dccp: Initialisation and type-checking of feature sysctls
[linux-2.6] / net / rfkill / rfkill-input.c
1 /*
2  * Input layer to RF Kill interface connector
3  *
4  * Copyright (c) 2007 Dmitry Torokhov
5  */
6
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published
10  * by the Free Software Foundation.
11  */
12
13 #include <linux/module.h>
14 #include <linux/input.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/init.h>
18 #include <linux/rfkill.h>
19
20 #include "rfkill-input.h"
21
22 MODULE_AUTHOR("Dmitry Torokhov <dtor@mail.ru>");
23 MODULE_DESCRIPTION("Input layer to RF switch connector");
24 MODULE_LICENSE("GPL");
25
26 struct rfkill_task {
27         struct work_struct work;
28         enum rfkill_type type;
29         struct mutex mutex; /* ensures that task is serialized */
30         spinlock_t lock; /* for accessing last and desired state */
31         unsigned long last; /* last schedule */
32         enum rfkill_state desired_state; /* on/off */
33 };
34
35 static void rfkill_task_handler(struct work_struct *work)
36 {
37         struct rfkill_task *task = container_of(work, struct rfkill_task, work);
38
39         mutex_lock(&task->mutex);
40
41         rfkill_switch_all(task->type, task->desired_state);
42
43         mutex_unlock(&task->mutex);
44 }
45
46 static void rfkill_task_epo_handler(struct work_struct *work)
47 {
48         rfkill_epo();
49 }
50
51 static DECLARE_WORK(epo_work, rfkill_task_epo_handler);
52
53 static void rfkill_schedule_epo(void)
54 {
55         schedule_work(&epo_work);
56 }
57
58 static void rfkill_schedule_set(struct rfkill_task *task,
59                                 enum rfkill_state desired_state)
60 {
61         unsigned long flags;
62
63         if (unlikely(work_pending(&epo_work)))
64                 return;
65
66         spin_lock_irqsave(&task->lock, flags);
67
68         if (time_after(jiffies, task->last + msecs_to_jiffies(200))) {
69                 task->desired_state = desired_state;
70                 task->last = jiffies;
71                 schedule_work(&task->work);
72         }
73
74         spin_unlock_irqrestore(&task->lock, flags);
75 }
76
77 static void rfkill_schedule_toggle(struct rfkill_task *task)
78 {
79         unsigned long flags;
80
81         if (unlikely(work_pending(&epo_work)))
82                 return;
83
84         spin_lock_irqsave(&task->lock, flags);
85
86         if (time_after(jiffies, task->last + msecs_to_jiffies(200))) {
87                 task->desired_state =
88                                 rfkill_state_complement(task->desired_state);
89                 task->last = jiffies;
90                 schedule_work(&task->work);
91         }
92
93         spin_unlock_irqrestore(&task->lock, flags);
94 }
95
96 #define DEFINE_RFKILL_TASK(n, t)                                \
97         struct rfkill_task n = {                                \
98                 .work = __WORK_INITIALIZER(n.work,              \
99                                 rfkill_task_handler),           \
100                 .type = t,                                      \
101                 .mutex = __MUTEX_INITIALIZER(n.mutex),          \
102                 .lock = __SPIN_LOCK_UNLOCKED(n.lock),           \
103                 .desired_state = RFKILL_STATE_UNBLOCKED,        \
104         }
105
106 static DEFINE_RFKILL_TASK(rfkill_wlan, RFKILL_TYPE_WLAN);
107 static DEFINE_RFKILL_TASK(rfkill_bt, RFKILL_TYPE_BLUETOOTH);
108 static DEFINE_RFKILL_TASK(rfkill_uwb, RFKILL_TYPE_UWB);
109 static DEFINE_RFKILL_TASK(rfkill_wimax, RFKILL_TYPE_WIMAX);
110 static DEFINE_RFKILL_TASK(rfkill_wwan, RFKILL_TYPE_WWAN);
111
112 static void rfkill_schedule_evsw_rfkillall(int state)
113 {
114         /* EVERY radio type. state != 0 means radios ON */
115         /* handle EPO (emergency power off) through shortcut */
116         if (state) {
117                 rfkill_schedule_set(&rfkill_wwan,
118                                     RFKILL_STATE_UNBLOCKED);
119                 rfkill_schedule_set(&rfkill_wimax,
120                                     RFKILL_STATE_UNBLOCKED);
121                 rfkill_schedule_set(&rfkill_uwb,
122                                     RFKILL_STATE_UNBLOCKED);
123                 rfkill_schedule_set(&rfkill_bt,
124                                     RFKILL_STATE_UNBLOCKED);
125                 rfkill_schedule_set(&rfkill_wlan,
126                                     RFKILL_STATE_UNBLOCKED);
127         } else
128                 rfkill_schedule_epo();
129 }
130
131 static void rfkill_event(struct input_handle *handle, unsigned int type,
132                         unsigned int code, int data)
133 {
134         if (type == EV_KEY && data == 1) {
135                 switch (code) {
136                 case KEY_WLAN:
137                         rfkill_schedule_toggle(&rfkill_wlan);
138                         break;
139                 case KEY_BLUETOOTH:
140                         rfkill_schedule_toggle(&rfkill_bt);
141                         break;
142                 case KEY_UWB:
143                         rfkill_schedule_toggle(&rfkill_uwb);
144                         break;
145                 case KEY_WIMAX:
146                         rfkill_schedule_toggle(&rfkill_wimax);
147                         break;
148                 default:
149                         break;
150                 }
151         } else if (type == EV_SW) {
152                 switch (code) {
153                 case SW_RFKILL_ALL:
154                         rfkill_schedule_evsw_rfkillall(data);
155                         break;
156                 default:
157                         break;
158                 }
159         }
160 }
161
162 static int rfkill_connect(struct input_handler *handler, struct input_dev *dev,
163                           const struct input_device_id *id)
164 {
165         struct input_handle *handle;
166         int error;
167
168         handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
169         if (!handle)
170                 return -ENOMEM;
171
172         handle->dev = dev;
173         handle->handler = handler;
174         handle->name = "rfkill";
175
176         /* causes rfkill_start() to be called */
177         error = input_register_handle(handle);
178         if (error)
179                 goto err_free_handle;
180
181         error = input_open_device(handle);
182         if (error)
183                 goto err_unregister_handle;
184
185         return 0;
186
187  err_unregister_handle:
188         input_unregister_handle(handle);
189  err_free_handle:
190         kfree(handle);
191         return error;
192 }
193
194 static void rfkill_start(struct input_handle *handle)
195 {
196         /* Take event_lock to guard against configuration changes, we
197          * should be able to deal with concurrency with rfkill_event()
198          * just fine (which event_lock will also avoid). */
199         spin_lock_irq(&handle->dev->event_lock);
200
201         if (test_bit(EV_SW, handle->dev->evbit)) {
202                 if (test_bit(SW_RFKILL_ALL, handle->dev->swbit))
203                         rfkill_schedule_evsw_rfkillall(test_bit(SW_RFKILL_ALL,
204                                                         handle->dev->sw));
205                 /* add resync for further EV_SW events here */
206         }
207
208         spin_unlock_irq(&handle->dev->event_lock);
209 }
210
211 static void rfkill_disconnect(struct input_handle *handle)
212 {
213         input_close_device(handle);
214         input_unregister_handle(handle);
215         kfree(handle);
216 }
217
218 static const struct input_device_id rfkill_ids[] = {
219         {
220                 .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
221                 .evbit = { BIT_MASK(EV_KEY) },
222                 .keybit = { [BIT_WORD(KEY_WLAN)] = BIT_MASK(KEY_WLAN) },
223         },
224         {
225                 .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
226                 .evbit = { BIT_MASK(EV_KEY) },
227                 .keybit = { [BIT_WORD(KEY_BLUETOOTH)] = BIT_MASK(KEY_BLUETOOTH) },
228         },
229         {
230                 .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
231                 .evbit = { BIT_MASK(EV_KEY) },
232                 .keybit = { [BIT_WORD(KEY_UWB)] = BIT_MASK(KEY_UWB) },
233         },
234         {
235                 .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
236                 .evbit = { BIT_MASK(EV_KEY) },
237                 .keybit = { [BIT_WORD(KEY_WIMAX)] = BIT_MASK(KEY_WIMAX) },
238         },
239         {
240                 .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_SWBIT,
241                 .evbit = { BIT(EV_SW) },
242                 .swbit = { [BIT_WORD(SW_RFKILL_ALL)] = BIT_MASK(SW_RFKILL_ALL) },
243         },
244         { }
245 };
246
247 static struct input_handler rfkill_handler = {
248         .event =        rfkill_event,
249         .connect =      rfkill_connect,
250         .disconnect =   rfkill_disconnect,
251         .start =        rfkill_start,
252         .name =         "rfkill",
253         .id_table =     rfkill_ids,
254 };
255
256 static int __init rfkill_handler_init(void)
257 {
258         return input_register_handler(&rfkill_handler);
259 }
260
261 static void __exit rfkill_handler_exit(void)
262 {
263         input_unregister_handler(&rfkill_handler);
264         flush_scheduled_work();
265 }
266
267 module_init(rfkill_handler_init);
268 module_exit(rfkill_handler_exit);