2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
42 #include <linux/usb.h>
49 /*-------------------------------------------------------------------------*/
52 * USB Host Controller Driver framework
54 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55 * HCD-specific behaviors/bugs.
57 * This does error checks, tracks devices and urbs, and delegates to a
58 * "hc_driver" only for code (and data) that really needs to know about
59 * hardware differences. That includes root hub registers, i/o queues,
60 * and so on ... but as little else as possible.
62 * Shared code includes most of the "root hub" code (these are emulated,
63 * though each HC's hardware works differently) and PCI glue, plus request
64 * tracking overhead. The HCD code should only block on spinlocks or on
65 * hardware handshaking; blocking on software events (such as other kernel
66 * threads releasing resources, or completing actions) is all generic.
68 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70 * only by the hub driver ... and that neither should be seen or used by
71 * usb client device drivers.
73 * Contributors of ideas or unattributed patches include: David Brownell,
74 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
77 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
78 * associated cleanup. "usb_hcd" still != "usb_bus".
79 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
82 /*-------------------------------------------------------------------------*/
84 /* host controllers we manage */
85 LIST_HEAD (usb_bus_list);
86 EXPORT_SYMBOL_GPL (usb_bus_list);
88 /* used when allocating bus numbers */
91 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
93 static struct usb_busmap busmap;
95 /* used when updating list of hcds */
96 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
97 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
99 /* used for controlling access to virtual root hubs */
100 static DEFINE_SPINLOCK(hcd_root_hub_lock);
102 /* used when updating an endpoint's URB list */
103 static DEFINE_SPINLOCK(hcd_urb_list_lock);
105 /* wait queue for synchronous unlinks */
106 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
108 static inline int is_root_hub(struct usb_device *udev)
110 return (udev->parent == NULL);
113 /*-------------------------------------------------------------------------*/
116 * Sharable chunks of root hub code.
119 /*-------------------------------------------------------------------------*/
121 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
122 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
124 /* usb 2.0 root hub device descriptor */
125 static const u8 usb2_rh_dev_descriptor [18] = {
126 0x12, /* __u8 bLength; */
127 0x01, /* __u8 bDescriptorType; Device */
128 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
130 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
131 0x00, /* __u8 bDeviceSubClass; */
132 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
133 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
135 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
136 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
137 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
139 0x03, /* __u8 iManufacturer; */
140 0x02, /* __u8 iProduct; */
141 0x01, /* __u8 iSerialNumber; */
142 0x01 /* __u8 bNumConfigurations; */
145 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
147 /* usb 1.1 root hub device descriptor */
148 static const u8 usb11_rh_dev_descriptor [18] = {
149 0x12, /* __u8 bLength; */
150 0x01, /* __u8 bDescriptorType; Device */
151 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
153 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
154 0x00, /* __u8 bDeviceSubClass; */
155 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
156 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
158 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
159 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
160 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
162 0x03, /* __u8 iManufacturer; */
163 0x02, /* __u8 iProduct; */
164 0x01, /* __u8 iSerialNumber; */
165 0x01 /* __u8 bNumConfigurations; */
169 /*-------------------------------------------------------------------------*/
171 /* Configuration descriptors for our root hubs */
173 static const u8 fs_rh_config_descriptor [] = {
175 /* one configuration */
176 0x09, /* __u8 bLength; */
177 0x02, /* __u8 bDescriptorType; Configuration */
178 0x19, 0x00, /* __le16 wTotalLength; */
179 0x01, /* __u8 bNumInterfaces; (1) */
180 0x01, /* __u8 bConfigurationValue; */
181 0x00, /* __u8 iConfiguration; */
182 0xc0, /* __u8 bmAttributes;
187 0x00, /* __u8 MaxPower; */
190 * USB 2.0, single TT organization (mandatory):
191 * one interface, protocol 0
193 * USB 2.0, multiple TT organization (optional):
194 * two interfaces, protocols 1 (like single TT)
195 * and 2 (multiple TT mode) ... config is
201 0x09, /* __u8 if_bLength; */
202 0x04, /* __u8 if_bDescriptorType; Interface */
203 0x00, /* __u8 if_bInterfaceNumber; */
204 0x00, /* __u8 if_bAlternateSetting; */
205 0x01, /* __u8 if_bNumEndpoints; */
206 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
207 0x00, /* __u8 if_bInterfaceSubClass; */
208 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
209 0x00, /* __u8 if_iInterface; */
211 /* one endpoint (status change endpoint) */
212 0x07, /* __u8 ep_bLength; */
213 0x05, /* __u8 ep_bDescriptorType; Endpoint */
214 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
215 0x03, /* __u8 ep_bmAttributes; Interrupt */
216 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
217 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
220 static const u8 hs_rh_config_descriptor [] = {
222 /* one configuration */
223 0x09, /* __u8 bLength; */
224 0x02, /* __u8 bDescriptorType; Configuration */
225 0x19, 0x00, /* __le16 wTotalLength; */
226 0x01, /* __u8 bNumInterfaces; (1) */
227 0x01, /* __u8 bConfigurationValue; */
228 0x00, /* __u8 iConfiguration; */
229 0xc0, /* __u8 bmAttributes;
234 0x00, /* __u8 MaxPower; */
237 * USB 2.0, single TT organization (mandatory):
238 * one interface, protocol 0
240 * USB 2.0, multiple TT organization (optional):
241 * two interfaces, protocols 1 (like single TT)
242 * and 2 (multiple TT mode) ... config is
248 0x09, /* __u8 if_bLength; */
249 0x04, /* __u8 if_bDescriptorType; Interface */
250 0x00, /* __u8 if_bInterfaceNumber; */
251 0x00, /* __u8 if_bAlternateSetting; */
252 0x01, /* __u8 if_bNumEndpoints; */
253 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
254 0x00, /* __u8 if_bInterfaceSubClass; */
255 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
256 0x00, /* __u8 if_iInterface; */
258 /* one endpoint (status change endpoint) */
259 0x07, /* __u8 ep_bLength; */
260 0x05, /* __u8 ep_bDescriptorType; Endpoint */
261 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
262 0x03, /* __u8 ep_bmAttributes; Interrupt */
263 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
264 * see hub.c:hub_configure() for details. */
265 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
266 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
269 /*-------------------------------------------------------------------------*/
272 * helper routine for returning string descriptors in UTF-16LE
273 * input can actually be ISO-8859-1; ASCII is its 7-bit subset
275 static int ascii2utf (char *s, u8 *utf, int utfmax)
279 for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
291 * rh_string - provides manufacturer, product and serial strings for root hub
292 * @id: the string ID number (1: serial number, 2: product, 3: vendor)
293 * @hcd: the host controller for this root hub
294 * @data: return packet in UTF-16 LE
295 * @len: length of the return packet
297 * Produces either a manufacturer, product or serial number string for the
298 * virtual root hub device.
300 static int rh_string (
310 buf[0] = 4; buf[1] = 3; /* 4 bytes string data */
311 buf[2] = 0x09; buf[3] = 0x04; /* MSFT-speak for "en-us" */
313 memcpy (data, buf, len);
317 } else if (id == 1) {
318 strlcpy (buf, hcd->self.bus_name, sizeof buf);
320 // product description
321 } else if (id == 2) {
322 strlcpy (buf, hcd->product_desc, sizeof buf);
324 // id 3 == vendor description
325 } else if (id == 3) {
326 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
327 init_utsname()->release, hcd->driver->description);
329 // unsupported IDs --> "protocol stall"
333 switch (len) { /* All cases fall through */
335 len = 2 + ascii2utf (buf, data + 2, len - 2);
337 data [1] = 3; /* type == string */
339 data [0] = 2 * (strlen (buf) + 1);
341 ; /* Compiler wants a statement here */
347 /* Root hub control transfers execute synchronously */
348 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
350 struct usb_ctrlrequest *cmd;
351 u16 typeReq, wValue, wIndex, wLength;
352 u8 *ubuf = urb->transfer_buffer;
353 u8 tbuf [sizeof (struct usb_hub_descriptor)]
354 __attribute__((aligned(4)));
355 const u8 *bufp = tbuf;
360 u8 patch_protocol = 0;
364 spin_lock_irq(&hcd_root_hub_lock);
365 status = usb_hcd_link_urb_to_ep(hcd, urb);
366 spin_unlock_irq(&hcd_root_hub_lock);
369 urb->hcpriv = hcd; /* Indicate it's queued */
371 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
372 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
373 wValue = le16_to_cpu (cmd->wValue);
374 wIndex = le16_to_cpu (cmd->wIndex);
375 wLength = le16_to_cpu (cmd->wLength);
377 if (wLength > urb->transfer_buffer_length)
380 urb->actual_length = 0;
383 /* DEVICE REQUESTS */
385 /* The root hub's remote wakeup enable bit is implemented using
386 * driver model wakeup flags. If this system supports wakeup
387 * through USB, userspace may change the default "allow wakeup"
388 * policy through sysfs or these calls.
390 * Most root hubs support wakeup from downstream devices, for
391 * runtime power management (disabling USB clocks and reducing
392 * VBUS power usage). However, not all of them do so; silicon,
393 * board, and BIOS bugs here are not uncommon, so these can't
394 * be treated quite like external hubs.
396 * Likewise, not all root hubs will pass wakeup events upstream,
397 * to wake up the whole system. So don't assume root hub and
398 * controller capabilities are identical.
401 case DeviceRequest | USB_REQ_GET_STATUS:
402 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
403 << USB_DEVICE_REMOTE_WAKEUP)
404 | (1 << USB_DEVICE_SELF_POWERED);
408 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
409 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
410 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
414 case DeviceOutRequest | USB_REQ_SET_FEATURE:
415 if (device_can_wakeup(&hcd->self.root_hub->dev)
416 && wValue == USB_DEVICE_REMOTE_WAKEUP)
417 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
421 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
425 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
427 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
428 switch (wValue & 0xff00) {
429 case USB_DT_DEVICE << 8:
430 if (hcd->driver->flags & HCD_USB2)
431 bufp = usb2_rh_dev_descriptor;
432 else if (hcd->driver->flags & HCD_USB11)
433 bufp = usb11_rh_dev_descriptor;
440 case USB_DT_CONFIG << 8:
441 if (hcd->driver->flags & HCD_USB2) {
442 bufp = hs_rh_config_descriptor;
443 len = sizeof hs_rh_config_descriptor;
445 bufp = fs_rh_config_descriptor;
446 len = sizeof fs_rh_config_descriptor;
448 if (device_can_wakeup(&hcd->self.root_hub->dev))
451 case USB_DT_STRING << 8:
452 n = rh_string (wValue & 0xff, hcd, ubuf, wLength);
455 urb->actual_length = n;
461 case DeviceRequest | USB_REQ_GET_INTERFACE:
465 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
467 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
468 // wValue == urb->dev->devaddr
469 dev_dbg (hcd->self.controller, "root hub device address %d\n",
473 /* INTERFACE REQUESTS (no defined feature/status flags) */
475 /* ENDPOINT REQUESTS */
477 case EndpointRequest | USB_REQ_GET_STATUS:
478 // ENDPOINT_HALT flag
483 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
484 case EndpointOutRequest | USB_REQ_SET_FEATURE:
485 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
488 /* CLASS REQUESTS (and errors) */
491 /* non-generic request */
497 case GetHubDescriptor:
498 len = sizeof (struct usb_hub_descriptor);
501 status = hcd->driver->hub_control (hcd,
502 typeReq, wValue, wIndex,
506 /* "protocol stall" on error */
512 if (status != -EPIPE) {
513 dev_dbg (hcd->self.controller,
514 "CTRL: TypeReq=0x%x val=0x%x "
515 "idx=0x%x len=%d ==> %d\n",
516 typeReq, wValue, wIndex,
521 if (urb->transfer_buffer_length < len)
522 len = urb->transfer_buffer_length;
523 urb->actual_length = len;
524 // always USB_DIR_IN, toward host
525 memcpy (ubuf, bufp, len);
527 /* report whether RH hardware supports remote wakeup */
529 len > offsetof (struct usb_config_descriptor,
531 ((struct usb_config_descriptor *)ubuf)->bmAttributes
532 |= USB_CONFIG_ATT_WAKEUP;
534 /* report whether RH hardware has an integrated TT */
535 if (patch_protocol &&
536 len > offsetof(struct usb_device_descriptor,
538 ((struct usb_device_descriptor *) ubuf)->
542 /* any errors get returned through the urb completion */
543 spin_lock_irq(&hcd_root_hub_lock);
544 usb_hcd_unlink_urb_from_ep(hcd, urb);
546 /* This peculiar use of spinlocks echoes what real HC drivers do.
547 * Avoiding calls to local_irq_disable/enable makes the code
550 spin_unlock(&hcd_root_hub_lock);
551 usb_hcd_giveback_urb(hcd, urb, status);
552 spin_lock(&hcd_root_hub_lock);
554 spin_unlock_irq(&hcd_root_hub_lock);
558 /*-------------------------------------------------------------------------*/
561 * Root Hub interrupt transfers are polled using a timer if the
562 * driver requests it; otherwise the driver is responsible for
563 * calling usb_hcd_poll_rh_status() when an event occurs.
565 * Completions are called in_interrupt(), but they may or may not
568 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
573 char buffer[4]; /* Any root hubs with > 31 ports? */
575 if (unlikely(!hcd->rh_registered))
577 if (!hcd->uses_new_polling && !hcd->status_urb)
580 length = hcd->driver->hub_status_data(hcd, buffer);
583 /* try to complete the status urb */
584 spin_lock_irqsave(&hcd_root_hub_lock, flags);
585 urb = hcd->status_urb;
587 hcd->poll_pending = 0;
588 hcd->status_urb = NULL;
589 urb->actual_length = length;
590 memcpy(urb->transfer_buffer, buffer, length);
592 usb_hcd_unlink_urb_from_ep(hcd, urb);
593 spin_unlock(&hcd_root_hub_lock);
594 usb_hcd_giveback_urb(hcd, urb, 0);
595 spin_lock(&hcd_root_hub_lock);
598 hcd->poll_pending = 1;
600 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
603 /* The USB 2.0 spec says 256 ms. This is close enough and won't
604 * exceed that limit if HZ is 100. The math is more clunky than
605 * maybe expected, this is to make sure that all timers for USB devices
606 * fire at the same time to give the CPU a break inbetween */
607 if (hcd->uses_new_polling ? hcd->poll_rh :
608 (length == 0 && hcd->status_urb != NULL))
609 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
611 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
614 static void rh_timer_func (unsigned long _hcd)
616 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
619 /*-------------------------------------------------------------------------*/
621 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
625 int len = 1 + (urb->dev->maxchild / 8);
627 spin_lock_irqsave (&hcd_root_hub_lock, flags);
628 if (hcd->status_urb || urb->transfer_buffer_length < len) {
629 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
634 retval = usb_hcd_link_urb_to_ep(hcd, urb);
638 hcd->status_urb = urb;
639 urb->hcpriv = hcd; /* indicate it's queued */
640 if (!hcd->uses_new_polling)
641 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
643 /* If a status change has already occurred, report it ASAP */
644 else if (hcd->poll_pending)
645 mod_timer(&hcd->rh_timer, jiffies);
648 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
652 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
654 if (usb_endpoint_xfer_int(&urb->ep->desc))
655 return rh_queue_status (hcd, urb);
656 if (usb_endpoint_xfer_control(&urb->ep->desc))
657 return rh_call_control (hcd, urb);
661 /*-------------------------------------------------------------------------*/
663 /* Unlinks of root-hub control URBs are legal, but they don't do anything
664 * since these URBs always execute synchronously.
666 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
671 spin_lock_irqsave(&hcd_root_hub_lock, flags);
672 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
676 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
679 } else { /* Status URB */
680 if (!hcd->uses_new_polling)
681 del_timer (&hcd->rh_timer);
682 if (urb == hcd->status_urb) {
683 hcd->status_urb = NULL;
684 usb_hcd_unlink_urb_from_ep(hcd, urb);
686 spin_unlock(&hcd_root_hub_lock);
687 usb_hcd_giveback_urb(hcd, urb, status);
688 spin_lock(&hcd_root_hub_lock);
692 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
699 * Show & store the current value of authorized_default
701 static ssize_t usb_host_authorized_default_show(struct device *dev,
702 struct device_attribute *attr,
705 struct usb_device *rh_usb_dev = to_usb_device(dev);
706 struct usb_bus *usb_bus = rh_usb_dev->bus;
707 struct usb_hcd *usb_hcd;
709 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
711 usb_hcd = bus_to_hcd(usb_bus);
712 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
715 static ssize_t usb_host_authorized_default_store(struct device *dev,
716 struct device_attribute *attr,
717 const char *buf, size_t size)
721 struct usb_device *rh_usb_dev = to_usb_device(dev);
722 struct usb_bus *usb_bus = rh_usb_dev->bus;
723 struct usb_hcd *usb_hcd;
725 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
727 usb_hcd = bus_to_hcd(usb_bus);
728 result = sscanf(buf, "%u\n", &val);
730 usb_hcd->authorized_default = val? 1 : 0;
738 static DEVICE_ATTR(authorized_default, 0644,
739 usb_host_authorized_default_show,
740 usb_host_authorized_default_store);
743 /* Group all the USB bus attributes */
744 static struct attribute *usb_bus_attrs[] = {
745 &dev_attr_authorized_default.attr,
749 static struct attribute_group usb_bus_attr_group = {
750 .name = NULL, /* we want them in the same directory */
751 .attrs = usb_bus_attrs,
756 /*-------------------------------------------------------------------------*/
758 static struct class *usb_host_class;
760 int usb_host_init(void)
764 usb_host_class = class_create(THIS_MODULE, "usb_host");
765 if (IS_ERR(usb_host_class))
766 retval = PTR_ERR(usb_host_class);
770 void usb_host_cleanup(void)
772 class_destroy(usb_host_class);
776 * usb_bus_init - shared initialization code
777 * @bus: the bus structure being initialized
779 * This code is used to initialize a usb_bus structure, memory for which is
780 * separately managed.
782 static void usb_bus_init (struct usb_bus *bus)
784 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
786 bus->devnum_next = 1;
788 bus->root_hub = NULL;
790 bus->bandwidth_allocated = 0;
791 bus->bandwidth_int_reqs = 0;
792 bus->bandwidth_isoc_reqs = 0;
794 INIT_LIST_HEAD (&bus->bus_list);
797 /*-------------------------------------------------------------------------*/
800 * usb_register_bus - registers the USB host controller with the usb core
801 * @bus: pointer to the bus to register
802 * Context: !in_interrupt()
804 * Assigns a bus number, and links the controller into usbcore data
805 * structures so that it can be seen by scanning the bus list.
807 static int usb_register_bus(struct usb_bus *bus)
812 mutex_lock(&usb_bus_list_lock);
813 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
814 if (busnum >= USB_MAXBUS) {
815 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
816 goto error_find_busnum;
818 set_bit (busnum, busmap.busmap);
819 bus->busnum = busnum;
821 bus->dev = device_create_drvdata(usb_host_class, bus->controller,
823 "usb_host%d", busnum);
824 result = PTR_ERR(bus->dev);
825 if (IS_ERR(bus->dev))
826 goto error_create_class_dev;
828 /* Add it to the local list of buses */
829 list_add (&bus->bus_list, &usb_bus_list);
830 mutex_unlock(&usb_bus_list_lock);
832 usb_notify_add_bus(bus);
834 dev_info (bus->controller, "new USB bus registered, assigned bus "
835 "number %d\n", bus->busnum);
838 error_create_class_dev:
839 clear_bit(busnum, busmap.busmap);
841 mutex_unlock(&usb_bus_list_lock);
846 * usb_deregister_bus - deregisters the USB host controller
847 * @bus: pointer to the bus to deregister
848 * Context: !in_interrupt()
850 * Recycles the bus number, and unlinks the controller from usbcore data
851 * structures so that it won't be seen by scanning the bus list.
853 static void usb_deregister_bus (struct usb_bus *bus)
855 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
858 * NOTE: make sure that all the devices are removed by the
859 * controller code, as well as having it call this when cleaning
862 mutex_lock(&usb_bus_list_lock);
863 list_del (&bus->bus_list);
864 mutex_unlock(&usb_bus_list_lock);
866 usb_notify_remove_bus(bus);
868 clear_bit (bus->busnum, busmap.busmap);
870 device_unregister(bus->dev);
874 * register_root_hub - called by usb_add_hcd() to register a root hub
875 * @hcd: host controller for this root hub
877 * This function registers the root hub with the USB subsystem. It sets up
878 * the device properly in the device tree and then calls usb_new_device()
879 * to register the usb device. It also assigns the root hub's USB address
882 static int register_root_hub(struct usb_hcd *hcd)
884 struct device *parent_dev = hcd->self.controller;
885 struct usb_device *usb_dev = hcd->self.root_hub;
886 const int devnum = 1;
889 usb_dev->devnum = devnum;
890 usb_dev->bus->devnum_next = devnum + 1;
891 memset (&usb_dev->bus->devmap.devicemap, 0,
892 sizeof usb_dev->bus->devmap.devicemap);
893 set_bit (devnum, usb_dev->bus->devmap.devicemap);
894 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
896 mutex_lock(&usb_bus_list_lock);
898 usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
899 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
900 if (retval != sizeof usb_dev->descriptor) {
901 mutex_unlock(&usb_bus_list_lock);
902 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
903 dev_name(&usb_dev->dev), retval);
904 return (retval < 0) ? retval : -EMSGSIZE;
907 retval = usb_new_device (usb_dev);
909 dev_err (parent_dev, "can't register root hub for %s, %d\n",
910 dev_name(&usb_dev->dev), retval);
912 mutex_unlock(&usb_bus_list_lock);
915 spin_lock_irq (&hcd_root_hub_lock);
916 hcd->rh_registered = 1;
917 spin_unlock_irq (&hcd_root_hub_lock);
919 /* Did the HC die before the root hub was registered? */
920 if (hcd->state == HC_STATE_HALT)
921 usb_hc_died (hcd); /* This time clean up */
928 /*-------------------------------------------------------------------------*/
931 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
932 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
933 * @is_input: true iff the transaction sends data to the host
934 * @isoc: true for isochronous transactions, false for interrupt ones
935 * @bytecount: how many bytes in the transaction.
937 * Returns approximate bus time in nanoseconds for a periodic transaction.
938 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
939 * scheduled in software, this function is only used for such scheduling.
941 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
946 case USB_SPEED_LOW: /* INTR only */
948 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
949 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
951 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
952 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
954 case USB_SPEED_FULL: /* ISOC or INTR */
956 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
957 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
959 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
960 return (9107L + BW_HOST_DELAY + tmp);
962 case USB_SPEED_HIGH: /* ISOC or INTR */
963 // FIXME adjust for input vs output
965 tmp = HS_NSECS_ISO (bytecount);
967 tmp = HS_NSECS (bytecount);
970 pr_debug ("%s: bogus device speed!\n", usbcore_name);
974 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
977 /*-------------------------------------------------------------------------*/
980 * Generic HC operations.
983 /*-------------------------------------------------------------------------*/
986 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
987 * @hcd: host controller to which @urb was submitted
988 * @urb: URB being submitted
990 * Host controller drivers should call this routine in their enqueue()
991 * method. The HCD's private spinlock must be held and interrupts must
992 * be disabled. The actions carried out here are required for URB
993 * submission, as well as for endpoint shutdown and for usb_kill_urb.
995 * Returns 0 for no error, otherwise a negative error code (in which case
996 * the enqueue() method must fail). If no error occurs but enqueue() fails
997 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
998 * the private spinlock and returning.
1000 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1004 spin_lock(&hcd_urb_list_lock);
1006 /* Check that the URB isn't being killed */
1007 if (unlikely(urb->reject)) {
1012 if (unlikely(!urb->ep->enabled)) {
1017 if (unlikely(!urb->dev->can_submit)) {
1023 * Check the host controller's state and add the URB to the
1026 switch (hcd->state) {
1027 case HC_STATE_RUNNING:
1028 case HC_STATE_RESUMING:
1030 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1037 spin_unlock(&hcd_urb_list_lock);
1040 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1043 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1044 * @hcd: host controller to which @urb was submitted
1045 * @urb: URB being checked for unlinkability
1046 * @status: error code to store in @urb if the unlink succeeds
1048 * Host controller drivers should call this routine in their dequeue()
1049 * method. The HCD's private spinlock must be held and interrupts must
1050 * be disabled. The actions carried out here are required for making
1051 * sure than an unlink is valid.
1053 * Returns 0 for no error, otherwise a negative error code (in which case
1054 * the dequeue() method must fail). The possible error codes are:
1056 * -EIDRM: @urb was not submitted or has already completed.
1057 * The completion function may not have been called yet.
1059 * -EBUSY: @urb has already been unlinked.
1061 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1064 struct list_head *tmp;
1066 /* insist the urb is still queued */
1067 list_for_each(tmp, &urb->ep->urb_list) {
1068 if (tmp == &urb->urb_list)
1071 if (tmp != &urb->urb_list)
1074 /* Any status except -EINPROGRESS means something already started to
1075 * unlink this URB from the hardware. So there's no more work to do.
1079 urb->unlinked = status;
1081 /* IRQ setup can easily be broken so that USB controllers
1082 * never get completion IRQs ... maybe even the ones we need to
1083 * finish unlinking the initial failed usb_set_address()
1084 * or device descriptor fetch.
1086 if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1087 !is_root_hub(urb->dev)) {
1088 dev_warn(hcd->self.controller, "Unlink after no-IRQ? "
1089 "Controller is probably using the wrong IRQ.\n");
1090 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1095 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1098 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1099 * @hcd: host controller to which @urb was submitted
1100 * @urb: URB being unlinked
1102 * Host controller drivers should call this routine before calling
1103 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1104 * interrupts must be disabled. The actions carried out here are required
1105 * for URB completion.
1107 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1109 /* clear all state linking urb to this dev (and hcd) */
1110 spin_lock(&hcd_urb_list_lock);
1111 list_del_init(&urb->urb_list);
1112 spin_unlock(&hcd_urb_list_lock);
1114 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1117 * Some usb host controllers can only perform dma using a small SRAM area.
1118 * The usb core itself is however optimized for host controllers that can dma
1119 * using regular system memory - like pci devices doing bus mastering.
1121 * To support host controllers with limited dma capabilites we provide dma
1122 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1123 * For this to work properly the host controller code must first use the
1124 * function dma_declare_coherent_memory() to point out which memory area
1125 * that should be used for dma allocations.
1127 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1128 * dma using dma_alloc_coherent() which in turn allocates from the memory
1129 * area pointed out with dma_declare_coherent_memory().
1131 * So, to summarize...
1133 * - We need "local" memory, canonical example being
1134 * a small SRAM on a discrete controller being the
1135 * only memory that the controller can read ...
1136 * (a) "normal" kernel memory is no good, and
1137 * (b) there's not enough to share
1139 * - The only *portable* hook for such stuff in the
1140 * DMA framework is dma_declare_coherent_memory()
1142 * - So we use that, even though the primary requirement
1143 * is that the memory be "local" (hence addressible
1144 * by that device), not "coherent".
1148 static int hcd_alloc_coherent(struct usb_bus *bus,
1149 gfp_t mem_flags, dma_addr_t *dma_handle,
1150 void **vaddr_handle, size_t size,
1151 enum dma_data_direction dir)
1153 unsigned char *vaddr;
1155 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1156 mem_flags, dma_handle);
1161 * Store the virtual address of the buffer at the end
1162 * of the allocated dma buffer. The size of the buffer
1163 * may be uneven so use unaligned functions instead
1164 * of just rounding up. It makes sense to optimize for
1165 * memory footprint over access speed since the amount
1166 * of memory available for dma may be limited.
1168 put_unaligned((unsigned long)*vaddr_handle,
1169 (unsigned long *)(vaddr + size));
1171 if (dir == DMA_TO_DEVICE)
1172 memcpy(vaddr, *vaddr_handle, size);
1174 *vaddr_handle = vaddr;
1178 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1179 void **vaddr_handle, size_t size,
1180 enum dma_data_direction dir)
1182 unsigned char *vaddr = *vaddr_handle;
1184 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1186 if (dir == DMA_FROM_DEVICE)
1187 memcpy(vaddr, *vaddr_handle, size);
1189 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1191 *vaddr_handle = vaddr;
1195 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1198 enum dma_data_direction dir;
1201 /* Map the URB's buffers for DMA access.
1202 * Lower level HCD code should use *_dma exclusively,
1203 * unless it uses pio or talks to another transport.
1205 if (is_root_hub(urb->dev))
1208 if (usb_endpoint_xfer_control(&urb->ep->desc)
1209 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1210 if (hcd->self.uses_dma)
1211 urb->setup_dma = dma_map_single(
1212 hcd->self.controller,
1214 sizeof(struct usb_ctrlrequest),
1216 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1217 ret = hcd_alloc_coherent(
1218 urb->dev->bus, mem_flags,
1220 (void **)&urb->setup_packet,
1221 sizeof(struct usb_ctrlrequest),
1225 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1226 if (ret == 0 && urb->transfer_buffer_length != 0
1227 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1228 if (hcd->self.uses_dma)
1229 urb->transfer_dma = dma_map_single (
1230 hcd->self.controller,
1231 urb->transfer_buffer,
1232 urb->transfer_buffer_length,
1234 else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1235 ret = hcd_alloc_coherent(
1236 urb->dev->bus, mem_flags,
1238 &urb->transfer_buffer,
1239 urb->transfer_buffer_length,
1242 if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1243 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1244 hcd_free_coherent(urb->dev->bus,
1246 (void **)&urb->setup_packet,
1247 sizeof(struct usb_ctrlrequest),
1254 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1256 enum dma_data_direction dir;
1258 if (is_root_hub(urb->dev))
1261 if (usb_endpoint_xfer_control(&urb->ep->desc)
1262 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1263 if (hcd->self.uses_dma)
1264 dma_unmap_single(hcd->self.controller, urb->setup_dma,
1265 sizeof(struct usb_ctrlrequest),
1267 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1268 hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1269 (void **)&urb->setup_packet,
1270 sizeof(struct usb_ctrlrequest),
1274 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1275 if (urb->transfer_buffer_length != 0
1276 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1277 if (hcd->self.uses_dma)
1278 dma_unmap_single(hcd->self.controller,
1280 urb->transfer_buffer_length,
1282 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1283 hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1284 &urb->transfer_buffer,
1285 urb->transfer_buffer_length,
1290 /*-------------------------------------------------------------------------*/
1292 /* may be called in any context with a valid urb->dev usecount
1293 * caller surrenders "ownership" of urb
1294 * expects usb_submit_urb() to have sanity checked and conditioned all
1297 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1300 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1302 /* increment urb's reference count as part of giving it to the HCD
1303 * (which will control it). HCD guarantees that it either returns
1304 * an error or calls giveback(), but not both.
1307 atomic_inc(&urb->use_count);
1308 atomic_inc(&urb->dev->urbnum);
1309 usbmon_urb_submit(&hcd->self, urb);
1311 /* NOTE requirements on root-hub callers (usbfs and the hub
1312 * driver, for now): URBs' urb->transfer_buffer must be
1313 * valid and usb_buffer_{sync,unmap}() not be needed, since
1314 * they could clobber root hub response data. Also, control
1315 * URBs must be submitted in process context with interrupts
1318 status = map_urb_for_dma(hcd, urb, mem_flags);
1319 if (unlikely(status)) {
1320 usbmon_urb_submit_error(&hcd->self, urb, status);
1324 if (is_root_hub(urb->dev))
1325 status = rh_urb_enqueue(hcd, urb);
1327 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1329 if (unlikely(status)) {
1330 usbmon_urb_submit_error(&hcd->self, urb, status);
1331 unmap_urb_for_dma(hcd, urb);
1334 INIT_LIST_HEAD(&urb->urb_list);
1335 atomic_dec(&urb->use_count);
1336 atomic_dec(&urb->dev->urbnum);
1338 wake_up(&usb_kill_urb_queue);
1344 /*-------------------------------------------------------------------------*/
1346 /* this makes the hcd giveback() the urb more quickly, by kicking it
1347 * off hardware queues (which may take a while) and returning it as
1348 * soon as practical. we've already set up the urb's return status,
1349 * but we can't know if the callback completed already.
1351 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1355 if (is_root_hub(urb->dev))
1356 value = usb_rh_urb_dequeue(hcd, urb, status);
1359 /* The only reason an HCD might fail this call is if
1360 * it has not yet fully queued the urb to begin with.
1361 * Such failures should be harmless. */
1362 value = hcd->driver->urb_dequeue(hcd, urb, status);
1368 * called in any context
1370 * caller guarantees urb won't be recycled till both unlink()
1371 * and the urb's completion function return
1373 int usb_hcd_unlink_urb (struct urb *urb, int status)
1375 struct usb_hcd *hcd;
1378 hcd = bus_to_hcd(urb->dev->bus);
1379 retval = unlink1(hcd, urb, status);
1382 retval = -EINPROGRESS;
1383 else if (retval != -EIDRM && retval != -EBUSY)
1384 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1389 /*-------------------------------------------------------------------------*/
1392 * usb_hcd_giveback_urb - return URB from HCD to device driver
1393 * @hcd: host controller returning the URB
1394 * @urb: urb being returned to the USB device driver.
1395 * @status: completion status code for the URB.
1396 * Context: in_interrupt()
1398 * This hands the URB from HCD to its USB device driver, using its
1399 * completion function. The HCD has freed all per-urb resources
1400 * (and is done using urb->hcpriv). It also released all HCD locks;
1401 * the device driver won't cause problems if it frees, modifies,
1402 * or resubmits this URB.
1404 * If @urb was unlinked, the value of @status will be overridden by
1405 * @urb->unlinked. Erroneous short transfers are detected in case
1406 * the HCD hasn't checked for them.
1408 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1411 if (unlikely(urb->unlinked))
1412 status = urb->unlinked;
1413 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1414 urb->actual_length < urb->transfer_buffer_length &&
1416 status = -EREMOTEIO;
1418 unmap_urb_for_dma(hcd, urb);
1419 usbmon_urb_complete(&hcd->self, urb, status);
1420 usb_unanchor_urb(urb);
1422 /* pass ownership to the completion handler */
1423 urb->status = status;
1424 urb->complete (urb);
1425 atomic_dec (&urb->use_count);
1426 if (unlikely (urb->reject))
1427 wake_up (&usb_kill_urb_queue);
1430 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1432 /*-------------------------------------------------------------------------*/
1434 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1435 * queue to drain completely. The caller must first insure that no more
1436 * URBs can be submitted for this endpoint.
1438 void usb_hcd_flush_endpoint(struct usb_device *udev,
1439 struct usb_host_endpoint *ep)
1441 struct usb_hcd *hcd;
1447 hcd = bus_to_hcd(udev->bus);
1449 /* No more submits can occur */
1450 spin_lock_irq(&hcd_urb_list_lock);
1452 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1458 is_in = usb_urb_dir_in(urb);
1459 spin_unlock(&hcd_urb_list_lock);
1462 unlink1(hcd, urb, -ESHUTDOWN);
1463 dev_dbg (hcd->self.controller,
1464 "shutdown urb %p ep%d%s%s\n",
1465 urb, usb_endpoint_num(&ep->desc),
1466 is_in ? "in" : "out",
1469 switch (usb_endpoint_type(&ep->desc)) {
1470 case USB_ENDPOINT_XFER_CONTROL:
1472 case USB_ENDPOINT_XFER_BULK:
1474 case USB_ENDPOINT_XFER_INT:
1483 /* list contents may have changed */
1484 spin_lock(&hcd_urb_list_lock);
1487 spin_unlock_irq(&hcd_urb_list_lock);
1489 /* Wait until the endpoint queue is completely empty */
1490 while (!list_empty (&ep->urb_list)) {
1491 spin_lock_irq(&hcd_urb_list_lock);
1493 /* The list may have changed while we acquired the spinlock */
1495 if (!list_empty (&ep->urb_list)) {
1496 urb = list_entry (ep->urb_list.prev, struct urb,
1500 spin_unlock_irq(&hcd_urb_list_lock);
1509 /* Disables the endpoint: synchronizes with the hcd to make sure all
1510 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1511 * have been called previously. Use for set_configuration, set_interface,
1512 * driver removal, physical disconnect.
1514 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1515 * type, maxpacket size, toggle, halt status, and scheduling.
1517 void usb_hcd_disable_endpoint(struct usb_device *udev,
1518 struct usb_host_endpoint *ep)
1520 struct usb_hcd *hcd;
1523 hcd = bus_to_hcd(udev->bus);
1524 if (hcd->driver->endpoint_disable)
1525 hcd->driver->endpoint_disable(hcd, ep);
1528 /*-------------------------------------------------------------------------*/
1530 /* called in any context */
1531 int usb_hcd_get_frame_number (struct usb_device *udev)
1533 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1535 if (!HC_IS_RUNNING (hcd->state))
1537 return hcd->driver->get_frame_number (hcd);
1540 /*-------------------------------------------------------------------------*/
1544 int hcd_bus_suspend(struct usb_device *rhdev)
1546 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1548 int old_state = hcd->state;
1550 dev_dbg(&rhdev->dev, "bus %s%s\n",
1551 rhdev->auto_pm ? "auto-" : "", "suspend");
1552 if (!hcd->driver->bus_suspend) {
1555 hcd->state = HC_STATE_QUIESCING;
1556 status = hcd->driver->bus_suspend(hcd);
1559 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1560 hcd->state = HC_STATE_SUSPENDED;
1562 hcd->state = old_state;
1563 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1569 int hcd_bus_resume(struct usb_device *rhdev)
1571 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1573 int old_state = hcd->state;
1575 dev_dbg(&rhdev->dev, "usb %s%s\n",
1576 rhdev->auto_pm ? "auto-" : "", "resume");
1577 if (!hcd->driver->bus_resume)
1579 if (hcd->state == HC_STATE_RUNNING)
1582 hcd->state = HC_STATE_RESUMING;
1583 status = hcd->driver->bus_resume(hcd);
1585 /* TRSMRCY = 10 msec */
1587 usb_set_device_state(rhdev, rhdev->actconfig
1588 ? USB_STATE_CONFIGURED
1589 : USB_STATE_ADDRESS);
1590 hcd->state = HC_STATE_RUNNING;
1592 hcd->state = old_state;
1593 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1595 if (status != -ESHUTDOWN)
1601 /* Workqueue routine for root-hub remote wakeup */
1602 static void hcd_resume_work(struct work_struct *work)
1604 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1605 struct usb_device *udev = hcd->self.root_hub;
1607 usb_lock_device(udev);
1608 usb_mark_last_busy(udev);
1609 usb_external_resume_device(udev);
1610 usb_unlock_device(udev);
1614 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1615 * @hcd: host controller for this root hub
1617 * The USB host controller calls this function when its root hub is
1618 * suspended (with the remote wakeup feature enabled) and a remote
1619 * wakeup request is received. The routine submits a workqueue request
1620 * to resume the root hub (that is, manage its downstream ports again).
1622 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1624 unsigned long flags;
1626 spin_lock_irqsave (&hcd_root_hub_lock, flags);
1627 if (hcd->rh_registered)
1628 queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1629 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1631 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1635 /*-------------------------------------------------------------------------*/
1637 #ifdef CONFIG_USB_OTG
1640 * usb_bus_start_enum - start immediate enumeration (for OTG)
1641 * @bus: the bus (must use hcd framework)
1642 * @port_num: 1-based number of port; usually bus->otg_port
1643 * Context: in_interrupt()
1645 * Starts enumeration, with an immediate reset followed later by
1646 * khubd identifying and possibly configuring the device.
1647 * This is needed by OTG controller drivers, where it helps meet
1648 * HNP protocol timing requirements for starting a port reset.
1650 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1652 struct usb_hcd *hcd;
1653 int status = -EOPNOTSUPP;
1655 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1656 * boards with root hubs hooked up to internal devices (instead of
1657 * just the OTG port) may need more attention to resetting...
1659 hcd = container_of (bus, struct usb_hcd, self);
1660 if (port_num && hcd->driver->start_port_reset)
1661 status = hcd->driver->start_port_reset(hcd, port_num);
1663 /* run khubd shortly after (first) root port reset finishes;
1664 * it may issue others, until at least 50 msecs have passed.
1667 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1670 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1674 /*-------------------------------------------------------------------------*/
1677 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1678 * @irq: the IRQ being raised
1679 * @__hcd: pointer to the HCD whose IRQ is being signaled
1681 * If the controller isn't HALTed, calls the driver's irq handler.
1682 * Checks whether the controller is now dead.
1684 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1686 struct usb_hcd *hcd = __hcd;
1687 unsigned long flags;
1690 /* IRQF_DISABLED doesn't work correctly with shared IRQs
1691 * when the first handler doesn't use it. So let's just
1692 * assume it's never used.
1694 local_irq_save(flags);
1696 if (unlikely(hcd->state == HC_STATE_HALT ||
1697 !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1699 } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1702 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1704 if (unlikely(hcd->state == HC_STATE_HALT))
1709 local_irq_restore(flags);
1713 /*-------------------------------------------------------------------------*/
1716 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1717 * @hcd: pointer to the HCD representing the controller
1719 * This is called by bus glue to report a USB host controller that died
1720 * while operations may still have been pending. It's called automatically
1721 * by the PCI glue, so only glue for non-PCI busses should need to call it.
1723 void usb_hc_died (struct usb_hcd *hcd)
1725 unsigned long flags;
1727 dev_err (hcd->self.controller, "HC died; cleaning up\n");
1729 spin_lock_irqsave (&hcd_root_hub_lock, flags);
1730 if (hcd->rh_registered) {
1733 /* make khubd clean up old urbs and devices */
1734 usb_set_device_state (hcd->self.root_hub,
1735 USB_STATE_NOTATTACHED);
1736 usb_kick_khubd (hcd->self.root_hub);
1738 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1740 EXPORT_SYMBOL_GPL (usb_hc_died);
1742 /*-------------------------------------------------------------------------*/
1745 * usb_create_hcd - create and initialize an HCD structure
1746 * @driver: HC driver that will use this hcd
1747 * @dev: device for this HC, stored in hcd->self.controller
1748 * @bus_name: value to store in hcd->self.bus_name
1749 * Context: !in_interrupt()
1751 * Allocate a struct usb_hcd, with extra space at the end for the
1752 * HC driver's private data. Initialize the generic members of the
1755 * If memory is unavailable, returns NULL.
1757 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1758 struct device *dev, const char *bus_name)
1760 struct usb_hcd *hcd;
1762 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1764 dev_dbg (dev, "hcd alloc failed\n");
1767 dev_set_drvdata(dev, hcd);
1768 kref_init(&hcd->kref);
1770 usb_bus_init(&hcd->self);
1771 hcd->self.controller = dev;
1772 hcd->self.bus_name = bus_name;
1773 hcd->self.uses_dma = (dev->dma_mask != NULL);
1775 init_timer(&hcd->rh_timer);
1776 hcd->rh_timer.function = rh_timer_func;
1777 hcd->rh_timer.data = (unsigned long) hcd;
1779 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1782 hcd->driver = driver;
1783 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1784 "USB Host Controller";
1787 EXPORT_SYMBOL_GPL(usb_create_hcd);
1789 static void hcd_release (struct kref *kref)
1791 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1796 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1799 kref_get (&hcd->kref);
1802 EXPORT_SYMBOL_GPL(usb_get_hcd);
1804 void usb_put_hcd (struct usb_hcd *hcd)
1807 kref_put (&hcd->kref, hcd_release);
1809 EXPORT_SYMBOL_GPL(usb_put_hcd);
1812 * usb_add_hcd - finish generic HCD structure initialization and register
1813 * @hcd: the usb_hcd structure to initialize
1814 * @irqnum: Interrupt line to allocate
1815 * @irqflags: Interrupt type flags
1817 * Finish the remaining parts of generic HCD initialization: allocate the
1818 * buffers of consistent memory, register the bus, request the IRQ line,
1819 * and call the driver's reset() and start() routines.
1821 int usb_add_hcd(struct usb_hcd *hcd,
1822 unsigned int irqnum, unsigned long irqflags)
1825 struct usb_device *rhdev;
1827 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1829 hcd->authorized_default = hcd->wireless? 0 : 1;
1830 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1832 /* HC is in reset state, but accessible. Now do the one-time init,
1833 * bottom up so that hcds can customize the root hubs before khubd
1834 * starts talking to them. (Note, bus id is assigned early too.)
1836 if ((retval = hcd_buffer_create(hcd)) != 0) {
1837 dev_dbg(hcd->self.controller, "pool alloc failed\n");
1841 if ((retval = usb_register_bus(&hcd->self)) < 0)
1842 goto err_register_bus;
1844 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1845 dev_err(hcd->self.controller, "unable to allocate root hub\n");
1847 goto err_allocate_root_hub;
1849 rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1851 hcd->self.root_hub = rhdev;
1853 /* wakeup flag init defaults to "everything works" for root hubs,
1854 * but drivers can override it in reset() if needed, along with
1855 * recording the overall controller's system wakeup capability.
1857 device_init_wakeup(&rhdev->dev, 1);
1859 /* "reset" is misnamed; its role is now one-time init. the controller
1860 * should already have been reset (and boot firmware kicked off etc).
1862 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1863 dev_err(hcd->self.controller, "can't setup\n");
1864 goto err_hcd_driver_setup;
1867 /* NOTE: root hub and controller capabilities may not be the same */
1868 if (device_can_wakeup(hcd->self.controller)
1869 && device_can_wakeup(&hcd->self.root_hub->dev))
1870 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1872 /* enable irqs just before we start the controller */
1873 if (hcd->driver->irq) {
1875 /* IRQF_DISABLED doesn't work as advertised when used together
1876 * with IRQF_SHARED. As usb_hcd_irq() will always disable
1877 * interrupts we can remove it here.
1879 irqflags &= ~IRQF_DISABLED;
1881 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1882 hcd->driver->description, hcd->self.busnum);
1883 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1884 hcd->irq_descr, hcd)) != 0) {
1885 dev_err(hcd->self.controller,
1886 "request interrupt %d failed\n", irqnum);
1887 goto err_request_irq;
1890 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1891 (hcd->driver->flags & HCD_MEMORY) ?
1892 "io mem" : "io base",
1893 (unsigned long long)hcd->rsrc_start);
1896 if (hcd->rsrc_start)
1897 dev_info(hcd->self.controller, "%s 0x%08llx\n",
1898 (hcd->driver->flags & HCD_MEMORY) ?
1899 "io mem" : "io base",
1900 (unsigned long long)hcd->rsrc_start);
1903 if ((retval = hcd->driver->start(hcd)) < 0) {
1904 dev_err(hcd->self.controller, "startup error %d\n", retval);
1905 goto err_hcd_driver_start;
1908 /* starting here, usbcore will pay attention to this root hub */
1909 rhdev->bus_mA = min(500u, hcd->power_budget);
1910 if ((retval = register_root_hub(hcd)) != 0)
1911 goto err_register_root_hub;
1913 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
1915 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
1917 goto error_create_attr_group;
1919 if (hcd->uses_new_polling && hcd->poll_rh)
1920 usb_hcd_poll_rh_status(hcd);
1923 error_create_attr_group:
1924 mutex_lock(&usb_bus_list_lock);
1925 usb_disconnect(&hcd->self.root_hub);
1926 mutex_unlock(&usb_bus_list_lock);
1927 err_register_root_hub:
1928 hcd->driver->stop(hcd);
1929 err_hcd_driver_start:
1931 free_irq(irqnum, hcd);
1933 err_hcd_driver_setup:
1934 hcd->self.root_hub = NULL;
1936 err_allocate_root_hub:
1937 usb_deregister_bus(&hcd->self);
1939 hcd_buffer_destroy(hcd);
1942 EXPORT_SYMBOL_GPL(usb_add_hcd);
1945 * usb_remove_hcd - shutdown processing for generic HCDs
1946 * @hcd: the usb_hcd structure to remove
1947 * Context: !in_interrupt()
1949 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1950 * invoking the HCD's stop() method.
1952 void usb_remove_hcd(struct usb_hcd *hcd)
1954 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
1956 if (HC_IS_RUNNING (hcd->state))
1957 hcd->state = HC_STATE_QUIESCING;
1959 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
1960 spin_lock_irq (&hcd_root_hub_lock);
1961 hcd->rh_registered = 0;
1962 spin_unlock_irq (&hcd_root_hub_lock);
1965 cancel_work_sync(&hcd->wakeup_work);
1968 sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
1969 mutex_lock(&usb_bus_list_lock);
1970 usb_disconnect(&hcd->self.root_hub);
1971 mutex_unlock(&usb_bus_list_lock);
1973 hcd->driver->stop(hcd);
1974 hcd->state = HC_STATE_HALT;
1977 del_timer_sync(&hcd->rh_timer);
1980 free_irq(hcd->irq, hcd);
1981 usb_deregister_bus(&hcd->self);
1982 hcd_buffer_destroy(hcd);
1984 EXPORT_SYMBOL_GPL(usb_remove_hcd);
1987 usb_hcd_platform_shutdown(struct platform_device* dev)
1989 struct usb_hcd *hcd = platform_get_drvdata(dev);
1991 if (hcd->driver->shutdown)
1992 hcd->driver->shutdown(hcd);
1994 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
1996 /*-------------------------------------------------------------------------*/
1998 #if defined(CONFIG_USB_MON)
2000 struct usb_mon_operations *mon_ops;
2003 * The registration is unlocked.
2004 * We do it this way because we do not want to lock in hot paths.
2006 * Notice that the code is minimally error-proof. Because usbmon needs
2007 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2010 int usb_mon_register (struct usb_mon_operations *ops)
2020 EXPORT_SYMBOL_GPL (usb_mon_register);
2022 void usb_mon_deregister (void)
2025 if (mon_ops == NULL) {
2026 printk(KERN_ERR "USB: monitor was not registered\n");
2032 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2034 #endif /* CONFIG_USB_MON */