struct kmem_list3 *l3;
3336 l3 = cachep->nodelists[nodeid];
3341 spin_lock(&l3->list_lock);
3342 entry = l3->slabs_partial.next;
3343 if (entry == &l3->slabs_partial) {
3344 l3->free_touched = 1;
3345 entry = l3->slabs_free.next;
3346 if (entry == &l3->slabs_free)
3350 slabp = list_entry(entry, struct slab, list);
3351 check_spinlock_acquired_node(cachep, nodeid);
3352 check_slabp(cachep, slabp);
3354 STATS_INC_NODEALLOCS(cachep);
3355 STATS_INC_ACTIVE(cachep);
3356 STATS_SET_HIGH(cachep);
3358 BUG_ON(slabp->inuse == cachep->num);
3360 obj = slab_get_obj(cachep, slabp, nodeid);
3361 check_slabp(cachep, slabp);
3363 /* move slabp to correct slabp list: */
3364 list_del(&slabp->list);
3366 if (slabp->free == BUFCTL_END)
3367 list_add(&slabp->list, &l3->slabs_full);
3369 list_add(&slabp->list, &l3->slabs_partial);
3371 spin_unlock(&l3->list_lock);
3375 spin_unlock(&l3->list_lock);
3376 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3380 return fallback_alloc(cachep, flags);
3387 * kmem_cache_alloc_node - Allocate an object on the specified node
3388 * @cachep: The cache to allocate from.
3389 * @flags: See kmalloc().
3390 * @nodeid: node number of the target node.
3391 * @caller: return address of caller, used for debug information
3393 * Identical to kmem_cache_alloc but it will allocate memory on the given
3394 * node, which can improve the performance for cpu bound structures.
3396 * Fallback to other node is possible if __GFP_THISNODE is not set.
3398 static __always_inline void *
3399 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3402 unsigned long save_flags;
3405 cache_alloc_debugcheck_before(cachep, flags);
3406 local_irq_save(save_flags);
3408 if (unlikely(nodeid == -1))
3409 nodeid = numa_node_id();
3411 if (unlikely(!cachep->nodelists[nodeid])) {
3412 /* Node not bootstrapped yet */
3413 ptr = fallback_alloc(cachep, flags);
3417 if (nodeid == numa_node_id()) {
3419 * Use the locally cached objects if possible.
3420 * However ____cache_alloc does not allow fallback
3421 * to other nodes. It may fail while we still have
3422 * objects on other nodes available.
3424 ptr = ____cache_alloc(cachep, flags);
3428 /* ___cache_alloc_node can fall back to other nodes */
3429 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3431 local_irq_restore(save_flags);
3432 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3437 static __always_inline void *
3438 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3442 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3443 objp = alternate_node_alloc(cache, flags);
3447 objp = ____cache_alloc(cache, flags);
3450 * We may just have run out of memory on the local node.
3451 * ____cache_alloc_node() knows how to locate memory on other nodes
3454 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3461 static __always_inline void *
3462 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3464 return ____cache_alloc(cachep, flags);
3467 #endif /* CONFIG_NUMA */
3469 static __always_inline void *
3470 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3472 unsigned long save_flags;
3475 cache_alloc_debugcheck_before(cachep, flags);
3476 local_irq_save(save_flags);
3477 objp = __do_cache_alloc(cachep, flags);
3478 local_irq_restore(save_flags);
3479 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3486 * Caller needs to acquire correct kmem_list's list_lock
3488 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3492 struct kmem_list3 *l3;
3494 for (i = 0; i < nr_objects; i++) {
3495 void *objp = objpp[i];
3498 slabp = virt_to_slab(objp);
3499 l3 = cachep->nodelists[node];
3500 list_del(&slabp->list);
3501 check_spinlock_acquired_node(cachep, node);
3502 check_slabp(cachep, slabp);
3503 slab_put_obj(cachep, slabp, objp, node);
3504 STATS_DEC_ACTIVE(cachep);
3506 check_slabp(cachep, slabp);
3508 /* fixup slab chains */
3509 if (slabp->inuse == 0) {
3510 if (l3->free_objects > l3->free_limit) {
3511 l3->free_objects -= cachep->num;
3512 /* No need to drop any previously held
3513 * lock here, even if we have a off-slab slab
3514 * descriptor it is guaranteed to come from
3515 * a different cache, refer to comments before
3518 slab_destroy(cachep, slabp);
3520 list_add(&slabp->list, &l3->slabs_free);
3523 /* Unconditionally move a slab to the end of the
3524 * partial list on free - maximum time for the
3525 * other objects to be freed, too.
3527 list_add_tail(&slabp->list, &l3->slabs_partial);
3532 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3535 struct kmem_list3 *l3;
3536 int node = numa_node_id();
3538 batchcount = ac->batchcount;
3540 BUG_ON(!batchcount || batchcount > ac->avail);
3543 l3 = cachep->nodelists[node];
3544 spin_lock(&l3->list_lock);
3546 struct array_cache *shared_array = l3->shared;
3547 int max = shared_array->limit - shared_array->avail;
3549 if (batchcount > max)
3551 memcpy(&(shared_array->entry[shared_array->avail]),
3552 ac->entry, sizeof(void *) * batchcount);
3553 shared_array->avail += batchcount;
3558 free_block(cachep, ac->entry, batchcount, node);
3563 struct list_head *p;
3565 p = l3->slabs_free.next;
3566 while (p != &(l3->slabs_free)) {
3569 slabp = list_entry(p, struct slab, list);
3570 BUG_ON(slabp->inuse);
3575 STATS_SET_FREEABLE(cachep, i);
3578 spin_unlock(&l3->list_lock);
3579 ac->avail -= batchcount;
3580 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3584 * Release an obj back to its cache. If the obj has a constructed state, it must
3585 * be in this state _before_ it is released. Called with disabled ints.
3587 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3589 struct array_cache *ac = cpu_cache_get(cachep);
3592 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3594 if (use_alien_caches && cache_free_alien(cachep, objp))
3597 if (likely(ac->avail < ac->limit)) {
3598 STATS_INC_FREEHIT(cachep);
3599 ac->entry[ac->avail++] = objp;
3602 STATS_INC_FREEMISS(cachep);
3603 cache_flusharray(cachep, ac);
3604 ac->entry[ac->avail++] = objp;
3609 * kmem_cache_alloc - Allocate an object
3610 * @cachep: The cache to allocate from.
3611 * @flags: See kmalloc().
3613 * Allocate an object from this cache. The flags are only relevant
3614 * if the cache has no available objects.
3616 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3618 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3620 EXPORT_SYMBOL(kmem_cache_alloc);
3623 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3624 * @cache: The cache to allocate from.
3625 * @flags: See kmalloc().
3627 * Allocate an object from this cache and set the allocated memory to zero.
3628 * The flags are only relevant if the cache has no available objects.
3630 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3632 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3634 memset(ret, 0, obj_size(cache));
3637 EXPORT_SYMBOL(kmem_cache_zalloc);
3640 * kmem_ptr_validate - check if an untrusted pointer might
3642 * @cachep: the cache we're checking against
3643 * @ptr: pointer to validate
3645 * This verifies that the untrusted pointer looks sane:
3646 * it is _not_ a guarantee that the pointer is actually
3647 * part of the slab cache in question, but it at least
3648 * validates that the pointer can be dereferenced and
3649 * looks half-way sane.
3651 * Currently only used for dentry validation.
3653 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3655 unsigned long addr = (unsigned long)ptr;
3656 unsigned long min_addr = PAGE_OFFSET;
3657 unsigned long align_mask = BYTES_PER_WORD - 1;
3658 unsigned long size = cachep->buffer_size;
3661 if (unlikely(addr < min_addr))
3663 if (unlikely(addr > (unsigned long)high_memory - size))
3665 if (unlikely(addr & align_mask))
3667 if (unlikely(!kern_addr_valid(addr)))
3669 if (unlikely(!kern_addr_valid(addr + size - 1)))
3671 page = virt_to_page(ptr);
3672 if (unlikely(!PageSlab(page)))
3674 if (unlikely(page_get_cache(page) != cachep))
3682 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3684 return __cache_alloc_node(cachep, flags, nodeid,
3685 __builtin_return_address(0));
3687 EXPORT_SYMBOL(kmem_cache_alloc_node);
3689 static __always_inline void *
3690 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3692 struct kmem_cache *cachep;
3694 cachep = kmem_find_general_cachep(size, flags);
3695 if (unlikely(cachep == NULL))
3697 return kmem_cache_alloc_node(cachep, flags, node);
3700 #ifdef CONFIG_DEBUG_SLAB
3701 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3703 return __do_kmalloc_node(size, flags, node,
3704 __builtin_return_address(0));
3706 EXPORT_SYMBOL(__kmalloc_node);
3708 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3709 int node, void *caller)
3711 return __do_kmalloc_node(size, flags, node, caller);
3713 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3715 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3717 return __do_kmalloc_node(size, flags, node, NULL);
3719 EXPORT_SYMBOL(__kmalloc_node);
3720 #endif /* CONFIG_DEBUG_SLAB */
3721 #endif /* CONFIG_NUMA */
3724 * __do_kmalloc - allocate memory
3725 * @size: how many bytes of memory are required.
3726 * @flags: the type of memory to allocate (see kmalloc).
3727 * @caller: function caller for debug tracking of the caller
3729 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3732 struct kmem_cache *cachep;
3734 /* If you want to save a few bytes .text space: replace
3736 * Then kmalloc uses the uninlined functions instead of the inline
3739 cachep = __find_general_cachep(size, flags);
3740 if (unlikely(cachep == NULL))
3742 return __cache_alloc(cachep, flags, caller);
3746 #ifdef CONFIG_DEBUG_SLAB
3747 void *__kmalloc(size_t size, gfp_t flags)
3749 return __do_kmalloc(size, flags, __builtin_return_address(0));
3751 EXPORT_SYMBOL(__kmalloc);
3753 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3755 return __do_kmalloc(size, flags, caller);
3757 EXPORT_SYMBOL(__kmalloc_track_caller);
3760 void *__kmalloc(size_t size, gfp_t flags)
3762 return __do_kmalloc(size, flags, NULL);
3764 EXPORT_SYMBOL(__kmalloc);
3768 * krealloc - reallocate memory. The contents will remain unchanged.
3770 * @p: object to reallocate memory for.
3771 * @new_size: how many bytes of memory are required.
3772 * @flags: the type of memory to allocate.
3774 * The contents of the object pointed to are preserved up to the
3775 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3776 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3777 * %NULL pointer, the object pointed to is freed.
3779 void *krealloc(const void *p, size_t new_size, gfp_t flags)
3781 struct kmem_cache *cache, *new_cache;
3785 return kmalloc_track_caller(new_size, flags);
3787 if (unlikely(!new_size)) {
3792 cache = virt_to_cache(p);
3793 new_cache = __find_general_cachep(new_size, flags);
3796 * If new size fits in the current cache, bail out.
3798 if (likely(cache == new_cache))
3802 * We are on the slow-path here so do not use __cache_alloc
3803 * because it bloats kernel text.
3805 ret = kmalloc_track_caller(new_size, flags);
3807 memcpy(ret, p, min(new_size, ksize(p)));
3812 EXPORT_SYMBOL(krealloc);
3815 * kmem_cache_free - Deallocate an object
3816 * @cachep: The cache the allocation was from.
3817 * @objp: The previously allocated object.
3819 * Free an object which was previously allocated from this
3822 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3824 unsigned long flags;
3826 BUG_ON(virt_to_cache(objp) != cachep);
3828 local_irq_save(flags);
3829 debug_check_no_locks_freed(objp, obj_size(cachep));
3830 __cache_free(cachep, objp);
3831 local_irq_restore(flags);
3833 EXPORT_SYMBOL(kmem_cache_free);
3836 * kfree - free previously allocated memory
3837 * @objp: pointer returned by kmalloc.
3839 * If @objp is NULL, no operation is performed.
3841 * Don't free memory not originally allocated by kmalloc()
3842 * or you will run into trouble.
3844 void kfree(const void *objp)
3846 struct kmem_cache *c;
3847 unsigned long flags;
3849 if (unlikely(!objp))
3851 local_irq_save(flags);
3852 kfree_debugcheck(objp);
3853 c = virt_to_cache(objp);
3854 debug_check_no_locks_freed(objp, obj_size(c));
3855 __cache_free(c, (void *)objp);
3856 local_irq_restore(flags);
3858 EXPORT_SYMBOL(kfree);
3860 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3862 return obj_size(cachep);
3864 EXPORT_SYMBOL(kmem_cache_size);
3866 const char *kmem_cache_name(struct kmem_cache *cachep)
3868 return cachep->name;
3870 EXPORT_SYMBOL_GPL(kmem_cache_name);
3873 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3875 static int alloc_kmemlist(struct kmem_cache *cachep)
3878 struct kmem_list3 *l3;
3879 struct array_cache *new_shared;
3880 struct array_cache **new_alien = NULL;
3882 for_each_online_node(node) {
3884 if (use_alien_caches) {
3885 new_alien = alloc_alien_cache(node, cachep->limit);
3891 if (cachep->shared) {
3892 new_shared = alloc_arraycache(node,
3893 cachep->shared*cachep->batchcount,
3896 free_alien_cache(new_alien);
3901 l3 = cachep->nodelists[node];
3903 struct array_cache *shared = l3->shared;
3905 spin_lock_irq(&l3->list_lock);
3908 free_block(cachep, shared->entry,
3909 shared->avail, node);
3911 l3->shared = new_shared;
3913 l3->alien = new_alien;
3916 l3->free_limit = (1 + nr_cpus_node(node)) *
3917 cachep->batchcount + cachep->num;
3918 spin_unlock_irq(&l3->list_lock);
3920 free_alien_cache(new_alien);
3923 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3925 free_alien_cache(new_alien);
3930 kmem_list3_init(l3);
3931 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3932 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3933 l3->shared = new_shared;
3934 l3->alien = new_alien;
3935 l3->free_limit = (1 + nr_cpus_node(node)) *
3936 cachep->batchcount + cachep->num;
3937 cachep->nodelists[node] = l3;
3942 if (!cachep->next.next) {
3943 /* Cache is not active yet. Roll back what we did */
3946 if (cachep->nodelists[node]) {
3947 l3 = cachep->nodelists[node];
3950 free_alien_cache(l3->alien);
3952 cachep->nodelists[node] = NULL;
3960 struct ccupdate_struct {
3961 struct kmem_cache *cachep;
3962 struct array_cache *new[NR_CPUS];
3965 static void do_ccupdate_local(void *info)
3967 struct ccupdate_struct *new = info;
3968 struct array_cache *old;
3971 old = cpu_cache_get(new->cachep);
3973 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3974 new->new[smp_processor_id()] = old;
3977 /* Always called with the cache_chain_mutex held */
3978 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3979 int batchcount, int shared)
3981 struct ccupdate_struct *new;
3984 new = kzalloc(sizeof(*new), GFP_KERNEL);
3988 for_each_online_cpu(i) {
3989 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3992 for (i--; i >= 0; i--)
3998 new->cachep = cachep;
4000 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
4003 cachep->batchcount = batchcount;
4004 cachep->limit = limit;
4005 cachep->shared = shared;
4007 for_each_online_cpu(i) {
4008 struct array_cache *ccold = new->new[i];
4011 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
4012 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
4013 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
4017 return alloc_kmemlist(cachep);
4020 /* Called with cache_chain_mutex held always */
4021 static int enable_cpucache(struct kmem_cache *cachep)
4027 * The head array serves three purposes:
4028 * - create a LIFO ordering, i.e. return objects that are cache-warm
4029 * - reduce the number of spinlock operations.
4030 * - reduce the number of linked list operations on the slab and
4031 * bufctl chains: array operations are cheaper.
4032 * The numbers are guessed, we should auto-tune as described by
4035 if (cachep->buffer_size > 131072)
4037 else if (cachep->buffer_size > PAGE_SIZE)
4039 else if (cachep->buffer_size > 1024)
4041 else if (cachep->buffer_size > 256)
4047 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4048 * allocation behaviour: Most allocs on one cpu, most free operations
4049 * on another cpu. For these cases, an efficient object passing between
4050 * cpus is necessary. This is provided by a shared array. The array
4051 * replaces Bonwick's magazine layer.
4052 * On uniprocessor, it's functionally equivalent (but less efficient)
4053 * to a larger limit. Thus disabled by default.
4056 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4061 * With debugging enabled, large batchcount lead to excessively long
4062 * periods with disabled local interrupts. Limit the batchcount
4067 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
4069 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4070 cachep->name, -err);
4075 * Drain an array if it contains any elements taking the l3 lock only if
4076 * necessary. Note that the l3 listlock also protects the array_cache
4077 * if drain_array() is used on the shared array.
4079 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4080 struct array_cache *ac, int force, int node)
4084 if (!ac || !ac->avail)
4086 if (ac->touched && !force) {
4089 spin_lock_irq(&l3->list_lock);
4091 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4092 if (tofree > ac->avail)
4093 tofree = (ac->avail + 1) / 2;
4094 free_block(cachep, ac->entry, tofree, node);
4095 ac->avail -= tofree;
4096 memmove(ac->entry, &(ac->entry[tofree]),
4097 sizeof(void *) * ac->avail);
4099 spin_unlock_irq(&l3->list_lock);
4104 * cache_reap - Reclaim memory from caches.
4105 * @w: work descriptor
4107 * Called from workqueue/eventd every few seconds.
4109 * - clear the per-cpu caches for this CPU.
4110 * - return freeable pages to the main free memory pool.
4112 * If we cannot acquire the cache chain mutex then just give up - we'll try
4113 * again on the next iteration.
4115 static void cache_reap(struct work_struct *w)
4117 struct kmem_cache *searchp;
4118 struct kmem_list3 *l3;
4119 int node = numa_node_id();
4120 struct delayed_work *work =
4121 container_of(w, struct delayed_work, work);
4123 if (!mutex_trylock(&cache_chain_mutex))
4124 /* Give up. Setup the next iteration. */
4127 list_for_each_entry(searchp, &cache_chain, next) {
4131 * We only take the l3 lock if absolutely necessary and we
4132 * have established with reasonable certainty that
4133 * we can do some work if the lock was obtained.
4135 l3 = searchp->nodelists[node];
4137 reap_alien(searchp, l3);
4139 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4142 * These are racy checks but it does not matter
4143 * if we skip one check or scan twice.
4145 if (time_after(l3->next_reap, jiffies))
4148 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4150 drain_array(searchp, l3, l3->shared, 0, node);
4152 if (l3->free_touched)
4153 l3->free_touched = 0;
4157 freed = drain_freelist(searchp, l3, (l3->free_limit +
4158 5 * searchp->num - 1) / (5 * searchp->num));
4159 STATS_ADD_REAPED(searchp, freed);
4165 mutex_unlock(&cache_chain_mutex);
4167 refresh_cpu_vm_stats(smp_processor_id());
4169 /* Set up the next iteration */
4170 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4173 #ifdef CONFIG_PROC_FS
4175 static void print_slabinfo_header(struct seq_file *m)
4178 * Output format version, so at least we can change it
4179 * without _too_ many complaints.
4182 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4184 seq_puts(m, "slabinfo - version: 2.1\n");
4186 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4187 "<objperslab> <pagesperslab>");
4188 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4189 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4191 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4192 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4193 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4198 static void *s_start(struct seq_file *m, loff_t *pos)
4201 struct list_head *p;
4203 mutex_lock(&cache_chain_mutex);
4205 print_slabinfo_header(m);
4206 p = cache_chain.next;
4209 if (p == &cache_chain)
4212 return list_entry(p, struct kmem_cache, next);
4215 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4217 struct kmem_cache *cachep = p;
4219 return cachep->next.next == &cache_chain ?
4220 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
4223 static void s_stop(struct seq_file *m, void *p)
4225 mutex_unlock(&cache_chain_mutex);
4228 static int s_show(struct seq_file *m, void *p)
4230 struct kmem_cache *cachep = p;
4232 unsigned long active_objs;
4233 unsigned long num_objs;
4234 unsigned long active_slabs = 0;
4235 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4239 struct kmem_list3 *l3;
4243 for_each_online_node(node) {
4244 l3 = cachep->nodelists[node];
4249 spin_lock_irq(&l3->list_lock);
4251 list_for_each_entry(slabp, &l3->slabs_full, list) {
4252 if (slabp->inuse != cachep->num && !error)
4253 error = "slabs_full accounting error";
4254 active_objs += cachep->num;
4257 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4258 if (slabp->inuse == cachep->num && !error)
4259 error = "slabs_partial inuse accounting error";
4260 if (!slabp->inuse && !error)
4261 error = "slabs_partial/inuse accounting error";
4262 active_objs += slabp->inuse;
4265 list_for_each_entry(slabp, &l3->slabs_free, list) {
4266 if (slabp->inuse && !error)
4267 error = "slabs_free/inuse accounting error";
4270 free_objects += l3->free_objects;
4272 shared_avail += l3->shared->avail;
4274 spin_unlock_irq(&l3->list_lock);
4276 num_slabs += active_slabs;
4277 num_objs = num_slabs * cachep->num;
4278 if (num_objs - active_objs != free_objects && !error)
4279 error = "free_objects accounting error";
4281 name = cachep->name;
4283 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4285 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4286 name, active_objs, num_objs, cachep->buffer_size,
4287 cachep->num, (1 << cachep->gfporder));
4288 seq_printf(m, " : tunables %4u %4u %4u",
4289 cachep->limit, cachep->batchcount, cachep->shared);
4290 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4291 active_slabs, num_slabs, shared_avail);
4294 unsigned long high = cachep->high_mark;
4295 unsigned long allocs = cachep->num_allocations;
4296 unsigned long grown = cachep->grown;
4297 unsigned long reaped = cachep->reaped;
4298 unsigned long errors = cachep->errors;
4299 unsigned long max_freeable = cachep->max_freeable;
4300 unsigned long node_allocs = cachep->node_allocs;
4301 unsigned long node_frees = cachep->node_frees;
4302 unsigned long overflows = cachep->node_overflow;
4304 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4305 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4306 reaped, errors, max_freeable, node_allocs,
4307 node_frees, overflows);
4311 unsigned long allochit = atomic_read(&cachep->allochit);
4312 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4313 unsigned long freehit = atomic_read(&cachep->freehit);
4314 unsigned long freemiss = atomic_read(&cachep->freemiss);
4316 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4317 allochit, allocmiss, freehit, freemiss);
4325 * slabinfo_op - iterator that generates /proc/slabinfo
4334 * num-pages-per-slab
4335 * + further values on SMP and with statistics enabled
4338 const struct seq_operations slabinfo_op = {
4345 #define MAX_SLABINFO_WRITE 128
4347 * slabinfo_write - Tuning for the slab allocator
4349 * @buffer: user buffer
4350 * @count: data length
4353 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4354 size_t count, loff_t *ppos)
4356 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4357 int limit, batchcount, shared, res;
4358 struct kmem_cache *cachep;
4360 if (count > MAX_SLABINFO_WRITE)
4362 if (copy_from_user(&kbuf, buffer, count))
4364 kbuf[MAX_SLABINFO_WRITE] = '\0';
4366 tmp = strchr(kbuf, ' ');
4371 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4374 /* Find the cache in the chain of caches. */
4375 mutex_lock(&cache_chain_mutex);
4377 list_for_each_entry(cachep, &cache_chain, next) {
4378 if (!strcmp(cachep->name, kbuf)) {
4379 if (limit < 1 || batchcount < 1 ||
4380 batchcount > limit || shared < 0) {
4383 res = do_tune_cpucache(cachep, limit,
4384 batchcount, shared);
4389 mutex_unlock(&cache_chain_mutex);
4395 #ifdef CONFIG_DEBUG_SLAB_LEAK
4397 static void *leaks_start(struct seq_file *m, loff_t *pos)
4400 struct list_head *p;
4402 mutex_lock(&cache_chain_mutex);
4403 p = cache_chain.next;
4406 if (p == &cache_chain)
4409 return list_entry(p, struct kmem_cache, next);
4412 static inline int add_caller(unsigned long *n, unsigned long v)
4422 unsigned long *q = p + 2 * i;
4436 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4442 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4448 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4449 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4451 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4456 static void show_symbol(struct seq_file *m, unsigned long address)
4458 #ifdef CONFIG_KALLSYMS
4461 unsigned long offset, size;
4462 char namebuf[KSYM_NAME_LEN+1];
4464 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4467 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4469 seq_printf(m, " [%s]", modname);
4473 seq_printf(m, "%p", (void *)address);
4476 static int leaks_show(struct seq_file *m, void *p)
4478 struct kmem_cache *cachep = p;
4480 struct kmem_list3 *l3;
4482 unsigned long *n = m->private;
4486 if (!(cachep->flags & SLAB_STORE_USER))
4488 if (!(cachep->flags & SLAB_RED_ZONE))
4491 /* OK, we can do it */
4495 for_each_online_node(node) {
4496 l3 = cachep->nodelists[node];
4501 spin_lock_irq(&l3->list_lock);
4503 list_for_each_entry(slabp, &l3->slabs_full, list)
4504 handle_slab(n, cachep, slabp);
4505 list_for_each_entry(slabp, &l3->slabs_partial, list)
4506 handle_slab(n, cachep, slabp);
4507 spin_unlock_irq(&l3->list_lock);
4509 name = cachep->name;
4511 /* Increase the buffer size */
4512 mutex_unlock(&cache_chain_mutex);
4513 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4515 /* Too bad, we are really out */
4517 mutex_lock(&cache_chain_mutex);
4520 *(unsigned long *)m->private = n[0] * 2;
4522 mutex_lock(&cache_chain_mutex);
4523 /* Now make sure this entry will be retried */
4527 for (i = 0; i < n[1]; i++) {
4528 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4529 show_symbol(m, n[2*i+2]);
4536 const struct seq_operations slabstats_op = {
4537 .start = leaks_start,
4546 * ksize - get the actual amount of memory allocated for a given object
4547 * @objp: Pointer to the object
4549 * kmalloc may internally round up allocations and return more memory
4550 * than requested. ksize() can be used to determine the actual amount of
4551 * memory allocated. The caller may use this additional memory, even though
4552 * a smaller amount of memory was initially specified with the kmalloc call.
4553 * The caller must guarantee that objp points to a valid object previously
4554 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4555 * must not be freed during the duration of the call.
4557 size_t ksize(const void *objp)
4559 if (unlikely(objp == NULL))
4562 return obj_size(virt_to_cache(objp));