2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
34 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
35 #define MIN_FREQUENCY_UP_THRESHOLD (11)
36 #define MAX_FREQUENCY_UP_THRESHOLD (100)
39 * The polling frequency of this governor depends on the capability of
40 * the processor. Default polling frequency is 1000 times the transition
41 * latency of the processor. The governor will work on any processor with
42 * transition latency <= 10mS, using appropriate sampling
44 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
45 * this governor will not work.
46 * All times here are in uS.
48 static unsigned int def_sampling_rate;
49 #define MIN_SAMPLING_RATE_RATIO (2)
50 /* for correct statistics, we need at least 10 ticks between each measure */
51 #define MIN_STAT_SAMPLING_RATE \
52 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
53 #define MIN_SAMPLING_RATE \
54 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
55 /* Above MIN_SAMPLING_RATE will vanish with its sysfs file soon
56 * Define the minimal settable sampling rate to the greater of:
57 * - "HW transition latency" * 100 (same as default sampling / 10)
58 * - MIN_STAT_SAMPLING_RATE
59 * To avoid that userspace shoots itself.
61 static unsigned int minimum_sampling_rate(void)
63 return max(def_sampling_rate / 10, MIN_STAT_SAMPLING_RATE);
66 /* This will also vanish soon with removing sampling_rate_max */
67 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
68 #define LATENCY_MULTIPLIER (1000)
69 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
71 static void do_dbs_timer(struct work_struct *work);
74 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
76 struct cpu_dbs_info_s {
77 cputime64_t prev_cpu_idle;
78 cputime64_t prev_cpu_wall;
79 cputime64_t prev_cpu_nice;
80 struct cpufreq_policy *cur_policy;
81 struct delayed_work work;
82 struct cpufreq_frequency_table *freq_table;
84 unsigned int freq_lo_jiffies;
85 unsigned int freq_hi_jiffies;
87 unsigned int enable:1,
90 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
92 static unsigned int dbs_enable; /* number of CPUs using this policy */
95 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
96 * lock and dbs_mutex. cpu_hotplug lock should always be held before
97 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
98 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
99 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
100 * is recursive for the same process. -Venki
101 * DEADLOCK ALERT! (2) : do_dbs_timer() must not take the dbs_mutex, because it
102 * would deadlock with cancel_delayed_work_sync(), which is needed for proper
103 * raceless workqueue teardown.
105 static DEFINE_MUTEX(dbs_mutex);
107 static struct workqueue_struct *kondemand_wq;
109 static struct dbs_tuners {
110 unsigned int sampling_rate;
111 unsigned int up_threshold;
112 unsigned int down_differential;
113 unsigned int ignore_nice;
114 unsigned int powersave_bias;
116 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
117 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
122 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
125 cputime64_t idle_time;
126 cputime64_t cur_wall_time;
127 cputime64_t busy_time;
129 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
130 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
131 kstat_cpu(cpu).cpustat.system);
133 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
134 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
135 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
136 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
138 idle_time = cputime64_sub(cur_wall_time, busy_time);
140 *wall = cur_wall_time;
145 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
147 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
149 if (idle_time == -1ULL)
150 return get_cpu_idle_time_jiffy(cpu, wall);
156 * Find right freq to be set now with powersave_bias on.
157 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
158 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
160 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
161 unsigned int freq_next,
162 unsigned int relation)
164 unsigned int freq_req, freq_reduc, freq_avg;
165 unsigned int freq_hi, freq_lo;
166 unsigned int index = 0;
167 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
168 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
170 if (!dbs_info->freq_table) {
171 dbs_info->freq_lo = 0;
172 dbs_info->freq_lo_jiffies = 0;
176 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
178 freq_req = dbs_info->freq_table[index].frequency;
179 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
180 freq_avg = freq_req - freq_reduc;
182 /* Find freq bounds for freq_avg in freq_table */
184 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
185 CPUFREQ_RELATION_H, &index);
186 freq_lo = dbs_info->freq_table[index].frequency;
188 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
189 CPUFREQ_RELATION_L, &index);
190 freq_hi = dbs_info->freq_table[index].frequency;
192 /* Find out how long we have to be in hi and lo freqs */
193 if (freq_hi == freq_lo) {
194 dbs_info->freq_lo = 0;
195 dbs_info->freq_lo_jiffies = 0;
198 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
199 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
200 jiffies_hi += ((freq_hi - freq_lo) / 2);
201 jiffies_hi /= (freq_hi - freq_lo);
202 jiffies_lo = jiffies_total - jiffies_hi;
203 dbs_info->freq_lo = freq_lo;
204 dbs_info->freq_lo_jiffies = jiffies_lo;
205 dbs_info->freq_hi_jiffies = jiffies_hi;
209 static void ondemand_powersave_bias_init(void)
212 for_each_online_cpu(i) {
213 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
214 dbs_info->freq_table = cpufreq_frequency_get_table(i);
215 dbs_info->freq_lo = 0;
219 /************************** sysfs interface ************************/
220 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
222 static int print_once;
225 printk(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
226 "sysfs file is deprecated - used by: %s\n",
230 return sprintf(buf, "%u\n", MAX_SAMPLING_RATE);
233 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
235 static int print_once;
238 printk(KERN_INFO "CPUFREQ: ondemand sampling_rate_min "
239 "sysfs file is deprecated - used by: %s\n",
243 return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
246 #define define_one_ro(_name) \
247 static struct freq_attr _name = \
248 __ATTR(_name, 0444, show_##_name, NULL)
250 define_one_ro(sampling_rate_max);
251 define_one_ro(sampling_rate_min);
253 /* cpufreq_ondemand Governor Tunables */
254 #define show_one(file_name, object) \
255 static ssize_t show_##file_name \
256 (struct cpufreq_policy *unused, char *buf) \
258 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
260 show_one(sampling_rate, sampling_rate);
261 show_one(up_threshold, up_threshold);
262 show_one(ignore_nice_load, ignore_nice);
263 show_one(powersave_bias, powersave_bias);
265 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
266 const char *buf, size_t count)
270 ret = sscanf(buf, "%u", &input);
272 mutex_lock(&dbs_mutex);
274 mutex_unlock(&dbs_mutex);
277 dbs_tuners_ins.sampling_rate = max(input, minimum_sampling_rate());
278 mutex_unlock(&dbs_mutex);
283 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
284 const char *buf, size_t count)
288 ret = sscanf(buf, "%u", &input);
290 mutex_lock(&dbs_mutex);
291 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
292 input < MIN_FREQUENCY_UP_THRESHOLD) {
293 mutex_unlock(&dbs_mutex);
297 dbs_tuners_ins.up_threshold = input;
298 mutex_unlock(&dbs_mutex);
303 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
304 const char *buf, size_t count)
311 ret = sscanf(buf, "%u", &input);
318 mutex_lock(&dbs_mutex);
319 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
320 mutex_unlock(&dbs_mutex);
323 dbs_tuners_ins.ignore_nice = input;
325 /* we need to re-evaluate prev_cpu_idle */
326 for_each_online_cpu(j) {
327 struct cpu_dbs_info_s *dbs_info;
328 dbs_info = &per_cpu(cpu_dbs_info, j);
329 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
330 &dbs_info->prev_cpu_wall);
331 if (dbs_tuners_ins.ignore_nice)
332 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
335 mutex_unlock(&dbs_mutex);
340 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
341 const char *buf, size_t count)
345 ret = sscanf(buf, "%u", &input);
353 mutex_lock(&dbs_mutex);
354 dbs_tuners_ins.powersave_bias = input;
355 ondemand_powersave_bias_init();
356 mutex_unlock(&dbs_mutex);
361 #define define_one_rw(_name) \
362 static struct freq_attr _name = \
363 __ATTR(_name, 0644, show_##_name, store_##_name)
365 define_one_rw(sampling_rate);
366 define_one_rw(up_threshold);
367 define_one_rw(ignore_nice_load);
368 define_one_rw(powersave_bias);
370 static struct attribute *dbs_attributes[] = {
371 &sampling_rate_max.attr,
372 &sampling_rate_min.attr,
375 &ignore_nice_load.attr,
376 &powersave_bias.attr,
380 static struct attribute_group dbs_attr_group = {
381 .attrs = dbs_attributes,
385 /************************** sysfs end ************************/
387 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
389 unsigned int max_load_freq;
391 struct cpufreq_policy *policy;
394 if (!this_dbs_info->enable)
397 this_dbs_info->freq_lo = 0;
398 policy = this_dbs_info->cur_policy;
401 * Every sampling_rate, we check, if current idle time is less
402 * than 20% (default), then we try to increase frequency
403 * Every sampling_rate, we look for a the lowest
404 * frequency which can sustain the load while keeping idle time over
405 * 30%. If such a frequency exist, we try to decrease to this frequency.
407 * Any frequency increase takes it to the maximum frequency.
408 * Frequency reduction happens at minimum steps of
409 * 5% (default) of current frequency
412 /* Get Absolute Load - in terms of freq */
415 for_each_cpu(j, policy->cpus) {
416 struct cpu_dbs_info_s *j_dbs_info;
417 cputime64_t cur_wall_time, cur_idle_time;
418 unsigned int idle_time, wall_time;
419 unsigned int load, load_freq;
422 j_dbs_info = &per_cpu(cpu_dbs_info, j);
424 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
426 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
427 j_dbs_info->prev_cpu_wall);
428 j_dbs_info->prev_cpu_wall = cur_wall_time;
430 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
431 j_dbs_info->prev_cpu_idle);
432 j_dbs_info->prev_cpu_idle = cur_idle_time;
434 if (dbs_tuners_ins.ignore_nice) {
435 cputime64_t cur_nice;
436 unsigned long cur_nice_jiffies;
438 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
439 j_dbs_info->prev_cpu_nice);
441 * Assumption: nice time between sampling periods will
442 * be less than 2^32 jiffies for 32 bit sys
444 cur_nice_jiffies = (unsigned long)
445 cputime64_to_jiffies64(cur_nice);
447 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
448 idle_time += jiffies_to_usecs(cur_nice_jiffies);
451 if (unlikely(!wall_time || wall_time < idle_time))
454 load = 100 * (wall_time - idle_time) / wall_time;
456 freq_avg = __cpufreq_driver_getavg(policy, j);
458 freq_avg = policy->cur;
460 load_freq = load * freq_avg;
461 if (load_freq > max_load_freq)
462 max_load_freq = load_freq;
465 /* Check for frequency increase */
466 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
467 /* if we are already at full speed then break out early */
468 if (!dbs_tuners_ins.powersave_bias) {
469 if (policy->cur == policy->max)
472 __cpufreq_driver_target(policy, policy->max,
475 int freq = powersave_bias_target(policy, policy->max,
477 __cpufreq_driver_target(policy, freq,
483 /* Check for frequency decrease */
484 /* if we cannot reduce the frequency anymore, break out early */
485 if (policy->cur == policy->min)
489 * The optimal frequency is the frequency that is the lowest that
490 * can support the current CPU usage without triggering the up
491 * policy. To be safe, we focus 10 points under the threshold.
494 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
496 unsigned int freq_next;
497 freq_next = max_load_freq /
498 (dbs_tuners_ins.up_threshold -
499 dbs_tuners_ins.down_differential);
501 if (!dbs_tuners_ins.powersave_bias) {
502 __cpufreq_driver_target(policy, freq_next,
505 int freq = powersave_bias_target(policy, freq_next,
507 __cpufreq_driver_target(policy, freq,
513 static void do_dbs_timer(struct work_struct *work)
515 struct cpu_dbs_info_s *dbs_info =
516 container_of(work, struct cpu_dbs_info_s, work.work);
517 unsigned int cpu = dbs_info->cpu;
518 int sample_type = dbs_info->sample_type;
520 /* We want all CPUs to do sampling nearly on same jiffy */
521 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
523 delay -= jiffies % delay;
525 if (lock_policy_rwsem_write(cpu) < 0)
528 if (!dbs_info->enable) {
529 unlock_policy_rwsem_write(cpu);
533 /* Common NORMAL_SAMPLE setup */
534 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
535 if (!dbs_tuners_ins.powersave_bias ||
536 sample_type == DBS_NORMAL_SAMPLE) {
537 dbs_check_cpu(dbs_info);
538 if (dbs_info->freq_lo) {
539 /* Setup timer for SUB_SAMPLE */
540 dbs_info->sample_type = DBS_SUB_SAMPLE;
541 delay = dbs_info->freq_hi_jiffies;
544 __cpufreq_driver_target(dbs_info->cur_policy,
545 dbs_info->freq_lo, CPUFREQ_RELATION_H);
547 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
548 unlock_policy_rwsem_write(cpu);
551 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
553 /* We want all CPUs to do sampling nearly on same jiffy */
554 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
555 delay -= jiffies % delay;
557 dbs_info->enable = 1;
558 ondemand_powersave_bias_init();
559 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
560 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
561 queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
565 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
567 dbs_info->enable = 0;
568 cancel_delayed_work_sync(&dbs_info->work);
571 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
574 unsigned int cpu = policy->cpu;
575 struct cpu_dbs_info_s *this_dbs_info;
579 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
582 case CPUFREQ_GOV_START:
583 if ((!cpu_online(cpu)) || (!policy->cur))
586 if (this_dbs_info->enable) /* Already enabled */
589 mutex_lock(&dbs_mutex);
592 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
595 mutex_unlock(&dbs_mutex);
599 for_each_cpu(j, policy->cpus) {
600 struct cpu_dbs_info_s *j_dbs_info;
601 j_dbs_info = &per_cpu(cpu_dbs_info, j);
602 j_dbs_info->cur_policy = policy;
604 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
605 &j_dbs_info->prev_cpu_wall);
606 if (dbs_tuners_ins.ignore_nice) {
607 j_dbs_info->prev_cpu_nice =
608 kstat_cpu(j).cpustat.nice;
611 this_dbs_info->cpu = cpu;
613 * Start the timerschedule work, when this governor
614 * is used for first time
616 if (dbs_enable == 1) {
617 unsigned int latency;
618 /* policy latency is in nS. Convert it to uS first */
619 latency = policy->cpuinfo.transition_latency / 1000;
624 max(latency * LATENCY_MULTIPLIER,
625 MIN_STAT_SAMPLING_RATE);
627 dbs_tuners_ins.sampling_rate = def_sampling_rate;
629 dbs_timer_init(this_dbs_info);
631 mutex_unlock(&dbs_mutex);
634 case CPUFREQ_GOV_STOP:
635 mutex_lock(&dbs_mutex);
636 dbs_timer_exit(this_dbs_info);
637 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
639 mutex_unlock(&dbs_mutex);
643 case CPUFREQ_GOV_LIMITS:
644 mutex_lock(&dbs_mutex);
645 if (policy->max < this_dbs_info->cur_policy->cur)
646 __cpufreq_driver_target(this_dbs_info->cur_policy,
647 policy->max, CPUFREQ_RELATION_H);
648 else if (policy->min > this_dbs_info->cur_policy->cur)
649 __cpufreq_driver_target(this_dbs_info->cur_policy,
650 policy->min, CPUFREQ_RELATION_L);
651 mutex_unlock(&dbs_mutex);
657 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
660 struct cpufreq_governor cpufreq_gov_ondemand = {
662 .governor = cpufreq_governor_dbs,
663 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
664 .owner = THIS_MODULE,
667 static int __init cpufreq_gov_dbs_init(void)
674 idle_time = get_cpu_idle_time_us(cpu, &wall);
676 if (idle_time != -1ULL) {
677 /* Idle micro accounting is supported. Use finer thresholds */
678 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
679 dbs_tuners_ins.down_differential =
680 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
683 kondemand_wq = create_workqueue("kondemand");
685 printk(KERN_ERR "Creation of kondemand failed\n");
688 err = cpufreq_register_governor(&cpufreq_gov_ondemand);
690 destroy_workqueue(kondemand_wq);
695 static void __exit cpufreq_gov_dbs_exit(void)
697 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
698 destroy_workqueue(kondemand_wq);
702 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
703 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
704 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
705 "Low Latency Frequency Transition capable processors");
706 MODULE_LICENSE("GPL");
708 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
709 fs_initcall(cpufreq_gov_dbs_init);
711 module_init(cpufreq_gov_dbs_init);
713 module_exit(cpufreq_gov_dbs_exit);